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ABSTRACT

A system design for aeronautical audio broadcasting,

with C-band uplink and L-band downlink, via Inmarsat

space segments is presented. Near-transparent-quality
compression of 5-kHz bandwidth audio at 20.5 kbit/s is

achieved based on a hybrid technique employing linear

predictive modeling and transform-domain residual quan-
tization. Concatenated Reed-Solomon/convolutional

codes with quadrature phase shift keying are selected for

bandwidth and power efficiency. RF bandwidth at
25 kHz per channel, and a decoded bit error rate at 10 -6

with EjN o at 3.75 dB, are obtained. An interleaver,
scrambler, modem synchronization, and frame format

were designed, and frequency-division multiple access
was selected over code-division multiple access. A link

budget computation based on a worst-case scenario indi-

cates sufficient system power margins. Transponder oc-

cupancy analysis for 72 audio channels demonstrates

ample remaining capacity to accommodate emerging
aeronautical services.

INTRODUCTION

The field of mobile satellite communications has

experienced rapid growth in recent years. Compared to
the maritime and land mobile segments, the aeronautical

segment of mobile satellite systems is relatively new.
However, many new aeronautical services have emerged,

and this trend is expected to continue. Some examples

include air phone, in-flight news, in-flight customs clear-

ance, and aeronautical facsimile (aero fax).
In this study, schemes were designed for low-rate

audio coding, coded modulation, and digital transmission

architecture to support live audio program broadcasting

to commercial aircraft via the Inmarsat space segments.
Due to the bandwidth and power limitations of the

Inmarsat segments, the audio programs targeted for the

current application include talk shows, sports coverage,

news, commentaries, and weather, as well as intermission

music. Consequently, a monaural audio signal of 5-kHz
bandwidth (AM-quality audio) was selected. The infor-

mation source also includes a subband broadcast data

channel with a data rate range from 300 to 2,400 biffs.

Several system design constraints were considered.
These included use of the existing lnmarsat-Aero aircraft

earth station (AES) antenna subsystem to minimize cus-

tomer cost, simple and low-cost airborne subsystem (re-

ceiver) hardware, and applicability to both the Inmarsat-2

and Inmarsat-3 space segments. In addition, the RF band-

width per audio channel had to be a multiple of 2.5 kHz
to be consistent with the Inmarsat systems.

This paper describes a low-rate audio coding scheme

that achieves near-transparent-quality compression of
5-kHz bandwidth audio at 20.5 kbit/s. Error protection

strategies for compressed audio and data are also pre-
sented. Candidate coded modulation schemes are com-

pared in terms of their power and bandwidth efficiency,

and designs for an interleaver, scrambler, modem syn-
chronization, and frame format are discussed. Multiple-

access techniques are then compared, and link budget

computation and transponder occupancy analysis results

are presented.

AUDIO COMPRESSION AND ERROR

PROTECTION

Audio Compression

The technique for adaptive predictive coding with
transform-domain quantization (AI_-TQ) [1] presented
here combines time-domain linear prediction modeling

and transform-domain quantization of the prediction

residual signal. The APC-TQ technique is efficient in

exploiting the nonuniform power spectral distribution that
exists in audio signals. It also permits the direct imple-

mentation of auditory noise-masking techniques based on

auditory characteristics, to maximize the perceived qual-

ity of the reconstructed audio.
The audio signal is band-limited to 5 kHz and

sampled at a rate of 10.24 kHz. A frame size of 256

samples is used. The power spectrum model for each
frame of audio samples is a product of two terms: a
short-term model which represents coarse or envelope

spectral variations, and a long-term model which repre-
sents fine or harmonic spectral variations. The resulting

power spectrum model is used to determine the bit allo-

cation for residual quantization.
Short-term prediction is accomplished by predicting

each sample based on a weighted sum of a few samples

immediately preceding it. A fifth-order linear predictive
model is computed using the autocorrelation method [2].

The five filter coefficients are converted into line spec-

trum frequencies (LSFs) [3] and scalarly quantized using
24 bits overall (with 5, 5, 5, 5, and 4 bits for the five

LSFs, respectively). The LSFs were found to have good
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properties for quantization. In addition, they allow easy

channel error concealment in terms of guaranteed filter
stability and minimum filter distortion when in error.

Long-term prediction consists of estimating the opti-

mum long-term prediction delay (i.e., pitch) and predict-
ing each sample from a weighted sum of the three

samples located around the delay. The delay is estimated
by computing the autocorrelation function of the short-

term prediction error signal over the delay range from 20

to 256 samples. The optimum delay is indicated by the
location of the peak of the autocorrelation function, and

the delay value is coded using 8 bits. The long-term pre-
diction parameters are selected from a code book of 128

parameter sets [4], based on the criterion of minimizing

the long-term prediction error power over the analysis
frame.

The residual signal after short- and long-term predic-

tion is quantized next. The 256 samples of the residual

signal are transformed using a discrete cosine transform

(DCT), and are quantized using a total of 465 bits. These

bits are nonuniformly allocated based on the power spec-
tral estimate obtained using the shOrt- and long-term

prediction parameters. Scalar Max quanfizers [5] opti-
mized for zero-mean, univariate Gaussian distribution are

employed. A scaling parameter is determined in order to

scale the DCT coefficients to unit variance. The param-

eter is then quantized logarithmically using 8 bits.

At the decoder, the short-term and long-term predic-

tor parameters are decoded and used to determine the bit
allocation. Based on this allocation, the transform coeffi-

cients are decoded and inverse DCT is applied to obtain

the quantized version of the residual signa_l. This-signal

excites the cascade of long- and short-term synthesis

filters to reconstruct the audio signal. At 20.5 kbit/s, a

near-transparent-quality coded 5-kHz audio signal was
reconstructed.

Error Protection

For aeronautical broadcast applications, the uplink

C-band channel (ground earth station [GES] to satellite)
and the downlink L-band channel (satellite to aeronauti-

cal earth station [AES]) can be modeled as an additive

white Gaussian noise (AWGN) channel and a Rician

channel (with a Rice factor of K = 10) [6], respectively.
For broadcast audio, the transmission time delay is not as

critical as for conversational speech. Therefore, an inter-

leaver with an appropriate interleaving length can be used
so that the multipath Rician fading downlink channel

effectively becomes AWGN.

The use of convolutional codes is a proven technique
for error correction under AWGN channel conditions. In

this study, an inner-layer convolutional code was selected

for both the audio signal and broadcast data. A target
decoded bit error rate (BER) of 10 3 was selected for this

inner-layer error protection scheme. The decoded BER is

used as a basis for comparing the power and bandwidth

efficiency of several candidate coding and modulation
schemes, as described below. Both the audio and data

information were further protected by using an additional

outer-layer error protection scheme to lower the overall

decoded BER to less than 106. At this BER, the subjec-

tive degradation to the audio is imperceptible.

Two approaches were considered for the design of

the outer-layer error protection. The first approach treats
audio and data separately and uses a Reed-Solomon (RS)
code as the outer code to form a concatenated code with

the inner convolutional code to protect data. Audio is

protected using an unequal-error-protection (UEP)
method. In UEP, the more sensitive bits of audio are

given a higher level of error protection, while less-

sensitive bits are given a lower level or even no error

protection. The second approach treats audio and data as

a single entity, and both are protected using an outer RS

code, as in the first approach for data.

To attempt the first approach, a UEP scheme was

devised which included (23, 12) Golay codes, (7, 4)

Hamming codes, and parity checks as component codes,
augmented by several judiciously designed error deteC-

tion and error concealment techniques. This scheme pro-
vided sufficient protection for most bits of the short-term

filter coefficients, pitch, long-term filter coefficients, and

scaling parameter. However, there were no bits available

to protect the remaining bits.

Work with the second approach for outer-layer error

protection revealed that it was more efficient. Given the

available redundancy, the concatenated code achieves the
desired decoded BER of 10 -6 for both audio and data at a

very reasonable energy-per'bit to noise-power density

ratio, Eb/N o. This approach also allows a simpler decoder
design, since only one RS decoder and one outer

interleav-er are necessary. An RS(255,229) code over a

Galois field GF(256) was finally selected. This code can

correct 13 symbol (byte) errors. Figure 1 is a block dia-

gram of the overall transmission system.

CODING AND MODULATION

Coded Modulation

In selecting an appropriate inner-layer coded modu-

lation scheme, only quadrature phase shift keying

(QPSK), its variants, and octal phase shift keying

(OPSK) were considered. These are well-known, proven
techniques for satellite communications. Quadrature

amplitude modulation schemes are not suitable for non-

linear channel operations, while continuous-phase fre-
quency shift keying and its variants, such as multi-h

codes, are Complicated, and their performance does not
justify use in this application.

Several candidate coded modulation schemes were

examined (Table 1). For separate coding and modulation

schemes, rate 1/2, 2/3, 3/4, and 5/6 coded QPSK were

considered. For combined coding and modulation
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Table 1. Candidate Coded Modulation Schemes

COOED Eb/N0 RF BANDWIDTH

MODULATION (dB)@ 10 -3 (kHz)

1/2 QPSK 3

2/3 QPSK 3.5

3/4 QPSK 4

5/6 QPSK 4.6
2/30PSK (TCM) 5

5/60PSK (TCM) 5.7

2/3 D-OPSK (TCM) 8.4

H-oH hENCODER SCRAMBLER MODULATOR

CHANNEL

INTERLEAVER DECODER SCRAMBLER DE-INTERLEAMER

PCC: Punctured Convolulional Code

Digital Transmission System Block Diagram

downlink is power-limited. Also, with increased band-

width, carrier power can be increased without changing

the power density. This is an important factor in fre-

quency planning.
37.5
30 Interleaving and Synchronization

25 Two block interleavers were employed. The inner

25 interleaver decorrelates burst errors created by the RF

20 fading channel, while the outer interleaver decorrelates

17.5 burst errors at the Viterbi decoder output. For the RF

20 fading channel, the maximum fade duration had been
shown to be about 20 ms [6], which corresponds to about

680 bits. For the rate 3/4 Viterbi decoder, the maximum

burst length is less than 35 bits [10].
For inner interleaving, the number of rows (NR) was

selected to be 775 bits, in order to exceed the maximum

fade duration. The number of columns (NC) can theoreti-

cally be selected to be equal to the Viterbi decoding

length, which is about six times the constraint length.

However, in practice a larger NC must be used, espe-

cially for higher-rate codes such as the rate 3/4 code

selected for this application [10]. An NC of 88 bits was

used. The selection of these two particular values for NR
and NC was based on the frame format described in the

next subsection.

For the outer interleaver, NR was selected to be

25 bits and NC was selected as the RS code length,

which is 255 bytes (2,040 bits). The 25-bit NR was se-
lected for two reasons. First, it was desired not to intro-

duce too much interleaving delay. Second, for consis-

tency with the lnmarsat-Aero SDM, a frame size of
500 ms was selected. Given this frame size, it was de-

cided that 51 kbit/s was a good value for both the outer

interleaver size (2,040 x 25) and the incoming data rate

(25.5 kbit/s x 2 s).
In terms of synchronization, the modem needs to be

robust at a low carrier-to-noise power density ratio, C/N o,

in the presence of L-band Doppler shifts varying between

+2 kHz. In addition, multipath fading is prevalent at

elevation angles below 10°, and signal can be blocked by
the aircraft tail structure. Because coherent detection is

used for power efficiency, reliable carrier frequency/

phase acquisition and tracking with a minimum of cycle

slips is required. A channel scanning capability is also

schemes, rate 2/3 coded OPSK, differential OPSK

(D-OPSK), and rate 5/6 coded OPSK were considered.

For the power estimates, an inner-layer decoded
BER of 10 .3 was assumed. For separate coding and

modulation schemes, all convolutional codes were as-

sumed to have a constraint length of 6 with 3-bit soft

decision. In trellis-coded modulation (TCM) schemes,

16-state codes were assumed. The higher-rate convolu-

tional codes (rate 2/3, 3/4, and 5/6) used in separate cod-

ing and modulation schemes were realized by using
punctured convolutional codes [7] based on the rate 1/2

optimum code [8], to reduce decoding complexity.

The RF bandwidth estimates assumed a 35-percent

rolloff factor for a square-root, raised-cosine shaping
filter, and a 1.375-kHz guard band (0.6875 kHz at each

side) for each carrier. The guard band value was selected

based on the maximum AES receiver frequency error

specified in the Inmarsat-Aero "System Definition

Manual" (SDM) [9]. Also, a data rate of 1 kbit/s was

added for modem synchronization and framing redundan-

cies. These bits are used as preambles, unique words

(UWs), audio channel ID information (for broadcast

channel scanning), and flush bits. The computed band-

width requirements were converted into multiples of

2.5 kHz to meet system requirements.
Based on the power and bandwidth requirements

shown, two candidate coded modulation schemes were

considered: rate 2/3 coded OPSK (TCM) and rate 3/4

coded QPSK. Rate 2/3 coded OPSK is more

bandwidth-efficient, while rate 3/4 coded QPSK is more

power-efficient. Rate 3/4 coded QPSK was selected,

since it requires 1 dB less power, and the aeronautical
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desired so that a receiver can scan each of the available

aeronautical channels.

The channel rate after rate 3/4 convolutional encod-

ing, excluding framing bits, is 34 kbit/s. To simplify

equipment design and implementation, the channel rate is

required to be a submultiple of a 5.04-MHz master clock,
for compatibility with other Inmarsat-Aero channel unit
bit rates. A channel rate of 35 kbit/s meets this require-

ment and allows 3-percent capacity for framing overhead
bits.

The bit rate of the system is approximately 67 per-
cent faster than the 21-kbit/s Inmarsat-Aero standard

channel. However, this is an advantage in terms of carrier

synchronization and tracking, because frequency varia-

tions are a smaller percentage of the bit rate. The maxi-

mum AES received frequency error is specified as

+346 Hz, plus the AES Doppler shift of +2 kHz, for a

total uncertainty of +2,346 Hz. Since this is less than

7 percent of the channel rate, conventional carrier track-

ing methods such as a Costas loop or decision-directed
carrier tracking loop can be used. Symbol timing tracking

is also straightforward, and a conventional symbol transi-
tion detector can be employed. As specified in the SDM,

a scrambler is used for energy dispersal and to assist in

symbol synchronization.

Frame Format

The channel frame format is shown in Figure 2. To

maintain system compatibility with the lnmarsat-Aero

SDM, the frame duration is chosen to be 500 ms. Each
frame contains its own preamble and an 88-bit UW,
which is identical to that used on the current Inmarsat-C

channel. The preamble consists of 160 bits of unmodu-

lated carrier for carder synchronization, followed by a

160-bit alternating 0101 pattern for clock synchroniza-

tion. The occurrence of these bits in every frame permits

rapid acquisition and reacquisition after a fade or tail

blockage. Each frame also contains a 16-bit station ID

b,

field, which allows a receiver to perform station verifica-

tion in order to facilitate rapid channel scanning.
The inner and outer forward error correction (FEC)

interleavers were both chosen to have a time span of 2 s.

Thus, a 2-s superframe structure was defined consisting
of four 500-ms frames. A different 88-bit UW, denoted

UW ', is employed to mark the first frame of a super-
frame. A 12-bit frame counter field, denoted FC, immedi-

ately follows the UW and consists of a 4-bit frame

counter repeated three times for bit error immunity.

Figure 3 is a block diagram of the procedure used to

pack the program audio and secondary data channel bits
into 500-ms frames. The program audio channel has an
information rate of 20.5 kbit/s, and the data channel is

assumed to have an information rate of 2,400 biffs. If

lower data channel rates are desired, the data field will

have to be packed with enough dummy bits to achieve a
2,400-bit/s rate. To assemble a frame, 2 s of program

audio (41,000 bits) and 2 s of secondary data (4,800 bits)

are buffered in memory. It is assumed that the actual

frame assembly is much faster than real time, so that the

total transmitter delay is not much greater than 2 s. While

the data are being processed, the next superframe is being

buffered in memory for subsequent frame assembly.

TRANSMISSION SYSTEM ARCHITECTURE

Multiple Access

Due to the circuit-switched nature of broadcast audio

programs, time-division multiple access (TDMA) was not
considered. However, frequency-division multiple access

(FDMA) and code-division multiple access (CDMA)

methods were carefully compared.

CDMA possesses several advantages, including the

possibility of overlay on top of narrowband users; system

flexibility through the use of programmable codes; multi-

path rejection and interference suppression capabilities;

and graceful degradation with an increased number of

2s _.l

FRAME I

500 ms. 17,500 bits

PREAMBLE UW FRAME 2 • • • PREAMBLE UW FRAME 4

(a) Superframe Structure (four 500-ms frames)

i- 88 bits
I<

000... J 010101..._

160 CARRIER 160 CLOCK

BiTS BITS

17,050 bils

DATA BITS/AUDIO

H

I PREAMBLE

2,4OO-

biVs

DATA

%oob;;"_-
(b) Frame Structure

Figure 2. Frame Format

DATA BITS/AUDIO

20.5-kbivs
PROGRAM AUDIO
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10,250blts
(BEFORE FEC)

..',
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2,400-bit/s DATA

20.5-kbit/s

PROGRAM AUDIO

45,800 bits 51,000 bits 51,000 Nts

OF (255, 229) 2,040 x 25
DATA/AUDIO

51,006 bits 68,008 bits 68,200 Bits

6 FLUSH ('0') _1CONVOLUTIONAL 192 DUMMY ('0')

BITS I [ ENCODE BITS

I

68,200 bits 4 x 17,050 bits

INTERLEAVE _ SEPARATE

88 x 775 INTO 4
500-ms FRAMES

17,500 bits

_ INSERT 450 OVERHEAD BITS

FOR FRAME 1

17,500 bits

INSERT 450 OVERHEAD BITS

FOR FRAME 2

17,500 bits

_ INSERT 450 OVERHEAD BITS

FOR FRAME 3

17,500 bits

INSERT 450 OVERHEAD BITS

FOR FRAME 4

%.o.gOATA

Figure 3. Frame Assembly

active broadcast co-channels. However, the small chan-

nelized transponder bandwidth available (1.4 MHz maxi-
mum for Inmarsat-2, as described later), coupled with the

high channel data rate, makes the processing gain very
small for a direct-sequence CDMA system. Although a

frequency-hopping CDMA system does not require con-

tiguous bandwidth, the necessary frequency synthesizers
would increase aircraft receiver complexity and cost. This

Table 2. Link Budget Analysis

PARAMETER VALUE

Upllnk (GES to Satellite)

Frequency 6.44 GHz
GES Elevation 5°

GES Tx EIRP 65 dBW

Path Loss (incl. atmos, loss) 201.3 dB

consideration also applies to direct-sequence CDMA

systems, which require additional circuits for code acqui-

sition and tracking.
In view of the above considerations, FDMA/SCPC

(single channel per carrier) was selected. Its implementa-

tion is relatively simple and is compatible with most of

the existing Inmarsat traffic. Since the aero broadcasting

system is downlink-limited, the intermodulation interfer-
ence in an FDMA system does not critically limit system

performance. However, it is still advisable to reduce
intermodulation interference. This can be achieved by

using an optimized frequency plan, examples of which

are given in References 11 and 12.

Link Budget

A link budget (Table 2) was prepared for Inmarsat-2

satellite links. An elevation angle of 5° (a worst-case

scenario) was assumed for AES, with a system margin of
3 dB. The concatenated RS/punctured convolutional code

was simulated in software, and it was determined that an

Satellite Rx G/T -14 dB/K

Upllnk C/N o 75.3 dB-Hz
Satellite

Satellite Gain 161.3 dB

Satellite C/IM o 67.0 dB-Hz
Downlink (Satellite to AES)

Frequency 1.545 GHz
AES Elevation 5°
Satellite Tx EIRP 25 dBW

Path Loss (incl. atmos, loss) 188.9 dB
AES Rx G/T -13 dB/K

Downlink C/N o 51.7 dB-Hz
Link Performance

Overall C/N o 51.6 dB-Hz

Required EgNoat 10-6 3.75 dB

Data Rate (22.9 kbit/s) 43.6 dB

Miscellaneous Loss 1.25 dB
(modem loss and random losses)

Link C/N o Requirement 48.6 dB-Hz

System Margin 3.0 dB

Eb/N o of about 3.75 dB is required in order to achieve the
desired decoded BER of 106.

The link analysis further assumes that there is no

adjacent satellite interference or co-channel interference

involved. The adjacent channel interference effect is also

assumed to be offset by the pulse-shaping filter and the

guard bands. Note that this analysis is based on

Inmarsat-2 satellite specifications. For Inmarsat-3 satel-

lites, the link budget could show significantly better

power capacity. In addition, if the flight route is such that

the elevation angle is significantly greater than 5°, the

3-dB link margin could be achieved with a lower GES

transmit effective isotropically radiated power (EIRP).
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Aero-Band Occupancy

For initial system operation, it is assumed that three

channels will be provided for each Inmarsat signatory in

the Atlantic Ocean Region (AOR) East, AOR West,

Pacific Ocean Region (POR), and Indian Ocean Region

(IOR). There are six signatories in each region, for a total
of 72 planned channels.

For the Inmarsat-3 space segment, the uplink C-band

has a 29-MHz bandwidth (6,425 to 6,454 MHz), from

which the aeronautical portion is allocated a 10-MHz

bandwidth (6,440 to 6,450 MHz). The downlink L-band
has a 34-MHz bandwidth (1,525 to 1,559 MHz), from

which the aeronautical portion is also allocated a 10-MHz
bandwidth (1,545 to 1,555 MHz). However, each of the

two 10-MHz bands is divided into three bands of 3, 3,

and 4 MHz, respectively, separated by some guard bands

(1.2 and 1.4 MHz, 1.2 and 1.4 MHz, 2.3 and 1.3 MHz,

respectively). Thus, the actual usable bandwidth is only
8.8 MHz.

For the Inmarsat-2 space segment, the uplink aero-

nautical C-band is allocated a 3-MHz bandwidth (6,440
to 6,443 MHz), and the downlink aeronautical L-band is

also allocated a 3-MHz bandwidth (1,545 to 1,548 MHz).
Each of these two bands is divided into two bands of 1.2

and 1.4 MHz, separated by a guard band. Consequently,
the actual usable bandwidth is 2.6 MHz.

The aero-band occupancy percentage, m, was defined
as the ratio of the total bandwidth required to support the
72 audio broadcast channels vs the total usable bandwidth

allocated for aeronautical services. For the selected coded

modulation scheme, the required RF bandwidth is 25 kHz

for each audio channel. The corresponding occupancy

percentage is then m = 69.2 percent for lnmarsat-2, and

m = 20.5 percent for Inmarsat-3. These percentages are

reasonable for high-data-rate audio programs, especially

for Inmarsat-3 satellites. Thus, there should be ample

system capacity remaining to accommodate many emerg-
ing aeronautical services.

CONCLUSIONS

A system design to support aeronautical broadcast of

audio programs via the Inmarsat-2 and -3 space segments

has been presented. Near-transparent-quality compression
of 5-kHz bandwidth audio at 20.5 kbit,/s were described.

Candidate error protection strategies and coded modula-

tion schemes were carefully compared to achieve robust

performance with bandwidth and power efficiency. De-

signs for an interleaver, scrambler, modem synchroniza-

tion, and frame format were presented, and the consider-
ations used in selecting FDMA for multiple access were

discussed. Results of the link budget computation and

transponder occupancy analysis were also presented.

The designed system currently supports the transmis-

sion of AM broadcast-quality audio programs to commer-

cial aircraft equipped with high-gain AlES antenna sub-

systems. With rapid advances in audio compression tech-

nology, higher quality broadcast audio programs such as
near-FM audio could be supported in the near future,

using the same transmission system described here. The

system might also be capable of supporting the transmis-

sion of AM-quality audio programs to aircraft equipped

with low-gain omnidirectional AES antenna subsystems.

By using Inmarsat-3 spot beams, near-FM-quality audio

broadcasts to aircraft with low-gain AES antennas might
also be achievable.
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