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SUMMARY

Reduction of total computing time required by an iterative algorithm for solving Navier-Stokes equations is an

important aspect of making the existing and future analysis codes more cost effecfve. Several attempts have been

made to accelerate the convergence of an explicit Runge-Kutta time-stepping algorithm. These acceleration methods

are based on local time stepping I , implicit residual smoothing 1 enthalpy damping 1 and multigrid techniques 2.

Also, an extrapolation procedure based on the power method and the Minimal Residual Method (MRM) were

applied 2 to the Jameson's multigrid algorithm. The MRM uses same values of optimal weights for the corrections to

every equation in a system and has not been shown to accelerate the scheme without multigriding. Our Distributed

Minimal Residual (DMR) method 3-4 based on our General Nonlinear Minimal Residual (GNLMR) method 5 allows

each component of the solution vector in a system of equations to have its own convergence speed. The DMR

method was found capable of reducing the computation time by 10-75% depending on the test case and grid used.

Recently, we have developed and tested a new method termed Sensitivity Based DMR or SBMR method that is

easier to implement in different codes and is even more robust and computatioually efficient than our DMR method.

TECItNICAL DISCUSSION

This method predicts an optimum amount of correction to the solution vector by combining the information

from several previous iteration levels. Each of the corrections obtained from the past iterations is multiplied by a

different weighting factor and these weighting facttrs are determined so that they minimize the overall future

residual. Although it is based on general Krylov subspace methods, the DMR method differs from them by the fact

that weighting factors are different from one variable to another in the system. Recently, we divided the

computational domain into several zones and the DMR method was applied separately in each of these zones. This

approach did not show noticeable improvement over the original DMR method. Also it was difficult to decide how

to divide the domain systematically into several zones. The DMR concept was also applied to minimize the future

residual at each grid point rather than to minimize the residual integrated over the whole domain. This approach was

not successful, because the weighting factors obtained for each grid point differ too much from one point to another

thus making convergence history erratic and often diverging.
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SENSITIVITY BASED MINIMAL RESIDUAL (SBMR) METHOD

The residual at a grid point depends on the solution vector Q at the neighboring points including the point

itself. The sensitivity of residual Rm (m=1,2,3: number of equations) with respect to Qk (k=typical neighboring

points) is oRm_. Notice that the sensitivity can be determined from the finite difference equation used in the scheme.

For a two-dimensional incompressible flow solved using Chorin's artificial compressibility method the solution

vector is Q = [p u v] T. Suppose we have calculated the solution vector Q at iteration levels up to t+n where n is

the number of regular iteration steps between two iteration levels. Then the change in the solutions between the

iteration levels can be written as follows.

APR = (P_Y+"- (Pff AUk = (aft+"- (Uff, AVR= (vff+*- (vff, (1)

Using the first two terms in a Taylor series expansion in artificial time direction, each residual for a two-dimensional

system after n iterations will be

m -- m a-_ pk,J "t- 8----_UkJ + -_-sS_ vq ,m=1.2,3 (2)

Similarly, future residual at t = (t+n)+l can be approximated by

RO.a_+t = Rim + Ix., OR*m 1 0Rtra "]
oP_Pk._ p +[_k [_k ORsI (3)

Here, ot's are the factors that multiply A's to estimate the future solution vector so that it satisfy a desired objective.

For now, each ct is assumed to have the same value over the whole domain. The future solutions are estimated as

(Pk/t+4+1 = (Pk)' + ctpAPk (4)

with similar expressions for u and v. The cds are determined such that the L-2 norm of the overall future residual will

be minimized, that is,

[.0( R(t+a'_"1)2.] aR0+_+t]oo 1=o (5)

where the subscript q stands for each flow variable p, u and v. For simplicity, let us denote the bracketed terms in

equation (3) as amr, a= and a so that

with similar expressions for a and am. Therefore,

R °÷*_1= R' + a ct + act + act
m m mp p

Substituting (7) into (5) gives the following three equations for optimal global ct's.

(6)

(7)
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with similar expressions involving am_ and am¢ In equation (8), R's and a's arc known from the past iteration

results. Since each ¢xis assumed to have the same value over the computational domain, equation (8) gives a system

of simultaneous equations for Ctp, ctu and ctv.

+ a _ - - R (9)
1 D 1

with similar expressions arising from u and v components. As the grids are clustered (higher cell aspect ratio), local

time steps become smaller in those regions in order to meet the stability criterion. Numerical results (Figures 1-6)

obtained at low and high Reynolds numbers on non-clustered and moderately clustered grids for straight and U-

shaped two-dimensional channel flow demonstrate that SBMR method can: a) be used in conjunction with any basic

iterative algorithm, b) be used with only minor modifications in the existing codes, c) significantly accelerates

iteration procedure, d) perform more effectively at lower Reynolds numbers, e) perform well on moderately clustered

grids.

The SBMR method applied so far calculates the same ct's for the entire computational domain, which cannot

represent optimum ¢x'sfor both coarse grid regions and fine grid regions. Therefore, a natural conclusion is to allow

ct's to have different values in the clustered regions. The future work on SBMR will concentrate on applying this

method by lines such that each grid line normal to the clustering direction has its own ct's. We expect that with this

approach, SBMR concept will calculate the optimal local corrections to solution vectors on highly clustered grids.
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Figure I. Convergence histories for a cascade flow: Re=S00, non-
clustered 40x30 grid, CFL=2.8, 15=3.0. No artificial dissipation was

used. Half of NACA 0012 airfoil on top and bottom walls.

o

.J

-3

-4

-5

-6

-7

-8

-9

-10

-11

-12

-13

-14

-15
I

0 4 8 12 16 20 28x10 z

Iteration number

Figure 2. Convergence history for a straight channel flow: Re.=1600, non-
cluste_ 60x60 grid, x-length=5, y-length=l, 15=5, yon=0.4, CFL=2.5,

omega=0.001. Initial guess: u=l.0E,-5, v=0, p=0. Inlet velocity profile:
u=parabolic, v=0.
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Figure 3. Convergence history for a straight channel flow: R_I.6 million, non-

clustered 60x60 grid, x-length=5, y-length=l, 15=5, CFL=2.8, yon=0.4 "4,

omega---O.005. Initial guess: u=-1.0E-5, v=0, p.O. Inlet velocity profile:
u=para_c, v=0.
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Figure 4. Straight channel flow: R_I600, max AR=100 on 60x60 grid,
x-length=5, y-length=l,/5=5, CFL=2.5, yon=0.4, omega=0.0. Initial guess:
u=l.0E-5, v--0, p=O everywhere. Inlet velocity profile: u-_bolic, v=0.
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Figure5.Straightchannelflow:R_I.6 million,max AR=I00 on 60x60grid,

x-length=5,y-length=l,15=5,CFL=2.5,von---0.4xl0"4omaga--O.005.Initial

guess:u=l.0E-5,v=:0,p=0.Inletvelocityprofile:u=pambolic,v=0.
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Figure 6. Convergence history for a U-shaped channel flow (R_I00,
129x30 grid cells); 15=5,CFL=2.8, yon=0.4, omega=0.0.
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