
i

i
N 4 9 i

An Object-Oriented Approach for Supportin_ Both X and Terminal Interfaces / 7_'-_ _.._

J. Johnson (STScI) /1; "J

i

!

i

ill

While the X Window System is clearly becoming the dominant user interface display system,

there is still a continuing need to support character cell terminal devices. For a user interface

application which must support both, it is desirable to be able to use them to their fullest

extent, as opposed to simply providing a character-based display within an X window. An

object-oriented application framework is presented here which allows the full capabilities of

each system to be used while minimizing and isolating the amount of device-dependent code.

Every user interface application consists of two parts: the various components used to display

information and accept user input, and the processing of the interaction between these com-

ponents. Many user interfaces are built around a core set of components such as menus, text

entry fields, and forms. For a given application, the interaction between these components

is the same regardless of the display system in use.

Our approach is to implement each component as an object, accessible via a single public

interface. All of the code necessary to implementthe component for the desired display

system is completely encapsulated within the object. The application is then written as

a collection of objects interacting in a device-independent manner with one another. If a

display system provides additional capabilities, the application can be extended by adding

objects (e.g. for image display in X).

This approach provides several benefits. First, the application can be ported to any display

system capable of implementing the various components. Of course, the closer the system

matches the set of components, the less code will be necessary to implement each object.

To implement a text entry field using OSF/Motif is fairly trivial since a TextField widget

is already defined, whereas implementing the same object in Curses would require consid-

erably more effort. Second, the objects are application-level components, not low-level as

provided by the display system. This allows arbitrarily complex components to be devel-

oped using both the display system library (e.g. OSF/Motif) and other application objects.

For example, a graphical skymap Object could be implemented as a form object containing

pushbutton and text entry field objects, as well as calls to the display library to perform the

various drawing operations. Third, other user interface applications can be developed using

the same set of objects, promoting software reuse.

We are currently implementing StarView, the user interface to the HST science archive (ST

DADS) using this approach. StarView will be written in C++, and will use Vermont Views

for the terminal interface and OSF/Motif for the X Window interface.

6O


