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ABSTRACT

A low complexity, open-loop, discrete-time, delay-

multiply-average (DMA) technique for estimating the

frequency offset for digitally modulated MPSK signals is

investigated. A nonlinearity is used to remove the MPSK

modulation and generate the carrier component to be

extracted. Theoretical and simulated performance results

are presented and compared to the Cramer-Rao lower

bound (CRLB) for the variance of the frequency estimation

error. For ,all signal-to-noise ratios (SNRs) above

threshold, it is shown that the CRLB can essentially be

achieved with linear complexity.

INTRODUCTION

Most conventional burst transmission systems with

frequency uncertainty provide a preamble of urmaodulated

carrier and/or a carrier modulated with a known symbol
pattern, for initi_d frequency estimation and

synchrotfization purposes. There are also many other

applications where it is desirable to estimate the frequency
error from a modulated signal with unknown data. In either

case, it is desirable to have a fast, efficient, and accurate

frequency estimation algorithm, both for initial acquisition
and tracking purposes.

In this paper, a low complexity, open-loop, discrete-

time, delay-multiply-average (DMA) approach to

estimating the frequency offset for digitally modulated

signals is investigated. M-ary phase shift keyed (MPSK)

signaling formats are considered. An M-power-type

nonlinearity can be used to generate a carrier component

when the data symbols are unknown. The special case of

pure carrier and/or known symbols is included by setting

M=I. Performance is theoretically approximated and

compared to the Cramer-Rao lower bound (CRLB) for the

variance of the frequency estimation error. Simulated

performance is also presented and compared to the

theoretical approximations and bounds. It is shown that,

when optimum delays are employed, performance is within

about 0.5 dB of the CRLB for all signal-to-noise ratios

(SNRs) above threshold. A simple extension to the DMA

algorithm, which approximates true maximum-likelihood

(ML) estimation, is also examined. With the ML

extension, the CRLB is essentially achieved for all SNRs
above threshold.

Previously known open-loop techniques which provide

performance close to the CRLB typically involve some

form of fast Fourier transform (FFF)processing [1]. The

complexity of FFT based algorithms is order KL log 2 (KL)

where K is the observation time in samples and L is the

zero-stuffing factor required to obtain the desired frequency
resolution using an FFT of size KL. Small L values of 2 or

4 are usually recommended when the FFF is used only for a

coarse search [1]. To approach the CRLB, additional

processing is required to perform a fine search for the peak

of the likelihood function. The complexity of the DMA
based algorithm presented in [2] is order KB where B is the

number of DMA branches employed. The number of

br,'mches required depends on the desired threshold SNR,

but can typically be made fewer than log2(K) for many

applications. For example, 3 branches were found to be

sufficient for the MSAT application described in [3], with

K=I00. This paper presents a modified version of the basic

DMA algorithm described in [2] and a simple ML

extension. In addition to providing improved performance,

the complexities of the new DMA algorithm and its ML
extension are both of order K.

FREQUENCY ESTIMATION

Single Branch DMA Approach

Figure 1 shows an open-loop frequency phasor

estimator, based on the D/vIA approach. The sampled

(discrete) complex baseband received signal, {r_}, is

modeled as

rk = Aa k exp(ja_)+ wk

= Aa_ W k + wk (1)

where the complex phasor, W, is defined as

W = exp(jo_) , (2)

A is the signal's complex amplitude, ak represents the

MPSK modulation data symbols, given by

ak = exp(j21rm/M), m _ {0 ..... M- 1}, (3)

to is the frequency offset measured in radians per sanlple or

symbol period, T, and w k is additive noise.
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Fig. I : Single branch DMA frequency estinaator.

The sample SNR at the receiver input is defined as

_,=Pr= Ial2

[i 12]Pw E wk

where E[.] denotes the expected value operator. For
mathematical convenience, and without any loss in

generality, it is assumed that IAI=I, so that Pr=l and

Pw=I/T.

(4)

The received signal is first passed through a

generalized M-power-type nonlinearity to remove the
MPSK modulation. The nonlinearity is generalized in the

sense that the phase is multiplied by M but the amplitude

can be raised to a different power, namely M a. From (1),

the signal at the output of the nonlinearity is given by

s, = r_lr, IM°-M -- a M'W_' +"k (5)

This nonlinearity is equivalent to that introduced in [4] for

carrier phase estimation. The noise term, n,t, is quite

complicated in general. Although simulation results are

presented for different values of M a and M, the theoretical

approximations are restricted to the case of Ma=M. With

this restriction, nk is given by

M IM\ m--M-mT,zk(M-m)

nk = Z _ m ) wk _ w

m=l (6)

The objective is to obtain an estimate of W, since this

phasor contains the phase rotation over a single sample

period due to the frequency offset, co. Multiplying the

received signal samples, {r,_}, by the sequence {W4"} would

remove the frequency offset. An estimate of

z = w Md (7)

is obtained first, and is given by
K

,=d+l (8)
where K is the number of samples used in the measurement,

and d is the delay in sample periods. The estimate of Wis

then given by

I_" =[_]1/Md (9)

In the absence of noise and possible phase ambiguities

associated with multiple complex roots, it is clear that

2--z and¢,'=w.

Multiple Branch DMA Approadl

Thcre is a fundamental phase ambiguity problem

associated with all frequency estimators of this type.

Without a previous estimate for guidance, the maximum

resolvable frequency offset is less than II(2TMd) Hz. The

larger the delay, the more potential phase ambiguities. The

phase ambiguity problem results from not knowing which

of the Md complex roots to choose. In most ca.qes the

ambiguity can be resolved by employing a ball-park
estimate to guide the selection of the appropriate complex

root. Given a previous estimate, obtained using delay db_1,

a new estimate, using delay db > db_ t , can be obtained as

follows

^ [ _.b ] l/Mdb

e,,= i
U b-! .J (10)

If the delays are selected such that
db =pbdb_! ,b=2...B (11)

where Pb is an integer greater than or equal to 2, then (10)

is equivalent to

^ f _b ] t/Mdb

=
If the root operation in (! 0) or (12) always takes the

principle root and the phase difference between the current

and previous estimate is within rc/Md b, which is the

maximum resolvable phase difference with delay db, then

the overall result corresponds to the correct root and the

phase ambiguity is resolved. If the previous phase error is

too large to resolve the phase ambiguity, then the incorrect
root which is closest to the previous estimate will be

selected. Equations (10) and (12) are clearly equivalent to

(9) if the appropriate root is selected.

The new DMA based algorithm is depicted in Figure 2.

The approach is similar to that given in [2], in that multiple
DMA branches are used to resolve potential phase

ambiguities as the branch delays increase. The method

shown for resolving phase ambiguities is that of (12). This

method can be used because the delays are specifically

chosen to be increasing powers of 2, resulting in Pb=2 for

each branch. The major difference between the DMA

approach of Figure 2 and the DMA approach of [2] is the
rotate-add-decimate (RAD) operation, which is performed

repeatedly on the signal, sk, at the output of the

nonlinearity.

To simplify the description of the technique, the
observation time in samples is restricted to he

K=3×2 B-2, B>2 (13)
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Fig. 2: Bank of B fiequency estimators with rotate-add-

decim ate fRAD) processing.

where it is assumed that at least the bottom 2 branches

shown in Figure 2 are employed. More general values of K

can be accommodated, but the values of K given in (13) are

the most convenient. The desired delays in original
samples for the B branches are

d h = 21'--1, b = 1...B (14)

The RAD operation always decimates by 2. Thus the

corresponding delays in decimated samples for the B

branches are given by
Db = l, b=l...B-1

= 2, b = B (]5)

Only 3 samples are processed in the final 2 branches and

the RAD operation is not used between the last 2 branches.

This is why a delay of 2 samples is used in the final branch.

In [2], it is shown that the optimum delay for the final

branch is 2/3 the number of samples.

The idea behind the RAD operation is to pseudo-

coherently combine sample pairs to improve the sample

SNR by approximately 3 dB, while simultaneously

lowering the complexity by reducing the number of

samples to be processed later. The RAD operation

performed after the b-th branch is given by

Sk,b+ I = 32k_1, b +,ZbS2k,b , k = i...Kb+ 1 , b = I...B-2

where
(16)

= Zh, b= I.. B- 2
il7)

is the unit amplitude rotation factor applied after the b-th
branch, and

K b = 3×2 TM , b = I...B-1

= 3, b = B (18)

is the number of decimated samples used to estimate Z in

the b-th branch. The RAD operation performed after the b-

th branch requires only Kj2 nmltiplies and adds. The RAD

operation removes the estimated frequency error from the

input signal in a pairwise fashion, enabling approximate

coherent combining. The estimated frequency error is not

completely removed, as this would require about 2K b

multiplies. The RAD operation also has ,an interesting

frequency domain interpretation. It is equivalent to

performing down-conversion, low-pass filtering with a

100% roll-off root-raised-cosine (RRC) filter, decimating-
by-2, followed by upconversion or reintroduction of the

frequency error. After decimation, the actual frequency

error may lie within one of the aliased spectra. The

processing used to select the correct root is equivalently
selecting the appropriate aliased spectrum.

The majority of the processing is that required to
compute the Z estimates for each branch. The total number

of complex multiplies and adds is
#mult = 3K-B-4

# adds = 3K - 2B - 4 (19)

which indicates a complexity of only order K.

Maximum Likelihood Extension

Consider the pure tone case with Ma=M=I so that sk=r k

as defined in (1) and (5). The additive noise is assumed to

be white and Gaussian with n_.=wa.. The maximum

likelihood (ML) frequency estimator f'mds the frequency

(OML = tt which maximizes the function

fCu) = Is(u)l 2 = s(u) s* (u)

where
(20)

K

S(u) = _sk U -_"

k=l (21)

is the Fourier transform of {s_} with Udefined as

...... U = exp(ju) (22)

Newton's method can be used to find the maximum off(u)

by finding the zero-crossing of the first derivative off(u),

provided the initial guess is close to the peak of the main

lobe off(u). A good initial guess is given by the frequency

estimate _8 = phase(l_e ) from the final branch of the

DMA based estimator of Figure 2. The simulation results

show that there is little to be gained by using more than a

single step of Newton's method. Thus, an approximate ML
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extension to the DMA based _cquency estimator of Figure

2 is given by

r-Sut -- ?o_ f'(rS_)
I"(O)B ) (23)

The first and second derivatives off(u) are given by

f'(u) = 2Re[S'(u) S* (u)]

f"(u)= 2]S (u)]" +.Re[S (u)S (u)] (24)

where the n-th derivative of S(u) is given by

S_n)(u)= dn_ s(u) x U -k= Z(-jk )" s t
du"

_=l (25)

Combining the above results to further simplify (23) gives

?Out = ?o_+
Is, t2-Re[So s:] (26)

where the 3 sums, So, S ! and S2 are defined as
K

^-k

Sn = Zk n Sk wB , n =0,1,2
t=] (27)

with the definition that

WB = #./WB = exp(j_/_ ) (28)

With a few further minor manipulations to the sums in (27),
it can be shown that the total number of multiplies and adds

required to implement the ML extension is upper bounded

by
#mult =# adds = 2.5K (29)

Thus, the complexity of the ML extension is also order K.

The ML extension can also be applied to one of the sets of

K b decimated samples. With this slight modification, the

complexity of the ML extension can be reduced even
further to that of a constant. It is shown in the next section

that the performance penalty with this modification is very
small.

THEORETICAL ANALYSIS

For the theoretical results which follow it is assumed

that the noise samples, {wk}, are Gaussian and

uncorrelated, that Ma=M in the nonlinearity, and that all

potential phase ambiguities are correctly resolved. An

approximation for the variance of the frequency estimator

shown in Figure 1, measured in (radians/T) 2, was derived in

[2]. The approximation is most accurate for high SNRs

and]or long observation times, when the true angular

variance of W is small. The result is

min[d,K-d]N N 2

V(K,d,N)= (K_d)2d2M2 + 2_-d_d2j_ 2 (rad/T) 2 (30)

where
M 2

m=l (31)

_s the power or the noise terms defined in t0).

The frequency estimate variance for each of the

branches shown in Figure 2 can be approximated by

i,[ =(Kb/K) 2 V(Kb,Db,Nb), b=l...B (32)

where K, D b, and K b arc as defined in (13), (15), and (18),

respectively. The sc;de factor in(32) is rcquircd to convert
from decimated sample pcriods back to original sample

periods, T, to preserve the units of (radians/T) 2. The N b

term represents the effective noise power at the input to the
b-th branch. For SN-Rs above threshold, the frequency

estimation error remaining aftcr each branch is typically
well within the 3 dB bandwidth of the 100% roll-off RRC

filter used in the following RAD operation. Since this filter

cuts the noise power in half each time it is applicd, a good

approximation for N b, for SNRs above threshold, is

N b =(Kb/K)N, b=l...B (33)

where K and Kb are again given by (13) and (18). For the

final branch in Figure 2, the approximation becomes

Vh : (KB/K) 2 V(KB,DB,NB)

= (3/K) 2 V(3, 2, 3N/K)

27N [- 3N 1= _ 11 +-2-_- (rad/T) 2
(34)

For high SNRs (or for all SNRs with M=I), N can tve

approximated by the first term in (31), which gives

N(y >> 1) -- M2y -1 (35)

With this approximation
27

VB(Y>> I)= 4"_-_ (rad/T) 2
(36)

Note that the variance at high SN'Rs is not a function of M.

For low SNP.s the extra noise terms become more

significant and performance does depend on M, However,

for the new DMA frequency estimator with RAD, the last

noise term in (34) is reduced by an additional factor of K -1,

which is not present for the frequency estimator presented

in [2]. At low SN-Rs, where large values of K are typically

required, this improvement can be very significant.

The Cramer-Rao lower bound (CRLB) on the variance

of any discrete-time frequency estimator is given by [2, 5]

6 (rad/T)2
CRLB(K, y) = K(K2 _ l)y (37)

Comparing this with (36), the degradation in dB relative to
the CRLB for the frequency estimator of Figure 2, at high

SNRs, is given by

)Deg(y
(38)

For large observation times, K>>I, the degradation from

the CRLB is approximately 101og(9/8)=0.5 dB. Note that

there is no degradation from the CRLB with/(--3. The
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simulauon results show that the performance ot the new

DM_A frequency estimator with RAD remains very close to
the CRLB for all SNRs above threshold.

The CRLB, as given in (37), applies to the original K

received samples, {r,}, and is valid for the MPSK signal

model used with any value for M. For the pure carrier case,

without a nonlinearity (i.e. Mo=M=I), a CRLB can also he

derived for each set ofK b decimated samples at the input to

the b-th branch of Figure 2. The result is

CRLB b =(Kb/K) 2 CRLB(Kb,Yb), b=l...B (39)

where KandK b are defmed in (13) and (18). The scale

factor in (39) is required to convert from decimated sample

periods to original sample periods, T, to preserve the units

of (radians/T) 2. The ?b term represents the sample SNR at

the input to the b-th branch. Using the same arguments as

for (33), a good approximation for 7b, for all SNRs above

threshold, is

rb =(K/Kb)Y, b=l...n (40)

where K andK bareagaingivenby (13)and (18).

Simplifying(39)furthergives
6

CRLB b K(K2_(K/Ka)2)r b=l...B
(41)

The degradation in the CRLB, measured in dB for the b-th

branch, where K b decimated samples are used instead of the

original K samples, is given by

Deg b = 10 logV CRLBb ]
L CRLB J

•= lO,og L. b=l...B
(42)

For K>>I, the degradation is approximately given by

Degb(K>> l)=lOlog dB, b=l...B

(43)

Representative examples of the degradations in the CRLB

forKb=3, 6 and 12 are 0.51, 0.12 and 0.03 dB, respectively.

The degradation in the CRLB is clearly negligible for

K b > 12. Note that the ML extension described earlier can

be applied to any set of Kb decimated samples (e.g. Kb=12),

and not just to the initial set of K samples. Thus, for large

values of K, the complexity of the ML extension can be

reduced to a fixed constant, independent of K, with

negligible degradation in performance. Thus, the

complexity of the complete frequency estimator with the

ML extension remains approximately 3K.

EXAMPLE PERFORMANCE RESULTS

The simulated performance results are presented in

terms of measured root-mean-squared (RMS) frequency

error in (cycles/T) versus san)pie SN-R, 7, in dB. An

observation time of K--48 samples was used, and 5000

independent trials were simulated for each SNR. Figure 3

shows the results for the case of pure carrier with no

nonlinearity (Ma=M=I). Three sets of simulation results

are shown. The first set, with d=l, is for the single branch

estimator of Figure I or the first branch in Figure 2. The

second set, with dB=32, is for the final branch of the new

DMA estimator of Figure 2. The third set is for the ML

extension applied to the original K--48 samples. The

performance is essentially the same for a decimated set of

12 or more samples. Also shown, for comparison, are the

corresponding theoretical approximations and the CRLB.

It is observed that the theoretical approximations are quite
accurate for all SNRs above threshold. With the ML

extension, the CRLB is essentially achieved for all SNRs
above threshold. The threshold SNR is observed to be

about 0 dB for this case.
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Figure 3: RMS frequency error versus sample SNR, ?, for

pure carrier (Ma=M=I , dmax=dB).

Figures 4 and 5 show simulation results for BPSK and

QPSK signaling, respectively. For the simulated BPSK

results in Figure 4, M=2 and Ma=l. For the simulated

QPSK results in Figure 5, M--4 and Ma= 1. Not shown axe

the simulation results with Ma=M, but they closely match
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the theoretical approximations for all SNRs above

threshold. The simulation results with Ma=l are clearly

better than the theoretic,'d approximations with Ma=M.

Note that the simulated performance of the DMA estimator
with RAD remains within about 0.5 dB of the CRLB for all

SNRs above threshold, and that the CRLB is essentially

achieved with the ML extension. As expected, the

threshold SNRs are much higher with M>I. Longer

observation times are required to provide lower thresholds.
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Figure 4: RMS frequency error versus sample SNR, 7, for

BPSK signaling (M=2, Ma=l, dmax=dB).

CONCLUSIONS

A low-complexity, open-loop, discrete-time, delay-

multiply-average (DMA) approach to estimating the

frequency offsets for MPSK modulated signals was
investigated. A simple maximum likelihood (ML)
extension was also considered. Theoretical and simulated

performance results were presented and compared to the
Cramer-Rao lower bound (CRLB) for the variance of the

frequency estimation error. It was shown that the
frequency estimate variance can be improved by orders of

magnitude over that obtained with a delay of d=l. Without

the ML extension, performance is typically within about

0.5 dB of the CRLB, for all SNRs above threshold. With

the ML extension, the CRLB is essentially achieved. The

complexity of the new DMA algorithm, with or without the

ML extension, is approximately 3K, where K is the

observation time in samples.
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Figure 5: RMS frequency error versus sample SNR, _/, for

QPSK signaling (M=4, Ma=l, dmax=dB).
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