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Abstract

Surface acquisition deals with tile reconstruction of three-dimensional objects from

a set of data points. The most straightforward techniques require human intervention, a

time consunfing proposition. It is desirable to develop a fully automated alternative. Such

a method is proposed in this paper. It nmkes use Of surface measurements obtained from a

3-D laser digitizer - an instrument Wtiich provides the (x, y, z) coordinates of surface data

points from various viewpoints. These points are assembled into several partial surfaces,

using a visibility constraint and a 2-D triangulation technique. Reconstruction of the final

object requires merging these partial surfaces. This is accomplished through a procedure

that emulates milling, a standard machining operation. From a geometrical standpoint the

problem reduces to constructing the intersection of two or more non-convex polyhedra.

1. Introduction

The field of surface definition has gained considerable importance in the past couple

of years. Advances in computers and numerical flow algorithms have made simulation of

3-D fluid flow computationally tractable. The single greatest impediment to the use of

this technology on complex 3-D objects, such as complete aircraft, is defining the shape

of the objects themselves. This observation has focused considerable attention on surface

(.lefillition and surface modeling.

One commonly used technique for surface definition involves re-creating an object

from a series of body cross-sections, coordinates of which are available from a computer-

aided design (CAD) database or direct measurements [1,2,3]. This process requires human

intervention and is susceptible to human error. A more automated approach, both for

measuring the object and for constructing a surface conforming to the measurements, is

needed.

Three-dimensionM objects can be measured quickly and automatically using a laser

digitizer [4]. This device, like a coordinate measuring machine, returns the coordinates of

a number of surface points. Instead of a mechanical probe, the digitizer uses optics for its

measurements. The lack of mechanical inertia and physical contact in the measurement

process allows a five order of magnitude improvement in speed over a coordinate measuring

machine. The digitizer collects points at the rate of 14500/second, to an accuracy of about

0.2-0'5 millimeters depending on the surface albedo and orientation. The object is held on

a solidly built machinist's table on which it can be translated or rotated by computer driven
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FIGURE 1. A Cyberware laser digitizer at NASA Ames Research Center.

servo motors, thus allowing observations from several different viewpoints to be expressed

in a single coordinate system (see Figure 1). Merriam & Barth [5,6] have described the

laser digitizer at length, interested readers are directed to their paper for further details.

Once the surface measurements are clone, the surface incorporating the measured

data must be reconstructed. Maksymiuk et al. [7] have proposed an algorithm based on

pruning of unstructured grids. The method involves performing a Delaunay tessellation of

the data points in three dimensions. This results in a solid body made up of tetrahedra,

a valid reconstruction only for convex objects. The key insight is that no part of the

object can obstruct the line of sight between the laser source and the object. This allows

an improved shape to be reconstructed by deleting tetrahedra that intersect that line of

sight. The algorithm is of O(N log N) complexity, where N is number of observed points.

It has two main drawbacks: it generally removes more material than virtual milling, and

the topological correctness of the reconstructed surface is sensitive to small errors in the

experimental measurement. Both problems come from the discreteness of the pruning

process: a tetrahedra is either removed or left re:touched.

A very similar, but independently developed, procedure has been used by Faugeras

et aI. [8] for reconstructing 3-D scenes from stereo photographs. They also have shown

how the reconstructed surface converges to the true surface when the sampling density

increases.
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Other algorithms for surface reconstruction exist. For example see Uselton[9] or

Hoppe st al. [10]. We believe our algorithm to be flnldamentally different and to have the

following good properties.

i) It is reasonably efficient, having a formal complexity of N log N where N is the number

of observed points.

ii) It always yields a toi)ologically correct surface.

The remainder of the paper covers some of the algorithmic details of virtual milling

including the relevant data structures and search techniques.

2. Surface Reconstruction From Digitizer Data

Our input data comes from a 3-D laser digitizer. This device provides prodigious

amounts of data, but the data is given as a set of independent measurements. The desired

output is a triangular faceted polyhedron which approximates the shape of the object being
scanned.

Physical milling is the process of carving away material from an initial "blank" until

the remaining material has the desired shape. Virtual milling (VM) simulates this process

using computational geometry techniques. This immediately solves the most difficult prob-

lem; incorporating information from many different scans into a single part. The virtual

cutting head resolves any small inconsistencies between scans. Whichever scan cuts the

deepest prevails.

Two problems remain. First, the information from a single scan must be formed into

a polyhedron which represents the volume to be milled out. Second, that polyhedron must

be subtracted (in a solid modeling sense) from the workpiece.

2.1 Forming Surface Fragments From Individual Scans

The first job is to establish a triangular faceted surface flagment, an open two-

manifold in 3-D, such that every measured point is fairly close to it. We give two separate

strategies for doing this. One involves continuously adding points to gradually improve

the surface approximation in the L_ norm. The other, which will be covered first, simply

includes all the measured points from the outset, thereby avoiding the considerable ex-

pense of repeatedly computing the norm, but often resulting in a surface with many more

vertices. In our experience, the difference is often a factor of 10.

There are a very large number of ways to triangulate N measured points. Each of these

triangulations results in a surface fragment which includes all N points (by construction).

Most of them can be eliminated by the use of visibility constraints.

It is known that the laser passes unimpeded from its source to the each point be-

cause observation requires illumination by the laser. This means that any triangulation

which puts a triangle between the laser source and any observed point can be immediately

discarded. One way to efficiently avoid such triangulations is to use projection methods.

Imagine for a moment that the laser originates from a point infinitely far from the

workpiece (z = -oe) so that all the rays are paralM to the z axis (the coordinate system is

illustrated by Figure 2). Now project all the measured points onto the x, y plane (ignore the
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FIGURE2. Coordilmte systemsfor the laser digitizer.

z component) and pro'form some 2-D triangulation to establish connectivity between points.

The corresponding 3-D triangulation (the one which has the same connectivity between

points) does not violate the visibility constraint. That would imply that some edges of the

projected triangulation cross. The converse is also true; every set of connections which

satisfies visibility is a valid triangulation in the projected plane.

Now in practice, the focal length of the laser is not infinite, but only about three

times its field of view[6]. The rays are perpendicular to the ae axis, but are not parallel,

forming an angle with the (;_:, z) plane that can be as much as 8.5 degrees. The appropriate

projection in this case is cylindrical, rather than orthogonal, with the axis of the cylinder

running parallel to the x axis and containing the laser source. In this coordinate system,

the location in the (:r, g) plane is given in polar coordinates (r, 0), the origin of which is at

the laser source.

There are still an exponentially large number of ways to triangulate N points in the

projected plane. The Delaunay triangulation in two dimensions is employed here. Delmmay

triangulation is a classical problem in computational geometry and a well established

technique for connecting scattered points [11 &: 12].

A variation [13] involves using an incremental insertion algorithm for the Delaunay

triangulation. After each insertion, the projected distance from the surface fragment to

each measured point is computed and the one farthest away is determined and inserted.

This process continues until the largest error fails below 0.25 ram, the nominal accuracy

of the measurements.

Once the triangulation is done, the connectivity information is retained and the points

are transformed back to their original (z,*/, z) values. This gives a reasonable surface
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FIGURE 3. Unstructured triangulation of the top view of the Fl17A obtained using 2D

Delaunay triangulation.

description (Figure 3), valid for shapes which can be reconstructed from a single scan,

e.g., sheet metal stampings.

For complex geometries, such as aircraft, multiple viewpoints are required. It is

necessary to have, at least, a scan of the front and back views for reconstruction. In

these situations a nmnber of surface fragments have to be assembled. The end result is an

approximation of the model as a non-convex polyhedron with triangular faces.

2.2 Combining Surface Fragments From Different Views

Comt)ining the different views is achieved through a technique that emulates milling,

a machining operation in which a workpiece is cut to the desired shape by careful removal

of material. During each operation, the motion of the cutter is constrained to remove as

much stock as possible without touching the finished part. Finally, only the finished part
renlains.

In the numerical analog the workpiece is any polyhedron (e.g., a bounding box) with

triangular faces, chosen to enclose the entire model. For each scan (view), it can be inferred

that a polyhedral volmne between the laser source and the object contains no material.

This volume is excluded from the workpiece through a polyhedral intersection algorithm

to be described later. In a solid modeling sense, the excluded volume is subtracted from

the workpiece. Subtraction in this sense is comnmtative. Combining views consists of

constructing the excluded polyhedra for each one and subtracting it fl'om the partially

finished part.

The problen_ here, is to subtract the vohune of the polyhedron generated from a

surface fl'agment, fl'om the polyhedral workpiece (P - Q). In the following sections an
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algoritlml for computing tile intersection between two non-convex polyhedra with trian-

gular faces is described in detail. The change needed to adapt this algorithm to perform

the problem at hand, i.e., to construct the intersection between a polyhedron and the

compliment of another polyhedron, is also described.

3. Forming the Intersection of Two Non-Convex Polyhedra

Intersection problems have a wide variety of industrial applications [14], related to

the fact that two objects camlot occupy the same space at the same time. Efficient, even

optimal, algorithms have been developed for solving polygon intersection problems, but

comparatively little is known about polyhedron intersections. Generalizations of the 2-D

algorithlns to 3-D are not Straightforward.

In this work, only polyhedra with triangular faces are considered. This is done

without loss of generality, since any higher degree polygon can be triangulated. This

simplification allows reasonably efficient solution of polyhedron intersection problems in
three-dimensions.

The intersection of an arbitrary number of non-convex polyhedra reduces to finding

the intersection of two polyhedra. Given two non-convex polyhedra, P & Q, with triangular

faces, form their intersection, R = P N Q, such that the resulting polyhedron has only

triangular faces.

The analogous problem in 2D is considered first. The intersection of two simple

polygons A & B is a simple polygon C (Figure 4). Constructing C, from A and B, involves

locating its vertices and its edges. Some of the vertices of C are vertices of polygon A, those

which lie inside polygon B. Similarly, the vertices of polygon B which lie inside polygon A

are vertices of C. The intersections of the edges of A and edges of B form the remaining
vertices.

The edges of polygon C are all complete edges or edge fragnlents from polygons A or

B. Edges of polygon A which lie entirely within polygon B, (e.g., edge 1 in Figure 4), are

edges of C. On the other hand, an edge of polygon A which lies entirely outside polygon

B (e.g., edge 2), is not. When an edge of A intersects one or more edges of B (e.g., edge

3) only the edge fl'agments which lie inside polygon B are edges of C. Similar rules apply

to edges of B.

Finding the intersection of two polyhedra can be accomplished by applying a similar

procedure. The polyhedron It, formed from P N Q, has nodes which are either nodes of

P, nodes of Q, or intersections between the faces of P and the faces of Q. This problem,

finding the intersection of two triangles in three-space, involves finding the endpoints of

the line segment of intersection.

These line segments themselves constitute some of the edges of R. The other edges

are formed from existing edges (the edges of P & Q) by treating them the same way as in

polygon intersections. At this point, the i11tersecti0n is a p01yl{edron with planar polygonal

faces, some of which are not triangular. The higher degree polygons are triangulated so

that the final polyhedron (1R) has only triangular faces.

Summarizing then, computing the intersection of two polyhedra involves three main

algorithms: polyhedron inclusion, line segment of intersection of two triangles in three-
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Edge 3

Ion A

Edge 2...._>
Polygon B

Edge 1

FIGURE 4. Intersection of two simt)le polygons A&B. The intersection is a simple polygon

C, shown shaded. Tile thick dots denote the vertices of C.

space, and triangulating the interior of a simple polygon. These are described in the

following sections.

3.1 Polyhedron Inclusion

Given a polyhedron and a point, is the point inside the polyhedron? To answer

this a ray is drawn, emanating from the given point, typically along one of the three

coordinate directions. The number of intersections between the ray and the polyhedron

are counted. If the numl)er is odd the point lies inside the polyhedron. Otherwise it

lies outside the polyhedron. This algorithm is well known in 2D [14] and the 3D case is

completely analogous.

Since the polyhedron is entirely composed of triangles, this only requires finding the

3D intersection of a ray with a triangle. By projecting both the ray and the triangle onto

a plane normal to the ray, this problem is largely reduced to the 2D problem of point

inclusion in a triangle.

An exhaustive search of all triangles will give the correct number of intersections.

This is expensive. Sorting the triangles into a tree like structure drastically decreases

the number of triangles searched each time. The data structure employed here is the

alternating direction binary tree developed by Bentley [15]. Exposition of the search and

sort algorithms is done, briefly, in a later section.

3.2 Intersection of Two Triangles in Three Dimensions

The polyhedron inclusion test determines which of the original vertices of P and Q

will appear in R. The next step is to compile a list of intersecting pairs of triangles. These
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FIGURE5. Two types of intersectionsof two triangles in three-space.

provide someof the edgesof the final polyhedron alongwith all the remaining vertices.

Two triangles in 3D, A and B, intersect (if at all) along a line segment, each end
of which lies on a separatetriangle edge. To find theseendpoints, each edgeof triangle
A is tested for intersection with triangle B, a proMem essentially coveredin the previous
section. Similarly, edgesof B are tested for intersection witl! triangle A.

Figure 5 showstwo possibleways two triangles can intersect, Degeneratecasessuch
as two intersecting, coplanar triangles, were not encountered. There are O(N 2) pairs of

triangles to test, most of which do not come close to intersection. Once again, the triangles

have been sorted into a binary tree to avoid the expensive exhaustive search.

3.3 Constrained Triangulations

Edges of the two intersecting polyhedra (P F1Q) can be classified into three categories:

a) edges of one polyhedron which lie entirely outside the other. Such edges are not part

of the final polyhedron, h) The opposite situation, where edges of one polyhedron lie

completely inside" the other. Such edges are part of the final polyhedron, c) Edges of one

polyhedron which intersect one or more triangular faces of the other. For such edges only

those portions which lie inside the other polyhedron remain as part of the final polyhedron.

Figure 6a illustrates a situation where all vertices of a particular triangle lie inside the

other polyhedron, and five new nodes have been added. The new node on the face of the

triangle, ¥5, is the point where an edge of Q intersects. The nodes on the edges (N1, N2,

N.._, A'r4) are the points of intersection between the edges of this triangle and the triangular

faces of Q. The polygons shown in Figure 6b, are faces of P N Q. The interiors of these

simph • polygons have to be triangulated in order to assure that the final polyhedron has

only triangular faces.
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(a)

NI_N 2

P(" (b) - P2

FIGURE 6. (a) This triangle has all three vertices (P1, P2, Pa) lying inside Q. N1, -¥2,

N3, N4 are intersections between edges of P and faces of Q. N5 is an intersection between

this triangle and an edge of Q. All five points are vertices of P A Q. (b) These regions are

part of PnQ.

Decomposing a polygon of degree N into (N - 2) triangles is a classical problem in

computational geometry. The best algorithms operate in linear expected time (Chazelle

[16]). Since we rarely encountered polygons of very high degree, programming simplicity

determined our choice of an O(N 2) complexity algorithm by Bern & Eppstein [17].

4. Data Structures

Finding the intersection of two non-convex polyhedra involves answering two types

of geometric questions:

a) Which triangles (if any) in a given set, contain a given point?

b) Which intersect a given triangle? Since both queries appear many times, it is essential

to use an efficient algorithm in answering them.

One approach that will work is to test each triangle for intersection with the relevant

point or triangle. This technique (exhaustive search) has a run time of O(NM), where N is

the number of triangles, and M, the immber of queries. Such a search can be prohibitively
slow.

A quicker approach searches some of the triangles each time, with full confidence that

the unsearched triangles would return negative responses. This involves presorting the

triangles. The domain containing all the triangles is partitioned spatially [18]. Searching

is then restricted to the partition where the given point (or triangle as the case may be)

lies, and, possibly, a few of the neighboring partitions. Algorithms of this type typically

have run times of O(M log N).
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FtC'URE 7. (a) A domain containing a set of triangles is partitioned into two regions with

a slight overlap. (h) Triangle queries are handled by enclosing the triangle in a bounding

box and searching all partitions which contain a portion of the box.

To achieve a suitable partitioning, triangles are treated as points. Each triangle is

replaced by a unique point. The centroid has been chosen here, because it always lies

inside the triangle. Then, the domain is divided into pieces with roughly equal numbers of

triangles. The nmnher of sub-domains created, during each division, depends on the type

of data structure. In binary trees [15] the domain is divided into two halves at each level.

A one level example is illustrated in Figure 7a. The rectangular region containing the

triangles has been divided into two. The dividing line is chosen to put an (approximately)

equal number of triangles into each half. In this case the average of the x coordinates of

the centroids was used to locate the vertical divisor. It is represented as a dotted line in

Figure 7a. Bounding boxes can be constructed by determining the smallest and largest

coordinate values of the vertices of the triangles contained in each half. Notice a small

portion of the domain is common to both hounding boxes. Search efficiency depends on

this overlap region being small compared to the size of the overall domain.

Now suppose we seek all triangles which contain a given point. By comparing a:

coordinate values, It can easily be determined which (if either) of the two bounding boxes

contain the point. Clearly, if a point lies outside of a bounding box, it lies outside of all

the tiiangles contained therein. If the point does not lie in the overlap region, at most half

of the triangles will be searched.

For handling triangle queries, the triangle is enclosed in a bounding box (Figure 7b),

and all the partitions which contain a portion of the box are searched. This effectively

enlarges the overlap region, hut the algorithm is otherwise identical.

A two-dimensional tree search has been implemented here for finding intersections
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FIGURE 8. The Fll7a is still attached to the original blank and must be carefldly

separated. At this point, eight scans have been milled away.

between triangles in 3-D. The triangles are projected on to a plane, say the z - y plane,

and then partitioned according to the x and g coordinate values of their centroids. This

approach was found to be more efficient than a three-dimensional tree search.

The polyhedron generated from a surface fragment is much smaller in size than the

workpiece that encloses the entire model. It is useful to determine the bounding box of each

polyhedron. It is only necessary to test for polyhedron intersection where these bounding

boxes intersect, a significant optimization.

5. Finishing Operations

The physical model being scanned has to be supported securely in the digitizer.

This usually implies a sting, but sometimes the model rests directly on the turntable.

In any case, the desired geometry is usually attached to the remnants of the original

blank. This situation is shown in Figure 8. When this happens in actual machining, the

finished part is separated very carefldly by hacksawing through the last connection. A

similar approach is followed here. The cutting operation is simulated, again, through the

intersection algorithm.

A number of other finishing operations are performed. The model is separated from

the remains of the blank (clearing chips), the surface is given a consistent orientation, and

some very small edges and triangles are removed (polishing). Finally, pinholes near the

trailing edges are identified for later treatment.
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FIGURE 9. Front view of the reconstructed Fll7A. This incorporates information from

eight scans.

6. Results and Discussion

The algorithm for generating an accurate geometric definition of three dimensional

objects through virtual milling has been implemented on a Silicon Graphics workstation.

The procedure has been tested on a F117A model scanned from several different viewpoints.

Figure 9 shows the reconstructed F117A aircraft. The reconstruction involved eight scans

and resulted in about 200,000 triangular faces. The sting, which supported the model

during the digitizing process, was not completely removed. A portion of it is visible near

the tail.

Tile runtime on an Iris 320/VGX was about six hours, including the scanning time.

In an effort to reduce this time, the parallel intersection algorithm has been ported to the

iPSC/860. Prdiminary indications show a run time of under 10 minutes for the polyhedron

intersection operations. The two intersecting polyhedra, P g: Q, are equally split among

the different processors by employing recursive coordinate bisection. Each processor is

then responsible for constructing a portion of the intersection region.

7. Concluding Remarks

An algorithm for reconstructing 3-D objects from scattered data has been presented.

The algorithm utilizes the Delaunay triangulation in two dimensions to generate partial

surfaces fl'om single views. Combining the different views is accomplished through virtual

milling, a nmnerical analog of the physical machining operation. The technique is a general
and automated method for reconstructing surfaces and assembling data from multiple

views. Results for an F117A model clearly demonstrate these aspects. Ample research

opportunities remain. For example, The resulting part is as accurate as the digitizer itself
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but is not very smooth. It would be nice to have an algorithm to produce the smoothest

possible part without moving any point more than the nominal measurement accuracy.

On another front, Kalyanasundaram [18] has demonstrated a parallel implementation of

polyhedron intersection on the Intel iPSC/860.
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