
v
o

N94-2, 795

ELECTROMAGNETIC FIELD STRENGTH PREDICTION IN AN URBAN ENVIRONMENT:

A USEFUL TOOL FOR THE PLANNING OF LMSS

G.A.J. van Dooren 1, M.H.A.J. Herben 1, G. Brussaard 1,

M. Sforza 2, and J.P.V. Poiares Baptlsta 2

1 Eindhoven University of Technology, Telecommunications Division, PO Box 513,
5600 MB Eindhoven, The Netherlands, te1.:+31-40-473458, fax:+31-40-455197

European Space Technology and Research Centre, Electromagnetics Division, PO Box 299,

2200 AG Noordwijk, The Netherlands, tei.:+31-1719-83298, fax: +31-1719-84999

ABSTRACT

In this paper a model for the prediction of the

electromagnetic field strength in an urban environment

is presented. The ray model, that is based on the

Uniform Theory of Diffraction (UTD), includes effects
of the non-perfect conductivity of the obstacles and

their surface roughness. The urban environment is
transformed into a list of standardized obstacles that

have various shapes and material properties. The model

is capable of accurately predicting the field strength in

the urban environment by calculating different types of

wave contributions such as reflected, edge and corner
diffracted waves, and combinations hereof. Also

antenna weight functions are introduced to simulate the

spatial filtering by the mobile antenna. Communication

channel parameters such as signal fading, time delay
profiles, Doppler shifts and delay-Doppler spectra can

be derived from the ray-tracing procedure using

post-processing routines. The model has been tested

against results from scaled measurements at 50 GHz

and proves to be accurate.

INTRODUCTION

In the last decade, the market for personal

telecommunications is growing rapidly. Therefore,

paging channels, mobile, broadcast and portable
services have more and more the interest of the

planners of modern telecommunications systems.

Especially Land Mobile Satellite Systems (LMSS) have
a large and continuously increasing interest of system

designers and radio wave propagation engineers. It is

obvious that, for planning purposes, it is necessary to

investigate whether a certain system will meet the

required performance criteria before the system is

actually installed. Therefore, a prediction tool from

which information regarding the performance of the
communications channel can be deduced, is required.

Nowadays, most of the LMSS field prediction models

are based on empirical regression fits to numerical

measurement results [1, 2, 3] and fail for some
particular urban environments. Further, the theoretical
models available are often based on crude

predictive procedure should use a detailed description of

the urban environment in order to analyse the channel
characteristics for a number of well defined locations

and configurations of the mobile receiver site.

In this paper we describe a deterministic model for
field strength prediction in an urban environment,
which facilitates the calculation of communication

channel parameters such as fading, Doppler shift, and

time delay spread. Different types of multipath

wave-propagation phenomena, such as reflection,

diffraction, and higher order combinations of reflection

and/or diffraction, are considered. The model is based

on the Uniform Theory of Diffraction (UTD) and
includes the effects of the non-perfect conductivity of

the obstacles and their surface roughness. Moreover, it

permits the antenna characteristics of both the
transmitter and receiver to be taken into account. Also,

the problem of an object in the near-field of the

antennas is addressed and predicted and measured

results are compared. Objects with complex shapes are

modelled by a number of standardized objects with

suitable dimensions and material properties. Particular

problems present in conventional prediction methods,

such as shadowing and strong specular reflection, are
solved by the new model. In this way, our model

extends the region of validity of existing models, and

improves the physical insight into the wave propagation
processes. The major part of this research has been

financed by the European Space agency (ESA).

ELECTROMAGNETIC WAVE MODELLING

The model used to describe the interaction of the

incident electromagnetic (EM) wave with the objects in

the urban environment is UTD [4], heuristically

extended to include effects of non-perfect conductivity

and surface roughness [5, 6, 7, 8]. UTD is a

high-frequency asymptotic technique that assumes the

different waves to propagate along straight lines (rays).
This propagation can be mathematically described by:

_o = _i.C A(s) e -j_" (1)

where _o,i indicates the outgoing or incident field, C is

approximations and assumptions. So a more accurate a dyadic coefficient describing the physical interaction
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of the wave and the object, A is a factor depicting the

divergence of the outgoing wave, k is the wavenumber

for free space and s is the distance from the observation

point to the point on the object at which the

interaction took place. The factor C depends on the

material properties of the obstacle, the direction of

propagation of the incident and outgoing wave, the

wavelength and the shape of the obstacle edges and
surfaces. Well-known dyadics e are those for LOS

(direct) propagation, reflection and diffraction [4] and
corner diffraction [9]. Some forms of the divergence
factor A are:

1 , for a plane wave
A(s) = s -1/_ , for a cylindrical wave (2)

s -1 , for a spherical wave

In our field strength prediction model the following

types of waves can be included:

• direct (LOS) wave;

• reflected wave;

• edge diffracted wave;

• reflected-diffracted wave;

• diffracted-reflected wave;

• corner-diffracted wave;

• double-diffracted wave (dd).

Some of the wave contributions are visualized in

figure 1. If necessary, contributions of higher order can
be taken into account.

Note that the reflection may take place at both the

ground and at the obstacle. The reflection and

diffraction points can be found using Fermats principle

of stationary optical path length [4], yielding reflection

points on some face of the obstacle and edge diffraction

points at its edges.

Given the coordinates of the source (the satellite) and

the observation point (the mobile receiver) and the
description of the urban environment, the total field at

the observation point can be described by:

 ob,  Lo%Los
_,refl refl

+ El (3)
+ other types of rays

dr Ern _ dd _ddF--Ftrl _"tr_

where the functions e account for possible blockage of

the wave contributions by obstacles in the urban
environment.

The received field at the observation point is obtained

by first calculating the field strength relative to the free

space value (i.e. the ease where the field strength is
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proportional to the distance between transmitter and

receiver). Afterwards the absolute level of the free space
value is determined using the well-known radio

equation. According to this procedure, the ray-tracing

analysis is used to calculate the explicit attenuation of

the radio signal induced by the urban environment.

This attenuation factor is called site shielding factor

(SSF) and is also of interest for other applications

[10, 11].

Some of the parameters of interest for the design of a
LMSS are the field strength along a trajectory through

the urban environment, the mean excess delay time and

delay spread, the Doppler spectrum and the

delay-Doppler spectrum [12]. These characteristics can

be derived by performing a ray-tracing procedure for
the environment under consideration and storing the

following parameters for each ray and each observation

point:

1. the type of ray (LOS, reflected, diffracted, etc.);

2. (complex) E vector;

3. direction of propagation;

4. absolute path length measured from source to

observation point via the point of stationary
phase, or a corner point of the obstacle.

The influence of the antenna receiving pattern of the

mobile is simulated by introducing antenna weight

functions (in amplitude, phase and polarization). This
can be performed after the ray tracing for the
individual wave contributions has been finished. So,

this' post-processing feature facilitates the analysis of for
instance the antenna type and antenna orientation

dependence. The received signal by the antenna is now

given by:

EObS = LOS .",LOS _-,LOS ^LOSe t_r 15 "e •
pol

r-_ refl..-, refl_, tell ^ refl

dr 2...,t El _l 151 " eP °t (4)
+ other types of rays

dd_dd_dd "dd
-]- 2-_rn ern t-rm 15m " epol

where the value of the (complex) antenna voltage
patterns G are calculated using the angle between the

direction of arrival of the particular ray and boresight

direction, while the scalar product with epol accounts

for the polarization discrimination.

The post-processor also permits the use of measured

antenna patterns by reading the amplitude and phase of

a measured antenna voltage pattern from a table. So,
different post-processors can provide information on the

field strength (co- and cross-polarization), the mean

excess delay and delay spread (LOS and obstructed

case), and the delay-Doppler spectrum from one and the

same ray-tracing file. In this way, the time-consuming



ray-tracinganalysisneedsto beperformedonlyoncefor
agivenobservationlineandenvironment.

Notethat in somecasesanobstaclewillbelocatedin
thenear-fieldoftheantennaorvice-versa.In this
particularcaseit isnecessaryto considerthecombined
problemof obstacleandantennascattering[13].For
groundstationreflectorantennasthisproblemhasbeen
studiedquiteextensivelyandsomeof theresultsof this
workdemonstratethat(theoretically)thecombined,
near-fieldmethodis theonlycorrectapproach.Forthe
presentapplication,however,it isdecided,bothfroma
computationalanda practicalpointof view,toperform
afar-fieldanalysisimplyingthattheinteractionsof the
EMwavewith theobstacleandantennaaretreated
independently.

A timedelayanalysisiseasilyperformedusingthe
computeddatasavedforeachrayandeachobservation
point.Sinceeachraywill havea differentpathlength
fromsourceto observationpoint,thearrivalof the
individualwavescausesatrainof pulseswithdifferent
amplittldesin thetimedomain.Thesameis truein the
frequencydomainfortheDopplerspectrum:eachwave
willhaveadifferentdirectionofarrivalanddifferent
amplitude,therebygivingriseto atrainof spectral
linesin theDopplerspectrumaroundthecarrier
frequency.A classificationofthearrivingwaveswith
respectto thedelaytimeandtheDopplershiftwill
resultin thedelay-Dopplerspectrum[12].

MODELLING OF URBAN ENVIRONMENT

Since in an urban environment a great variety of

obstacle shapes and materials used may occur, there is
a need for a flexible, standardized type of obstacle to
model the environment.

It was found that therefore the so-called block-shaped

obstacle, shown in figure 2, can effectively be used [13].

This obstacle is numerically specified by the (x,y,z)

coordinates of its eight corner points. Figure 2 also

shows some specific forms of the block-shaped obstacle.

Since it is allowed that some of the corner points

(nearly) coalesce, the block-shaped obstacle can

effectively be used as an element of a box of

building-bricks. Because of this property it is suited to

model modern buildings in urban environments (having

rectangular shapes) as well as traditional houses in

rural environments (having wedge type roof shapes).
Also other shapes such as pyramids can easily be

modelled and analysed. All combinations of blocks are

permitted, and in this way very complex shapes can be

built up. Each obstacle has its own material properties

and surface roughness. Because of this standardization

of obstacle types, only one ray-tracing algorithm is

sufficient for the analysis.

The main advantage of the use of the block-type
obstacle is the fact that simplifications are introduced
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in the calculations of, for example, the reflected and

diffracted field parameters. The block-type obstacle has

the property that all its sides are straight and all its

faces are plane. This implies that phase front of the
wave reflected field from one of these planes has the
same radii of curvature as that of the incident wave.

Because of the straight edges there is no need for the

calculation of the caustic distance used in UTD [4].

The modelling proposed has one main disadvantage:

cylindrical shapes such as lamp posts and grain
warehouses are less accurately modelled. This drawback

can be circumvented by approximating a circular

cylindrical shape by a combination of two (or more)

polygonal cylinders as shown in figure 3. If this
approximation appears to be too crude, a second
standardized obstacle could be introduced, which

possesses a elliptic cylindrical shape. Also this kind of

obstacle can be analysed using a UTD theory for

convex shapes [14]. It can be shown, however, that the

replacement of a cylindrical obstacle by a block-shaped
obstacle introduces only considerable changes in the

received field behind the obstacle. In practice, where a

large number of contributions will be received, an error
in one of them will lead to just a small error in the
whole.

The relevant parameters for the block-type obstacle

can be derived semi-automatically from high-accuracy

digital databases of rural and urban environments. Also

an interface with a CAD package may be developed.

PRACTICAL VERIFICATION

Recently the model proposed has been experimentally

verified for some scaled obstacles at a frequency of

50 GHz [10, ll, 15]. In all comparisons of measurements

with theoretical predictions very good agreement has
been obtained. Not only the field strength, but also the
arrival times of the individual wave contributions were

measured and compared to results predicted by the

model [10]. From this comparison it was found that the
individual rays propagate independently (as assumed in

UTD) and that a strong polarization dependence of the

signal amplitude exists for conductive block-shaped

obstacles [11]. This polarization dependence appears to
be due to slope diffraction at the side faces of the

obstacle [13] and more or less disappears for less

conductive materials [15]. Further, it was found that
the corner diffraction contribution can, in some cases,

not be neglected in the analysis, especially for
low-elevation LMSS.

ANALYSIS OF TEST CASE

As an illustrative example, we have analysed the

'urban' environment shown in figure 4. The rectangular

obstacles have dimensions 86m x 20m x 68rn (width x

thickness x height), and the pyramid is obtained from



therectangularblock-shapedobstaclebyplacingthe
cornerpointsfromthetopfaceveryclosetogether.
Thereforethebaseof thepyramidis also86mx 20m
andits heightis68m.Therectangularbuilding
correspondsto thedimensionsof thebuildingof
ElectricalEngineeringat thecampusofEindhoven
Universityof Technology.Theleft rectangularobstacle
is assumedto beperfectlyconductiveandhasasurface
roughnessof 0,therightrectangularobstaclehasa
relativepermittivityer of 2 - 0.1i and a surface

roughness of 0.1m, while the pyramid has er = 3 - 0.2i

and a surface roughness of 0.1m. An observation line is

defined by the starting poin t with coordinates

(100m, 75m, 5m) and the end point (-25m, 75m, 5m).
A total number of 1000 observation points on this line

has been used. The satellite position is specified by the

azimuth and elevation angles, each having a value o_f __
25 °. The contributions included in the analysis were the

direct, reflected, edge diffracted and corner diffracted
waves and waves that encounter a combination of

reflection and diffraction.

For this geometry we have deduced the field strength
on the observation line defined for vertical polarisation

at a frequency of 1 GHz and for isotropic transmitting

and receiving antennas. This result is shown in figure 5.

In this figure the regions of LOS propagation and of

strong specular reflection are indicated.

Also the Doppler spectrum around the

carrier-frequency of 1 Gttz has been calculated for a

speed of the mobile of 50 km/h along the trajectory

indicated in figure 4. This result is shown in figure 6,
where the maximum Doppler shift is 40 Hz. A total of

11500 spectral components are found along the

trajectory defined, of which only 10% is plotted in

figure 6.

The 3-dimensional delay-Doppler spectrum is shown

in figure 7. From this spectrum information on the time
delay profile and the Doppler spectrum can be found by

using a projection of the data derived onto the
time-axis and the Doppler frequency axis, respectively.

From a separate time delay analysis it was found that

in the LOS regions the mean excess delay time is

0.004ps, while the delay spread is 0.014/_s Further, the

mean excess delay time in the obstructed regions is

0.08#s, and the delay spread in these regions is 0.058#s.

These results illustrate the potential of the model

developed. The calculations were performed on a 486

computer taking 3 hours of CPU time, resulting in an

average of 10s per observation point.

CONCLUSIONS

A deterministic model for the prediction of the field

strength in urban environments has been described.

The model, that is based on the Uniform Theory of

Diffraction (UTD), includes effects of the non-perfect
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conductivity of the obstacles and their surface

roughness. It proves that the use of a flexible,
standardized type of obstacle simplifies the ray-tracing

algorithms necessary to find reflection and diffraction

points. Further, the block-type obstacle proposed is

able to (numerically) model frequently encountered
Shapes such as rectangular blocks (office towers) and

wedges (rural rooftops).
The effects of the receiving antenna pattern can be

included in a post-processor, which can calculate the

field strength along an observation line, together with

the Doppler spectrum, time delay profile and the

delay-Dopplerspectrum. From these parameters
relevant information can be deduced for the planning

and design of a LMSS.

The model predictions have been verified against
scaled measurements at a frequency of 50 GHz. In all

cases good agreement between measurements and

theory has been obtained.

Besides for mobile communications systems, the

model can also be used to analyse the performance

indoor radio communications systems. Other fields of

technology that may have an interest in the prediction

model are (transhorizon) interference prediction,

optimal placement of VSAT stations in urban
environments, and coupling of interference from

terrestrial systems into satellite systems.
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Figure 1: Wave contributions included in the theoretical

analysis.

8

Figure 2: General block-shaped obstacle and some specific
obstacles.

Figure 3: Approximation of a circular cylinder by a com-
bination of polygonal cylinders (a cross section

of both shapes is shown).
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Figure 4: Geometrical setup of the lestcase.
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Figure 5: Calculated field strength along observation line indicated in figure 4.
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Figure 6: Calculated Doppler spectrum for observation line indicated in figure 4 at a speed of 50 km/h.
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Figure 7: Calculated delay-Doppler spectrum for observation line indicated in figure 4 at a speed of 50 km/h.
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