N94-22365

2D & 3D HYPERSONIC FLOWS WITH UNSTRUCTURED MESHES

RAJIV THAREJA LOCKHEED ENGINEERING & SCIENCES COMPANY

PRECEDING PAGE BLANK NOT FILMED

OUTLINE

Introduction

2D Viscous Shock-Shock Interaction

3D Inviscid NASP-Like (Unadapted)

3D Inviscid NASP-Like (Adapted)

INTRODUCTION

Funded by Aerothermal Loads Branch (NASA LaRC) Development of finite elements in fluids and unstructured grid generation (began 1983-1984) In-house research Civil servants and contractors Grantees' research Morgan, Lohner, Peraire (Swansea) Hughes (Stanford) Oden (Austin) Thornton (ODU) Current status

COUPLED MODULES

MESH GENERATION

Advancing Front Method

Generation Parameters

Spacing Orientation Stretching

Sources

Point Line Triangles

Background Mesh

2D CAPABILITIES (LARCNESS)

Generation of initial meshes Structured near walls Unstructured elsewhere

Generation of adapted meshes (Remeshing) from previous solution

Mesh refinement Solution adaptive Geometry-based

Mesh movement

2D SHOCK-SHOCK INTERACTION Schematic

ADAPTED MESH

Mesh

U-Velocity Contours

.

3D CAPABILITIES (FELISA)

Developed by Peraire, Morgan, Peiro

3D Unstructured Mesh Generator

Solver Hypersonic Flows Unstructured Multigrid Matrix Dissipation

Adaption Remeshing Refinement

SUMMARY OF MESHES GENERATED BY VARYING SOURCE STRENGTHS

MESH	SURFACE TRIANGLES	VOLUME TETRAHEDRA
1	6,348	39,004
2	24,402	255,853
3	76,254	1,303,666

CLOSE-UP OF MESH 2

VEHICLE BOTTOM SURFACE Mesh 2

Mesh

Density Contours

VEHICLE BOTTOM SURFACE Mesh 3

SUMMARY OF ADAPTED MESHES

MESH	SURFACE TRIANGLES	VOLUME TETRAHEDRA
1	41,736	531,610
2	73,930	1,469,105

ADAPTED MESH 1

VEHICLE BOTTOM SURFACE Adapted Mesh 2

Mesh

Density Contours

CONCLUSIONS

- Adaptive remeshing demonstrated for problems with large number of elements
- Though efficient, these schemes exhaust cputime, memory and disk-space on current computers
- 3D meshes with element sizes equivalent to those necessary in 2D would need more than 10 million elements
- Current capability is significantly better than what was available only a few years ago
- Further improvements in mesh generation, flow solvers and adaptivity still needed

; ٩