
N94"22361

DEVELOPMENT OF A GRIDLESS
CFD METHOD

JOHN T. BATINA
NASA LANGLEY RESEARCH CENTER

PI_C_rd)tNG PAGE BLA,"iK NOT FILMED

151



PRESENTATION OBJECTIVE

Leave you with some thoughts or ideas on an
alternative approach to discretizing fluid flow problems
(namely the so-called gridless approach)

Ask you today to"

- Expand your thinking
- Be unconventional

• Why? Because if you expand the possibilities for
generating grids or developing solution algorithms you
might actually discover techniques that are superior to
conventional procedures!

CONSIDER A SET OF POINTS IN
A TWO-DIMENSIONAL DOMAIN

• How do you connect the points?
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STRUCTURED GRID

• Should the points be connected in a structured fashion?

• .r F • •

• F "F

• _ r q F

• AlL A L • a L LI

UNSTRUCTURED GRID

• Or should they be connected as an unstructured grid
of triangles?
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FIELD OF POINTS

• Maybe the points didn't need to be connected in the
first place!

MOTIVATION FOR ALTERNATIVE APPROACH

• Tetrahedral meshes have an excessively large number

of cells than structured grids

• These meshes, while reasonably adequate in the
streamwise direction, tend to be much finer in the

spanwise direction than is necessary for accurate flow

computation

• Furthermore, for viscous applications, the additional

requirement that the mesh be fine near the body,
exacerbates the inefficiency

• The basic problem is that the
inefficient geometrical shape

tetrahedron is an
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INTRODUCTION OF GRIDLESS APPROACH

• To alleviate the problem, some researchers have put
structure back into the mesh in one coordinate direction

• This helps, but rather than take a step back toward

grid structure, can we take a step forward and develop
algorithms that do not require that the points be
connected at all?

• This type of approach, referred to as "gridless," uses
only clouds of points and does not require that the

points be connected to form a grid as is necessary in
conventional CFD algorithms

• The governing equations are solved directly, by
performing local least-squares curve fits in each cloud

of points, and then analytically differentiating the
resulting curve fits to approximate the derivatives

SPATIAL DISCRETIZATION - DERIVATIVES

• Fluxes assumed to vary locally as

f(x, y, =) = ao + alx + a2y + a3z

• ao, al, a2, and a3 determined from a least-squares
curve fit resulting in

Exi Ex 2 Exiy_ Exizi al =
Ey_ Exiyi Ey 2 Eyizi a2

_zi _xizi _,yizi _,,z 2 a3

Exifi

Eyifi
Ez_f_

where n is the number of points in the cloud and the
summations are taken over the n points

• The spatial derivatives are now known since

_-x "- al _y -" a2 _z -- a3
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SOLUTION BY QR- DECOMPOSITION

• Least-squares equations are of the form

ATA)a = AT f

but (ATA) may be ill conditioned

• Instead the equations

Aa=f

are solved using a decomposition where A = Q R such
that QTQ = [ and R is a square upper triangular matrix

Ra = Qr f

• Solution given by

SPATIAL DISCRETIZATION- ARTIFICIAL DISSIPATION

• Artificial dissipation is added to the solution procedure
since the method is conceptually analogous to a
central-difference type approach

• Harmonic and biharmonic terms are added to the

governing equations defined by

where A is the local maximum eigenvalue and _(2) and
e(4) are local dissipation coefficients

• For the Navier-Stokes equations, an anisotropic model
is used in part to account for the close spacing of
points normal to the surface relative to the tangential
distribution
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BOUNDARY CONDITIONS

• Ghost points are used inside or outside of boundaries
to impose the boundary conditions

• Along solid surfaces

- velocity components determined by slip (Euler) or
no-slip (Navier-Stokes) condition

- pressure and density determined by extrapolation

In the farfield

- inviscid flow variables determined by a characteristic
analysis based on Riemann invariants

- viscous flow variables determined by extrapolation

TEMPORAL DISCRETIZATION- TIME INTEGRATION

• Governing flow equations are integrated numerically in
time using an explicit Runge-Kutta scheme

- To solve the Euler equations, a four-stage scheme
is used with the artificial dissipation evaluated only
during the first stage

- To solve the Navier-Stokes equations, a five-
stage scheme is used with the artificial dissipation
evaluated during the odd stages
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OVERVIEW OF EULER RESULTS

NACA 0012 airfoil

- Moo = 0.8 and o_= 0°
O

- Moo = 0.8.5 and a = 1
- Moo = 0.8 and e = 1.25°

- Moo = 1.2 and a = 7°

• ONERA M6 wing at Moo = 0.84° and a = 3.06°

FIELD OF POINTS ABOUT NACA 0012 AIRFOIL

Locations of points determined using the cell centers
of an unstructured grid for convenience

Computational domain has a total of 6500 points
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CONVERGENCE HISTORIES FOR NACA 0012 AIRFOIL
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PRESSURE DISTRIBUTIONS FOR NACA 0012 AIRFOIL
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GHOST POINTS FOR ONERA M6 WING

• Computational domain has a total of 108,705 points

• Symmetry plane • Planform
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EULER SOLUTION FOR ONERA M6 WING
AT Moo -- 0.84 AND a = 3.06 °

• Pressure coefficient distribution
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ADVANTAGES/DISADVANTAGES OF GRIDLESS METHOD

• Gridless method is not faster on a per point basis in
comparison with methods developed for structured or
unstructured grids

• Advantage is that it allows the use of fields of points
where the points are more appropriately located and
clustered, leading to far fewer points to solve a given
problem

• Method retains the advantages of the unstructured
grid methods

- general geometry treatment

- spatial adaptation

• Disadvantage is that it requires indirect addressing to
store cloud to point information
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SUMMARY

• Development of a gridless method for the solution of
the 2D and 3D Euler and Navier-Stokes equations
was described

• Method uses only clouds of points and does not
require that the points be connected to form a grid as
is necessary in conventional CFD algorithms

Calculations for standard Euler and Navier-Stokes
cases were found to be reasonably accurate and

efficient in comparison with alternative methods and
experimental data

FINAL THOUGHTS

• The advent of gridless CFD does not obviate the need

for "grid" generation m just the opposite

• Gridless CFD still requires surface definition and opens

up the need to develop techniques for generating fields
of points (in place of grids of points)
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