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SUMMARY

Inertial confinement fusion (ICF) utilizing an anitprotoncatalyzed target is discussed as a possible source of

propulsion for rapid interplanetary manned space missions. The relevant compression, ignition and thrust

mechanisms are presented. Progress on an experiment presently in progress at the Phillips Laboratory, Kirfland

AFB, NM to demonstrate proof-of-principle is reviewed.

I, INTRODUCTION

Inertial confmement fusion flCF) could provide thrust and high Isp from plasma created in micro-

explosions in twanium-hydrogen pellets. We are studying the practicality of igniting the pellet with antiproton-

induced fission. The driver system would include a trap in which antiprotons are stored and an accelerator to deliver

antiprotons to the pellet. The antilm3ton part of the driver would be compact, making it especially attractive for

space propulsion applications. A typical manned mission to Mars using this system (called ICAN, for Ion

Compressed Antiproton Nuclear system) is graphically illustrated in Figure 1. A modem variant of the pusher plate

technology of ORION due to J. Solem (1) for converting motion of hot plasma to thrust is shown m Figure 2.
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Fig. 1-ICAN Mars Mission for 1 Dec 2011 Launch
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Fig. 2-ICAN spacecraft schematic layout after
Solem/Mech_ concelx (1)

H. ANTIPROTON.CATALYZED MICROFISSION/FUSION

Recently our group has observed large fission and neutron yields from antiproton anoihil_o,r, at rest in a

natural uranium target (2). Calculations indicate that short bursts of stopped antiprotons could induce

of several KeV in a small pellet heated by fission fragments. These conditions may be appropriate for ignition of a

hydrogen fusion bum within the microsphere. The driver scheme prescmtly under consideration would utilize

antiprotons as a catalyst to the microfission/fusion process. Compression could be provided by a ddvea" such as fight

ion beams. Targets with yields up to 50 Gjoules have been considered (3).

Figure 3 iHuswates the calculated neutron yield per antiproton on a small (27 gram) uramma target versus

target density x radius under conditions corresponding to subcritical gain (see Section Ill). Neuaons lzoduced

directly by antiprotous and charged pious confined by intense magnetic fields produced in the comlxession

contribute equally to the gain.
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Fig. 3-Subcritical neutron yields for U-238
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HI. SHIVA STAR EXPERIMENT

We have embarked upon an experimental program using the Shiva Star facility at the Phillips Laboratory,

Kirdand AFB. The goal is to demonstratesubcritical neutron multiplication due to antiproton fission in targets

compressed to 10-40 Mbar pressure. These proof-of-principle experiments could lead to a program of full target

experiments at a later time with direct applications to propulsion needs. Figure 4 shows a schematic layout of the

experiment. Antiprotons, stored in a Penning trap, are released at 20 KeV energy, accelerated to 1.2 MeV by a

radiofrequency quadrupole (RFQ) accelerator, and then bent and focused onto the compressed taxget inside an

imploding solid liner driven by the SHIVA Star 5.2 MJ capacitor bank.

Fig. 4-SHIVA Star antiproton injection system

Figure 5 shows a close-up of the target region, indicating the liner moving in rapidly and compressing a
hydrogen working fluid, which in ann compresses the target. A short burst of antiprotons ignites the target as it
reaches peak compression.
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Fig. 5-Solid liner during compression cycle

IV. ANTIPROTON TRAPPING EXPERIMENTS

We are collaborating with the P-15 group at Los Alamos National Laboratory on antiproton trapping

experiments at the Low Energy Antlprotoo Ring (LEAR) at CERN, Geneva, Switzerland. Recently we successfully

trapped 700,000 antiprotons from single beam shots from the accelerator. With improved vacuum, using multipulse

injection and eleclron cooling in the catcher trap we hope to trap and confine ten times this number before the end of

1993.

The design of a portable Penning tap and associated transfer optics for moving antiprotons from the catcher

trap to the portable trap is complete, and construction of these systems is starting. It is planned to move antiprotons

to the Phillips Laboratory in 1995 for the fast of a series of subcritical microfission tests.
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