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This article presents and analyzes a technique for reducing the spurious signal

content in digital sinusoid synthesis. Spurious-harmonic (spur) reduction is accom-

plished through dithering both amplitude and phase values prior to word-length

reduction. The analytical approach developed for analog quantization is used to

produce new bounds on spur performance in these dithered systems. Amplitude

dithering allows output word-length reduction without introducing additional spurs.

Effects of periodic dither similar to those produced by a pseudonoise (PN) generator

are analyzed. This phase-dithering method provides a spur reduction of 6(M + l) dB

per phase bit when the dither consists of M uniform variates. While the spur reduc-
tion is at the expense of an increase in system noise, the noise power can be made

white, making the power spectral density small This technique permits the use of
a smaller number of phase bits addressing sinusoid lookup tables, resulting in an

exponential decrease in system complexity. Amplitude dithering allows the use of

less complicated multipliers and narrower data paths in purely digital applications,
as well as the use of coarse-resolution, highly linear digital-to-analog converters

(DACs) to obtain spur performance limited by the DAC linearity rather than its
resolution.

I. Introduction

It is well known that adding a dither signal to a desired

signal prior to quantization can render the quantizer error

independent of the desired signal [1,2,3]. Classic examples
of this deal with the quantization of analog signals. Ad-

vances in digital signal processing speed and large-scale in-

tegration have led to the development of all-digital receiver
systems, direct digital frequency synthesizers, and direct

digital arbitrary wavefol'm synthesizers. Since finite-word-

length effects are a major factor in system complexity, in

all these applications, these effects may ultimately deter-

mine whether it is efficient to digitally implement a system

with a particular set of specifications. Earlier work [4] has

presented a technique for reducing the complexity of dig-
ital oscillators through phase dithering, with the claim of

increased frequency resolution. Recent research [5] has

suggested mitigation of finite-word-length effects in the

synthesis of oversampled sinusoids through noise shaping.
This article shows how the analysis techniques used for

quantlzation of analog signals can be applied to overcome
finite-word-length effects in digital systems. The analysis

in this article shows how appropriate dither signals can

be used to reduce word lengths in digital sinusoid syn-

thesis without suffering the normal penalties in spurious

signal performance. Furthermore, the dithering technique
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presented in this article is not limited to the synthesis of

oversampled signals.

Conventional methods of digital sinusoid generation [6],

e.g., those in Fig. 1, result in spurious harmonics (spurs)
that are caused by finite-word-length representations of

both amplitude and phase samples [7]. Because both the

phase and amplitude samples are periodic sequences, their
finite-word-length representations contain periodic error

sequences, which cause spurs. The spur signal levels are
approximately 6 dB per bit of representation below the

desired sinusoidal signal.

The technique presented in this article reduces the rep-

resentation word length without increasing spur magni-
tudes, by first adding a low-level random noise, or dither,

signal to the amplitude and/or the phase samples, which

are originally expressed in a longer word length. The re-
sulting sum, a dithered phase or amplitude value, is trun-

cated or rounded to the smaller, desired word length. Of

course, either the amplitude or the phase or both can be

dithered. In phase dithering, the spurious response is de-

termined by the type of dithering signal employed. In
amplitude dithering, the spurious response is determined

by the original, longer word length. While the amplitude-
related spurious response is generally related to the phase-

related spurious response, we will make the predither am-

plitude word length long enough to satisfy spur power

specifications. Then the exact relationship is unimportant,
and since the phase dither signal is independent of the am-

plitude dither signal, the amplitude and phase dithering

processes can be treated independently.

The next section describes the quantizer model. Am-
plitude and phase quantization effects are reviewed in Sec-

tions III and IV, and simple new bounds on spurious per-
formance are presented. In contrast to bounds in the ex-

isting literature, the new bounds are straightforward and

require little information about the signal to be quantized.
The derivations of the new bounds provide motivation for

the new analysis of dithered quantizer performance that

occurs later in this article. An analysis of dithering with a

periodic noise source is presented in Section VI. The peri-
odic noise source is considered because of its similarity to

implementations involving linear feedback shift registers

(LFSRs) or pseudonoise (PN) generators. A new analysis
of phase dithering effects is presented in Sections VII and

VIII, followed by simulation results and a design example.

II. Quantizer Model

When a discrete-time input signal, z[n], is passed

through a uniform midtread quantizer [8], the output sig-

nal, y[n], can always be expressed as y[n] = z[n] + e[n],
where e[n] is the quantization error, a deterministic func-

tion of z[n]. The input to the quantizer is mapped to 1 of

2_ levels, where b is the number of bits that digitally repre-

sent the input sample. Output levels are separated by one

quantiser step size, A = 2 -b. Throughout this article, A A

will be used as the step size for amplitude quantization re-
sults; Ap will be used for phase quantization results; and

A will be used if the result applies to both amplitude and

phase quantization. Similar subscripting will be used on
the quantization error.

The input/output relation of a midtread quantizer ap-

pears in Fig. 2. If the input does not saturate the quan-

tizer, then the quantizer error is [8]:

0O

k#0

If the input signal is bounded so that Ix[all < AO where
A_ = 1/2 - A, then the quantizer does not saturate and

[e[n]l < A/2. Throughout this article, quantizers are al-

ways operating in nonsaturation mode.

III. Amplitude Quantization Effects

Let a discrete-time sinusoid with amplitude A < AQ
and frequency w0 be the input to a midtread quantizer.
If the sinusoid is generated in a synchronous discrete-time

system, w0 can be expressed as 27r times the ratio of two

integers. The input sequence is then periodic with a finite

period. Since the error sequence, eA[n], is a determinis-

tic function of the input sequence, it is periodic with a

finite period as well. Therefore, the spectrum of the er-

ror sequence will consist of discrete frequency components

(spurs) that contaminate the spectrum of z[n].

The following argument leads to an upper bound on

the size of the largest frequency component in the spec-

trum of eA [n]. Assuming the quantizer is not saturated by
the input signal z[n], the maximum possible quantization

error is AA/2, where AA is the amplitude quantization

step size. The total power in eA[n] is then bounded by
A_/4. By Parseval's relation, the sum of the spur pow-

ers in the spectrum of eA[n] equals the power in eA[n].
In order to maximize the power in a given spur, the total

number of spurs must be minimized. Since eA[n] is real,
the maximum power in a spur occurs when there are two

frequency components, at +wspur and -w,p_,r, with equal
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power: With two frequency components, the power in a

single spur is < A_t/8.

Since x[n] is real, its spectrum consists of a positive and
a negative frequency component, each having power A2/4.

Using the above bound on spur power, the spurious-to-
signal ratio (SpSR) is < A_/(2A2). If A = Aq _ 1/2

provided b is not small, then in decibels with respect to

the carrier (dBc), SpSR < 3 - 6b dBc, where AA = 2 -b,
and b is the word length in bits. In summary, this upper

bound on power in a spur caused by amplitude quantiza-

tion exhibits -6 dBc per bit behavior.

IV. Phase Quantization Effects

Let a phase waveform, ¢[n], be the input to the

mid-tread quantizer. The phase waveform, ¢[n] =

(fn + ¢/2_r), is a sampled sawtooth with amplitude rang-
ing from 0 to 1. The fractional operator, (z), is de-

fined so that (z) = z mod 1, e.g., (1.3) = 0.3. Since

¢[n] is generated by a synchronous, finite-word-length,
discrete-time system, it has a finite period. The signal out-

put from the quantizer can be expressed as ¢[n] + ep[n],

where ep[n] represents the error introduced by quantiza-
tion. Since ¢[n] is periodic, ep[n] is periodic with a period

less than or equal to the period of ¢[n]. After multiplica-

tion by 2r and passage through the ideal function genera-

tor, the output signal is y[n] = A cos (2re[n] + 2_rep[n]).
If the quantizer has many levels, i.e., >16, ep[n] << 1

and the small angle approximation y[n] _-, A cos (2_r¢[n])

- 2_rAep[n] sin (2_r¢[n]) may be used.

Since ep[n] and ¢[n] are periodic, the total error

2rAee[n] sin (2re[hi) is periodic. The total error power

is bounded by r2A2A_ because ev[n] is bounded by Ap/2
and the magnitude of a sinusoid is bounded by unity. Re-

calling the arguments in the previous section on amplitude

quantization effects, the maximum spur power of the real

error signal is bounded by placing the total error power

into two spectral components. Therefore, the maximum
spur power is 7r2A2A_/2, where Ap _-_ 2 -b and b bits

are used to represent phase samples. By the above ap-

proximation for y[n] and the bound on the spur power,
the spurious-to-signal ratio bound is SpSR < 21rUA_ =

13- 6b dBc, independent of the signal amplitude, A.

This simple proof demonstrates the -6 dBc per phase bit
behavior. More complicated arguments [7] improve the

bound by about 9 dB.

1 DC offsets and half sampling rate spurs are excluded because they
can be corrected by appropriate calibration and filtering.

V. Amplitude Dithering

In this section, rounding the sum of an already quan-

tized sinusoid and an appropriate dither signal is shown

to cause spurious magnitudes that depend on the original

(longer) word length, not on the output (shorter) word

length. This phenomenon occurs at the expense of in-
creased system noise from the addition of the dithering

signal. An important finite-word-length dithering system
is subsequently shown to be equivalent to the continuous-

amplitude uniformly dithered system.

Consider the conceptual block diagram for a waveform

generator shown in Fig. 3. The b-bit quantizer can be
split into two parts, as in Fig. 4: a high-resolution B-

bit quantizer (B > b) followed by truncation or rounding

to b bits. Thus, the generation process consists of two

separate steps: production of a high-resolution waveform
and reduction of the word length. The number of bits

used to represent the high-resolution samples should be

sufficient to guarantee the desired spectral purity. Then

the word length should be reduced without creating excess

signal-dependent quantization error.

The input in Fig. 5 is a B-bit representation of a sinu-

soid, z[n] = A sin (27rein]) + eA0[n], where eA0[n] is the
quantization error. The dither signal, zu [n], is white noise

uniformly distributed in [--AA/2, AA/2), where AA =

2 -b. The sum z,,[n] + z[n] is rounded to retain only the b

most significant bits. The rounding can be modeled as a

uniform quantizer with step size AA. The amplitude A is
chosen to avoid saturating this quantizer when the dither

signal is added, i.e., A + AA/2 < Aq.

The output from the quantizer can be expressed as

y[n] = z[n] + z,,[n] + eA[n]. The characteristic function
of the dither signal, zu[n], is

Fz(a) = E {exp (jaz[n])}

2sin (aAA/2) = sine (aAA
= _AA k 2,, ] (2)

which has zeros at nonzero integer multiples of 21r/AA.

Thus, as shown in [1], eA[n] will be a white, wide-
sense stationary process, uniformly distributed over

[--AA/2, AA/2), and it will not contribute spurious har-
monics to the output spectrum of y[n]. Any spurious

components in y[n] are therefore due to eA0[n], which are

present in the B-bit input, z[n].

It remains to comment on the noise power not iso-

lated in discrete spurious frequency components. If the
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sequences CAin] and z,,[n] are uncorrelated, adding the

variances of the quantization error, A_/12, and the dither

process, A_/12, yields a white noise power of A_/6. This

approximation is twice the variance of a quantization sys-

tem with no dithering signal. Note that eA0[n] also con-

tributes a white noise term, and that, in general, cA[n]

and z, [hi are not uncorrelated. However, these two effects

are dominated by the A_/6 behavior of the white noise

power. In summary, V[n], which is quantized to b bits, ex-

hibits spurious performance as if it were quantized to B

bits (B > b), at the expense of doubling the white noise

power.

Because the input z[n] is expressed as a B-bit value,
an important system equivalent to continuous-amplitude,

uniformly dithered word-length reduction can be

constructed. Replace the uniformly distributed dither
signal, zu[n], by a finite word-length representation of

it, z[n], which is said to be discreetly and evenly dis-

tributed over the (B- b)-bit quantized values in the region

[-AA/2, AA/2). Heuristically, z[n] randomizes the por-

tion of the finite word-length input, x[n], that is about to
be thrown away by the rounded truncation. This process

is equivalent to continuous uniform dithering, since if x[n]

is padded out to an infinite number of bits by placing zeros
beyond the least significant bit, then only the B - b most

significant bits of z. In] will have an effect on the resulting
sum, x[n] + zu [n]. All of the bits below the most significant

B - b are added to zero and cannot beget a carry. The

output, y[n], is identical in both systems. Therefore zu [n],

continuously, uniformly distributed over [-AA/2, AA/2),

can be replaced by the discretely valued z[n] and yield the

same spurious response for y[n].

It appears that the finite word-length dither signal,

z[n], could be generated by an LFSR, or PN generator.

This will be strictly true if and only if the PN generator

has an infinite period, since, at this time, the dither sig-

nal is required to be white. However, it is not surprising
that ideal behavior is approached as the period of the PN

generator gets longer. With a sufficiently long period, the

case where spur magnitudes are limited by the original

word length can be achieved. The following section gives

a simple model for a system implementation using a peri-

odic random sequence that can be approximated by a PN

generator.

Vl. Effect of Periodic Dither

This section analyzes the use of a periodic dither sig-

nal with a long period, L, for both amplitude and phase

dithering. Since the dither signal is periodic, the discrete

frequency components in its spectrum will contaminate the
desired signal. It is shown that the period can be chosen to

satisfy worst-case spurious specifications. In this section,

the case where the dither signal is generated using one

uniform variate (M = 1) is given. When the dither signal

is the sum of M independent uniform variates (M > 1),
as in Section VIII, the analysis is the same because the

resulting signal is an independent identically distributed

(i.i.d.) sequence of random variables.

Instead of using the white dither process, zu[n], de-

scribed in the previous section, consider a substitute,
zn[n], which is periodic with period L. Any two samples,

zL[n] and zL[n + m], where m _- 0 mod L, are indepen-

dent. Samples of zL[n] are uniformly distributed between

[-A/2, A/2), and the quantization step size is A.

When ZL[n] is used as the dither signal, let the quan-

tizer error be called eL[n]. The autocorrelation of zL[n]

when the lag, m, is an integer multiple of L is equal to
RzLzt. [0] -- A_/12. In the PN generator approximation to

this noise source, L = 2 t - 1, where 1 is the length of the

shift register in bits. At other lag values, the samples of

zL[n] are independent, and since they have zero mean, the

autocorrelation is zero. Therefore,

R,L_ L [m]= -i-_6[m mod L] = E _ exp
/--0

and ZL [hi contains L discrete frequency components, each

with power A2/(12L).

In the autocorrelation expression for eL[hi, the ex-

pectation is taken over the random variables zL[n] and
zL[n + m]:

+.q =
k=-oo I=-oo

k_o :#o

xE {exp (L_(kzL[n]--lzL[n+m]))}

(3)

where:

A(-1) k (J2T[n])(_k[n]= j2rk exp
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The desired signal to which the dither signal ZL [n] is added

is s[n]. Using the notation from earlier sections, in-phase

quantization s[n] = ¢[n], and in amplitude quantization

s[n] = x[n]. When the lag is not a nonzero integer multiple

of L,

E {exp (j_r (kzL[n]_izL[n+ m]))} =

N, the autocorrelation function equals A2/12, indepen-
dent of n. The smallest nonzero lag that satisfies these

two conditions is the least common multiple of L and

N, denoted by qL where q is an integer. Therefore,
the period of the time-averaged autocorrelation function,

/_e_[m] = Avg,,(R_L_L[n,n + m]), is at least L and at
most qL. Let the period equal cL, where c is an integer,

1 < c < q. The function /_L [m] can be expressed as a

sum of cL weighted complex exponentials:

= P, exp
I----0

, m = ...,-1,0, 1,2,...

where

1 eL-1 (j2zcml_

rn_O

This last fact is true because the characteristic function

of zL [n] has zeros at all nonzero integer multiples of 2r/A,

Eq. (2). But since the sums over k and I never assume the
value 0, the autocorrelation function is 0 when the lag is

not 0 mod L. When the lag is 0 mod L,

E{exp (-_-(kzL[n]--lzL[n+ =

This results in

R,L, [n,n + m] =

A2_l (2_k )2r-----g_ _-g cos -- (s[n] - s[n + m]) (4)

Setting m = 0 in Eq. (4) and evaluating the re-
sulting summation [9, p. 7] yields the power in eL[n]:

R,L,L[n,n] = A2/12. From Eq. (4), eL[n] is a cyclo-

stationary process because sin] has a finite period, N.

Using the results of Ljung [10], spectral information is

obtained when Eq. (4) is averaged over time. Note that

when the lag, m, is not only an integer multiple of L,

the period of the dither, but also an integer multiple of

1 ' ( _ )= --cL _ k'L [nL] exp _J2 nl

The last equality is true since the autocorrelation func-

tion in Eq. (3) and its time-average, R,L [m], are zero for

lags not equal to integer multiples of L. The weights,

Pl, are the power magnitudes of the spurs. Since /_eL [m]

_< A2/12, the spur power can be bounded: Pt < A2/(12cL)

_< A2/(12L). Equality is achieved when the period of the

time-averaged autocorrelation function is exactly L, the
period of the dither.

As L ---* oo, the spacing between spurs goes to zero

in the spectra of both eL[n] and zL[n]. The power in an

individual spur goes to zero, but the density (power per
unit of frequency) tends to a constant. Thus, ideal white

noise behavior is approached. While zL[n] and eL[n] are
correlated in general, the worst-case spur power scenario

coherently adds the power spectra from both processes.

For this reason, L should be chosen to satisfy A2/(6L)

< Pmax, where Pmax is the maximum acceptable spur
power. When constructing a dither signal as the sum of

M > 1 independent, uniform variates, the noise autocor-

relation becomes RZL_L [m] = (MA2/12)_[m mod L]. The

analysis follows closely that for M = 1, and L should be

chosen to satisfy (M + 1)A2/(12L) < Pm_x.

As in the previous section, since the desired signal has

finite word length, it is equivalent to rounding or truncat-

ing the dither signal to an appropriate word length. Such

a truncated periodic noise source is an approximation to
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animplementationusinga PN generator that produces a
periodic sequence of discreetly and evenly distributed ran-
dom numbers.

E{z[n]x[n + m]} = cos (2 yn + ¢)

x cos (21rf(n + m) + ¢b)

VII. Phase Dithering

In this section, phase dithering is analyzed using a con-

tinuous, zero-mean, wide-sense stationary sequence. As

described in Section V on amplitude dithering, an evenly
distributed discrete random sequence is equivalent to con-

tinuous uniform dithering when the initial phase word is

quantised to a finite number of bits.

Let the digital sinusoid to be generated be

x[n] = cos (2,r(¢[n]+ 4n])) (5)

so that the desired phase is ¢[n], as defined in Section IV.

The total quantization noise is e[n] = ep[n]+z[n], the sum
of the dither signal and the quantizer error. Using small

angle approximations,

=In]= cos (2 /n + -

x sin (27rfn + _) + 0 ([max (e[n])] 2)

The total quantization noise will be examined by consider-

ing the first two terms above, and then the second-order,

O ([max (e[n])]2), effect.

A. First Order Analysis

Since the quantization error after dithering is indepen-

dent of the input signal [2], e[n] is uncorrelated with the

desired sinusoids. Without loss of generality, and for ease

of notation, let us shift the uniformly distributed dither

random variate range to [0,Ap). The total phase quan-

tization noise e[n] will be e[n] = --p[n]Ap with probabil-

ity (1 -pin]), and e[n] = (1 -p[n])Ap with probability
p[n]. The value p[n] is the distance from the initial high-

precision phase value, ¢[n], to the nearest greater quan-
tized value normalized by the phase quantization step size

Ap. The value of the probability sequence pin] varies pe-

riodically, since p[n] = ¢[n] mod Ap, and ¢[n] is periodic;
however, at all sample times n, the first moment of the

total phase quantization noise, E{e[n]}, is zero.

Information about the spurs and noise in the power

spectrum of x[n] is obtained from the autocorrelation func-

tion. The autocorrelation of x[n] is

+ 47r2 sin (2rfn + _)

x sin (27rf(n + rn) + _I,)

x E{e[nle[n + m]} + O(A_,)

Spectral information is obtained by averaging over time

[10], resulting in

1 [1 + 47r_k.[m]] cos (27rfro)/_ [m] _,

where/_,, [m] = Avg,, (E{e [n]e[n + m]}), the time-averaged
autocorrelation of the total quantization noise.

The power spectrum of x[n], the Fourier transform of
the autocorrelation, is the power spectrum of the desired

sinusoid of frequency f plus the total quantization noise

amplitude modulated on the desired sinusoid. Note that

since /_.[m] = O(A_,), and Ap << 1, the modulation
index is small.

The amplitude modulation (AM) signal produced by
phase dithering is clear of spurious harmonics down to the

level due to periodicities in the dither sequence. The next

section will examine spur performance in more detail, but

first it is important to consider the noise power spectral

density resulting from the phase dithering process.

Recall that for any fixed time n, the probability dis-

tribution of e[n], a function of pin], is determined by the

input signal, but the outcome of e[n] is determined entirely

by the outcome of the dither signal z[n]. When z[n] and

z[n + m] are independent random variables for nonzero lag

m, e[n] and e[n + m] are also independent for m ¢ 0, and

hence e[n] is spectrally white. In this case, the autocorre-
lation becomes

1

/_[m] _ _ cos (2_rfm) + 2r2_[m] "Car (e)

where Vat (e) is the time-averaged variance of the total

quantization noise, and df[m] is the Kronecker delta func-

tion (df[0] = 1, _f[m] = 0, m _ 0). The resulting signal-to-

noise ratio (SNR) is approximately 1/(47r 2 Var (e)).
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When the dither signal is constructed from one uniform

[-Ap/2, Ap/2) random variate, the error e[n] is bounded
between --Ap to Ap with Ap = 2 -b, and b is the number

of bits in the phase representation after the Word length is
reduced. The number of bits, b, must be large enough to

satisfy the earlier small angle assumption, typically, b >_ 4.

The time-averaged variance of e[n] is less than or equal to

2-2b/4, and the SNR is 22b/_ 2 = 6.02b - 9.94 dB.

Since the sinusoid generated is a real signal, the sig-

nal power in the SNR will be divided between positive

and negative frequency components. If the sinusoid is the
result of a discrete-time random process with sampling fre-

quency f,, then the resulting noise power spectral density

(NPSD) will be given by:

NPSD_.- -- + 10 log10

< 6.93 - 10 log10 (-_) - 6.02b dBc/Hz (6)

Table 1 gives noise power spectral densities as a function
of the number of bits per cycle, b, at a 160-MHz sampling

rate, calculated according to the above formula.

B. Second Order Analysis: Residual Spurs

For a worst-case analysis of second order effects, expand

the initial cosine from Eq. (5) by the sum of angles formula:

x[n]=cos cos(2 f. +

- sin (2re[n]) sin (2rfn + ¢)

Information about the spurs in the power spectrum of x[n]

is obtained from the autocorrelation function at nonzero

lags. When the dither sequence, z[n], is a sequence of i.i.d.
variates, the autocorrelation function for z[n], with lag m

not equal to zero, is

Rc_[n, n + m I = E{z[n]x[n + m]}

= E{x[n]}E{x[n + m]}

The expected value of z[n] is a deterministic function of

time. From the above expression, it follows that spectral

information about the random process z[n], with the ex-

ception of noise floor information, is contained in E{z[n]},

which we call the "expected waveform." Since e[n] is zero

mean at all sample times, the expected waveform reduces

to

E{x[n]} = (1 - 27r2E{e2[n]}) cos (2_rfn + ¢i,) + O(AZp)

It remains to consider the second moment of the total

phase quantisation noise, E{e2[n]}, which we evaluate by

using the probability sequence pin] from the previous sec-

tion as E{e2[n]} = A_,(p[n]-p2[n]). Since p[n] is bounded
between 0 and 1, the function u[n] = p[n]- p2[n] is

bounded between 0 and 1/4, with its maximum value of

1/4 at p[n]= 1/2

Since u[n] is bounded between 0 and 1/4, it must have

some nonzero dc (average) component. Any remaining

components can be periodic in the worst case. Since all
nonlinear operations have been performed, conservation

of power (energy) arguments can be used to determine
the total non-dc error power. The total power in the dc

component of u[n] is equal to the square of the average
value of u[n]. Similarly, the total power in u[n] is equal to

the average value of u2[n]. Thus, the power remaining for

time-varying components of u[n] is

Avg(u2[n])- (Avg(u[n])) 2 = Avg [(u[n]- Avg(u[n])) 2]

This value is maximized by maximizing the dispersion of

the samples about the mean. When the sample values are

bounded, this maximization is achieved by placing half of

the samples at each bound, so that the mean is equidistant
from each bound. Since 0 < u[n] < 1/4, the maximum

power present in harmonic components is 1/64.

Recall that at this worst case, half of the values of

E{e2[n]} are zero and half are A_,14. Since e2[n] is non-

negative, E{e2[n]} = 0 implies that e[n] = 0. Note that

the difference between e[n] and e[n + 1] is the phase in-
crement modulo the quantization step size. If, for any n

and n + 1, e[n] = e[n + 1] = 0, the phase increment can be
exactly expressed in the new quantization step. By induc-

tion, e[n] will be zero for all n if any two adjacent values

E{e2[n]} and E{e_[n+ 1]} are both zero. The only possible

sequence E{e2[n]} achieving the worst case is, therefore,

0, 1/4, 0, 1/4, 0, 1/4 .... This sequence has a single sinu-
soidal component at the Nyquist frequency, which is half

the sampling rate.

In the worst case, the model to consider is u[n] = 1/8

- (1/8) cos (Trn) since cos ((2rf + r)n + ¢) = cos ((2rf

- r)n + _). The expected waveform is
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× cos + +)+ o(a )

= I-- _r2 cos (2_rfn + ¢I,) + Ir2

× cos + +) +

clearly showing the desired signal and spur components.

Thus, dropping the O(A_) term, a -18 dB per bit power

behavior, the worst-case spur level relative to the desired

signal after truncating to b bits is SpSR

SpSR ,_ r4A_'/16 7r4A_"_ = 7.84 - 12.04b dBc
(1 - 16

This worst case is achieved for a large class of frequen-

cies. Let the phase of the desired signal _ = 0, and let
the desired frequency be R cycles in 2b+l samples, where

R is an odd integer. The sequence e2[n] will be determin-
istic: 0, A_,/4, 0, _2p/4..., exactly the worst case analyzed

above. The frequency of the spur is the reflection of the

desired signal across 1/4 the sampling rate, and, as a re-

sult, it can be as close as 1/2 _ of the sampling rate from
the desired sinusoid.

In summary, if b bits of phase are output to a lookup
table, and B bits of phase (B > b) are used prior to trunca-

tion, then the addition of an appropriate dithering signal
using (B - b) bits will allow the word length reduction

without introducing spurs governed by the usual -6b dBc
behavior. If a single random variate is added as a dither

signal (first-order dithering), the spur suppression is ac-
celerated to 12 dB per bit of phase representation. Since

the table size is affected only linearly by the number of

bits in a table entry, rather than exponentially, as it is by

the number of phase bits, the amplitude word length is of
secondary importance to the phase word length, especially

in all-digital systems. For example, -90 dBc spur perfor-

mance would nominally require b = 16 bits of phase and a

65,536-entry table. With first-order dithering, this level of

performance requires only b > 8.1 bits of phase per cycle

in the lookup table addressing. Worst-case spur perfor-

mance of -100.5 dBc is achieved with 9 bits, a 512-entry

table at most, and, at a 160-MHz sampling rate, Table

1 shows that with these realistic system parameters, the

noise power spectral density is at a low -126 dBc/Hz.

VIii. Accelerated Spur Suppression

Further analysis [11] based on an extension of results

by Gray [12] indicates that the phase spur suppression rate

can be increased in steps of 6 dBc per bit by adding mul-

tiple uniform random deviates to the phase value prior to
truncation. The addition of M uniform random deviates

produces a dither signal with Mth-order zeros in its char-

acteristic function, thus making the Mth moment of the

quantization error independent of the input sequence [12].

An example of this technique providing 18 dBc per
phase bit spur performance is shown in Fig. 6. This tech-

nique involves adding two (B - b)-bit uniform deviates to

produce a (B - b + 1)-bit dither signal, which achieves the
accelerated spur reduction due to second-order zeros in the

dither characteristic function. Simulation results for when

two uniform variates are added to the phase are presented
in the next section. A straightforward extension of this

technique to a polynomial series allows spur-reduced syn-
thesis of periodic digital signals with arbitrary waveforms.

IX. Simulation Results

Simulations were performed to validate the results of

this analysis. These results were obtained using 8192-point

unwindowed fast Fourier transforms (FFT's), and the syn-
thesized frequencies were chosen to represent worst-case

amplitude and phase spur performance. Figure 7 shows
the power spectrum of a sine wave of one-eighth the sam-

pling frequency truncated to 8 bits of amplitude without
dithering. Figure 8 shows the same spectrum with a 16-bit

sinusoid amplitude dithered with 1 uniform variate prior
to truncation to 8 bits. Note that the spurs have been

eliminated to the levels consistent with those imposed by
the initial 16-bit quantization.

Figure 9 shows the spectrum of a 5-bit phase-truncated
sinusoid with high-precision amplitude values. A worst-

case example of first-order phase dithering is shown in

Fig. 10. The measured noise power spectral density in

Fig. 10 is -62.3 dBc per FFT bin, giving a noise density
of -23.2- 10 log (f0/2) dBc, in agreement with the upper
bound derived in Eq. (6). The spur level is -52.3 dBc in

the first-order dithering shown in Fig. 10.

Figure 11 shows the same example using second-order
(M = 2) dithering using the sum of two uniform deviates.

While the spectrum in Fig. 10 shows the residual spurs at

-12 dBc per bit due to second-order effects, Fig. 11 shows

no visible spurs, indicating better than -63 dBc spuri-

ous performance. Additional simulations involving mega-
point FFTs and not represented by figures confirm the
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-18 dBc per bit performance of the second-order phase-

dithered system.

of periodic dithering signals has been analyzed because of

its similarity to LFSR PN generators.

Finally, Fig. 12 shows a worst-case result for first-order

phase dithering together with first-order amplitude dither-

ing. The amplitude samples are truncated to 8 bits, as are
the phase samples. Note that the spurs are not visible in

the spectrum; however, close analysis has demonstrated

that they are present at the -88 dBc level expected due
to second-order effects.

X. A System Design Example

The block diagram of a direct digital frequency synthe-
sizer based on the techniques presented here is shown in

Fig. 13. The following system would perform at a sam-

pling rate of 160 MHz, producing 8-bit digital sinusoids
spur-free to -90 dBc with better than -120 dBc/ttz noise

power spectral density. The system parameters are

(1) Phase bits are in unsigned fractional cycle represen-
tation with phase accumulator word length deter-
mined by frequency resolution and > 16 bits prior

to the addition of one uniform phase dither variate,
with > 9 bits after dither addition and truncation.

(2) Amplitude lookup table with

(a) > 27 = 128 entries (using quadrant symmetries)

of >16 bits each, normalized so that the sinusoid

amplitude equals 512 16-bit quantization steps
less than the full-scale value.

(b) Linear feedback shift register PN generator with

>16 lags producing one 8-bit amplitude dither
variate.

(c) One LFSR PN generator with > 18 lags for gen-
eration of the 7-bit phase dither variate.

XI. Conclusion

A digital dithering approach to spur reduction in the

The advantage gained in amplitude dithering provides

for spur performance at the original longer word length in

an ideal system when the digital dithering signal is white
noise distributed evenly, not uniformly, over one quanti-

zation interval. The reduced word length allows the use

of less complicated multipliers and narrower data paths in
purely digital applications. If the waveform is ultimately

converted to an analog value, the reduced word length al-

lows the use of fast, coarse-resolution, highly linear digital-

to-analog converters (DAC's) to obtain sinusoids or other

periodic waveforms whose spectral purity is limited by
the DAC linearity, not its resolution. These results sug-

gest that coarsely quantized, highly linear techniques for

digital-to-analog conversion, such as delta-sigma modula-
tion, would be useful in direct digital frequency synthesis

of analog waveforrns.

The advantage gained in the proposed method of phase

dithering provides for an acceleration beyond the normal
6 dB per bit spur reduction to a 6(M + 1) dB per bit spur

reduction when the dithering signal consists of M uniform

variates. Often the most convenient way to generate a

periodic waveform is by table lookup with a phase index.
Since the size of a lookup table is exponentially related to

the number of phase bits, this can provide a dramatic re-

duction in the complexity of numerically controlled oscilla-

tors, frequency synthesizers, and other periodic waveform

generators.

The advantages of dithering come at the expense of an
increased noise content in the resulting waveform. How-

ever, the noise energy is spread throughout the sampling
bandwidth. In high bandwidth applications, dithering im-

poses modest system degradation. It has been shown that

high performance synthesizers with dramatically reduced

complexity can be designed using the dithering method,
without resulting in high noise power spectral density

generation of digital sinusoids has been presented. A class levels.
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Table 1. Noise power spectral densities

for 1GO-MHz sampling rate.

Noise power spectral density,
b, bits/cycle dSc/Hz

5 -102.20

6 -108.22

7 -114.24

8 -120.26

9 -126.28

I0 -132.30

11 -138.32

12 -144.35
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