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Abstract

This report has been prepared to supplement a forthcoming chapter on formal

methods in the FAA Digital Systems Validation Handbook 1. Its purpose is to out-

line the technical basis for formal methods in computer science, to explain the use

of formal methods in the specification and verification of software and hardware re-

quirements, designs and implementations, to identify the benefits, weaknesses, and

difficulties in applying these methods to digital systems used on board aircraft, and

to suggest factors for consideration when formal methods are offered in support of
certification. These latter factors assume the context for software development and

assurance described in RTCA document DO-178B 2.

The report assumes a serious interest in the engineering of critical systems, and

a willingness to read occasional mathematical formulas and specialized terminology,

but assumes no special background in formal logic or mathematical specification

techniques. It should be accessible to most people with an engineering background,

and may be of interest to those concerned with critical systems other than those

on board aircraft. It may also be of use to those who develop or advocate formal

methods and are interested in their use in certification of critical systems.

1Digital Systems Validation Handbook-Volume II. Federal Aviation Administration Technical
Center, Atlantic City, N J, February 1989. DOT/FAA/CT-88/lO. The chapter on Formal Methods
will probably form part of Volume III.

2Software Considerations in Airborne Systems and Equipment Certification. Requirements and
Technical Concepts for Aviation, Washington, DC, December 1992.
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How to Read this Report

This report is primarily written for certifiers and assumes no previous exposure to

formal methods. However, it is not a tutorial on formal methods: it contains a

great deal of discussion on strengths, weaknesses, and technical issues in formal

methods that should be considered in certification, but does not explain how to do

formal methods. There are a few simple examples scattered through the report,

but these are intended only to give some feel for the topics discussed, and are not

representative of specific techniques or notations that might be offered in support

of certification. Those who wish to offer formal methods in support of certification

must obviously become expert in the methods they select, and certifiers will likewise

need to gain expertise in the specific methods adopted. Some reading suggestions

for those embarking on such studies are provided in Section 2.8.

It is difficult to discuss some of the issues in formal methods without occasionally

using technical terms and concepts that require a certain knowledge of the field, and

of mathematical logic in particular. I have tried to keep the discussion suitable for

the nonspecialist, but have not excluded technical terms and concepts where these

are necessary for precision. An appendix provides some technical background in a

relatively brief and accessible form, explaining the main ideas of mathematical logic,

and introducing most of the technical terms that a nonspecialist might encounter.

The organization of this report is as follows. Chapter 1 provides an introduction

and adumbrates some of the main themes. These are covered in detail in Chap-

ter 2, which adopts a fairly general perspective. Specialization of the perspective

towards digital systems validation for Aircraft, and discussion of issues bearing on

certification credit and compliance with DO-178B [RTC92], make up Chapter 3.

A reader new to formal methods should probably concentrate on Chapters 1 and

3, and should only skim Chapter 2 first time through, perhaps taking a little more

time over its later sections, where the benefits, fallibilities, and some applications

of formal methods are described. In order to evaluate the credibility of any claims

involving formal methods that may be offered in support of certification, rather

greater familiarity with the topics examined in the earlier sections of Chapter 2 will

be required. In particular, the certifier and applicant will need to reach agreement

on the technical basis for validating formal specifications.

Although this report is primarily written for certifiers, I hope it will also be

useful to those involved in developing airborne systems, and I have included some

information (for example, on the selection of methods and tools) that is specifically

addressed to that audience. In the hope that developers and advocates of formal

methods may wish to contribute to their application in airborne systems, I include

occasional descriptions of some of the characteristics of those systems. 3

_For more background, consult Anderson and Dorfman [AD91], who provide a good collection of
papers on software engineering for aerospace, and Spitzer [Spi87], who gives a general introduction



2 A Note on Terminology

A Note on Terminology

Although the topic of this report is formal methods, the context for its discussion
is the certification of embedded software for systems deployed in civil aircraft. This

necessarily involves some discussion of safety-critical systems and of fault tolerance.

Both these fields employ very careful terminology in order to distinguish concepts

that are important to their analyses. Unfortunately, each field is rather careless

about the terminology of the other. I will strive to use terms in the way they are

used in the specialized field concerned. In this section I briefly define and explain

these usages.

IFIP Working Group 10.4 (Dependability and Fault Tolerance) has established

a standard framework for discussing reliable and fault-tolerant systems. A book

presents the basic concepts and preferred terminology in five languages [Lap91].

In this framework, a dependable system is one for which reliance may justifiably be

placed on certain aspects of the quality of service it delivers. The quality of a service

includes both its correctness (i.e., conformity with requirements, specifications, and

expectations) and the continuity of its delivery.

A .departure from the service required of a system constitutes a failure--so that

a dependable system can also be described as one that does not fail. Failures are

attributed to underlying causes called faults. Faults can include mistakes in spec-

ifications or design (i.e., bugs), component failures, improper operation, and envi-

ronmental anomalies (e.g., electromagnetic perturbations). Not all faults produce

immediate failures: failure is a property of the external behavior of a system--which

is itself a manifestation of internal states and state transitions. Suppose a system

progresses through a sequence of internal states sl, s2,..., sn and that its external

behavior conforms to its service specification throughout the transitions from sl to

s,_-i but that on entering state s,_ the external behavior departs from that required.
Is it reasonable to attribute the failure to state st,? Clearly not, since there could

have been something wrong with an earlier state sj, say, that, while it did not

produce an immediate failure, led to the sequence of transitions culminating in the

failure at sn. In this case, the state sj is said to contain a latent error that persists

through the states that follow and becomes effective in state sn when it affects the

service delivered and failure occurs. In general, an error is that part of the system

to digital avionics. Current developments can be followed through the Digital Systems Avionics
Conference (DASC) and National Aerospace Electronics Conference (NAECON), as well other spe-
cialized conferences and journals of the AIAA, IEEE, and SAE. Foran excellent account of the basic
approach to safety assessment Ofaircraft, see the book by Lloyd and Tye [LT82] (though unfortu-
nately this predates the introduction of fly-by-wire). For a discussion of the certification challenges
posed by new technology, including fly-by-wire, see the paper by Holt [Ho187];for an assessment
of how current certification practices address these challenges, see the report by the United States
General Accounting Office [GAO93]. For a critical examination of ethical and regulatory issues in
safety-critical systems, see the compendium edited by Fielder and Birsch [FB92].
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statethat hasbeendamagedby the fault and (if uncorrected)canleadto failure.
Fault toleranceis basedon detectinglatent errorsbeforethey becomeeffective,
and then replacingthe erroneouscomponentof the stateby anerror-freeversion.
(Latenterrorsarediscussedin a separatechapterof the FAA Handbook[FAAb].)

Thecrucialdistinctionsherearethosebetweenfault, error,and failure. Unfor-
tunately,asnoted,otherfieldsdonot alwayspreservetheseimportant distinctions;
in particular, theyoftenusefault anderror interchangeably.DO-178B[RTC92]is
guilty of this, generallyusingthe term error to describe programming mistakes or

bugs that are properly called faults. In this report, I use the proper term, except

where quoting from DO-178B.

Safety-criticai systems in general, and aircraft systems in particular, make use

of the terminology and techniques of hazard analysis. The following paragraphs

introduce this terminology for the benefit of those who are reading this report for

general interest and who are not familiar with aircraft certification. Weapons sys-

tems provided some of the early impetus to safety engineering and hazard analysis,

so military standards such as 882B [DoD84] (United States) and 00-56 [MOD91b]

(United Kingdom) are good alternative sources on these topics. A standard text is

that by Roland and Moriarty [RMg0].

While fault tolerance is concerned with reducing the incidence of failures, safety

concerns the occurrence of accidents (or mishaps)--which are unplanned events that

result in death, injury, illness, damage to or loss of property, or environmental harm.

Whereas system failures are defined in terms of system services, safety is defined in

terms of external consequences.

The general approach to development and Certification of safety-critical systems

is grounded in hazard analysis; a hazard is a condition that can lead to an accident.

Damage is a measure of the loss in an accident. The severity of a hazard is an

assessment of the worst possible damage that could result, while the danger is the

probability of the hazard leading to an accident. Risk is the combination of hazard

severity and danger. The goal in safety engineering is to control hazards. During

requirements and design reviews, potential hazards are identified and analyzed for

risk. Unacceptable risks are eliminated or reduced by respecification of requirements,

redesign, incorporation of safety features, or incorporation of warning devices.

For example, if the concern is destruction by fire, the primary hazards are avail-

ability of combustible material, an ignition source, and a supply of oxygen. If at all

possible, the preferred treatments are to eliminate or reduce these hazards by, for

example, substitution of non-flammable materials, elimination of spark-generating

electrical machinery, and reduction in oxygen content (cf. substitution of air for

pure oxygen during ground operations for Project Apollo after the Apollo 1 fire), if

hazard elimination is impossible or judged only partially effective, then addition of a

fire suppression system and of warning devices may be considered. The effectiveness
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and reliability of these systems then becomes a safety issue, and new hazards may

need to be considered (e.g., inadvertent activation of the fire suppression system).

Software criticality is determined by hazard analysis; DO-178B considers five

levels from A (most critical) to E. Level A is "software whose anomalous

behavior...would cause or contribute to a failure of system function resulting in

a catastrophic failure condition for the aircraft" [RTC92, Subsection 2.2.2]. Catas-

trophic failure conditions are "those which would prevent continued safe flight and

landing" [FAA88, paragraph 6.h(3)] and include both loss of function, malfunc-

tion, and unintended function. Failure condition severities and probabilities must

have an inverse relationship; in particular, catastrophic failure conditions must be

"extremely improbable" [FAA88, paragraph 7.d]. That is, they must be "so un-

likely that they are not anticipated to occur during the entire operational life of

all airplanes of one type" [FAA88, paragraph 9.e(3)]. "When using quantitative

analyses...numerical probabilities...on the order of 10 -9 per flight-hour 4 may be

used.., as aids to engineering judgment.., to... help determine compliance" with the

requirement for extremely improbable failure conditions [FAA88, paragraph 10.b].

An explanation for this figure can be derived [LT82, page 37] by considering a fleet

of 100 aircraft, each flying 3,000 hours per year over a lifetime of 33 years (thereby

accumulating about 107 flight-hours). If hazard analysis reveals ten potentially

catastrophic failure conditions in each of ten systems, then the "budget" for each'is

about 10 -9 if such a condition is not expected to occur in the lifetime of the fleet.

An alternative justification is obtained by projecting the historical trend of reliabil-

ity achieved in modern jets. From 1960 to 1980, the fatal accident rate for large jets

improved from 2 to 0.5 per l0 s hours, and was projected to be below 0.3 per 106

hours by 1990 [LT82, page 28]. 5 This suggests that less than 1 fatal accident per

4"Based on a flight of mean duration for the airplane type. However, for a function which is used
only during a specific flight operation; e.g., takeoff, landing etc., the acceptable probability should
be based on, and expressed in terms of, the flight operation's actual duration" [FAA88, paragraph

10.b].
SBetween 1982 and 1991, there were |63 _hull loss _ accidents. Causes of these accidents have

been officially identified in 120 Cases; of these, 15 were attributed to failure of the aircraft's design or
systems [BCA92]. Since the 1980s there has been a large increase in on-board safety-critical software
in systems such as engine control and monitoring, displays, autopilot, and flight management.
Among aircraft of this generatio_ manufactured in the United States, the Boeing 757, 747-400,
and the McDonnell Douglas MD-11 have had no hull loss accidents (although inadequate design

of the wing flap/slat control handle handh of the MD-11 has led to 12 unintentional activations
of the flap/slat system in flight, including the Chin£ Eastern Airlines acddent of April 1993 which
injured 160 pssengers and killed two [Phi93]). The Boeing 767 has had one: the Lauda Air crash
over Thailand in May 1991 that was caused by in-flight activation of an engine thrust-reverser.

Only one airplane in current service--the Airbus A320--uses full fly-by-wire. Its has had four
fatal, hull loss, crashes since entering service. This appalling record is far worse than any other

contemporary airplane on an hours flown basis, but none of these accidents has implicated the
reliability of its software. The first three crashes were officially attributed to pilot error; the cause
of the fourth (the 14 September 1993 Lufthansa accident on landing at Warsaw-Okocie airport) has



107hoursis a feasiblegoal,and the samecalculationasabovethenleadsto 10-9
astherequirementfor individual catastrophicfailureconditions.

Notethat theprobability10-9 is appliedto (sub)systemfailure,not to anysoft-
warethe systemmaycontain. Numericalestimatesof reliability arenot assigned
to softwarein safety-criticalsystems[RTC92,Subsection2.2.3],primarily because
softwarefailure is not randombut systematic(i.e,dueto faultsof specification,de-
sign,or construction),andbecausethe ratesrequiredaretoo smallto bemeasured;
discussionof thesepointsconsumesmuchof theearly part of Chapter3.
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Chapter 1

Introduction

"When software fails, it invariably fails catastrophically. This awful qual-

ity is a reflection of the lack of continuity between successive system

states in executing software. If the preceding state is correct, there is no

inherent carry over of even partial correctness into the next succeeding

state." [Roy91, page 11]

"Primarily, mathematics is a method of inquiry known as postulational

thinking. The method consists in carefully formulating definitions of the

concepts to be discussed and in explicitly stating the assumptions that

shall be the basis for reasoning. From these definitions and assumptions

conclusions are deduced by the application of the most rigorous logic man

is capable of using." [Kli90, page 20]

"Formal methods" are the use of mathematical techniques in the design and

analysis of computer hardware and software; in particular, formal methods allow

properties of a computer system to be predicted from a mathematical model of the

system by a process akin to calculation. Engineers in established disciplines are fully

familiar with the benefits that mathematical modeling and analysis can provide: for

example, computational fluid dynamics (CFD) allows safe and relatively inexpensive

exploration of alternative airfoil designs, and accurate prediction of the behavior of

the selected design. Wind-tunnel and flight tests are performed primarily to validate

the accuracy of the CFD model, and to measure final performance parameters. With

computer software, however, prototyping and testing remain the principal methods

for exploring designs and validating implementations. These are expensive and

possibly dangerous, and can provide only partial coverage of the range of behaviors

that a piece of software may exhibit.

The problem, of course, is that computer hardware and software are discrete

systems: their behavior is determined by a succession of discrete state changes. The
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succession of states need not produce behavior that varies smoothly or continuously;

instead it can exhibit discontinuities and abrupt transitions. The ability to select

among many alternative courses of action is a source of the power and flexibility

provided by computer systems, but it is also the reason why their behavior is hard

to predict and to validate. Tests provide information on only the state sequences

actually examined; without continuity there is little reason to suppose the behavior

of untested sequences will be "close" to tested ones, and therefore little justification

for extrapolating from tested cases to untested ones.

Formal methods confront the discrete behavior of computer systems by using

discrete mathematics to model it. Discrete mathematics builds directly on mathe-

matical logic, and proofs of theorems take the place of the numerical calculations

that are familiar in most other engineering mathematics. That is, instead of using a

mathematical model to calculate a value for some numerical quantity such as lift or

drag, in formal methods for computer science we prove theorems about the modeled
behavior--such as "for any integer input x in the range 0 _< x < 216, this program

produces an integer output y satisfying y2 _< z < (y + 1)2." In formal methods, the

problem of discontinuity and the unsoundness of extrapolating from a finite num-

ber of tests are overcome using methods of proof based on mathematical induction,

so that an infinite (or finite but very large) number of possible behaviors is fully

covered in a finite proof. I

Formal methods offer much more to computer science than just "proofs of cor-

rectness" for programs and digital circuits, however. Many of the problems in soft-

ware and hardware design are due to imprecision, ambiguity, incompleteness, mis-

understanding, and just plain mistakes in the statement of top-level requirements,

in the description of intermediate designs, or in the specifications of components

and interfaces. Some of these problems can be attributed to the difficulty of de-

scribing large and complex artifacts in natural language. Many notations and tech-

niques have been proposed to overcome this difficulty and it is important here to

distinguish formal methods from what we might call formalized methods. The lat-

ter include many CASE methodologies, diagrammatic techniques, pseudocode, and

other systematic ways for describing the requirements, specification, or operation

of computer systems. The distinction is that formal methods are provided with an

explicit method for deriving, by a systematic process that resembles calculation,

the properties and consequences of a specification: it must be possible, at least

in principle, to calculate whether one specification correctly implements another,

or whether certain requirements are satisfied by a given specification. Formalized

methods, on the other hand, continue to rely on intuitive understanding of the nota-

tions and concepts employed: they may replace a possibly woolly natural language

XFormal methods based on %tate-exploration _ can sometimes examine all the behaviors in a
very large, but still finite, space of possibilities using cleverly-implemented brute force techniques.



descriptionwith, say,an apparentlyprecisediagram--but the precisionis illusory
if thereis no underlyingsemanticsgivinga strict meaningto the diagram. For-
malizedmethodsalsooftenforcea prematurecommitmentto designdecisions;for
example,pseudocode,dataflowdiagrams,and manyother CASEtechniquesallow
astatementof whatis requiredto begivenonlyin termsof amechanismto achieve
it. This is not to denythe utility andmerit of formalizedmethodologies;the theo-
retical advantagesof truly formalmethodsmaybe unimportantin somecontexts,
andunrealizable(becauseof theskill andcoststhat maybe required)in others.

Formalmethodsprovidefor the constructionof specificationswhoseinterpre-
tation is lessreliantonhumanintuition by usingtechniquesbased,mainly,on the
axiomaticmethodof mathematics.Thebasicideaof the axiomaticmethodis to
specifypropertiesrequiredor assumed2 asaxiomsin someformal language.These
axioms,plus therulesof inferenceassociatedwith the chosenlanguage,supplyev-
erythingthat canbeusedin reasoningaboutthe specifiedartifact. To showthat
thespecificationhassomepropertynot explicitlymentionedin the axioms,wemust
provethat that propertyis a logicalconsequenceof the axioms;similarly, to show
that a designmeetsits requirements,wemustprovethat eachrequirementis deriv-
ablefrom the axiomsthat specifythedesign.Formalspecificationsare testedand
exploredby posingand provingputative theoremsthat I call challenges: "if this

specification says what it should, then the following ought to follow."

The word "formal" in formal methods derives from formal logic and means "to

do with form." The idea in formal logic is to avoid reliance on human intuition

and judgment in evaluating arguments by requiring that all assumptions and all

reasoning steps be made explicit, and further requiring that each reasoning step

be an instance of a very small number of allowed rules of inference. Assumptions,

theorems, and proofs are written in a restricted language with very precise rules

about what constitutes an acceptable statement or a valid proof. In their pure,

mathematical form, these languages and their associated rules of manipulation are

called logics. In formal methods for computer science, the languages are enriched

with some of the ideas from programming languages and are called specification

languages, but their underlying interpretation is usually based on a standard logic.

In a formal specification, everything that can be assumed about the specified

entity must follow, by the rules of inference for the language concerned, from the

2Whether the specification,is of requirements or assumptions depends on whether one is specify-
ing an artifact to be constructed, or some external entity (such as a device, or the environment) with
which it is to interact. Usually both are required simultaneously, as in formalizations of statements
such as "this design is required to satisfy the following requirements, assuming its environment
behaves in the manner described... _ The formal version of this statement is usually expressed as

assumptions D (design D requirements)

where D is the symbol for implication.
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axioms that make up its specification. Hilbert, who established the modern ax-

iomatic method with his treatment of geometry at the turn of the century, asserted

that one had to be able to say "tables, chairs, and beer mugs" in place of "points,

lines, and planes" [Rei86, page 60]. By this, he meant to stress that intuitions as-

sociated with familiar names should be ignored; the terms used must be treated

as marks on paper with no properties assumed but those written down as axioms

or deducible, via formal proof, as theorems. The benefit claimed for this approach

in computer science is that it forces us to make things explicit: instead of relying

on intuition about the meaning of English terms (which can be unreliable and can

differ from person to person), everything is expressed in a precise form that has

an unambiguous interpretation. In addition, all assumptions are written down and

placed in the open, where they can be subjected to independent scrutiny, and all

arguments are reduced to calculations that can be checked independently (or even

mechanically).

In a formal proof, everything we need to know about the particular problem area
is encoded in the statement of the theorem and the axiomatization of its premises,

and the truth of the theorem can be established by simply "pushing the symbols

around" according to the rules of inference; the form of the proof determines its

validity--it does not depend on unrecorded knowledge of the problem area, nor

on intuition about what the theorem says: checking a formal proof is a purely

mechanical exercise that can, in principle, be done by a computer program, and

with complete accuracy.

This is not to say that knowledge and intuition are superfluous in formal

methods--on the contrary, they are essential to the invention of useful axiomati-

zations and theorems, to their interpretation and application in the real world, and

to the discovery of proofs. Use of purely formal reasoning to check proofs, however,

can be beneficial because it forces a complete enumeration of assumptions and in-

ferences, and can catch faulty reasoning that would otherwise be overlooked. Even

without mechanical checking, the "symbol-pushing" character of formal proofs can

help prevent faults due to flawed intuition, jumping to conclusions, or simple care-

lessness. Above all, it is a repeatable exercise: others can check our work in greater

detail and with greater reliability than is feasible for informal reviews.

Some of these ideas are familiar from use of mathematics in traditional engineer-

ing disciplines. Intuition about the behavior of fluids is necessary in order to derive

the Navier-Sto,kes equations, and understanding of the appfication is needed in or-

der to interpret and apply their solution in a particular instance. But in order to

manipulate the equations and develop numerical solutions, it is the rules for treating

partial differential equations that are important, not the particular interpretation

of the equations as the flow of air over a wing.

Partial differential equations and most of conventional mathematics are not fully

formal systems, so the rules for their manipulation are not spelled out as explicit
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axiomsand rulesof inference, although, in principle, they could be. In just the

same way, formal methods can be applied to computer systems in varying degrees

of formality. At their most formal, specifications are written in a specification lan-

guage with a very direct interpretation in logic, and the proofs of theorems are

performed, or checked, by computer. Less rigorously formal are methods that use

a true specification language with a strict mathematical interpretation, but with

limited mechanical support: perhaps a parser and typechecker, 3 and either no, or

only rudimentary, theorem-proving capability. With less commitment to full mecha-

nization, these approaches can provide richer specification languages, but proofs and

arguments are expected to be conducted mostly with pencil and paper in the style

of a normal "mathematical presentation." The least formal of formal methods are

those that employ the concepts and notations of discrete mathematics to develop

specifications and proofs in the style of traditional mathematics and engineering.

The only tools used are pencil, paper, and a wastebasket, but this limitation also
confers a freedom to invent notations at will.

"More formal" is not necessarily better, and a machine-checked proof is not

necessarily superior to an intuitively compelling sketch. Use of the term "proof"

in formal methods must generally be treated with great care, since in common

parlance it carries the connotation of complete certainty. But in formal methods

and logic, "proof" is a technical term, that describes a certain type of symbolic

manipulation. It can be helpful to mentally substitute the term "logical calculation,"

with deliberate analogy to "numerical calculation," whenever "proof" is used in the

context of formal methods. Just like numerical calculations of solutions to partial

differential equations, the logical calculations that constitute a formal proof can

fail us in several ways: we can make a mistake in the calculation, we can use a

specification (or system of equations) that does not accurately model the real world,

and our requirements (or interpretation of the answer) may be mistaken. Depending

on the problem and the methods used, different levels of formality can assist or

hinder our attempts to minimize these potential failings; sometimes formalism may

be altogether inappropriate. Responsible use of formal methods and of formal proofs

requires an understanding of these limitations, so that the methods are used in a

balanced way to improve and augment existing processes for the development of

safety-critical systems. 4

The various degrees of formal methods may be related to the "nonformal" meth-

ods used in traditional software and hardware engineering. Software and hardware

aA typechecker performs static semantic analysis (rather like the front-end of the compiler for a
modern programming language) with special emphasis on the compatibility of the "types_ of the
constants, variables, and functions involved. For example, a typechecker will detect errors such as
adding an integer to a string. Type systems for specification languages can be much richer than
those for programming languages, allowing greater precision of expression and stricter checking.

4MacKenzie's very readable account of the British Vn,FJt controversy is salutary [Mac91]; see
also Section 2.5.2.
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engineering generally follow a very formal development process, in which require-
ments are documented and elaborated (possibly through several levels), and designs

are similarly elaborated through several levels of specification down to the final code

or circuit. Requirements and specifications are usually documented in natural lan-

guage, possibly augmented by diagrams, equations, flowcharts, data dictionaries,

and pseudocode. For safety-critical and many other kinds of systems, the develop-

ment process includes components known as "verification and validation" (V&:V).

Verification is the process of determining whether each level of specification, and

the final code itself, fully and exclusively implements the requirements of its superior

specification. Formal methods do not replace this process, but rather augment it

by providing formal notations and concepts to be used in writing requirements and

specifications, and varying degrees of formal proof that can be used in verification.

Validation, the other component of V&V, is the process by which delivered

code is directly shown to satisfy the original user requirements by testing it in

execution. 5 Modern development processes recognize the value of doing extensive

validation earlier in the lifecycle--so that faults can be caught and corrected sooner.

Rapid prototyping, simulation, and animation are all techniques that help validate
satisfaction of the customer's expectations before the full system is built. Formal

methods can also augment this process, by allowing the properties and consequences

of nonexecutable specifications to be explored via theorem proving at the earliest

stages of the lifecycle. Hybrid methods are also possible: some formal specifications

can be directly executed, or converted into rapid prototypes; alternatively, theorem

proving can sometimes be replaced (or, rather, achieved by) completely automatic
methods based on "state-exploration" techniques. Whereas a rapid prototype can

be used to probe selected test cases, state exploration covers all possible behaviors

(though often of only a simplified model of the system concerned).

There are advantages, difficulties, and costs associated with the use of formal

methods. The balance of advantage varies with the nature and criticality of the

application, with the stages of the lifecycie in Which formal methods are used, with

the degree of formality employed, with the quality of the method and of any mech-

anized tools that support it, and with the experience and skill of the practitioners.

The general advantages claimed for all formal methods are that they enable faults
to be detected earlier than would otherwise be the case. This is because they al-

low greater precision and explicitness to be achieved earlier in the lifecycle than

5DO-178B defines validation as _the process of determining that the requirements are the correct
requirements and that they are complete,"and verification as "the evaluation of the results of a
process to ensure correictness and consistency with respect to the inputs and standard(s) provided
to that process" [RTC92, Annex B]. FAA staff informally ch_acterize validation as %howing that
you got the requirements right" and verification as %bowing that you built the system according to
the requirements." This is similar to the well-known informal characterization that verification is
concerned with showing that the product is built right, while validation is concerned with showing
that the right product has been built.
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otherwise,and becausethey cansupportmoresystematicanalysesthan informal
methods.Strongerformsof this claimare that formalmethodscausefaults to be
detectedwith greatercertainty than would otherwise be the case, and that in cer-

tain circumstances, subject to certain caveats, they can guarantee the absence of

certain faults. These stronger claims are generally associated with formal methods

that undertake "rigorous" or mechanically-checked proofs.

The advantages claimed for formal specifications are that they reduce the ambi-

guity and imprecision of natural-language specifications, that explicit use of math-

ematical concepts (such as sets, mappings, and predicates) contributes to clarity

of thought and expression, and that use of quantification, higher-order constructs,

and other concepts from logic allow clear statement of what is to be done, without

imposing a premature commitment (as, for example, pseudocode does) to how it is

to be done. The advantages claimed for formal proof are that it is a potent method

for revealing faults, that it covers all cases, and that the reasoning can be checked

by others (or by machine in fully formal cases). Arguments in favor of the more

completely formal methods are that mechanical checking eliminates faults that can

survive less rigorous scrutiny, that the intensity of the scrutiny leads to improved

understanding and to better informal presentations, and that complete formality

forces an explicit enumeration of all assumptions. Arguments against formal meth-

ods (these are particularly leveled at the more intensely rigorous interpretations)

are that it is expensive, that activity tends to be focused on the formalism and not

on the real problem at hand, that no guarantees are possible unless it is performed

from "top to bottom" (which is generally infeasible), and that formal verification is

ultimately useless, since the behavior of the finished product will depend on real-

world physical processes (e.g., the behavior of a computer or of an actuator) whose

behavior may not be modeled with complete accuracy, and is judged against real-

world expectations that may not be captured accurately or completely in formal

requirements statements.

In the following chapters I examine these and related issues in more detail and

provide certifiers with information that I hope will assist them in evaluating the

potential contributions of formal methods to digital systems used on aircraft, and
to make decisions on certification credit for use of formal methods.



Chapter 2

Issues in Formal Methods

"Deduction, as a method of obtaining conclusions, has many advantages

over trial and error or reasoning by induction and analogy. The out-

standing advantage is ... that the conclusions are unquestionable if the

premises are. Truth, if it can be obtained at all, must come from cer-

tainties and not from doubtful or approximate inferences. Second, in

contrast to experimentation, deduction can be carried on without the use

or loss of e:_pensive equipment. Before the bridge is built and before the

long-range gun is fired, deductive reasoning can be applied to decide the
outcome.

"With all its advantages, deduction does not supersede experience, in-

duction, or reasoning by analogy. It is true that 100 per cent certainty

can be attached to the conclusions of deduction when the premises can

be vouched for 100 per cent. But such unquestionable premises are not

necessarily available." [Kli90, page 45]

As mentioned in the introduction, formal methods can be applied in varying

degrees of rigor. There are also other axes along which formal methods can vary in

the thoroughness of their application: they can be applied to selected, rather than

to all, stages of the lifecycle, and to some or all of the components and properties of

the system. I begin this chapter with a classification of formal methods according

to the rigor of their application, and theh consider issues in the extent and thor-

oughness of their application through the lifecycle, across Components, and with

respect to different system properties.. Later, I examine techniques for validating

formal specifications, and then consider benefits that may accrue from use of formal

methods, the fallibilities of those methods, and tools to support them. I close the

chapter with brief descriptions of some applications of formal methods in industrial

settings.

14
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2.1 Levels of Rigor in Formal Methods

In the introduction, I suggested that varying levels of rigor can be discerned in the

application of formal methods. Here, I systematize that classification, and outline

issues in the choice of level for a particular application. The word "rigor" is not

a completely accurate term for the characterization that I have in mind, but no
other term seems better. What I am concerned with is the extent to which a

method is "truly formal": that is, formulates specifications in an axiomatic style,

explicitly enumerates all assumptions and reduces proofs to explicit applications
of elementary rules of inference. Increasing formality allows examination of the

products of formal methods (i.e., specifications and proofs) to be less dependent on

reviews (i.e., processes that depend on consensus judgment) and more amenable to

analyses (i.e., systematic forms of examination whose results are repeatable). The

distinction between reviews and analyses is from DO-178B [1_TC92, Section 6.3].

Because it requires almost superhuman discipline to be truly formal with pencil

and paper, increasing formality is usually associated with increasing dependence on

mechanical support (conversely, since computers can do nothing but "push sym-

bols around," it is difficult to mechanize the reasoning processes of less than truly

formal methods). Note that it is possible to be "rigorous," in the sense of being

painstakingly careful and serious, without being truly formal.

I classify formal methods into the following four levels of increasing rigor.

Level O: No use of formal methods. This corresponds to current standard practice

in which verification is a manual process of review and inspection applied to

documents written in natural language, pseudocode, or a programming lan-

guage, possibly augmented with diagrams (and equations in the case of control

laws). Validation is based on testing, which can be driven by requirements and

specifications (i.e., functional or black-box testing) or by the structure of the

program.

Although the standard practice makes little use of formal methods, it may

employ very thorough and highly formalized development processes. For ex-

ample, "structured walk-throughs" and "formal inspections" are highly struc-

tured methods for the manual review of program designs and code. As first de-

scribed by Fagan [Fag76] (see [ABL89] and [Fag86] for more recent treatments,

and [Bus90, Wel93] for case studies), four participants are required--the Mod-

erator, the Designer, the Coder/Implementor/Specifier, and the Tester. If a

single person performs more than one role in the development of the system,

substitutes from related projects are impressed into the review team. The re-

view team scrutinizes the specification, design or program in considerable de-

tail: typically, one person (usually the Coder) acts as a "reader" and describes
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the specification or the workings of the design or program to the others, "walk-

ing through" it in a systematic manner so that every piece of logic is covered at
least once, and every or branch (in the case of programs) is taken at least once.

Intensive questioning is encouraged, and it is the Moderator's responsibility
to ensure that it remains constructive and purposeful (managers are excluded

and the process is not used to evaluate the performance of the participants).

As the design and its implementation become understood, the attention shifts
to a conscious search for faults. A checklist of likely mistakes may be used to

guide the fault-finding process. Considerable effectiveness is reported for for-

mal inspections: removal of 50% of design and implementation errors "across

a wide span of applications," and 70% to 80% error removal when inspections

are practiced with greater rigor and frequency [Dye92, pp. 9-10]. Recently, it

has been suggested that the process can be made more reliable if N inspection

teams (coordinated by a single Moderator) are used [SMT92].

One of the main advantages of the structured walk-through over other forms

of verification and validation is that it does not require an executable program;

it can therefore be applied early in the design cycle to help uncover faults and

oversights before they become entrenched.

Just as verification can be supported by a very formalized, process, so can

testing in support of validation. There are numerous metrics for assessing the

coverage of a series of tests (e.g., visiting all statements, or taking all branches,

and more sophisticated measures based on data flow criteria [RW85, Wey88]),

and tools are available to monitor coverage against chosen metrics and to

administer regression tests. Note, however, that these automated processes

mainly concern structural test criteria, whereas DO-178B rightly also stresses

the importance of requirements-based testing [RTC92, Section 6.4]. 1

Notwithstanding their labor and test-intensive character, it is important to

recognize that established processes for the development of critical software
and hardware have proved fairly effective in practice. Clearly, these processes

should not be changed gratuitously, and a good case needs to be made for the

value added by innovations such as formal methods.

Level 1: Use of concepts and notation from discrete mathematics. The idea here

is to replace some of the natural language used in requirements statements

and specifications with notations and concepts derived from logic and discrete
mathematics. Examples include the notions and terminology of set theory, and

the various special kinds of relations and functions (such as transitive relations,

1Other criteria for test adequacy are based on reliability growth models; testing is stopped when

the model predicts that the software has become "reliable enough" [CDM86, MA89b]. These are of

questionable utility for critical systems, because of the extreme reliabilities required: see Section 3.1.
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or one-to-one functions). Generally speaking, applications at this level are not

too concerned with the precise details of the formal system employed (e.g.,

no-one is going to worry about whether the set theory employed is Zermelo-
Fraenkel or that of G5del, von Neumann, and Bernays), and proofs, if any,

are performed in the informal style typical of a mathematics textbook. This

informal style matches the way mathematics is used in most other engineer-

ing disciplines and, indeed, the way most of mathematics itself is performed.

Used in this way, discrete mathematics contributes to software and hardware

engineering in three ways:

• It provides an economical but versatile collection of mental building

blocks that can help in the development and presentation of clear, precise,

and systematic statements of requirements, assumptions, specifications,

and designs.

• It provides a compact notation that allows these statements of require-

ments, assumptions, specifications, and designs to be written down and

communicated with less ambiguity than natural language, and in the

reasonable expectation that author and reader will share the same un-

derstanding of the notation.

• It may provide some "laws" (i.e., theorems or derived rules of inference)

that can systematize or guide the elaboration of the specification or design

from one level to another.

Level 1 formal methods usually augment an existing development method

and are not normally part of a wholesale revision to the process. An excep-

tion may be the Cleanroom methodology pioneered by Mills [MDL87] and

Dyer [Dye92]. 2 Less revolutionary is the A7 (also known as the "Software

Cost Reduction" or SCR) methodology pioneered by Parnas and others at the
Naval Research Laboratory [Hen80] (see [vS90] for a more recent treatment).

Level 2: Use of formalized specification languages with some mechanized support

tools. Simply enjoining staff to "use discrete mathematics" is probably not an

effective management technique for projects involving more than a few mem-

bers; standards and conventions are generally desirable, and these may be

2The Cleanroom uses formalized specifications, a limited and structured set of primitives for

design, correctness arguments as t:he basis for formal inspections, no unit or other testing by devel-

opers, and statistical process control and reliability measurement. _if the total Cleanroom process

is adopted for software development, it represents a radical departure from current software de-

velopment practice... The process introduces .new controls.for spftwaxe development, imposes new
roles and responsibiIities on the various engineering disciplines, eliminates Some seemingly core

methods from the development process, and raises the level of training and proficiency required in

the engineering disciplines" [Dye92, pp. 4-5].
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systematized as an informal "specification language." It may then become at-

tractive to fix a concrete notation for the language and to provide mechanized

support tools. Formal methods on the lower rungs of Level 2 may provide

tools, such as syntax checkers and prettyprinters, that examine only the sur-

face features of specifications; better supported methods may provide deeper

tools, such as typecheckers, that examine rather more of their content. All

Level 2 applications of formal methods should retain or enhance the benefits

of Level 1 applications, and may provide additional benefits:

• Specification languages generally provide more than just a standardized

notation for discrete mathematics: they usually also address software

engineering concerns and allow specifications to be structured into units

(e.g., modules, abstract data types, or objects) with explicitly specified

interfaces. Some specification languages form part of a fully developed

software engineering methodology (e.g., VDM [Jon90]).

• Mechanized checking tools allow accurate detection of certain types of

faults; other tools may make it simple to generate up-to-date documen-

tation and summary reports, and to trace dependencies through large

specifications.

• It may be possible to quickly generate a simulation, "animation," or

prototype implementation from a specification, either automatically, or

with some human guidance [AJ90, HI88]. These can be very useful ways

to explore certain properties of a specification. Some languages used

for specification are directly executable (e.g., OBJ [FGJM85]), but this

rather compromises their status as vehicles for specification and renders

them closer to high-level programming languages [HJ89].

Standardization and mechanization bring limitations as well [Nau82]: it is

usually no longer possible to invent new or modified notations--instead all

specifications must be built from the constructs provided by the specification

language concerned. Some specification languages may be optimized for a par-

ticular class of applications, or for a particular form of analysis, and may prove

cumbersome or inapplicable in contexts other than those intended. Generally

speaking, the richer and more widely applicable a specification language, the

harder it is to build support tools for it: Thus, the richest and most convenient

specification languages tend to have relatively limited mechanical support.

Mechanized theorem proving is the dividing line between Level 2 and Level

3 applications of formal methods in my classification. Proofs in Level 2 ap-

plications are usually performed informally, as in Level 1. Level 2 methods

often, however, provide explicit formal rules of deduction, so that these proofs

could, in principle , be done formally, albeit by hand. The term rigorous (as
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opposed to formal) is often used to describe the style of proof employed in

Level 2 applications.

Level 3: Use of fully formal specification languages with comprehensive support

environments, including mechanized theorem proving or proof checking. The

most truly formal of methods are those that employ a specification language

with a very direct interpretation in logic, and with correspondingly formal

proof methods. Once proof methods are completely formalized (i.e., reduced to

symbol manipulation), it becomes possible to mechanize them. Mechanization

can take the form of a proof checker (i.e., a computer program that checks the

steps of a proof proposed by the human user), or of a theorem prover (i.e., a

computer program that attempts to discover proofs without human guidance)

or, most commonly, of something in between.

The advantages of this fully formal approach are that requirements, speci-

fications, and designs can be subjected to searching examination, and that

mechanization ehminates faulty reasoning with almost complete certainty; its

disadvantages are that fully formal specifications and machine-checked proofs

can be expensive to develop, and that many of the specification languages

with full mechanical support have been rather impoverished notations based

on restricted logics. This means that specifications may have to be contorted

to fit the restrictions of the language, and can therefore be difficult to write

and to read.

The costs of developing fully formal verifications are often exacerbated by

the need to develop formalizations of the supporting theories or mathematical

"background knowledge" (e.g., the properties of the arithmetic mean, or of

permutations) that are taken for granted in less formal approaches. As formal

verification becomes more widely practiced, I would expect verified libraries

of such theories to become available, thereby reducing the cost of subsequent

developments.

Higher levels of rigor in the application of formal methods are not always superior

to lower levels: depending on the benefits desired from use of formal methods, the

criticality of the application, and the resources available, any of the four levels

(including Level 0) can be the appropriate choice. For example, if formal methods

are used simply as documentation, then Level 1 may be the best choice; but if they

are used to justify the design of a novel and critical component, then Level 3 may

be preferred; Level 2 will fall somewhere between these extremes, and Level 0 may

be the sensible choice for routine applications that have been handled adequately in

the past by standard practices. I discuss factors that should influence the choice of

rigor in more detail in Chapter 3, when I have prepared more of the groundwork.



2O Chapter 2. Issues in Formal Methods

Notice that it is feasible to use a formal method at a lower level of rigor than

that for which it is primarily intended. For example, a system capable of supporting

Level 3 could be employed in a Level 2 development by using just its specification

language, and not its theorem-proving capabilities. There can be advantages and

disadvantages to such a choice. On the one hand, methods intended for the more

rigorous levels may embody solutions to problems whose existence might not even be

recognized at lower levels (e.g., a mechanically checked definitional principle which

guarantees that definitions do not introduce inconsistencies). On the other hand,

and as I noted earlier, increasing formality and mechanization impose demands on a

specification language that often (but need not) reduce its expressiveness and hence

its convenience as a notation.

Many individual formal methods are migrating upwards through the levels I

have enumerated. For example, a notation that starts in Level 1 (e.g., Z, which in

its early days was referred to as a "style" rather than a language [Abr80a, S¢r81])

might be embellished and standardized and provided with elementary tools, thereby

moving it into the lower reaches of Level 2 [Spi89]. Later, the tool support might

be increased, moving it upward in Level 2, and theorem-proving support could

then be added to move it into Level 3. 3 Conversely, developments of some of the

formal methods at Level 3 are aimed at reducing the overheads associated with full

rigor and mechanization, thereby broadening their appeal and range of application

downwards into Level 2. (I describe some of the evolution of mechanical support

for formal methods, and speculate on some of the likely courses of development,

in Section 2.6.) In the future, therefore, individual formal methods may be less

restricted than at present in the levels of rigor for which they are best suited.

Developments such as these blur some of the distinctions in my classification

of formal methods. Nonetheless, I consider the classification valuable because the

unadorned term "formal methods" covers a wide range of techniques that have

very different characteristics, costs, benefits, and drawbacks. While it will be nec-

essary to evaluate the individual attributes of any formal method that may be

offered in support of certification (see Section 3.5), my classification serves to high-

light the gross distinctions. Notice in particular that in Europe, and especially in

the United Kingdom, many uses of the term "formal methods" refer to methods

(e.g., RAISE [RAI92], VDM [Jon90], Z [Spj89]) that I would classify as Level 2,

whereas North American usage normally refers to the most rigorous and power-

fully mechanized end of Level 3 (e.g., the Boyer-Moore prover."Nqthm" IBM88],

aHowever, the theorem-proving capabilities of "proof assistants z such as Balzac (a related system

is known as Zola) [Har91], the B-Tool [LS91], and mural [JJLM91], are so limited at present that I
hesitate to describe them as Level 3.
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Eves [CKM+91], PVS [ORS92], or SDVS [CFL+91]). 4 FaiLure to recognize these

different usages can be a source of great misunderstanding.

2.2 Extent of Application in Formal Methods

Just as it is possible to vary how rigorously formal methods are applied, so we can

vary the extent of their application. There are at least three dimensions to the
notion of extent:

• Formal methods can be applied to all, or merely to some of the stages of the

development lifecycle. If the latter, we can choose whether to favor the earlier,

or the later stages of the lifecycle.

• Formal methods can be applied to all, or only to selected, components of the

system. More generally, we can vary the level to which formal methods are

applied according to the component.

• Formal methods can be applied to system properties other than full func-

tionality. Traditionally, formal methods have been associated with "proof of

correctness," that is, with ensuring that a system component meets its func-

tional specification. For the purposes of verification, not all its functional

properties may be equally important; we may then apply formal methods only

to the most important functional properties. In flight-critical systems, it may

sometimes be more important to be sure that a component does not exhibit

certain kinds of catastrophic failures, rather than that it has certain positive

properties.

In the following subsections, I examine each of these notions of extent in more detail.

4This distinction between North American and European approaches is a very coarse one; for

example, the British system called HOL [GM93] is generally used for Level 3 applications, whereas

the American Larch notation [GwSJGJ+93] is generally used in Level 2 applications. The British

tool SPADE [COCD86] (MALPAS [MCg0] is somewhat similar) is sometimes used with mechanized

proof checking and therefore has some of the characteristics of a Level 3 formal method, but does

not fit my classification very well. Primarily, SPADE supports the analysis of executable programs

(written in a variety of languages), including static code analysis (e.g., checking for variables that

are not used, and for those that are used but not set, as suggested in DO-178B [RTC92, Subsection

6.3.4.f]), and sophisticated flow analysis [BC85]. SPADE also allows programs to be annotated

with assertions expressed as pre- and post-conditions that can either be checked at run-time, or

used to generate verification conditions that are submitted to the SPADE proof checker [Car89].

Although it uses formal methods in its analysis of programs, SPADE does not have a fully expressive

general-purpose specification language and is therefore somewhat different from other techniques

that I would classify on Levels 2 and 3. This is not a criticism of SPADE, which has been used

quite successfully in some aircraft projects (e.g., [OCF+88], where it was used to verify consistency

between Z8002 assembler code implementing the primitive elements of the LUCOL language--used

in the full authority digital fuel control system of the Rolls Royce RB211-524G engine---mad the

"fact sheets" that constitute their specification), but a limitation in my classification scheme.
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2.2.1 Formal Methods in the Lifecycle

Some of the earliest formal methods were associated with "proofs of correctness"

of small programs represented as flowcharts [Flo67].5 The basic idea is to attach a

logical assertion to each segment of straight-line code in the program and to prove

that these assertions will be true for every execution path through the program.

This can be done by considering just the pairwise combinations from one segment

of straight-llne code to another. These pairwise combinations give rise to lemmas

(small theorems) called "verification conditions" (VCs); an induction principle en-

sures that the program is correct if all the individual VCs are true (hence this

method is sometimes known as that of "inductive assertions").

An example of this approach can be based on the flowchart shown in Figure 2.1,

which describes a program to calculate the positive integer square root z of its input

z by the method of linear search (i.e., counting up from 0 until the square root is

found). This program is obviously trivial and very inefficient, but serves to illustrate

the technique.

The specification for this program is that, given an integer z satisfying z >_ 0, it

should produce an integer z satisfying z 2 _< z A (z + 1)2 > x. 6 The logical assertions
that annotate the flowchart are the three formulas not enclosed in boxes. Three

straight-line segments of code connect the assertions: from the entry assertion (at

the top) to the assertion in the loop (this latter kind of assertion is called a "loop

invariant"), from the loop invariant around the loop and back again, and from the

loop invariant to the exit assertion (at the bottom). Each of these gives rise to a

verification condition: the first requires that if we assume z _> 0 and then set z

to zero (the effect of executing the statement z := 0), we will satisfy z 2 _< x; the

second requires that if we assume z 2 _< z (the loop invariant) and (z + 1) 2 _<z (from

taking the "yes" branch of the test (z+l)*(z*l) <= x), 7 and increment z by one

(the effect of the statement z := z+l), then the new value of z will also satisfy the

loop invariant z 2 _< z; the final segment requires that if we assume z 2 _< z (the loop

invariant) and (z + 1) 2 _ z (from taking the "no" branch of the test), then we will

satisfy the exit assertion z 2 _< z ^ (z + 1) 2 > z. Written in standard logic, these
VCs are:

1. z>_OAz=ODz2<_z,

5The idea that one could reason about the correctness of programs is almost as old as program*
ruing; for example, Babbage wrote about _Verification of the Formulae Placed on the [Operation]
Cards" of his analytical engine in the 19th century [Ran75b, pp. 45-47] and Taring proved the
correctness of a program in 1949 [MJ84, Tur92].

SThe infix symbol A means _and"; I also use v for "or," D (or sometimes =*,) for "implies," =_
(or sometimes ¢_) for _if and only if," and the prefix symbols -_ for "not, _ ¥ for "for all," and B for
_there exists."

7I write (z + 1)a < x to indicate an expression in logic (i.e., an assertion) and (z+l)*(z+l) <,,
x to indicate the corresponding expression in the fiowchaxt (i.e., an executable program statement).
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Figure 2.1: An Annotated Flowchart

2. z 2_<xA(z+l) 2_<xD(z+l) 2_<x,and

3. z 2 _< x ^ (z + 1) 2 _ x D z 2 __ x ^ (z + 1) 2 > X.

It is clear that the VCs for this example are true, and so we can conclude

that the program represented by the flowchart satisfies the specification for integer

square root--if it terminates. Termination can be established by arguing that the

value of z increases by one each time round the loop, and so the branch condition

(z+l)*(z+i) <= x must eventually become false and cause the loop to terminate.

As I have presented it here, this verification is an example of a Level 1 application

of formal methods in my classification scheme.

Early mechanizations of this approach to program verification took programs

written in an Algol-like language and annotated with logical assertions, generated

the corresponding VCs with a program called a "Verification Condition Generator"

(VCG), and used the theorem-proving technology of the time to prove the VCs under
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human guidance [Goo70, ILL75, Kin69]. A difficulty with this approach is that users'

intuition usually rests in the program, but the VCs that they are asked to prove are

logical formulas that appear divorced from that context. Consequently, most pre-

sentations of program verification in textbooks, and most applications of program

proofs done by hand, use an alternative approach introduced by Hoare [Hoa69];

instead of transforming programs into VCs in an ordinary logic and doing the rea-

soning there, Hoare's approach extends the logic to include program elements and

makes it possible to reason about programs directly.

In Hoare's approach, properties of program fragments are described by triples

(sometimes called "Hoare sentences") of the form {P}S{Q} where P and Q are

assertions about the program state (called the precondition and postcondition, re-

spectively), and S is a program fragment; the interpretation is that if the program

fragment starts off in a state satisfying P then, if it terminates, it will do so in a

state satisfying Q. Program fragments are composed using rules of inference such

as the following, which is a simplified form of the rule for a while loop:

{P A B) S {P} (2.1)
{P} while B do S {PA _B}"

Rules of inference written in this way are interpreted as saying that if the formula

above the line is true, then we may conclude the formula below the line. This

particular rule says that if the property P is preserved by the program fragment S

(assuming B is true on entry), then if P is true on entry to the schematic while loop

"while B do S," both P and the negation of B will be true on exit (if the loop

terminates). For our integer square root exaanple, P is z 2 _< x, B is (z + 1) 2 _< x, s

and S is z :ffi z+l, so that as the formula above the line we have (from the rule for

assignment, which I will take as given)

2_<x}-:= z+t {z2_<x}

(notice that the z in the postcondition is the value of the program variable z after it

has been incremented) and can therefore conclude the corresponding formula below
the line:

{z2_<x) while (z+l)*(z+l) <= x do z := z+l {z2_< x A(z+1)2>x}.

When combined with the rule

{tr e}- := 0 {z= 0)

for the initializationstatement,and the ruleforsequentialcomposition(Iwillpass

overthe details),thisallowsus to concludethatthe program

SAs in the flowchart,thisB occurs as an expressionof ordinary logicin the pre- and postcondi-

tions, where 1 write it as (z + 1) 2 < z, and as a corresponding expression in the program, where I

write it as (z+l)*(z+l) <= x.
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z :=0;

while (z÷1)*(z÷l) <= x do z := z+l

indeed satisfies our specification for integer square root. If I had explicitly given all

the rules for the programming language logic concerned, and filled in all the steps

that were elided, then this would be an example of a Level 2 application of formal

methods in my classification scheme. Notice that as well as supporting program

verification, Hoare's "proof rules" can also be used to define the semantics of the

program language concerned [HW73] (e.g., (2.1) can be taken as a definition of the

semantics for a while loop).

Although Hoare's approach and its descendents (notably Dijkstra's weakest pre-

conditions [Dij76]) are attractive and are the ways program derivation and veri-

fication are treated in textbooks, most mechanized program verification systems

continue to use VCGs, rather than mechanize Hoare's method directly.

A rather different, and older, tradition in programming language semantics and

program verification derives from the work of McCarthy [McC60]. This approach

is based on functional programming (and originally was closely identified with the

LIsP programming language) in which the notion of an implicit program "state" is

not required. In this approach, programs are functions and can be understood in

a fairly conventional mathematical framework (although it took researchers many

years to take care of all the theoretical details).

The application considered in all these early styles of formal methods was chiefly

program verification; the programs concerned could be quite intricate IMP67] and

sometimes implemented very clever algorithms, but they typically made little use of

data types other than booleans, integers, and arrays of these, and were essentially

stand-alone programs rather than systems. Then in 1972, Hoare [I-Ioa72] presented a

method for verifying correctness of data representations, and ideas for specifying the

modules and abstract data types of larger systems were suggested by Parnas [Par72].

The Hierarchical Development Methodology (ItDM) was an early attempt to provide

tool support for these ideas [RLS79, SLR78]. Meanwhile, most notably in Europe,

very rich formal specification notations [Bj_81, S_r81] were being developed and

applied to the requirements and top-level specifications of larger objects such as

operating systems [AbrS0b] and programming languages [BBH+74].

The integer square root example does not lend itself to demonstration of these

later techniques, so I will introduce a new (but still very elementary) example. The

paradigmatic abstract data type is a pushdown stack--an object provided with three

operations: push, top, and pop. The push operation allows an element to be stored

on the "top" of the stack, top returns the element stored on top of the stack, and

pop returns the stack with the top element removed; sequences of pop operations

remove elements in a last-in/first-out order. A formal specification in a functional
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style for the stack operations might declare the signatures (i.e., the number and

types of the arguments, and the type of the value returned) of the three operations
as follows:

• push: [elem, stack _ stack],

• pop: [stack _ stack], and

• top: [stack _ elem],

where elem denotes the type of elements that may be stored in the stack. The

behavior of the operations would be specified by means of the following two axioms:

• pop(push(e,s)) = s, and

• top(push(e,s))= e,

where s and e are variables standing for an arbitrary stack, and an arbitrary ele-

ment, respectively. 9 The points worth noting here are the functional style (i.e., the

stack is an explicit argument to the operations) and the use of axioms to specify the

interrelationships among the three stack operations without suggesting an imple-

mentation. This style of specification is called property-oriented, because it specifies

(some aspects of) a component in terms of the properties it is required to possess.

A more concrete specification style might specify a stack in terms of a linked list

of dements, or of an array and a pointer. For example, it might specify that a stack

is represented by a record:

stack: type = record

array :[ nat _ elem],

pointer: nat
end record

and that the functions push, pop, and top manipulate these components as follows

(the contents of the stack occupy positions 1...pointer in array).

push(e, s) = s with [ pointer := s.pointer + 1,

array : = s.array with [ s.pointer + 1 : = e]]1°

pop(s) = s with [pointer := pred(s.pointer)] 11

top(s) = s.a. y( s.pointer)

9There are a number of deficiencies with this specification: for example, it is silent on the

existence of an empty stack (and therefore on the results of applying pop or top to such a stack),

and on the possibility of exceeding the number of elements that can be pushed onto a stack. I will

return to these issues later (in Subsection 2.3.1.1).
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Specifications of the kind illustrated in this example are called model-oriented (be-
cause they specify a component by giving a mathematical model that has the desired

behavior). The disadvantages of model-oriented specifications are that they suggest

a particular implementation (and thereby discourage use of, and complicate the ar-

gument for the correctness of, an implementation different from the one suggested),

and they support deductive reasoning less readily than the more abstract property-

oriented style. For example, it is easy to prove the theorem

pop(pop(push(e, push(e, s)))) = s

from the two property-oriented axioms given earlier, but would be more tedious to

do it from the model-oriented description. Conversely, a disadvantage of property-
oriented specifications is that they are remote from implementation concerns.

Verification can reconcile these two approaches: using formal verification tech-

niques we can establish that the model-oriented specification is consistent with the

property-oriented version (i.e., the axioms of the property-oriented specification are

satisfied by the model-oriented specification). Thus, a property-oriented axioma-

tization can be used as a top-level specification, and a provably consistent model-

oriented description can be used as an implementation-level specification. In larger

examples, there may be several layers of specifications going from property-oriented

requirements statements through increasingly det_led (and more model-oriented)
levels to the final implementation; a chain of formal verifications can then establish

that the implementation satisfies the requirements.

Both the property- and the model-oriented specifications for stack shown above

are functional. The functional style of specification means that we carry the stack

along explicitly as an argument s to the functions representing the operations. In

an implementation of this abstract data type, the stack would generally be "stored"

as the state of the abstract data type and would be implicit to the routines that

implement the operations. Hoare sentences can provide the link between a functional

style of specification and program-level descriptions of routines having an implicit

1°The with construct is a notation for function or record modification (also called overriding):

for a function f of one argument, the construction f with [x:= y] is another function having the
same signature as f that satisfies the constraint

f with [z: = y](z) = if z = z then It else /(z) endi£

The case where f is a record is siml]ar, except that here z and z will be field names. This notation

is used to describe the behavior of function mad record _updates," without requiting the notion of
a %tate" whose elements can be modified _in place."

11pred is the predecessor (i.e., subtract 1) function on the natural numbers: pred(O) = O. The

expression s.pointer- 1 would be type-lacotrect here since it could yield a negative result, whereas

a natural number is required. This specification implicitly admits the empty stack (one that has

pointer = 0); popping such a stack leaves it unchanged; applying top to such a stack returns the

arbitrary value array(O).
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state. For example, we could specify the implementation of a stack as an abstract

data type with state $ (of type stack), and routines pushop, and popop satisfying

the ttoare sentences:

{S = s} pushop(e) {S : push(e,s)} 12

and

{S = s} popop(e) {8 = pop(s) ^ e = top(s)}.

Notice that to match the way things are usually implemented, I have chosen to

combine the effects of the functions top and pop into the single popop routine: this

returns the value on top of the stack, and pops the stack as a side-effect. In order

to prove a theorem such as

{S = s}pushop(e); popop(e) {S = s},

we first use the Hoare sentences above and the rule for sequential composition to

reduce the problem to that of showing

pop(push(e,s)) = s

and then use the appropriate axiom from the functional specification to conclude

that this is valid.

The argument in favor of separating specifications into a set of abstract oper-

ations described functionally (i.e., taking a variable encoding the state as an ex-

plicit argument), and a set of routines (operating on an implicit state) described
in terms of these operations, was first argued forcefully by Guttag and Horning

in 1980 [GHS0]. la Not all specification styles follow these precepts; for example,

12Another way to write this is

{true}pushop(e){S= push(e,S')}

where the prime indicates the value of the state $ in the precondition. VDM uses this style,

stating the postcondition as a _predicate of two states." One advantage of doing things this way

is that it allows a specification to say what doesn't change. For example, the ordinary Hoaxe-style

specification of an integer square root program "P:

{_ > 0} _' {2 <_^_ <(z+l) 2}

can be satisfied by the program that ignores the input value of z and always sets z to 4 and z to

2. The VDM-style specification

{x > 0} _, {2 < _' ^ _' < (: + 1)_ ^ _' = _}

rules this out. How to specify what does not change is called the _frame problem."

13This excellent paper is full of insights that remain pertinent more than a decade later. Among

other things, it recommends that specification of exception conditions belongs to the routines--

abstract operations should deal with the ideal case. Many of these ideas are embodied in the Larch

family of specification languages [GwSJGJ+93].
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Z [Spi89] and VDM [Jon90] introduce program state and operations specified by

pre- and postconditions from the very beginning. A disadvantage of this approach

is that it can encourage an overly concrete specification, resulting in a state with

many components related by a complex invariant. A secondary disadvantage of this

approach is that it can complicate mechanized theorem proving.

The examples I have shown so far illustrate some of the techniques for apply-

ing formal methods to sequential programs. Concurrent or distributed programs

raise many new issues, as do real-time properties, and the variety of essentially

different techniques for addressing these issues is much greater than for sequen-

tial systems. Model-oriented specifications for concurrent and distributed systems

are generally based on process algebras (e.g., the LOTOS specification method for

telecommunications protocols [DV89, ISO88] is based on Hoare_s Communicating

Sequential Processes (CSP) [Hoa85] and Milner's Calculus of Communicating Sys-

tems (CCS) [MilS0]), while property-oriented specifications often use some form of

temporal logic [PnuS1, Lain91, MP92].

Even an outline of some of the range of formal methods for concurrent and

distributed systems would require far more space than is feasible here, so I will give

just a single example to illustrate the subtlety of the reasoning that can be required

for even tiny concurrent programs.

The example is known as Fischer's reai-time mutual exclusion algorithm [Lam87]

and is something of a test piece for formal methods intended to support reasoning

about concurrent, real-time programs. The idea is that several processes, each iden-

tified by a unique number, share a state variable z, which is initially 0. Whenever

any process wishes to enter its critical section, it waits until it sees that x = 0.
Within at most hi time units, it then sets x to its own number and proceeds to the

"check" action. In the check action, it waits for at least 1o units and then looks to

see if the value of x is still its own number (some other process could have previ-

ously seen x = 0 and be in a race with this one); if it is, the process immediately

enters its critical section (otherwise it goes back to waiting for x to return to 0). On

leaving its critical section, the process resets x to 0. The claim is that this algorithm

achieves mutual exclusion (i.e., no two processes are ever in their critical sections

simultaneously), provided hi < lo. Notice that the specification for this algorithm

(i.e., mutual exclusion) does not involve real time. Real-time reasoning is needed

only to show correctness of the algorithm.

Despite its small size, and the simple nature of its individual operations, it is not

at all obvious to most people that this algorithm works, and no amount of testing

is likely to increase their confidence. I will give an informal presentation of one

argument for its correctness in which I consider a simplified version of the algorithm

that neglects the looping behavior: that is, processes simply stall at the check action

if they find x different to their own number. The three steps in the algorithm can

then be described as follows, where i is the number of the process concerned.
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init: if x = 0, goto try;

try: x: = i, goto check;

check: if x = i, enter critical section.

I write try(i) to indicate that the i'th process is executing the try action, and

so on for the other actions; cs(i) means that process i is in its critical section. The

correctness requirement is then

 s(i) ^ cs(k) Di = k.

To express real-time properties, I will use a "since" operator (denoted by vertical

bars) that is due to Shankar [Sha93]: at any point in the program's execution, IPl

records the time that has elapsed since the last state in the past at which p was

true. If p was never true in the past IPl = oc. Since IPl is concerned only about the

past, its value is unaffected by whether p is true now. Using the since operator, the

two timing constraints on the program can be expressed as follows.

1. Vi: try(i) D linit(i)l < hi.

When process i is executing its try action, the time since it was in its init
action is at most hi.

2. Vi: cs(i) _ leheck(i)l + lo < Itry(i)l.
When process i is in its critical section, the time since it was in its try action

exceeds the time when it was last in its check action by at least lo.

The argument for correctness follows from four invariants.

. Whenever cs(k), the time since try(k) is at most the time since x = 0. This

follows because the try action sets z to k at the same time it enters the check

action.

2. Whenever try(i), the time since x = 0 is at most the time since init(i). This

is because x = 0 is a precondition for the action at init.

. Whenever cs(k), then -_try(i). Otherwise the time since x = 0 is at most hi

(by Invariant 2 and Timing Constraint 1) and at least Io (by Invariant 1 and

Timing Constraint 2), contradicting hi < lo.

4. Whenever cs(k), then x = k. Only the action try(i) could falsify z = k, but
Invariant 3 rules this out.
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Shankar has formalized the since operator using the PVS verification sys-

tem [ORS92] and has mechanically checked the correctness argument given above for

Fischer's mutual exclusion algorithm and for some other simple problems [Sha93].

This example should not be taken as representative of the formal techniques

that have been proposed and applied to the problems of reasoning about concurrent

and distributed execution and about real-time properties, but it is representative of

their main focus: that is, to find ways to limit the extent to which the behaviors

of other processes need to be considered when contemplating the behavior of "this"

process.

Formal methods have developed considerably since the pioneering studies of Mc-

Carthy, Floyd, and Hoare, and very many people have contributed many important

techniques (Jones [Jon92] gives a partial history). One trend in these developments
has been to consider more complex models of computation (incorporating concur-

rent and distributed execution) and more difficult properties of those models (such

as real-time properties). Another trend, and the one that is perhaps most respon-

sible for increased interest in formal methods, has been a shift in focus from the

later to the earlier stages of the development lifecycle: from program verification to

requirements capture and system specification.

The system lifecycle model is one of the key concepts in modern software and

hardware engineering. Its premise is that development and implementation are car-

ried out in several distinguishable, sequential phases, each performing weU-defined

tasks. There have been many refinements to the basic model: Royce's Waterfall

model [Roy70], for example, recognized the necessity for feedback between phases
and recommended that it should be confined to adjacent phases; Boehm's spiral

model [Boe88] (see also Brooks [Bro87]) advocates a more iterative approach, in-

cluding rapid prototyping.

In all cases, one of the outputs of each phase is a document that serves as the

basis for evaluating the outcome of the phase and that forms a specification for sub-

sequent phases. The traceability of requirements through the lifecycle is particularly

important in critical systems: we must be sure that every requirement is satisfied

by the implementation, and that the implementation does not provide functions

other than those required. Verification is an element in detailed requirements trac-

ing: as already noted, it is the process of determining whether the output of each

phase "fully and exclusively" implements the specification of its preceding phase.

Formal methods substitute formal specifications for the informal design documents

of some of the phases of the development lifecycle and, possibly, formal verification

for the manual examination of documentation and specifications that constitutes

conventional verification.

The motivation for a disciplined lifecycle model is to try to catch faults of design

or requirements as reliably and as early as possible. The more phases of the lifecycle
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that separate the commission and detection of a fault, the more expensive it is to

correct, and potentially the more dangerous the consequences if it is not detected.

For example, it is usually cheap and simple to correct a coding bug caught during

unit test, and it is usually equally simple and cheap to insert a missed requirement

that is caught during system requirements review. But it can be ruinously expensive

to correct such a missed requirement if it is not detected until the system has been

coded and is undergoing integration test. Data presented by Fairley [Fai85, pp. 48-

50] show that it is 5 times more costly to correct a requirement fault at the design

stage than during initial requirements, 10 times more costly to correct it during

coding, 20 to 50 times more costly to correct it at acceptance testing, and 100 to

200 times more costly to correct the problem once the system is in operation. For

critical systems, the motivation for disciplined lifecycle processes is assurance: use

of systematic methods at every stage for preventing the introduction of faults, and

for finding and eliminating faults, is the principle means for instilling confidence

that the final system will be free of critical defects.

Verification is joined by validation to make up the methodology of "verification

and validation" (V&V) that is used to provide quality control and assurance within

a disciplined software lifecycle. Validation is the process by which the product of a

development phase is shown to satisfy the original user requirements. Traditionally,

this has been done by testing the final product but, as described in the first chapter,

modern development practices recognize the value of also doing validation earlier in

the lifecycle, in order to check satisfaction of the user's requirements before the full

system is built' ..........

Realistic demonstrations of these early-lifecycle activities are necessarily rather

iarge, soI-will illustra,_e_t-he i_e_with near-trivial: ex_amples. -

Suppose a requirements specification contained the following sentences (adapted

from [Inc88, pp. 77-78]):

1. If the switch is on or the monitoring computer is in a ready state, then both a

recognition signal and a functioning message are sent to the control computer.

2. If a functioning message is sent to the control computer or the system is in a

normal state, then pilot commands will be accepted.

We might want to validate these requirements by checking that they entail some

expected additional properties, such as:

1. If the switch is on, then pilot commands will be accepted.

This example is so simple we can formalize it within propositional logic (the most

elementary of all logics) as follows.
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Given

prove

on V ready D recognition A functioning, and

functioning V normal D accepted,

on D accepted.

This particular theorem is easily proved by propositional reasoning. Realistic exam-

ples of requirements and design specifications generally require richer specification

notations and more powerful theorem-proving methods than this.

In the example just given, the formal "method" is simply the use of formal

notation to replace Engfish phrases. Particular classes of problems admit more

specific methods that can provide systematic ways to approach and organize their

requirements specifications. One such method uses state machines to model the

behavior of a required system: the description consists of a specification of the

components of the state data to be recorded by the system, a logical expression

called an "invariant" that specifies how the components of the state are related,

an initialization operation, and the various operations that access and modify the

state of the system (specified by means of pre- and post-conditions). The proof

obligations incurred by such a specification require that each operation (including

initialization) be shown to leave the system in a state that satisfies the invariant.

State machine modefing is suitable for systems and system components that have

the character of a database or an abstract data type. There are also many methods

particular to other kinds of applications--for example, process-control systems (the

A7 methodology [vS90]) and sequential hardware [Gor86].

We now need to ask where formal methods should be introduced into the soft-

ware and hardware development lifecycle. A purist might answer "everywhere," and

it is certainly technically feasible to apply formal methods all the way from require-

ments capture through to code or circuit verification. However, formal methods are

relatively expensive to apply at present and must compete on cost and effectiveness

with other methods for quality control and assurance, so some selectivity in their

application is inevitable in most projects. The crudest form of selection amounts to

a dichotomy: we can prefer to apply formal methods late in the lifecycle, or early.

Both positions have strong advocates.

Late-lifecycle advocates observe that it is the running program code (or gate

layout in the case of hardware) that determines the behavior of the system; unless

the code (or gate layout) has been verified, formal methods haven't done anything

that is real. It is easy to see the flaw in this argument: what good does it do to

verify the code against its detailed specification if that specification could be wrong?

Shouldn't the earlier stages of the lifecycle be subjected to at least the same degree

of scrutiny as the final code? Early-lifecycle advocates take this argument to its
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conclusion and claim that the early lifecycle is the source of the most dangerous and

expensive faults, and that the later stages of the lifecycle are adequately served by
conventional methods.

In the next subsection I examine the case for formal methods in the late lifecycle;

the early lifecycle is considered in the section after that; the discussion is then
summarized in the final subsection of this section. These discussions on formal

methods in the lifecycle are mostly theoretical (concerning the kinds of faults that

might occur and might be eliminated). Data on system failures in aerospace and

similar applications is considered much later, in Section 3.3.

2.2.1.1 Formal Methods in the Late Lifecycle

In examining where in the lifecycle formal methods may best be applied, we need

to consider the effectiveness and the cost of formal methods relative to other meth-

ods. In both these dimensions (cost and effectiveness), there is a strong case against

applying formal methods late in the lifecycle, especially in the form of program

verification, and especially at the higher levels of rigor. 14 Formal verification is the

process of demonstrating, by formal means, the consistency of two specifications; in

the case of program verification, one of the specifications is executable program text.
It is reasonable to suppose that the cost of a formal verification increases with the

size of the two specifications that are be shown consistent, and it is an observable

fact that specifications get bigger as they get more detailed and closer to executable

code. Program verification is therefore generally more expensive to perform than

formal verification between specifications generated earlier in the lifecycle simply

because the program text and its detailed specifications are large objects. In addi-

tion, program verification is expensive because it must deal with the notion of an

implicit program "state," whereas specifications and verifications at earlier stages of

the lifecyde can model the system in purely functional terms, and thereby remain in

the realm of ordinary logic, where theorem proving is generally more straightforward
and efficient. 15

For these reasons, the costs of mechanically checked (i.e., Level 3) formal program

verification are such that it has seldom been attempted for programs of more than a

few hundred lines (the maximum achieved is probably around a few thousand lines

in certain computer security applications). Program verification at Level 2 may be

even less practical: the attention to detail required in formal program verification is

14At least for the purposes of quality control (i.e., eliminating bugs); the case for program ver-

ification in quality assurance (i.e., showing that bugs have been eliminated) is examined a little

later.

15The Hoare-style verification of the stack routines performed earlier in this section illustrate

the transition between a purely functional external specification and operations that manipulate a

program state.
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such that its rigorous application without mechanical assistance is all but impossible

for examples beyond those that appear in textbooks. Program verification at Level

1, however, corresponds to techniques such as the "verification-based inspections"
used in the Cleanroom methodology. Published data suggest that these methods are

very cost-effective ("early error-detection rates in the 90% range" [Dye92, page 10]).

Certain computer security applications check "specification to code correspondence"

at a similar level [So182, YM87]. Even at Level 0 (no use of formal methods), the

scrutiny applied to program text in life-critical applications is very thorough, if

informal (e.g., structured walk-throughs). And, of course, testing is performed very

directly and thoroughly at the program code level.

Now the purposes of V&V at the later (coding) stages of the lifecycle are: firstly,

to detect and eliminate faults introduced at those stages and, secondly, to provide

assurance that no such faults remain. As I have noted, the evidence from current

experience in safety-critical systems seems to be that conventional methods of re-

view, together with testing, are very effective in achieving the first of these purposes.

When applied sedulously, as in aerospace applications, these conventional methods

of V&V have been shown to be capable of achieving very low incidences of failure

due to faults introduced late in the lifecycle. Similar observations seem to apply

to hardware design, where extensive simulation and symbolic testing techniques are

very effective at eliminating faults from the later stages of the lifecycle. 16

But for safety-critical systems, it is not enough to eliminate almost all faults

introduced in the later stages of the lifecycle; we need assurance that they have

been eliminated (or, rather, that there will be extremely few critical failures). For-

mal methods may not be particularly cost-effective at eliminating bugs in the late

lifecycle, but what about providing assurance that no bugs remain?

The assurance provided by conventional V&V combines review with testing. By

abstracting appropriately, reviews can consider all cases--whereas test coverage is

necessarily partial. On the other hand, testing provides objective and repeatable ev-

idence, whereas review is based on human judgment and consensus. Formal methods

retain the advantages of reviews, but render the process more objective and repeat-

able. It is a matter of judgment whether this extra assurance is deemed worthwhile

for particular applications. It seems plausible that program verification to Level 3

could be advantageous when the arguments for correctness are unavoidably difficult

and intricate, or particularly crucial, or when test coverage is unusually limited. 1T

16According to Keutzer [Keu91], more than half of all VLSI designs axe found to be defective on
first fabrication, but none of these defects axe attributable to the later stages of the design lifecycle.

17It could also be worthwhile when the process can be largely automated. This can sometimes
be achieved when properties other than functional correctness axe considered. For example, it is
possible to check programs for certain information flow properties (this is done in computer security
applications [DD77a]), or for the absence of certain run-time exceptions [Get78], using specialized
methods of formal analysis and theorem proving.
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Conversely, formal methods may offer little for applications programs with relatively

few discontinuities, such as those that evaluate control laws.

Examples where correctness arguments are difficult and intricate include those

concerned with concurrency and asynchrony (e.g., interrupt handling, and coordina-

tion of multiple processors), those concerned with real-time constraints, those con-

cerned with redundancy management and fault tolerance, and those concerned with

manipulation of low-level hardware features (e.g., the use of memory-management

and protection hardware to provide partitioning and fault containment across tasks

sharing the same processor). Examples where the correctness argument is singularly

crucial are those where a single fault could lead to system failure, as in the basic

synchronization, communication, and voting mechanisms between the primary flight

computers. Examples where test coverage is limited are those that require fault in-

jection (e.g., fault tolerance and redundancy management) or depend on timing

(e.g., communications, and synchronization).

In all these circumstances, formal methods have the potential to offer worthwhile

increases in assurance. The factor that complicates realization of this potential is the

intricacy of the modeling required. If we tackle these difficult or intricate arguments

at the late stages of the lifecycle, we are considering not just the broad arguments

for the correctness of a chosen scheme for redundancy management or synchroniza-

tion, but the correctness of a particular implementation of the scheme. This will

necessitate formal modeling of a host of low-level mechanisms, such as the communi-

cation and synchronization primitives of the programming language concerned, the

interface between its run time support system and the process-management features

of the operating system, and the characteristics of certain hardware devices. For

formal methods to contribute to assurance, we must have great confidence in the

fidelity of the formal modeling employed, and this is not easy to achieve with highly

detailed, language-, machine-, and device-specific models. For these reasons, late-

lifecycle applications of formal methods to intricate problems may be considered

more of a technical tour-de-force than a practical way of increasing assurance.

So far, this discussion has focussed on formal methods applied to verification,

but there are many who advocate use of formal methods purely for specification,

and without the rigors of formal verification. The claim is that formal specifica-

tions provide a better starting point for coding than do informal specifications, and

that in some cases specifications can be refined into programs that are guaranteed

"correct by construction." The problem with this argument is that if proofs are not

performed then the overall process is essentially the traditional one, but with formal

specifications substituted for informal ones, and systematic refinement possibly sub-

stituted for ad-hoc development; assurance will continue to derive from traditional

reviews and analyses. Thus, if quality control and assurance are to be improved

through use of formal specifications, then it must be because these notations ren-

der the traditional review processes more reliable. It is plausible that this may be
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so, but I do not think it likely that any improvement will be all that significant,
since the basic assurance processes stay the same. (In industries that do not employ

the disciplined lifecycle processes used for flight software, it is possible that formal

specifications and systematic refinement could have a larger impact--but this might

be as much due to their impact on the development process as to their intrinsic

merit.) If a case for using formal specifications during the late lifecycle in industries

with effective quality control and assurance processes can be made at all, then in

my opinion it is better made on the grounds of reduced costs than improved as-

surance. Reduced costs through use of formal specifications have been claimed in

some commercial software developments (e.g., the IBM CICS example described in

section 2.7), but denied in others (e.g., other parts of IBM [End93]).

2.2.1.2 Formal Methods in the Early Lifecycle

I have noted that, for current designs, conventional V&V is very effective for quality

control in the later stages of the lifecycle, and adequate for quality assurance in

most cases. It is the earlier stages of the lifecycle that are generally considered the

most problematical. For example, Bloomfield and Froome [BF86] mention experi-
ments "in which conventional good practice is shown to be effective at removing (at

a price) implementation" errors, but to leave residual errors arising from misinter-

pretation of the natural language specification." Other evidence indicates that fault

densities are highest in the early stages of the lifecycle, and that the processes for

detecting and removing these faults are very imperfect. Using formal inspections,

Kelly, Sherif, and Hops [KSH92] found (in 203 formal inspections of six projects at

the Jet Propulsion Laboratory) that requirements documents averaged one major

defect every three pages (a page is 38 lines of text), compared with one every 20

pages for code. Two-thirds of the defects in requirements were omissions. Even

in organizations where extremely thorough requirements analysis is performed, it

seems less reliable than the analyses that can be performed on the products of the

later lifecycle. For example, a quick count of faults detected and eliminated during

development of the space shuttle on-board software indicates that about 6 times

as many faults "leak" through requirements analysis, than leak through the pro-

cesses of code development and review. Similar data (described in more detail in

section 3.3) are provided by Lntz [Lut93a], who reports that of 197 "safety-critical"

faults detected during integration testing of the Voyager and Galileo spacecraft, only

3 were programming bugs; of the remainder, half were attributed to flawed require-

ments, a quarter to .incorrect implementation of requirements (i.e., design faults),

and the rest to misunderstood interfaces.

Faults that have their origin early in the lifecycle, during the specification of re-

quirements, or high-level design, are very costly to correct later in the lifecycle (and

may be corrected by kludges that promote unreliability), can be difficult to detect
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in validation, and are often the source of serious failures. Leveson [Lev91], for exam-

ple, states that almost all accidents involving computerized process-control systems

are due to inadequate design foresight and requirements specification, including in-

complete or wrong assumptions about the behavior or operation of the controlled

system, and unanticipated states of the controlled system and its environment.

It is fortunate, then, that formal methods seem to find their most effective ap-

plication early in the lifecycle, where conventional methods are apparently weakest.

I discuss the general benefits claimed for formal methods later (in Section 2.4), but
the special benefits of formal methods early in the lifecycle can be summarized as
follows.

First, the early stages of the lifecycle are those when software development is

most intimately connected to overall system development, and the need for effec-

tive communication between software engineers and those from other engineering

disciplines is greatest. Engineers from different disciplines often construct different

mental models for the same entity, and this can result in faulty or misunderstood

requirements, is Attempts by systems and other engineers to communicate their

needs to software engineers in a precise fashion often result in overly prescriptive

statements of requirements (e.g., pseudocode), or in ad-hoc notations based on those

of their own field (e.g., analog control diagrams) that are quite unsuited to the new

demands made upon them. Formal methods have the potential to bridge this gap
and to provide an effective and precise means of communication between software

and other engineers_

Second, formal methods provide a repertoire of mental building blocks that assist

and encourage the development of specifications that are precise yet abstract. For

example, the notion of set allows requirementswriters to describe a collection of

objects without worrying about how it is represented, and quantification allows

them to describe 'properties of the members without having to specify a search

procedure or a loop. ...........

Third, formal specifications assist early discovery of incomplete or ambiguous

specifications. With natural language specifications, it is easy to overlook special

cases, initializations and so on. These missing or vague elements are discovered only

when a programmer realizes they are needed to complete the specification of a piece

of code. Formal specifications have some similarity with programs in that they en-

courage a systematic elaboration of cases, and may thereby reveal incompletenesses

and ambiguities at an earlier stage.

Fourth, formal specifications can he subjected to various forms of mechanical

analysis that are rather effective in detecting certain kinds of faults. Simple syntax

ISln one case,the requirement that a function should "abort" in a particularcircumstance was

interpreted by the implementor as meaning that it should perform the "abort" operation (a jump

to the enclosing block) in the programming language being used. The requirements writer meant

"abort the mission.=
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analysis identifies many clerical errors, and typechecking is a very potent debugging

aid. Critics will argue that these tools merely detect faults due to the petty con-

straints of formal specification languages. This overlooks how rich the type-systems

can be for modern specification languages: typechecking in these systems is a very

strong check on internal consistency (see Subsection 2.3.1.1).

Fifth, formal specifications can support a form of validation early in the

lifecycle---when few other validation methods are available. This form of valida-

tion is conducted by posing "challenges" in the form of putative theorems that

should be valid consequences of a properly formulated specification (e.g., "if this

specification says what it should, then the following ought to follow"). The putative

theorems are examined by the techniques of formal verification. Other illuminating,

though less conclusive, challenges can take the form of putative non-theorems: "if

the following is provable, then I must have overconstrained the specification." A

variant is demonstration of the consistency of a specification through exhibition of a

model, 19 and a related method for demonstrating "reasonableness": for example, "if

I've defined the concept of a 'good clock' correctly, then a clock that keeps perfect

time should satisfy the axioms. "2° Still another variation is the analysis of specifica-

tions for certain restricted, though nonetheless important, notions of completeness

such as those of Jaffe, Leveson, and Melhart [JL89, JLHM91] (see Section 2.3.2).

Sixth, formal specifications can increase the effectiveness of review-based verifi-

cation in the early lifecycle. One of the reasons that verification based on reviews

or inspections is effective in the late lifecycle may be that a program is necessarily a

formal text. Thus, at least one end of the verification is anchored in precise terms,

even if the verification process itself is informal. Verification in the early lifecycle

using informal specifications is a much less effective tool. By formalizing the spec-

ifications, we may increase the precision of even informal verification--and we also

make formal (Level 2 or 3) verification feasible.

Seventh, validation of the formal modeling employed is likely to be much sim-

pler in early- than in late-lifecycle applications. For example, the correctness of an

algorithm for clock synchronization rests on a few broad assumptions, such as "a

processor can read another's clock with at most a smallerror _," whereas the correct-

ness of an implementation of the algorithm will rest on assumptions about specific

mechanisms for reading clocks. It is clearly easier to validate the fidelity of models

that make a few broad assumptions than those that make many highly detailed

ones. So, if our main concern is whether or not the basic algorithm works, then

19The notion of models is explained in Subsection 2.3.1.3, and in more technical terms in Appendix

Sections A.2, A.3, and A.4.

_°Young [You92] found a mistake by just this means in a formal specification that Friedrich

yon Henke and I constructed for the Interactive Convergence Clock Synchronization Algo-

rithm [RvH91a]. The fault is corrected in the revised version of our report and in the published

version [RvH93].
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an early-lifecycle investigation using abstract modeling and robust assumptions will

generally be simpler and more useful than scrutiny of a particular implementation

in the late-lifecycle.

Finally, the expense of formal methods applied early in the lifecycle is likely to

be considerably less than those applied late. In particular, the size of the formal text

is likely to be much smaller earlier in the lifecycle, and it is usually possible to write

early-lifecycle specifications in a functional style that is much more convenient for

formal verification than specifications involving an implicit state. Furthermore, the

early elimination of faults will save later redesign, and this may more than recoup
the costs of formal methods.

In addition to the specific benefits described above and the general benefits

described later, which may all be considered improvements in the design process,

use of formal methods may also lead to an improved design. This can happen in

two, almost contradictory, ways.

First, the cost and difficulty of formal verification is very sensitive to the com-

plexity of the design being verified. Formal verification is therefore very effective at

revealing unsuspected complications in a design, and anticipation of formal verifica-

tion usually encourages renewed interest in simple designs. Other things being equal,

simple designs axe generally to be preferred to complicated ones, and formal methods

provide useful guidance in this regard. Often, too, the improved understanding that

comes from undertaking formal verification can actually suggest simpler designs.

The second way in which formal methods can assist design is through opening

up new areas in the design space by allowing novel approaches to be fully explored

and validated at an early stage. Many of the most difficult problems in modern

systems design concern coordination of distributed activities executing in parallel.

These difficulties are compounded in most safety-critical system by the need also

to satisfy real-time constraints and to continue operation despite the occurrence of

faults. Consequently, design and validation of the core coordination and recovery

protocols is one of the most important--and difficult--steps in the early lifecycle.

It is also one of the riskiest: to take an example from a different field, it is reliably

reported that certain computer design companies are not working on shaxed-store

multiprocessor architectures because they lack confidence in their ability to develop

and=implemen_t thecr_ uci_ c-acheicoherence aigorithmscorrect]y_0thers were still

finding bugs in their cache controllers after several design iterations. Another, and

more relevant, example concerns whether the redundant" channels of a flight-control

system should be synchronized or not. Asynchronous designs seem to contain an

intuitively robust source of fault tolerance in that the separate channels work on

slightly different data (due to sampling skew). Nonetheless, several systems of this
kind have revealed anomalies in flight-test and have proved hard to validate (I

describe the AFTI-F16 flight tests in some detail in Section 3.3). On the other hand,
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the alternative, synchronized designs require extremely sophisticated treatment of

their mechanisms for clock synchronization and sensor-value distribution. These

mechanisms need to be "Byzantine fault tolerant" [LSP82], and any faults in the

design or implementation of these mechanisms will almost certainly lead to system

failure. However, if the difficulties of assuring the underlying mechanisms can be

solved, the behavior of synchronized systems is very predictable, with none of the

quirks of the asynchronous approach, and with reduced need for costly and fault-

prone failure modes and effects analysis (FMEA) [HL91] and fault injections. 21 The

balance of advantage seems to favor the synchronized approach, but the delicacy,

and criticality, of the implementations of the necessary Byzantine fault-tolerant

algorithms is such that this desirable area of the design space may be unsafe to enter

without very strong assurance for the correctness of the underlying mechanisms.

Rapid prototypes and even "all-up" system simulations cannot provide the test

coverage required to validate complex, parallel, timing- and fault-dependent behav-

ior of these kinds (and, in any case, often distract attention from the real problem

into lower-level implementation questions). Formal methods, on the other hand, al-

low the significant issues to abstracted out so that all behaviors of the chosen design

can be considered. Formal methods based on state exploration can often examine

all the possible behaviors of simplified instances of these kinds of design problems

automatically. The complete coverage of simplified designs that can be achieved in

this way is generally more effective at finding faults than partial coverage of the full

design using conventional testing or simulation. In other words, formal methods

such as state exploration can be an effective (often the most effective) debugging

technique for these kinds of design problems. Conventional formal verification can

then be used to verify the final, debugged design. 22

Another example where formal methods may expand the design space concerns

the selection of static or dynamic (priority-driven) scheduling for real-time sys-
tems. Some assert that only static, pre-allocated task schedules can provide the

guaranteed satisfaction of hard-real-time constraints required for life-critical appli-

cations [XP91]. On the other hand, dynamic schedules degrade more gracefully

than static ones under transient overload, and also simplify some software engineer-

ing problems [Loc92]. Dynamic scheduling can be seen as a high-risk area in the

design space for life-critical systems, with a possibly high-payoff if adequate guar-

antees could be provided that all hard deadlines will be met. 23 Many papers have

21However, additional redundancy is needed to withstand Byzantine faults: at least four channels
are required to withstand a single Byzantine fault, and additional message passing is also required.

_2It will be prudent to consider the higher levels of rigor here: at least one published algorithm,
furnished with a Level 1 "proof of correctness," has been found to contain an outright bug [LR93b].
The bug was found and corrected using Level 3 formal verification.

23Tomayko [Tom87, page 112] describes a debate over the scheduling philosophy of the flight-
control system for the Space Shuttle: "Rockwell ... argued for 2 years about the nature of the
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analyzed general circumstances under which dynamically scheduled systems will

meet their deadlines (e.g., rate-monotonic scheduling can do this if the workload is

less than 69% [SR90]), but the characteristics of individual flight-control systems

do not always satisfy the necessary conditions (and fault tolerance can complicate

matters [HS91]). Individualized mathematical analysis, including formal methods,
therefore seem essential if this part of the design space is to be explored safely.

2.2.1.3 Discussion of Formal Methods in the Lifecycle

There are two aspects to using formal methods: the "formal" aspect, and the

"method" aspect. The former indicates a commitment to using concepts and tech-

niques derived from mathematical logic, the latter identifies the particular way in

which those concepts and techniques are to be used. In the present state of develop-

ment, many tools and techniques for formal methods are fairly strong on the formal

aspect, but weak on the methodological aspect. This means that while a paxticu-

lax specification language or verification system may, in skilled hands, be capable

of effective application across a range of methods, less experienced users may be

bewildered by the range of possibilities, and disconcerted to discover that finding

the best method for a given problem often requires significant intellectual effort and

invention. In the absence of methodological guidance, users may drift towards those

uses of formal methods that seem most straightforward or best documented, rather

than those that might deliver greatest benefit.

By and large, it is the late-lifecycle applications of formal methods that are the

easiest to understand and apply: formalized descriptions in the guise of pseudocode,

dataflow diagrams, or register-transfer level descriptions are already familiar at this

stage, and the transition to fully formal descriptions and analysis is reasonably

stralghtforwaxd. In addition, there is a body of literature to provide encouragement

and advice. But precisely because this part of the lifecycle is well understood,

informal methods and engineering practice have achieved a considerable degree of

practical effectiveness: sequential programming, and gate-level design are not major

sources of difficulty or faults today (at least, not in those industries that practice

stringent software quality control and assurance). Consequently, the later stages of

the lifecycle generally seems to offer the least return for the investment in formal
methods.

The earlier stages of the lifecycle seem to offer rather greater potential benefits

for using formal methods, but also pose greater methodological challenges. There

are two main applications for formal methods in the early lifecycle: descriptive

operating system, calling for a strict time-sliced system ... IBM, at NASA's urging, countered

with a priority-interrupt-driven system similar to the one on Apollo. Rockwell, experienced with

time-sliced systems, fought this from 1973 to 1975, convinced it would never work."
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purposes, such as documenting requirements and specifying interfaces, and analytic

purposes, such as validating major design decisions and crucial algorithms. The first

of these can be served by all levels of rigor; the second is best served by Level 3. In

all cases, a simple sequential model of computation is seldom appropriate, and it will

be necessary either to select a formal method supplied with an appropriate model of

distributed or parallel computation (e.g., one based on temporal logic, or on process

algebra), or to find some way to represent such a model within a neutral formalism

such as higher-order logic. 24 For analytic purposes, skinful use of abstraction will

generally be required in order to focus on the substance of the problem without the

distraction of extraneous detail. The selection or invention of an appropriate model

of computation, its representation in the chosen formal system, and the abstraction

of the relevant from the irrelevant, are all very challenging tasks that require talent

and training.

Precisely because the early stages of the lifecycle are known to be unstructured

and fault-prone, many informal or quasi-formal software engineering methods have

been proposed to alleviate these difficulties. The more recent ones generally focus on

object-oriented techniques (e.g., OMT [RBP+91]). Many current projects are using
or evaluating these new methods; those that are also interested in formal methods

face the rather formidable challenge of integrating these two classes of methods,

which have developed rather separately. It will probably be some years before

the formal element of formal methods is smootMy harnessed to the methodological

element of modern software engineering methods.

I offer the tentative conclusion that the benefits of formal methods, given the

current state of technology, increase with the intellectual difficulty of their applica-

tion: routine exercises are likely to provide little benefit over established practice;

greater challenges may provide larger returns. This conclusion may appear discour-

aging, but consider that the tougher intellectual challenges may be much smaller

in scale than the routine exercises, thereby greatly improving their benefit to cost

ratio. In general, aggressive and skillful use of abstraction and selection are the most

effective techniques for reducing the cost and increasing the effectiveness of formal
methods.

2.2.2 Formal Methods and System Components

We can expect it to be more difficult and costly to develop and to provide assurance

for very critical software than for that which is less critical; and we can also expect

24By employing abstraction effectively, important properties of distributed systems can often be
analyzed without requiring an explicit model of distributed or pazalhl computation. For exam-
ple, Byzantine agreement protocols axe conceived as distributed algorithms, but the correctness
properties of these protocols can be adequately studied by representing them as mathematical
functions [LR93a].
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a large piece of software to be more of a challenge than a smaller one. Therefore, de-

sign techniques that help reduce the criticality level of software components, or that
reduce the size of the most critical components, can make important contributions

to the development of critical systems. Criticality levels for software are determined

by considering the potential severity of the effects of its failure. The FAA ranks these
effects on a five-level scale from "catastrophic" through "hazardous/severe-major,"

"major" and "minor" to "no effect" [FAA88] 25. DO-178B then identifies software

criticality levels A through E according to the severity of their potential failure

conditions (i.e., Level A is software whose malfunction could contribute to a catas-

trophic failure condition) [R.TC92, Subsection 2.2.2]. Other standards and guidance

for safety-critical systems take a similar approach (e.g., the United Kingdom Defence

Standard 00-56, which also factors likelihood into the classification [MOD91b, Sec-

tion 6]). The software criticality level determines the amount of effort and evidence

required to show compliance with certification requirements.

It is sometimes possible to reduce the criticality level of some software compo-

nents by raising that of others. This can be very worthwhile if the software whose

level is lowered is much larger or more complex than that which is raised, or if its

criticality is lowered by several levels. DO-178B discusses three such approaches

under the heading "system architectural considerations" [RTC92, Section 2.3]: par-

titioning, multiple-version dissimilar software, and safety monitoring.

Partitioning refers to techniques that provide fault containment. A software

component that performs a function of low intrinsic criticality may be assigned a

very high criticality level if it shares resources with (e.g., runs on the same processor

as) a truly critical component, since a bug in the first component could interfere

with the operation of the second (see [Add91] for a case study). If a really solid fault

partitioning mechanism could be provided, so that malfunction of the first compo-
nent could not affect the second, then the criticality of the first component could

revert to its intrinsic level. The most drastic partitioning mechanisms are physical:

we simply do not allow critical and noncritical functions to share resources. 26 This

approach has its own problems (the need to maintain multiple computer systems and

to arrange for their coordination) and becomes less effective as more communication

between subsystems is introduced.

An alternative approach is to provide logical partitioning based on the use of

memory-management units to enforce isolation of address spaces. An operating sys-

25Actually, [FAA88, paragraph 6.hi has Ucatastrophic," _major" (which is subdivided into cate-
gories (i) and (ii))i and _minor"; the addition of "no effect" and the naming of the subdivisions of
the "major" category are from DO-178B [RTC92, Subsection 2.2.1].

2eThis is the approach that has been taken, in a very strict form, on NASA interplanetary
spacecraft, where functions critical to the survival of the spacecraft are handled by an attitude
and articulation control system that is quite separate from the systems that control the scientific
experiments. The consequences of the absence of such strict fault containment are well-illustrated
by the failures of the Russian Phobos spacecraft [Che89, Coo90].
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tern nucleus is then needed to manage these hardware mechanisms. The criticality

level of the operating system nucleus that manages the partitioning mechanisms

will be at least that of the highest criticality application task that it supports. An

operating system nucleus of this kind has much in common with the "security ker-

nel" concept [DoD85] (or, rather, its more primitive foundation, the "separation

kernel" [Rus81, Rus84]) used in computer security. Formal specification and verifi-

cation techniques have been developed [Rus82] and applied [Bev89] for the "secure

separation" property, which seems similar to the fault-partitioning property required

for safety-critical applications. Even without specialized hardware such as memory

management units, it is possible to provide strong assurance of partitioning based on

software techniques. Helps [Hel86] describes such techniques applied to an aircraft

electronic flight instrumentation system.

When separate functions and computers are integrated into a larger system, it

becomes necessary to extend fault partitioning from the processes of a single machine

to the distributed ensemble. Combinations of hardware and software can provide

the necessary partitioning on and across communication channels (see, for example,

the SAFEbusW_design for aircraft busses [HDHRgl, HD93]).

I do not consider dissimilarity (mtiltiple-version dissimilar software) here, since

it is orthogonal to formal methods, although I do touch on some of the assurance

issues in Section 3.1. The general topic of fault-tolerant software is covered in a

separate chapter of the FAA Handbook [FAAa].

The idea of safety monitoring is to backup a primary system with a monitor

component that can detect and respond to undesired and potentially hazardous

conditions. If its response to a hazard is to shut the primary system down, then

monitoring is mainly a protection against unintended function, and its activation

results in loss of function. DO-178B [P_TC92, Subsection 2.3.3] suggests that

"Through the use of monitoring techniques, the software level of the

monitored function may be reduced to the level associated with the loss

of its related system function."

An early draft of DO-178B explained the rationale in a little more detail:

"if a specific unintended function of the software can produce a more

severe consequence to the aircraft than the loss of intended functions,

it may be possible to reduce the software level through the use of

monitoring... This can be accomplished by directly monitoring the un-

intended function that would produce the hazard, and providing an ac-

ceptable response that removes or reduces the hazard."
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Of course, it is essential that the monitor and its protective mechanisms are inde-

pendent of the primary system, so that both are not rendered inoperative by the

same failure condition. DO-178B [RTC92, Subsection 2.3.3] states that

"Safety monitoring software is assigned the software level associated with

the most severe failure condition category for the monitored function."

Some safety-critical applications (e.g., nuclear power generation) use monitor-

ing and shutdown as their protection mechanism against catastrophic failures. In
these cases the main safety-critical requirement on the primary control system is

to reduce demands on the shutdown system to a fairly low level. This allows the

acceptable failure rate per demand on the protection system to be quite modest

(e.g., around 10 -4 or 10-s). The United Kingdom Defence Standard 00-56 gives a
table [MOD91b, Table 6] that assigns criticality levels to monitoring systems based
on the combination of accident severity and probability of failure of the primary

component. It also assigns safety integrity levels (similar to DO-178B software lev-

els) to combinations of components of lesser levels [MOD91b, Table 7] and takes care

to block recursion (so that a critical function may be implemented by certain com-

binations that include, components of less than maximum integrity level, but those

components cannot themselves be implemented by combinations of components hav-

ing even lower integrity level). It also establishes "claim limits" [MOD91b, Table 8]
on the minimum failure rate that can be claimed for given integrity levels.

There are other monitor-like functions that can be performed by software: exam-

ples include analogs of the protections provided by hardware interlocks, lockins, and

lockouts [Lev86]. Some of these can be enforced fairly generically by a kernel-like

operating system nucleus [RusS9]; others will be more application-specific [LSST83].

In addition to the three system architectural considerations discussed in DO-

178B (partitioning, dissimilarity, and safety monitoring), a fourth seems worthy of

examination: namely, centralized redundancy management. Redundancy manage-

ment and fault tolerance are among the major challenges in the design of airborne

systems. Instead of a single computer executing the s0ftware, there will generally be

several, which must coordinate and vote (or average) actuator commands and other

outputs in order to tolerate hardware faults. Sensors and actuators will usually be

replicated also, and the management of all-this redundancy and replication adds

considerable complexity to both the operating system (generally called an "execu-

tive" in control systems) and the application tasks. Complexity is a source of design

faults, and there is a distinct possibility that such a large quantity of additional code

may lessen, rather than enhance, overall reliability. There is evidence (recounted in

Section 3.3) that redundancy management is sufficiently complex and difficult that

it can become the primary source of unreliability in a flight-control system.
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There is a degree of design freedom in how much of the redundancy manage-

ment should be performed by the executive, and how much by the application tasks.

The arguments in favor of centralizing as much of the redundancy management as

possible (presumably in the executive) are that (1) it can then be given special

attention and be done correctly, once and for all, and (2) by relieving applica-

tions tasks of this responsibility, those tasks become much more straightforward

and therefore easier to get right and to validate. Arguments against centralized re-

dundancy management are that some recovery procedures are application-specific,

and that the centralized function is a potential single-point failure. It seems clear

that a centralized redundancy management function will likely inherit the critical-

ity level of the most critical task that it supports; centralized redundancy man-

agement is unlikely to reduce the criticality level of any application tasks, but

may significantly reduce their complexity. Most modern architectures for fault-

tolerant systems do provide a number of centralized redundancy management ser-

vices [Dtt90, ttL91, KWFT88, K+89, W+78], and it is recognized that providing

assurance for these services is a significant challenge. Discussing a design that sub-

sequently became the primary flight computer (PFC) of the Boeing 777, Dennis

and Hills [DH90] noted that 50% of the software was concerned with redundancy

management and observed:

"Since conventional test procedures cannot cover all aspects of the re-

dundancy management design, new validation and verification proce-

dures must be devised to facilitate design proving and hence certifica-

tion. These are expected to encompass formal mathematical proof of the

'core' redundancy management function..."

In all these "system architectural considerations," we see that by careful design

it is often possible to divide a system into software components that have different

criticality levels. Ideally, there should be relatively few at the highest levels, and

those should be as small and straightforward as feasible. This not only makes it

more plausible that those most critical components will perform as required, it also

makes for more thorough and credible assurance that they will do so. In particular,

it may be appropriate and feasible to apply formal methods of the higher levels to the

most critical components. Investment here may have a high payoff. For example, an

operating system nucleus providing fault partitioning is a very sophisticated (though

not necessarily very large) component, whose failure (either to provide service, or

to enforce partitioning) would be catastrophic. It is scarcely credible that adequate
assurance for such a nucleus could be achieved without some use of formal methods.

Yet the availability of such a nucleus could drastically reduce the criticality levels

of other software (by eliminating fault propagation) and could also encourage more

modular system design.
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2.2.3 Formal Methods and System Properties

Formal methods are often associated with "proofs of correctness": the assumption

being that it is the standard, or intended, function of the component concerned

that is of most interest. But in safety-critical systems, the standard function of

a component may not be the property of critical concern--that is to say, loss of

that function may not be an event of high criticality. Rather, it may be certain

malfunctions, or possible unintended functions, of the component that have safety-

critical implications.

As noted above, architectural mechanisms, such as partitioning and safety mon-

itoring can protect against some malfunctions and unintended functions, but an
alternative is to ensure that the component will not exhibit specific malfunctions or

unintended functions. Formal methods can play a role here: instead of proving that

a component exhibits certain desired properties, we prove instead that it does not

exhibit certain undesired properties.

One example of a technique based on this idea is "Software Fault Tree Anal-

ysis" (SFTA). SFTA was introduced by Leveson and others [CLS88, LH83] as an

adaptation to software of the traditional fault tree analysis technique developed for

electromechanical systhms in the 1960's. The goal of SFTA is to show that a specific

software design will not produce system safety failures or, failing that, to determine
the environmental conditions that could lead it to cause such a failure. The ba-

sic procedure is to suppose that the software has caused a condition which hazard

analysis has determined to have unacceptable risk, and then to work backward to

determine the set of possible causes for the condition to occur, and so on, recur-

sively. Eventually, this will lead either to discovery of circumstances that can cause

the hypothesized condition to occur, or to a demonstration that there are no such

circumstances.

A fault tree is developed incrementally, starting from a root, which is the unde-

sired condition to be analyzed. Necessary preconditions are described at the next

level of the tree with either an AND or an OR relationship. Each subnode is ex-

panded in a similar fashion until all leaves describe events of calculable probability

or are incapable of further analysis for some reason. Hardware and software fault

trees cast be linked together at their interfaces to allow the larger system to be ana-

lyzed. This is important since a particular software error may cause a mishap only if
there is a simultaneous hardware and/or human failure, or other unexpected stress

placed on the software. SFTA can be used at various levels and stages of software

development, including the program code level. When working at the code level,

the starting place for analysis is the code responsible for output. The analysis then

proceeds backward deducing both how the program got to this part of the code and

the necessary values of the program variables.
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An experimental application of SFTA to the flight and telemetry control system

of a spacecraft is described by Leveson and Harvey [Ltt83]. They report that the

analysis of a program consisting of over 1,250 lines of Intel 8080 assembly code

took two days and discovered a failure scenario (sensors detecting two sun pulses

within 64 ms. of each other) that could have resulted in the destruction of the

spacecraft. Conventional testing performed by an independent group had failed to

discover this problem. In this example, the fault tree analysis was done by hand

in an informal manner. Leveson and her co-workers have also developed fault tree

templates for common Ada constructs and some tools to help in their construction

and application [CLS88]. They describe a tutorial example in which their approach

is used to identify a subtle timing problem in an Ada program for a traffic light

controller.

Leveson attributes the success of SFTA in finding errors undiscovered by other

techniques to the fact that it forces the analyst to examine the program from a

different perspective than that used in development; she likens it to vacuuming a

rug in two directions: conventional approaches "brush the pile" in one direction,
SFTA in the other, so that between them they do a better job than either used

alone.

Another problem domain where the focus has chiefly been on "negative" prop-

erties (i.e., on what should not happen) is computer security. I-Iere the concern has
been to show that mechanisms built into the lowest levels of the operating system

guarantee that no communication of information contrary to the security policy

is possible, no matter what "untrusted" application programs may do. The tech-

niques employed are chiefly those of "information flow analysis" [DD77b, FLR77]
and verification of access control mechanisms [BL76, WKPS0].

Great caution must be exercised when formal treatments of negative system

properties are combined with those for hierarchical verification. The difficulty is
that hierarchical verification typically establishes only that each layer in the hier-

archy is sufficient to implement the layer above it; it does not establish necessity

(technically, an implication is established, not equivalence). That is to say, hier-
archical verification ensures that each layer does at least that which is required to

support the layer above, but there is nothing to stop it doing more than is desired.

Since negative properties are largely concerned with what is not to be done, conven-
tional hierarchical verification does not guarantee that negative properties proved of

a specification will be preserved in its implementation; instead, it seems that these

properties must be verified directly at the implementation level. Fortunately, it

seems that SFTA, information flow analysis, and similar techniques are sufficiently

straightforward that they can be applied effectively at that level.

Even when the critical property of a component is a "positive" one, it need not

be equivalent to its full functionality. By focusing on just the critical properties,
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it may be feasible to apply formal methods of the higher levels at reasonable cost.

For example, a component may be designed to provide an optimal solution to some

problem, whereas safety is assured by any solution within certain bounds. It may be
much simpler to verify that the component produces an adequate solution than that

it produces an optimal one. This approach can be combined with certain software

fault tolerance techniques to yield formally verified components in which only very
simple subcomponents are verified [AW78].

Suppose a component that computes integer square roots is desired. A pro-

gram based on the Newton-Raphson method may be the most efficient, but may be

considered hard to verify, whereas the linear-search method is inefficient, but easy

to verify. We can try to get the best of both worlds by constructing a compound

unit based on the "recovery block" approach to software fault tolerance [AL90]. The
idea behind recovery blocks is that a "primary" and several "alternate" functions are

provided, together with an executable "acceptance test" for evaluating their results.

The primary is executed first and the acceptance test is applied to its result. If the

result passes the test, the block terminates with that result; if not, the system state

is rolled back to that prior to execution of the primary, and an alternate is tried. As

soon as an alternate yields a satisfactory result, the recovery block terminates with

that result; if no satisfactory result is found, an exception is signalled. The way in

which formal methods can be factored into this approach is that we prove that the

acceptance test is sufficiently strong to ensure satisfaction of the properties of inter-

est, and we prove that one (presumably the simplest) of the alternates will satisfy

the acceptance test. For Our square root example, we would use Newton-Raphson

in the primary, linear search in the alternate, and an acceptance test that simply

checks that the square of the answer is close to the number supplied as input. There

are obvious drawbacks to this proposal: it requires the state-restoration machinery
of backwards error recovery, and it makes prediction of execution time difficult. 27

Even without the mechanisms of recovery blocks, it may be useful to factor run-

time checks into a formal verification: instead of proving that a certain property

holds at a certain point, we can simply test it at run time. The argument for

formal verification can then be based on the tested properties. The Anna system

incorporates ideas similar to these [Lnc90]. Of course, it is also necessary to deal

appropriately with cases where the run time checks fail. Formal treatments of

exception handling focus on these kinds of problems [Cri84, Cri89].

The criterion for applying formal methoiJs to a system or component property

need not be criticality alone: the effectiveness of other methods for debugging and

2ZAlthough some techniques basedon-recovery blocks are d_ed to guarantee satisfaction of
real-time constraints [CHB79, WHCCS0, LC86]. Basically, a task is allowed torun until some fixed
time before its deadline; then, If it h_ not produced a result, it is aborted and control is given
to some (presumably) less-desirable task that is guaranteed to produce an acceptable result in the
time remaining.
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assurance should also be considered. For example, a component may be required to

perform some critical function, and to be fault tolerant. It may be that traditional
methods of assurance are effective for establishing that the function is performed

correctly, but that assurance for its fault tolerance is more difficult to provide. In

such a case, it might be appropriate to abstract away from the function performed

and to apply formal methods only to the property of fault tolerance. This may

provide an additional benefit: several components or functions may use similar fault-

tolerance mechanisms, so that a single, suitably generic, use of formal methods may

increase assurance for all of them.

Aggressive use of abstraction, and focus on particular properties rather than

general functionality is a ha_mark of formal methods based on state exploration.
As I have noted earlier, but explain here in more detail, these precepts can often be

pushed very far in the early lifecycle and in cases where the concern is debugging

rather than assurance.

The idea is that complete analysis of selected properties of a highly simplified

version of a design can be more effective at detecting errors than partial coverage

of more general properties, or of a more realistic design. For example, a commu-

nications protocol may be designed to move arbitrary data reliably over a faulty

channel using sequence numbers that cycle through the range 0...255. For many

purposes, it may be adequate to examine the protocol with just one or two differ-

ent data values, and with sequence numbers restricted to 0 and 1. And initially,

we might not consider reliable transmission, but only examine whether deadlock is

possible. Similarly, cache coherence protocols can be debugged quite effectively by

considering just two processors and a single memory location [DDHY92], and the

bugs in Byzantine agreement protocols that my colleagues and I have studied can

all be discovered in highly simplified versions of the problem (one round, 6 or fewer

processors, and four or fewer distinct data values).

The advantage of reducing problems to these very simplified forms is that they

may then become amenable to state-exploration methods. These are specialized

formal methods tools that systematically enumerate all the states of a finite-state

algorithm and test whether certain predicates hold at those states. Recent tech-

niques allow large numbers (i.e., millions) of states to be handled in an efficient

manner. 2s Several systems based on state exploration are available; some of these

exploit the close connection between finite state graphs and propositional tempo-

ral logic (when they are usually called "model checkers" [CES86]), some provide a

higher-level language (e.g., Mute [MD93] uses a transition-rule language for concur-

rent systems that is loosely based on Chandy and Misra's Unity model [CM88]), and
others are based on w-automata and language containment [Kur90]. Gupta [Gup92]

provides a good survey (though specialized to hardware applications).

28These techniques include hashing [Holgl], and symbolic methods using Binary Decision Dia-

grams [Bry86, BCM +92].
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Although state-exploration tools can handle large numbers of states, the presence

of a single 32-bit register in a design can introduce far more states than it is feasi-

ble to enumerate (and a mathematical integer in a more abstract specification will

introduce an infinite state space). Hence the need to explicitly simplify or "down-

scale" many of the problems that are submitted to analysis by state exploration.

But note that analysis of the downscaled version will be complete: if there is any

circumstance under which the downscaled design fails to satisfy the selected prop-

erties_ state exploration will detect it, and will often be able to provide diagnostic

information that helps identify the source of the fault. Although its applications are

somewhat limited in scope and scale, state exploration has the great advantage over

formal analysis based on conventional theorem proving that it can be completely

automated, and its use requires far less skill and training. The problems for which

state-exploration methods are best suited are those involving asynchronous parallel

activity, which are also those most difficult to debug using testing.

2.3 Validation of Formal Specifications

"It is a great advantage for a system of philosophy to be substantially

true." [George Santayana]

Making a specification formal does not necessarily make it true. In this section I

consider ways of gaining confidence that a formal specification says what is intended

and what is true. These provide the technical foundation for many of the benefits

ascribed to formal methods in the following section, and are also the methods for

counteracting most of the fallibilities of formal methods that are identified in the
section after that.

From personal experience and observation, it seems that writing formal spec-

ifications is at least as difficult as writing good informal specifications, or good

programs. The most common failing is suggesting an implementation, rather than

specifying simply what is required. To a large extent, however, judgments such as

these are of only aesthetic or economic significance: they are concerned with how

useful a sp.ecification may be, not with whether or not it is right. This question of

whether a specification is right--whether it says what is intended (or what should

have been intended!)--is answered through the process of validation. I identify two

components in this process: first, seeking assurance that the specification is inter-

nally consistent and that it means something; second, seeking assurance that it
means what is intended.
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2.3.1 Internal Consistency

A specification implicitly says much more than is explicitly written down; if we

believe a specification, we must also believe all the consequences that follow from it

by rational deduction. A formal specification is a collection of axioms and definitions

in some formal system; its consequences are all those formulas that can be derived

(i.e., proved) by formal deduction from those axioms and definitions. That set
of formulas is the theory defined by the specification. If its theory contains some

formula and its negation (i.e., both A and -_A for some A) then a specification is

inconsistent. By the rules of logici it is easy to see that an inconsistent specification

contains not only A and -_A for some formula A, but for all formulas. 29 Thus an

inconsistent specification does not constrain its theory at all, and therefore fails to

say anything useful.

There are two main ways to ensure that a specification is consistent: one is

to show that it has a model. This notion is explained technically in Appendix

Sections A.2, A.3, and A.4, but for the time being we can think Of it as meaning

that the specification can be implemented. The other way to ensure consistency is

by restricting the specification to forms that guarantee what is called conservative
extension. I will examine these two approaches shortly. First, though, I consider

methods for ensuring that a specification is free of various obvious mistakes that

may harbor a genuine inconsistency, or may be less damaging, but are in any case

best excluded.

2.3.1.1 Strong Typechecking

The basic way to catch mistakes in a specification is through redundancy: if we

see a function used with three arguments in one place, but only two in another,

then one of them is probably a mistake. 30 If we require the user to declare the

function and its number of arguments ahead of its use, then we increase the degree

of redundancy available, and hence the likelihood of detecting this kind of mistake.

A stronger form of the same idea is to allocate a type or sort to each entity that

distinguishes the kinds of values it can take. 31 Computer scientists are familiar

with this idea from programming languages, where variables may be declared as

real, integer, boolean and so on. They are also familiar with the idea that

29In logic, the proposition (A A -,A) D B is valid for any A and B. If we have an inconsistency
for some A (i.e., both A and -_A axe in the theory), then the rule of inference called modus ponens
allows us to conclude that B is valid, for any B.

a°Although some systems admit polttmorphic functions that can take different fiUmbers and types
of a_gumeats.

31See Appendix Section A.9 for an introduction to the technical issues.
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it is generally not a good idea to multiply a real by a boolean, 32 and that such

faults are generally detected at compile time. Specification languages can have

much richer type-systems than programming languages (since the types do not have

to be represented or implemented directly) and those that have any mechanized

support at all are generally provided with a typechecker, which is a program, not
unlike the front-end of a compiler, which checks that all uses of entities match their

declarations, and that entities are combined only in appropriate ways.

The strength (i.e., fault-detecting capability) of typechecking depends partly

on the logical foundation that underlies the specification language, and partly on

the diligence of the impIementors of the typechecker. It is difficult, for example to

provide really strict typechecking for languages, such as Z and VDM, that are based

on set theory. This is because everything in these systems is ultimately a set, and

the type-system has to be grafted onto an essentially untyped foundation. Thus

functions are sets of pairs in Z, and can take part in set operations such as union,

intersection and so on--there is nothing fundamentally contrary to the principles of
set theory in taking the union of, say, a function and the set of natural numbers. It

is highly unlikely that such a construction would be something the user intended,

but only slightly less outr6 constructions (for example the union of two functions)
can be used to rather good effect in skilled hands. Thus, it can be difficult to

provide a really thorough typechecker for languages based on set theory without

sacrificing some of the flexibility that is considered among the chief advantages of
such a foundation.

Type theory, or higher-order logic, which is the chief rival to set theory as a foun-

dation for specificatio n languages, is, as its name suggests, inherently a typed system.

Thus, strict typechecking is natural for languages based on this foundation. 33 The

price paid is a slight loss of flexibility compared with set theory, but the loss has

not been found significant in practice and is more than offset by the benefit of early

error detection and the claz|ty of expression fosteredby a typed system.

Given the utility of typechecking in detecting faults and inconsistencies, it is

natural that some specification languages should seek to exploit this utility still

further by enriching the type-system. The basic idea is to allow much of the spec-

ification to be embedded in the types; strict typechecking can then perform a very

searching scrutiny of the specification. For example, a very common technique in

the language Z is to constrain a function to be injective (one-to-one) or surjective

(onto). If a construction is later specified for the values of such a function, it is up

to the user to check that the construction satisfies the requirements of injectivity or

32A further embellishment refines the notion of type with that of dimension; thus, real numbers
representing time can be distinguished from those representing distance, and operations on inap-
propriate dimensions (e.g., the attempt to add a number representing distance to one representing
time) can be flagged as an error [CG88, Hi188].

33In fact, it is required in order to avoid antinomies such as Russell's paradox.
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surjectivity. But in a specification language with a richer type-system that includes

predicate subtypes, 34 the injections and surjections can be specified as subtypes of

the functions on the same signature, and typechecking a constructive definition for

such a function will require a demonstration that it satisfies the predicate that spec-

ifies injectivity or surjectivity as appropriate. In the language of PVS [0RS92], for

example, the specification fragment

injection: type = {f: [h --* t2] [ V(i,j: h): f(i) = f(j) D i = j}

specifies injection as the subtype of functions from tl to t2 (tl and t2 are type vari-

ables) that satisfy the one-to-one (injective) property. If we were later to specify the

function square as an injection from the integers to the naturals by the declaration

square: injection[int ---, nat] = ,_(z: int): z × x: nat 35

then the PVS typechecker would require us to show that the body of square satisfies

the injection subtype predicate. 36 That is, it requires the proof obligation i2 = j2 D

i = j to be proved in order to establish that the square function is well-typed. Since

this theorem is untrue (e.g., 22 = (-2) 2 but 2 # -2), we are led to discover a fault

in this specification. Notice that this approach requires theorem proving during

typechecking, and therefore requires a highly integrated system to support it. This

degree of sophistication is really limited to the upper reaches of Level 3 formal

methods, but serves to illustrate some of the advantages of that level of application.

The pushdown stack encountered earlier provides another example of the power

of a rich type-system. Recall that the specification given previously (page 25) made

no mention of the empty stack. It is easy to introduce empty as a special stack, but

then how do we ensure that this value is different from any that can be formed by

pushing values onto a stack, and what do we do about pop(empty)? Using predicate

subtypes, we can provide the following signatures for the stack operations (this

example is also in the language of PVS).

stack: type

34Predicates can be thought of as (and in some systems are) functions that return boolean values;
those arguments for which the predicate is true-define a Subtype of the type of its arguments.
Another kind of construction found in rich type-systems is the dependent type, in which the type
of one part of a compound construction depends on the value of another--for example, the range
type of the operator m rein n (the remainder when m is divided by n) is the subtype of the integers
in the range 0... n - 1 (i.e., the type depends on the value of n).

35The _ construction is a way of defining functions; think of the variables in parentheses coming
after the X as the formal parameters to the function, mad the expression after the colon as its
definition.

S6We would also be required to discharge the (true) proof obligation generated by the subtype

predicate for nat: ¥(z: int): z x x > O.
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empty: stack

nonempty..stack: type = { s: stack I s _ empty}

push: [ elem, stack _ nonempty_stack]

pop: [ nonempty_stack _ stack]

top: [ nonempty_stack _ elern]

With these signatures, the expression pop(empty) is rejected during typechecking

(because pop requires a nonempty_stack as its argument), and the theorem

push(e, s) _ empty

is an immediate consequence of the type definitions. For the same reason, the
construction

pop(push(y, s)) = s

is immediately seen to be type:c0rrect. And the expression = ==_-:

pop(pop(push(x, push(y, s)))) = s, (2.2)

which may not appear type-correct if only syntactic reasoning is used (the outermost

pop requires a nonempty_stack, but is given the resuii Of another pop--which is only _

known to be a stack), Can be shown to be well-typed by proving the theorem .... :

pop(push push(y,s))) # empty,

which follows from the axioms about pop and push given earlier. Use of theorem

proving in typechecking is perfectly reasonable for specification languages (where a

powerful theorem prover may be assumed to be available in Level 3 applications)

and it allows a very expressive notation to be provided relatively simply. In pro-

gramming languages, on the other hand, typechecking is usually expected to be

fast and deterministic. Unfortunately, many specification languages continue to

use programming-language style typechecking and cannot deal with formulas such

as (2.2) at all well. Simple typecheckers either regard the formula (2.2) as type-

incorrect, or they require the pop function to be of type [stack ---, stack]--in which

case, they are forced to regard the expression pop(empty) as well-typed and lose an
opportunity for early detection of faults.

Yet another example of the Utility Of predicate subtypes arises when modeling

a system by means of a state machine. Recall (from Subsection 2.2.1) that the
basis of this method is first to identify the components of the system state; an

invariant then specifies how the components of the system state are related, and

operations are required to preserve this relation. It is, of course, possible to construct

a special-purpose to0i that will generate the associated proof obligations( but this
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tool will have only a single function. With predicate subtypes, on the other hand,

the generation of the necessary proof obligations comes for free during typechecking:
we use the invariant to induce a subtype on the type of states, and specify that each

operation returns a value of that subtype.

An alternative to a strong type-system embedded in the specification language

and enforced by its mechanized support system is for the user to supply type-

predicates within an untyped system. For example, we could define a predicate

is_injection and supply it whenever we wished to indicate that a function was in-

tended to be one-to-one. For example, we might specify the is_injection predicate

by

is_injection(f) = gi,j: f(i) = f(j) D i = j

and then specify the square function axiomatically by

is_injection(square) A square(i) = i x i. (2.3)

The disadvantage of this approach is that it requires the type predicates to be stated

repeatedly in the specification, and it requires the user to remember to do so: in

effect, it puts the whole burden of typing and typechecking on the user. And it

provides no automated help in the discovery of the inconsistency in the axiom (2.3).

Some authors prefer this arrangement for its flexibility (e.g., Lamport [Lam91]),

but for the most part these objections to strongly typed systems are overcome when

typechecking is supported by theorem proving, instead of being the largely syntactic

mechanism used for programming languages.

To summarize: strong typechecking is an extremely effective tool for detecting

mistakes in specifications. It cannot guarantee to eliminate inconsistencies or other

kinds of faults, but it is a very cost-effective way to detect a goodly proportion of

them. Rich type-systems supported by theorem proving increase the effectiveness

of typechecking, and the economy of the specification, by allowing much of the

specification to be embedded in the types. In addition to supporting economy of

expression and effective fault detection, strong typing also helps in the development

of specifications: the types often suggest the kinds of expression that are required

(rather like dimensional analysis in physics or valences in chemistry).

2.3.1.2 Definitional Principle

Earlier (in Subsection 2.3.1), I stated that a formal specification is basically a collec-

tion of axioms and definitions, but I did not explain the difference between an axiom
and a definition. The difference is that whereas an axiom can assert an arbitrary

property over arbitrary entities (new and old), a definition is a restricted kind of

axiom that defines some new concept in terms of those already known. For example,
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in the theory of stacks, we have the notion of popping a stack, and of pushing a value

onto a stack; the relationship between these is specified by the axiom

pop(push(s, e))= s

which states that if you push the value e onto a stack s, and then pop the result,

you end up with the stack you started with. This specification is an axiom: it is not

introducing or defining the concepts pop or push, it is specifying a certain property
of their interaction.

On the other hand, if we say

[x[ = if x < 0 then - x else x endif

and all the concepts on the right-hand side of the = are already known, then we

have defined the absolute value function, Ix[. Because they do not assert new prop-

erties of existing concepts, but rather define a new concept in terms of those already

known, properly formulated definitions cannot introduce inconsistencies. "Properly

formulated" means constructed according to a definitional principle of the specifica-

tion language concerned; a definitional principle must ensure that definitions provide

only what in logic is called a conservative extension to a theory, aT Many specifi-

cation languages have an associated definitional principle. Precisely what concepts

can be defined in this way depends on the richness of the underlying logic, on the

strength Of the definitional principle, and on the power of its associated mechaniza-

tion. For example, in many systems it can be rather difficult or impossible to specify

by a definition the function rain that returns the minimum value of a set. Instead,
an axiom of the form

rain(x) x^ (Vy:y x Dmi (x) _<y)

is usually requiredl In sYstems rich enough toprov]de Hilbert's e operator [Lei69], Sa

however, the function can be specified definitionally by

rain(z) = ez:z E x A (Vy:y E x D z _(y)

The strength of a definitional principle also determines whether recursive definitions

can be admitted. The difficulty with recursion is that it may not "terminate" for

certain arguments (i.e., the function may be partial). For example,

nono(x) = if x = 1 then 1 else x + nono(x - 1) endif

3'A theory_A is--an extension of a th_ry-B if itsl_guage includes th-at- of B and every theorem

of B is also a theorem of A; A is a conservative extension of B if, in addition, every theorem of A

that is in the language of B is also a theorem of B.

ZS¢z:P(z) means "a z such that P holds for that z." If P is unsatisfiable, then an arbitrary z is

chosen. The type of z must be nonernpty.
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is not well-defined for arguments of zero or less (nor for noninteger arguments).

One way to extend a definitional principle to recursive definitions requires that some

"measure" function of the arguments should decrease across recursive calls, and that

the measure function should be bounded from below. 39 The example above becomes

well-defined if, for example, z is required to be a strictly positive integer--in which

case the identity function on the strictly positive integers serves as the measure; it

decreases on recursive calls to nono (i.e., x - 1 < x), and cannot decrease without

bound because it is specified to be strictly positive. 4°

This definitional principle ensures that recursively defined functions are total

(i.e., defined for all values of their arguments). Some authors claim that this is too
restrictive and that it is necessary to admit partial functions into the logic underlying

a specification language [CJ90]. The standard "challenge" is the function subp on

the integers defined by

subp(i,j) = if i = j then 0 else subp(i,j + 1) + 1 endif.

This function is undefined if i < j (when i >_ j, subp(i,j) = i-j) and it is argued

that if a specification language is to admit this type of definition, then it must

provide a treatment for partial functionsl Partial functions can greatly complicate

a logic (see Section 2.6) and are inimical to efficient theorem proving. Fortunately,

examples such as these do not require partial functions: they can be admitted as

total functions on a very precisely specified domain. Dependent types, in which the

type of one component of a structure depends on the value of another, are the key

to this. For example, in the language of PVS, subp can be specified as follows.

subp((i : int), (j : int l i > j)): recursive int =
if i=j then 0 else subp(i, j+l)+l endif

measureA(i: int), (j: int [i>_ j): i-j41

39Another way to admit recursive definitions is to provide a fixed "template" that such definitions

must follow. A meta-proof establishes that all correct instantiations of the template will be well-

defined. This approach can be easier to implement than one involving measure functions (it does

not require theorem proving during the analysis), but is more restrictive. The "shell" mechanisms

for abstract data types that are described later are essentially a sophisticated template approach

for a fairly general class of definitions.

4°The reader might wonder how the argument would go if the recursive call were nono(x - 2):

the same argument seems to work, yet it is clear the definition does not terminate if the outermost

argument is an even number. The explanation is that nono is specified to take a positive integer

as its argument but z - 2 does not typecheck as a positive integer (the typecheck proof obligation

z > 0 ^ z ¢ 1 D z - 2 > 0 is false). Hence, the definition will be rejected. This example shows
how delicately interdependent some aspects of typechecking can become in languages with rich type

systems.
41The measure clause specifies a function to be used in the termination proof.
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Here, the domain of subp is the dependent tuple-type

[i: int, {j: int[ i >_j)]

(i.e., ordered pairs of integers in which the first component is greater than or equal

to the second) and the function is total on this domain.

Enforcing a definitional principle generally requires mechanical tool support (it

can, in theory, be done by hand, but is tedious and error prone). Furthermore, a

definitional principle for recursive functions generally requires theorem-proving ca-

pability in its enforcement mechanism. But once theorem-proving support is avail-

able, it then becomes possible to enrich the definitional principle still further. For

example, introducing a constant of a subtype defined by a predicate can introduce

an inconsistency if the predicate is unsatisfiable (i.e., if the subtype is empty). Such

subtype definitions can be made conservative by a definitional principle that requires

their defining predicates to be satisfiable which in turn requires theorem proving

to enforce. It follows that the most extensive definitional principles are associated

with specification languages having extensive to0i support; conversely, systems that

have traditionally lacked tool support (for example Z) generally have no definitional

principle associated with them ( [Art91] de-scribes an attempt to retrofit a principle

of conservaEve extension to Z using a mechanization based on HOL).

The advantage of a definitional principle is that those concepts introduced by
means of definitions cannot introduce inconsistencies. 42 But definitions are not

always to be preferred to axiomatic specifications: definitions have a constructive

character that can result in "overspecification"--suggesting too much about how

a concept is to be realized, rather than simply stating what is required of it. For

example, the axiomatic specification of a pushdown stack given earlier states only

the essential properties required of a stack, and we are free to implement it later in

any way that satisfies its axioms--with a list, for example, or with an array and a

pointer. A definitional specification of a stack, on the other hand, would generally
construct it on top of some more primitive concepts, such as an array or list, thereby

suggesting an implementation.

By introducing a type of definitional principle called a "shell" IBM79], it is some-

times possible to have the best of both worlds and to specify abstract data types such

as stack definitionally, yet without implementation bias. A shell principle basically

permits a very compact specification of the relations between the "constructors,,

"accessors," and "recognizers" of an abstract data type; not all abstract data types

can be specified in this way, but many can. Internally, the compact specification is

expanded into a set of axioms whose consistency is assured by a meta-proof on the

42Definitions are also conducive to efficient theorem proving (using a technique known a.s "rewrit-

ing_), and to the development of executable spedticati0ns.
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shell principle. For example, in PVS, the stack specification given earlier (with the

empty stack distinguished) can be specified as follows.

stack [ t: type ]: datatype

begin

empty: empty_stack?

push( top: t, pop: stack) : nonempty_stack?
end stack

Here empty and push are the constructors, empty_stack? and nonempty_stack?

the recognizers (and the corresponding subtypes) for their respective constructors,

and top and pop axe the accessors for nonempty stacks. The whole specification

is parameterized by the type t of elements to be pushed on the stack. These few

lines of specification expand into a couple or so pages of type definitions, function

signatures, the axioms shown previously, and several more axioms that provide an
induction scheme and other useful constructs.

A shell principle ensures consistency of an axiomatization by generating a highly

stylized set of axioms of a form that has been shown, once and for all, to be con-

sistent. Another approach allows the user to write axioms of a certain restricted

form and then checks the axioms for properties that are sufficient to ensure con-

sistency. Equational specifications provide an example of this approach. If all the

axioms have the form of equations with the properties of "finite termination" and

"confluence" [Hue80], then the axiomatization is consistent. Confluence can be

tested using the Knuth-Bendix algorithm [KBT0] (though this algorithm may not

terminate if the equations are not confluent), and there are a variety of special-

case methods for testing the finite termination property. Affirm [Mus80], and more

recently Reve [Les86] and RRL [KZ88], support these techniques. An attractive

side-effect of this approach is that it can provide a decision procedure for the theory

concerned; its disadvantage is that it has rather limited application in practice.

I mentioned above that some specification languages have no definitional princi-

ple; conversely, certain systems for specification and verification have only a defini-

tional principle and make no provision for general axioms (the Boyer-Moore prover

is like this in its unadorned form--i.e., without the extensions of [Kau92]). In my

opinion, neither of these extreme positions is ideal; a specification language should

provide rich and powerful definitional principles (including, for example, a shell

mechanism), but should not exclude arbitrary axiomatizations. It should, however,

provide some assistance in demonstrating the consistency of such axiomatizations,

and that is the topic of the next subsection.
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2.3.1.3 Exhibition of Models

A set of axioms must be consistent if the axioms are satisfied by some real object.

When the real object is a mathematical structure (an algebra), it is called a model

for the axioms. 43 One way to show that a specification is consistent, therefore, is

to show that its axioms have a model. This can be done fairly straightforwardly in

semiformal (i.e., Level 1) applications, but it requires some sophistication to provide

mechanical support. The difficulty for mechanization is that we cannot exhibit

"real objects," only descriptions (i.e., specifications) of such objects. Rather than

relate a specification to a model, we therefore have to relate two specifications. The

appropriate way to do this uses the notion of theory interpretations [Sho67, Section

4.7]; the basic idea is to establish a translation from the types and constants of

the "source" specification (the one to be shown consistent) to those of a "target"

specification (that we already believe to be consistent) and to prove that the axioms

of the source specification, when translated into the terms of the target specification,

become provable theorems of that target specification. If this can be done, then we
have demonstrated relative consistency: the source specification is consistent if the

target specification is. Generally, the target specification is one that is specified

definitionally, or one for which we have some other good reason to believe in its

consistency.

The machinery of theory interpretations can also be used to demonstrate the

correctness of hierarchical developments--that is, to show that a more concrete

spedfication is a satisfactory implementation of a more abstract one. For example,
the way we demonstrate that an array and a pointer can be used to implement

a stack is by showing that a specification of such an implementation satisfies the
abstract stack axioms, a4 The only difference between the use of theory interpretation

to demonstrate correctness of an implementation and to demonstrate consistency

of a specification is that for the latter, the "implementation" does not h_Lve to be

useful, or realistic, or efficient; it just has to exist.

When a specification is describing something that is to be implemented, the

demonstration of its consistency can be combined with that of the correctness of

its implementation. Sometimes, however, a specification is describing assumptions
about the world, or specifying an artifact that is to be built by others. In these cases,

we will not be developing an implementation, so demonstration of consistency does

not come "for free," but requires a deliberate decision to exhibit a model. For

example, fault-tolerant clock synchronization is based on some assumptions about

the behavior of "good clocks'--that they keep reasonably good time, and that one

4aThese notions are treated in a more technical fashion in Appendix Section A.2.
44An alternative way to demonstrate the correctness of an implementation uses the "abstrac-

tion" functions introduced by Hoare [Hoa72]; these are called Uretrieve" functions in the VDM

methodology and are discussed at length by Jones [Jong0].
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processor can obtain a reasonably accurate estimate of the reading of the clock of

another processor, and so on. These assumptions are captured in a number of ax-

ioms and we can demonstrate their consistency by constructing an interpretation

in which clocks keep perfect time, and can be read with perfect accuracy. It does

not matter that this interpretation is unrealistic: its only purpose is to demonstrate

that the axioms are consistent. As I mentioned earlier, Friedrich yon Henke and I

did not do this for an early version of our verification of the Interactive Convergence

Clock Synchronization Algorithm, and Young showed that our axiomatization ex-

cluded this interpretation [You92]. Our mistake (using < in one axiom where _<

is preferable) did not render the axiomatization inconsistent (though it could have

done, since we had not explicitly checked them), but it excluded an intended model.

Another specification that I developed [Rus86] was found to be genuinely inconsis-

tent [KM86]. My experience is surely not unique, and should serve to demonstrate
the value and importance of providing models to attest the consistency of axiomatic

specifications. Even when demonstration of consistency can be achieved as part of

a hierarchical development, it can sometimes be worthwhile to exhibit a very simple

model (i.e., a totally unrealistic implementation) in order to gain early assurance of

consistency before undertaking the full implementation.

The fact that we may be able to exhibit unrealistic interpretations for the pur-

pose of demonstrating consistency suggests that a specification can have many in-

terpretations (or implementations or models). Generally, this is desirable, for if a

specification has only a single implementation, then it is surely a very restrictive

specification--really more of an implementation. Since specifications do not, in gen-

eral, characterize a single, unique implementation, most specification languages are

said to use loose semantics: that is, any implementation that satisfies the specifi-

cation is considered acceptable. 45 If an implementation has undesirable properties,

then we should have given a more restrictive specification that will rule out imple-

mentations with those properties. There are, however, a few areas where restrictions

are placed on the models assumed and implementations allowed. For example, in

some treatments of specifications based on equational logic (i.e., specifications whose

axioms are all equations), initial or (more rarely) final models are often assumed.

And some treatments of computer security require that implementations be "faithful

representations" (an undefined term) of their specifications.

Mechanized support for theory interpretations can be quite challenging and is

generally found only at the upper reaches of Level 3 applications of formal methods.

Among the details that must be dealt with are the need to translate the definitions

and theorems of the source theory into the terms of the target theory, as well as

the axioms, and the need to ensure that interpretations of equality maintain the

45This is consistent with ordinary logic, where a theorem is considered valid if and only if it is

true of all models that satisfy the axioms.
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properties assumed of an equality relation (alternatively, quotient types must be

supported).

2.3.1.4 Modules and Parameters

It is generally convenient if specifications can be developed in fairly small, self-
contained units which I will call modules. Just as with programs, specification

modules allow related concepts to be grouped together into a larger conceptual unit

and thereby support separation of concerns and reuse. A specification language

must provide methods for combining modules in various ways to yield larger specifi-

cations. For this to be most effective, modules need to be parameterized, rather like

the functions and procedures of a programming language, so that they can spec-

ify concepts with a certain genericity. For example, a module that specifies sorting

should be parameterized by the type of thing that is to be sorted and by the ordering

relation with respect to which the things are to be sorted.

In modern programming languages, it is necessary in a procedure declaration to

specify the types of the parameters that are required: we should not be allowed to

supply a string of characters to an arctangent procedure. In specification languages,

it is necessary to do the same and more: it is often necessary to place constraints

on the properties of module parameters. In a sorting module, for example, one of

the parameters will be the type of thing to be sorted, represented by t, say, and

the other will be an ordering relation. But it is not enough, as some specification

languages do, to simply state the signature of the required relation (i.e., t x t), it

is also necessary to stipulate that it must be a total ordering relation (that is, it

must have the properties of trichotomy, reflexivity, transitivity, and antisymmetry).

Generally speaking, these properties may be assumed inside the module, but must

be proved in any instantiation of the module. In the absence of these safeguards,

it is possible to combine individually consistent modules into an inconsistent whole.

As with some of the techniques of strong typechecking, these safeguards require

theorem proving during specification analysis and are therefore often enforced only

in Level 3 applications. Even if they cannot be mechanically enforced, it is important

that assumptions on module parameters should be specified (and checked by hand)

in applications of formal specifications at all levels. Regrettably, some specification

languages that stress modularity and parameterization (e.g., Z) have overlooked this

important aspect of soundness.

2.3.2 External Fidelity

I have considered methods of examining specifications for internal consistency--

these are ways of making sure that a specification says something sensible; I now

examine ways of scrutinizing specifications to make sure they say what is intended.
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In the case of specifications of designs to implement other, more abstract speci-

fications, we simply have to show that the design satisfies its superior specification.

This is really a problem of verification and, as explained in the previous section, it

is a problem that can be formalized and that is amenable to proof. The more chal-

lenging problems concern top-level, or requirements specifications, and statements

of assumptions--for here there are no higher-level specifications against which to

conduct a verification. The issue in these cases is truly one of validation. By their

very nature, the problems of validating top-level specifications or statements of as-

sumptions do not lend themselves to definitive proof; all that can be done is to

examine the specifications from wrious perspectives, and to probe and test their

consequences until we are satisfied that they adequately capture our requirements,

or the real-world phenomenon they are intended to describe.

The first level of scrutiny that may be applied to a formal specification is informal

human review: those with an understanding of the problem to be specified examine

and discuss its formalization. Not all of those with understanding of the problem

domain will be skilled in the reading of formal specifications. Consequently, it

is usual for a specialist in the formalism concerned to be available to interpret and

explain the specification to the domain experts. This, of course, interposes a layer of

interpretation between the specification and those best suited to evaluate it, and so

an often-expressed desideratum for formal specification languages is that they should

be directly comprehensible to nonspecialists, so that this layer of interpretation is not

required. For example, diagrammatic or tabular notations are familiar to engineers

in many fields, and it is sometimes suggested that formal specifications should be

expressed in these forms.

The problem with this approach is that while diagrams and tables may be con-

venient ways to explain certain types of specification, they do not lend themselves

to particularly effective mechanized reasoning: they may lower the barriers to en-

gineering review, but at the price of raising barriers to mechanically snpported

analysis. Furthermore, different problem domains lend themselves to different types

of diagrams or tables (e.g., compare the state-transition diagram for a controller,

the timing diagram for a protocol, and the block diagram for a hardware design),

and some do not lend themselves to diagrammatic presentation at all (e.g., an algo-

rithm for clock synchronization). It follows that a formal specification method built

around a particular diagrammatic or tabular notation may have rather restricted

application, and limited mechanized support for general forms of analysis. On the

other hand, it may be very convenient and amenable to effective review in those

fields to which its notation is well-matched. A compromise arrangement that seems

promising is to develop specifications in languages optimized for expressiveness and

the effectiveness of their support for mechanized reasoning, but to provide tools that

translate specifications satisfying certain restrictions into a variety of diagrammatic

and tabular presentations. Such an arrangement may be compared to one in which
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differential equations (say) are used to specify mechanical systems, and in which

graphs and tables can be computed to assist users' comprehension of the specified

system.

Although I recommend that specification languages should primarily be designed

for expressiveness and the effectiveness of the mechanical support that can be pro-

vided, rather than for the convenience they afford to nonspecialist reviewers, this

does not mean that I advocate recondite methodologies or runic notations. For most

purposes, specification languages based on classical logics (e.g., higher-order logic or

first-order logic with set theory) permit fairly clear and direct expression and, while

it takes skill and practice to write good specifications in these (or any) notations, it

need not be hard to read and understand them. More ambitious foundations (e.g.,

constructive type theories) are generally difficult for nonspecialists to comprehend,

while foundations based on weaker logics (e.g., unquantified notations such as equa-

tional logic, Horn clauses (i.e., Prolog), and the Computational Logic of Boyer and

Moore IBM79, BM88]) often necessitate encodings that resemble programs rather

than specifications. For example, to state that all components of a certain structure

should possess a certain property, a computational logic may require specification of

a recursive function that examines each component in turn, whereas a richer logic

would allow a simple quantification (i.e., (Vx:...)). Not only is the recursion an indi-

rect encoding of the intended property, it is likely that proofs involving the property

will require induction rather than straightforward quantificational reasoning.

If the choice of the underlying logical formalism has a profound influence on the

deep structure of specifications, so the notational conventions employed can have

an effect on their surface appearance that may be no less profound in determining

their readability and acceptability. The use of compact and familiar notations such

as infix operators (i.e., a+ b rather than (add a b)), standard notation for function

applications (i.e., f(x,y) rather than (f x y), fxy, or f(x)(y)), and computer

science constructions such as if...then ... else ..., and case expressions, can all

ease the task of comprehending formal specifications.

It is not necessary that specifications actually be processed by their support

system in this form, as long as there are ways to communicate them to human

reviewers in civilized notation. There is much to be said for providing specifica-

tion languages with sophisticated prettyprinters that can typeset specifications into

compact notation which matches that employed in the field concerned. PVS, for

example, generates output under the control of simple user-written tables so that

specification text such as

abs(c(p, ±, T) : c(q, i. T))

(which arises in analysis of clock synchronization) can be typeset as

]cT)(T ) - c_')(T)l ,
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which is instantly recognizable to those working in this field. Some systems actually

manipulate this latter form as the specification text, rather than merely generate it

as output. The disadvantages of this approach are that inputting non-ascii symbols

into the system can become complex--involving structure editors or mouse manip-

ulations that rapidly become tedious--and revisions to the notation may require

changing every reference to the symbols concerned.

In addition to prettyprinting and typesetting, other simple tools can materially

assist in the comprehension and scrutiny of specifications. Cross-reference tables,

for example, make it easier to navigate large specifications, and dynamic browsing

tools that, for example, permit immediate location of the declaration of an identifier

or of all axioms including a certain term, can provide even greater assistance.

Although, as described, much can be done to assist the comprehension of formal

specifications, there is a limit to what can be achieved by inspection. More searching

scrutiny requires testing or, as I shall say, challenging the specification. The idea

of a challenge is to pose a question that an adequate specification should be able to

answer. For example, suppose we had specified the operation of sorting a sequence;

we might then ask whether sorting an already sorted sequence leaves the sequence

unchanged (i.e., whether sorting is idempotent)--that is, we might ask whether

 ort( ort( )) = sort(x)

is a theorem of the specification (assuming sort is a function that takes a se-

quence as argument and returns the sorted sequence as its value). Gerhart and

Yelowitz [GY76] report that early specifications of sorting were deficient in that

they required the output of the operation to be ordered, but neglected to stipulate

that it should also be a permutation of the input. Art attempt to prove the theorem

above would reveal such inadequacies. Even with an adequate specification, how-

ever, we might find that our putative theorem is unprovable; further examination

would help us understand why and might lead us to the notion of a stable sort (one

that does not reorder elements of the sequence that are equivalent with respect to

the ordering criterion, but distinguishable in other ways). We could then decide

whether stability was important to our application and, if so, could adjoin it as an

additional requirement of the sorting specification.

Challenges such as this allow a specification to be explored in an active manner

not unlike the testing of a program: in a way we are using theorem proving to "ex-

ecute" the specification. With certain specification styles this notion can be taken

further: the specifications truly can be executed. This is the case with Horn clause

(Prolog) specifications, and those written in the form of quantifier-free equations
or recursive functions. 46 Other executable specification languages resemble func-

46The execution mechanisms are specialized theorem-proving techniques: SLD resolution in the

case of Prolog, and term rewriting in the other cases.
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tional programming notations, and are sometimes called "prototyping" rather than

specification languages [AJ90].

The problem with executable specifications is that they are often closer to pro-

grams than specifications; some of the benefits of formal specification have to be

sacrificed in order to achieve executability [HJ89]. For example, directly executable

specifications cannot describe the sorting operation simply in terms of its properties

(i.e., that the output is an ordered permutation of the input), but must instead spec-

ify a particular sorting algorithm. One compromise approach that has some promise

allows those parts of a specification that lend themselves to it to be executable di-

rectly, while other parts are "animated" by conventional program text supplied by

the user or built in to the system [HI88]. Various degrees of rigor are possible here:

for example, the animating program text could be proven correct with respect to the

specification, or could simply be taken on trust as a "rapid prototype" 47 or, rather

than conventional program text it could be an executable specification derived (and

perhaps verified) from the original nonexecutabie specification.

While execution of test cases can be a useful aid to validation, the more generai

challenges mentioned earlier may be more revealing and may yield greater insight

since, like other formal verification methods, they examine general properties, not

merely behavior on particular inputs. However, validation is assisted by examin-

ing the specification from as many viewpoints as possible, and both execution and

cha_enges contribute to that end.

Still another viewpoint can be obtained by challenging a specification not with a

putative theorem, but with a putative interpretation (which may be an executable

implementation in some cases). Although property-oriented specifications are often

to be preferred at the requirements level, our intuition may have an algorithmic slant

(which is probably why inexperienced writers of formal specification often produce

very constructive specifications: rather than simply assert the properties required,

they prefer to suggest how to achieve those properties). We can exploit this intuition

by checking whether certain implementations satisfy our specification or not. For

example, we could reinforce our belief that we have specified sorting correctly by

verifying that a simple sorting algorithm is a correct implementation of the specifi-

cation. For another example, recall that earlier I mentioned how an axiomatization

of "good clocks" for a synchronization protocol could be shown consistent by ex-

hibiting an interpretation in which clocks kept perfect time and could be read with

zero error. This interpretation not only demonstrates consistency, it is surely an

47Although a property-oriented specification may no_ be directly executable, it may yield an
executable test that can be applied as a run-time check on the correctness of the animating code.
For example, a property-oriented specification of sorting is not directly executable, but it could
yield an executable test for the property that a sorted sequence is ordered (permutation is more
di_cult). The use of specifications to provide run-time checks on an implementation is a feature of
the Anna system [LvHKBO87, Lucg0].
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example (albeit extreme) of what good clocks should be, and so it is reassuring that

it is indeed a model of the axioms. Sometimes we will want to do a negative test.

For example, we might want to check that clocks which have stopped, or that have

large read errors do not satisfy the axiomatization of "good clocks."

I have considered ways to examine specifications for universal properties (those

that should be possessed by all specifications) such as consistency, and ways to gain

confidence that a particular specification says what is intended. In between are a

number of broad attributes that may be important for some classes of specifications

but not others. For example, Jones [Jon90, Chapter 9] describes how to examine

"model-oriented" (i.e., constructively defined) specifications for implementation bias

(basically, a specification is biased if it distinguishes states that cannot be told apart

using the operations provided). Another important notion that has different inter-

pretations for different classes of specifications is that of completeness. 4s Informally,

a specification can be considered complete if identifies every contingency and defines

the behavior required under every possible execution scenario. When considering

small components of a system, however, this broad notion of completeness needs to

become more specialized.

When specifying an abstract data type, for example, we may wonder whether

the axioms provided for the set of operations are sufficient to adequately specify

all behaviors. Guttag and Horning [GH78] define a property called sufficient com-

pleteness that captures this notion for a certain class of specifications, and they also

give some heuristically effective procedures for checking this property. Kapur and

Srivas [KS80] consider a slightly different problem: how to tell whether the opera-

tions provided for an abstract data type are sufficiently comprehensive to support

all likely uses of that data type.

Jaffe and Leveson [Ji89] (a somewhat different version appears as [JLHM91])

describe a rather different interpretation of completeness that arises in real-time

process-control systems. They consider systems whose requirements can be viewed
as a set of assertions of the form

trigger _ output

where trigger denotes the set of conditions under which the output (or set of outputs)

should be produced. They stress the importance of the bidirectional implication

(¢v): in safety-critical applications itis not only necessary to be sure that an output

is produced when required (i.e., trigger =_ output), but also that it is produced only

when required (i.e., trigger ¢: output). This means that all the conditions that

should cause a particular output axe disjoined (or'ed together) to create the trigger

4Sin logic, this term has a very precise meaning: a formal system is complete if every true fact is
provable (it is sound ff every provable fact is true). But this is not the sense in which the term is
used of specifications.
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for that output. Triggers can refer to input data values, to the absence of a data

value (within a specified time bound), and to the value of state variables.

The basic notion of completeness of such a specification is that the disjunction

of all the triggers should be a tautology (i.e., the triggers must completely cover the

space of possible behaviors). For example, if we have the trigger

height < 50

then we must also have some other trigger containing the expression

height > 50

(or some set of triggers whose disjunction is equivalent to this). More subtly, note

that both these triggers imply that a height input datum is available; therefore there

should also be a trigger that is activated when this input is not available.

Generally it is not enough to consider only the presence or absence of input

data; most process-control systems are cyclic and it is the presence or absence on

each particular iteration, or in some specified time window, that is important. All

expressions appearing in triggers should therefore contain time bounds (except those

that refer to the start-up event), and the tautology condition applies to these time
bounds as well.

,Iaffe and Leveson extend these basic completeness criteria with consideration

of capacity (and the need to specify what should be done in the case of overload),

start-up and shut-down, and responsiveness. The latter is an interesting notion.

Certain outputs should lead to noticeable changes in inputs some time later (e.g.,

a "roll right" output should roll the plane and sensor data should shortly confirm

that this is happening). Completeness requires that each such output should have

two associated triggers: one that recognizes the expected response, and one that

recognizes its absence or an unexpected response.

Although most of Jaffe and Leveson's completeness criteria concern triggers,

they also propose some for outputs. For example, the output that turns a piece

of equipment on may normally expect that it was formerly off. By including this

condition in the trigger for that output, the tautological completeness criterion will

force consideration of the case that the device is already on. More global criteria can

be based on reachability analyses. For example, if all paths from a given state that

cause a certain device to be switched on have triggers that require the presence of

data from a particular source, then loss of that source will prevent the device from

being switched on once the given state is encountered. This might be intended (e.g.,

a fail-safe condition on the arming of a weapon) or it might not (e.g., the inability

to use the brakes on landing because a failed load sensor suggests the plane is still

airborne) and a warning or override might be appropriate.
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Jaffe and Leveson's criteria for completeness are obviously not exhaustive (it

seems unlikely that any general criteria could be), but they offer a good starting

point that may be modified or extended to suit the circumstances of particular sys-

tem developments (e.g., Lutz [Lut93b] reports that a checklist derived from Jaffe,

Leveson and Melhaxt's proposals would have identified over 75% of the "safety-

critical" faults discovered during integration and system testing of the Voyager and

Galileo spacecraft). Equally obviously, the examination of a specification accord-

ing to their criteria can be performed informally. But formal specifications allow

their criteria to be posed as formal challenges that can be analyzed using formal

verification techniques.

2.4 Benefits of Formal Methods

I have indicated several potential benefits of formal methods in earlier sections; here

I collect together the various advantages claimed for formal methods and present

them in a fairly systematic manner. The presentation divides into three subsections,

the first two describing the benefits of formal specifications and formal verifications,

respectively, and the third focusing on the potential contributions of formal methods

to the assurance of safety-critical systems. In the section after this, I discuss the

other side of the coin: the fallibilities of formal methods.

2.4.1 Benefits of Formal Specifications

A major benefit that is claimed for formal methods in general is that the concepts

from logic and discrete mathematics that are embodied in formal specification meth-

ods provide effective mental tools for organizing our thinking about computer sys-

tems and for communicating our thoughts to others. The notions of sets, relations,

functions and their various properties and operations, together with the ideas of

universal and existential quantification, provide a set of mental building blocks that

allow specifications to be built up in a fairly clear and straightforward way, with-

out tl_e looseness and unconstrained freedom of natural language, or the specious

precision of most diagrammatic notations, or the algorithmic detail of pseudocode.

The chief technical advantages claimed for formal over informal specifications axe

precision and lack of ambiguity. Imprecision and ambiguity are two closely related

flaws that can afflict specifications; I will say that a specification is imprecise if it

does not provide enough information to determine what is intended in a particular

circumstance, and ambiguous if the intentions are open to different interpretations.

For example, an imprecise specification might say that the undercarriage should be

lowered for landing, but not indicate at what height it should be lowered; whereas

an ambiguous specification might say that the control surfaces on each wing should
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be driven by different channels--does this mean the ailerons on the left should be

driven by one channel and those on the right by another, or that the ailerons should

be driven by one channel and the spoilers by another, or some yet more complicated

arrangement? Imprecision is clearly related to incompleteness, but I will reserve

the term incompleteness to describe the situation where nothing is said about what

is intended in a particular circumstance (so that it is not even clear if there is an

intention to specify behavior for this circumstance).

Imprecision and ambiguity in informal specifications can arise because natural

language constructions often depend on context,49 because many words have several

different meanings, and because people can be careless or ignorant of grammar. The

main way that formal methods help reduce imprecision and ambiguity is by removing

the associations carried by natural language: the terms in a formal specification have

no meaning other than those explicitly specified. Thus, if we start a specification

by stating

mode = landing D undercarriage_position = down

then the questions naturally arise: what other modes are there, and how alad when

do we enter and leave landing mode? By isolating the term landing and placing it in

a formal context, we have stripped it of some of its intuitive associations and made

it clear that it will be necessary to be explicit about those attributes of "landing"

that are germane to the problem being specified.

Thus the simple fact that formal specifications require us to "define our terms"

encourages a more systematic, and therefore a generally more complete and precise,

enumeration of requirements than informal specifications. Other symbolic specifica-

tion techniques, such as pseudocode, data dictionaries, and those based on dataflow

representations, can have similar benefits, but generally they also impose more con-

crete and operational detail than may be necessary or desirable in requirements

specifications, and they do not lend themselves to formal deduction.

The possibility of formal deduction means that formal specifications can also

assist in the development of more precise and complete specifications through the

process of "challenging" them. When we first challenge a specification with a con-

jecture such as "does sorting a sorted sequence leave it unchanged?" the answer is

often "maybe": we discover that the specification is not sufficiently precise or com-

plete to answer the question. Thus, posing a challenge can prompt us to consider

missing or imprecise aspects of the specification (in this case, the topic of stability

in sorting), and to decide consciously on the intended treatment--which may be to

leave a certain property deliberately unspecified at this stage.

-_,0rrnal spedfications c_ _ssist]n _ihe identification and elimination of ambigu-

ities in much the same way they do for imprecision. Ambiguities can be real or

49Compaxe the injunction _seat belts must be worn _ seen at a freeway entrance with adogs must

be carried _ seen by an escalator.
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apparent. A real ambiguity arises when two contradictory statements can be de-

duced from a specification. In this case, the specification must be inconsistent, and

techniques for avoiding inconsistent specifications were described in the previous

section. Apparent ambiguities arise either when the specification allows two state-

ments that seem in conflict, or when single statements are interpreted in different

ways by different people. Assuming a specification is consistent, apparently contra-

dictory statements must indeed be only apparently so. An appropriate response is

to challenge the specification further in order to better understand why it entails

both statements, or to better understand the reasons why the statements strike us

as contradictory. Statements that are interpreted differently by different people can

be probed by inviting those involved to sharpen their points of difference. It should

be possible to identify a testable distinction: "if this means what I think it does,

then this ought to follow, whereas if you're right, that ought to be the case." If

one conclusion or the other is a valid consequence of the specification, then the

difference of opinion should have been resolved. If both or neither follow from the

specification, then we must probe further.

In all these cases, the probing and resolving of imprecision and ambiguity through

challenges and deduction are possible precisely because a formal specification is a

formal system: the consequences of the specification are just those formulas that can

be calculated (i.e., proved) by formal deduction from its axioms and definitions. We

can therefore settle with certainty whether or not a given formula is entailed by the

specification. Thus, an advantage of formal specifications is that questions about

their meaning and the consequences that they entail can be posed and answered with

scientific precision. In nonformal developments, such precision is usually possible

only much later in the lifecycle, when programming is under way.

And that is another significant advantage of formal over informal methods of

specification: they provide specifications that can be rigorously checked, analyzed,

and tested in various ways much earlier in the lifecycle than informal methods. This

means that more exacting validation is performed earlier in the lifecycle than would

otherwise be possible, thereby reducing costs through early detection and correction

of faults, antt very likely contributing to a better final product.

But although the ability to record and analyze decisions early is one of the main

benefits of formal methods so, paradoxically, is the ability to postpone such deci-

sions. As I have mentioned before, other symbolic methods of specification such as

pseudocode and dataflow and state-machine representations share some of the ad-

vantages of formal specification, but often require premature commitment to design

details. Formal methods, especially those in the property-oriented axiomatic style,

allow one to specify only what is necessary at a particular level: some properties

and behaviors can be left deliberately unconstrained if their elaboration is better

postponed to a later stage of development. This "separation of concerns" allows
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development and analysis to focus on one thing at a time. Furthermore, specifica-

tion of those properties that are handled at a particular level can be done without

necessarily suggesting an implementation or fixing a lot of concrete detail.

2.4.2 Benefits of Formal Verification

Formal verification is often equated with "proof of correctness," but this simulta-

neously over- and underestimates the benefits that formal verification can provide.

It overestimates the benefits because "correctness" suggests an absolute guarantee

that is impossible for any enterprise that uses modeling to predict the behavior of

real-world artifacts. A formal verification provides very strong guarantees on the

mutual consistency of the specifications at either end of the chain of verification,

but we can have no absolute guarantees that the upper specification captures all the

requirements perfectly, nor that the lower specification (which may be a program or

gate layout) exactly describes the behavior of the actual system: both of these are

issues that require validation, not verification.

The "proof of correctness" conception underestimates the benefits of formal ver-

ification by failing to recognize the other products of verification. First, a formal

verification does not merely give us strong assurance that certain theorems con-

cerning the mutual consistency of specifications are valid, it enumerates all the

assumptions, axioms, and definitions used to establish that fact. It therefore iden-

tifies those properties whose satisfaction, or utility, in the physical world must be

established by empirical validation. At the top, these will include the requirements

specification against which the verification was performed and, at the bottom, the

assumptions about the real world (e.g., the behavior of clocks, or the semantics of

Ada programs) on which the verification rests.

Second, not only does formal verification identify assumptions and requirements

precisely, but as I have noted before, the machinery of formal verification can be

used in the validation of those properties: theorem proving provides a means for

testing the specifications of requirements and assumptions by evaluating challenges

posed against them.

Third, formal verification is an extremely potent way of detecting design faults.

Long before its verification succeeds and a design is pronounced "correct" (subject

to the caveats described above), it is likely that several failing attempts at verifi-

cation will have identified oversights, missing cases, and plain mistakes. Of course,

some of these faults might have been caught by informal verification or, much later,

by testing, but my experience is that formal verification reveals subtle mistakes

whose detection by other means seems uncertain at best. State exploration (recall

Section 2.2.3) can be considered as a formal method optimized for such debugging

purposes.
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Fourth, formal verification allows the consequences of changed assumptions or

modified designs to be explored reliably. For example, the journal proof of the

Interactive Convergence clock synchronization algorithm assumes that the initial

clock corrections Cp(°) are all zero. This turns out to be inconvenient when imple-

mentations of the algorithm are considered. With a mechanically checked formal

verification, we can explore the significance of this assumption by simply deleting

it from the formal specification and rerunning all the proofs. In this particular

case, it turns out that the proofs of a few internal lemmas need to be adjusted, but

that the rest of the verification is unaffected. Even if the initial argument for the

correctness of this algorithm could be performed reliably by informal means (and

we discovered that all but one of the proofs in the journal presentation of this al-

gorithm were flawed [RvH91b]), it would be exceedingly difficult to maintain the

same standards of accuracy and rigor on subsequent reverifications against slightly

altered assumptions. Yet reliable and inexpensive reverification is essential to the

iterative processes within any realistic lifecycle model. As a design develops, one

discovers simplifications, improvements, and generalizations that should be assisted,

not discouraged, by investment in an existing verification. Even if we choose not to

improve or change our design voluntarily, a change in external requirements or in

the specification of an assumed service will require modification and reverification.

Fifth, formal verification subjects a design to intense intellectual scrutiny. This

can be a benefit in its own right, often leading to improved understanding of the

problem and to better solutions. For example, we may find after performing a formal

verification that we actually used fewer assumptions than were made in the specifi-

cation. This discovery can allow us to prune the collection of properties that need

to be validated experimentally, or to simplify the specification of components whose

properties are used in the verification. Alternatively, the improved understanding
that comes with a formal verification may allow us to replace some assumptions

with others that may be easier to check or to satisfy.

Finally, the un_lerstanding that comes from a well-conducted process of formal

specification, validation, and verification may give us the confidence to consider new

areas in the design space. Equipped only with tools for informal reasoning we may,

through caution or ignorance, consider just a small area of that space. We may

use certain designs (e.g., asynchronous channels in a flight-control system) because

there is a plausibly simple argument for their correctness, and ignore others (e.g.,

the synchronized approach) because the reasoning that supports them is intricate.

Formally supported analysis might reveal that the simplicity of the argument in

favor of the preferred design is specious, and might provide the tools for mastering

the intricacy of the alternative design.
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2.4.3 Assurance Benefits of Formal Methods

Anticipating the case developed in Section 3.1, I assert that assurance for safety-

critical computer systems is chiefly derived through scrutiny of the processes em-

ployed in its construction: we cannot measure the quality of the product so we look

at how carefully it was built. At every stage in its construction, we expect careful

analyses and reviews to be conducted to ensure the quality of the development per-

formed in that stage. According to DO-178B [RTC92, Section 6.3]: "analyses pro-

vide repeatable evidence of correctness and reviews provide a qualitative assessment

of correctness" (a draft version of DO-178B stated "reviews provide a group consen-

sus"). For assurance, the chief benefit provided by formal methods is that they allow

reviews to be replaced or supplemented by analyses. Depending on the level of rigor

employed--that is, on the extent to which repeatable, calculational processes are

used--formal methods should be able to detect faults earlier than otherwise, and

with greater certainty than otherwise. In certain circumstances, subject to caveats

concerning the fidelity of the modeling employed, formal methods can guarantee the

absence of specified faults. However, not all processes can be reduced to analysis,

even with fully formal methods, and reviews will still be required. Formal meth-

ods can contribute to high-quality reviews by settling questions concerning syntax,

type-correctness, and internal consistency by analytic means, thereby allowing the

reviews to focus on matters of greater substance.

Formal methods establish properties of mathematical models of the systems

considered; many of formal methods' detractors focus, correctly, on the difficulty of

establishing the accuracy of the models employed. These issues are considered in
the next section.

2.5 Fallibilities of Formal Methods

Formal methods do not guarantee a superior product; as with all tools, formal

methods must be used with skill and discrimination if they are to deliver benefit.

In this section, I examine some of the ways in which formal methods may provide

less benefit than anticipated and I consider ways to ameliorate these difficulties. In

most cases, the fallibilities that I identify also attend informal development meth-

ods, but the ameliorations are generally possible only with formal methods (e.g.,

informal as well as formal specifications can be inconsistent, but only formal specifi-

cations admit formal demonstrations of consistency). Also in this section I consider

arguments that have been mounted against the use of formal methods in general.

As with my discussion of benefits, I consider the fallibilities of formal specifica-

tions and of formal verifications separately.
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2.5.1 Fallibilities of Formal Specifications

Fallibilities of formal specifications can include specific deficiencies such as inconsis-

tency or incompleteness that may afflict a particular specification, as well as general

vulnerabilities that are sometimes used to call the whole enterprise into question. I

begin by considering the more general arguments against formal specification.

The broadest challenge against the formal approach to specification is that

mounted by Naur [Nau82]. Naur does not argue against formalism per se, but

against the rather rigid conceptions of formalization that were being proposed in

the 1980s. Although his case is less effective against modern approaches, some of

those who oppose formal methods still employ similar arguments.

Naur asserts that late-lifecycle program-level specifications of the kind that were
advocated in the 1980s offer little benefit:

"According to these ideas the programmer must first express the solu-

tion in a so-called formal specification language, second express the same

solution in a programming language, and third prove that the two solu-

tions are equivalent, in some sense.., this approach offers no help to the

programmer but only adds to his or her burdens .... with this approach

the programmer has to produce not one but two formal descriptions of

the solution, and in addition has to prove that they are equivalent."

This quotation (and the next) reveals one of the major weaknesses of Naur's ar-

gument: his focus seems to be "programs" (small entities constructed by a single

person) rather than "systems" (large entities developed by teams against multiple

and exacting requirements). Formal specifications may contribute little to devel-

opments where the program itself can be considered an adequate expression of the

solution, but safety-criticai systems are seldom of this kind. However, if we interpret

Naur's remarks as applying to just the coding stage of the development lifecycle,

then his point has some validity: at some point in the development, programming

must take over from specification.

Naur notes that in mathematics and engineei'ing, formal and informal modes of

reasoning and notation are used in combination, each where it is most effective, and

he argues for a similar approach in program specification:

"Specifications are sometimes a necessary evil, to be used for documen-

tation of such aspects of programs that are not satisfactorily documented

by the programs themselves...The ideal specification of an aspect of a

program is a description of what that aspect does such that on the one

hand it is intuitively obvious to the user that it corresponds to his or her
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requirements, and on the other hand it is equally obvious to the program-

mer that it is realized in the program itself. In either case the intuitive

understanding may need to be supported by an argument having several

steps, a proof..."

Naur observes that the notation and formalism best suited to specifying "aspects of

programs" may vary from aspect to aspect and from program to program and he

therefore argues against the use of fixed specification languages, instead advocating

"formalisms of any suitable form, such as tables for enumerating cases, decision

tables, tables or graphs corresponding to finite-state algorithms, program skeletons,

formulae of any kind etc."

Naur's position here can be interpreted as a repudiation only of Level 2 and Level

3 formal methods, and as something of an endorsement for Level 1. However, this

interpretation must be performed relative to the technology available at the time

of his writing, and relative to his conception of the problem addressed. As already

noted, it seems clear that Naur's conception of the problem is one of "program

development" rather than "systems engineering": that is, he is concerned with the

late-lifecycle stages of design. The formal specification notations available in the

early 1980s also focused on these stages and for the most part were limited and
restricted notations that merited Naur_s criticism. The importance of the early

stages of the lifecycle has become far more widely recognized in the dozen years

since Naur's paper was written, and formal specification notations have become

far richer and less like program annotations. While Naur is probably correct to

question the value of a formal specification that is little different from the program

it is intended to specify, his argument is less effective against formal requirements

and early-lifecycle design specifications that are several stages removed from the

levels of description where programming begins. Naur's other point, that formal

and informal modes of expression should be used together, and that formalisms

should be chosen freely, rather than limited to those that can be expressed within

a fixed specification language, retains its value today, but needs some qualification.

The mixing of formal and informal modes of expression is encouraged by most

modern presentations of formal specifications. Rather than a single large block

of formal text, modern presentations of formal specification generally intersperse

formal text with informal explanations. This style is assisted by the modularization

constructs of modern specification languages, which encourage the development of

specifications in relatively small units that can be combined to yield larger units.

Naur's recommendation that formalisms should be chosen freely, rather than

restricted to those supported by a particular specification language needs to be

tempered if the benefits of mechanical analysis and formally checked deduction

are desired. Fortunately, the spirit of Naur's recommendation can often be pre-

served within a single specification notation: modern specification languages based
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on higher-order logic or set theory are sufficiently expressive that they can encode

other formalisms such as finite state machines or temporal logics relatively conve-

niently. If combined with simple tools for printing such encodings in an attractive

form, a single specification language can often accommodate several styles of spec-

ification, and furthermore permit their use in combination, yet provide uniform

mechanical support.

Several other arguments against formal specifications are similar to Naur's: it

can be argued that formal specifications are hard to write and to read, especially

for nonspecialists, and that too much of the effort in writing formal specifications is

spent wrestling with the formalism and overcoming limitations of notation, rather

than focusing on the substance of the problem. Like Naur's criticisms, these have

some validity, but are less true of modern formal specification techniques than of

those used in the 1980s. Specification languages based on first-order logic with

set theory, or on higher-order logic, are generally sufficiently expressive that most

concepts can be stated in a fairly direct and unforced way. More limited languages

that lack quantification, or that restrict the use of axioms, or the class of expressions

that can be used in axioms, do generally require rather convoluted specifications,

but may offer compensations such as executability or highly automated theorem

proving that can be advantageous in some applications. Of course, one cannot

expect even the most perspicuous of formal specifications to be accessible to readers

without some training, but the evidence seems to be that those with engineering

or scientific backgrounds can be taught to read formal specifications in a matter

of days--provided they see some tangible benefit (e.g., some form of mechanical

analysis) in doing so.

Learning to write formal specifications is another matter, but the difficulty is

often one of learning to write good, suitably abstract specifications, rather than

of learning the details of a particular formal specification technique. It seems nei-

ther necessary nor desirable that _users," "customers," or "engineers" should write

formal specifications on their own--any more than they should write their own pro-

grams, design their own circuits, or do their own welding. This is not to say that

"formal specifier" must be a job title---there is no reason why formal specification

should not be an additional skill for someone with other primary responsibilities--

but it must be recognized that formal specification no less than, say, technical writ-

ing, is a specialized skill that needs talent, training, and experience.

A top-level formal specification of requirements must be developed through a di-

alog between a specifier and those who understand what is to be specified. Through

discussion and questions the specifier elicits and records the salient properties of

the thing that is wanted. The acts of recording and of formalizing these proper-

ties may suggest questions that need clarification and further discussion. Those

who understand what is wanted may either read the evolving formal specification
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or may ask the specifier to interpret it for them, and in either case can challenge

the specification as described in Subsection 2.3.2 to validate it against their infor-

mal conception of what is required. Similar dialog between specifiers, designers,

and those with an understanding of what is required, must take place at the later

stages of the lifecycle, as intermediate specifications are developed on the way to an

eventual implementation.

I now turn from general to specific deficiencies that can afflict formal specifica-

tions. A formal specification can be faulty in several different ways. It may say too

little (thereby failing to characterize the matter of interest), or too much (thereby

overly constraining later stages of the development), or it can be wrong. And it can

be wrong in at least two major ways: it may not say what we wanted (in the limit,

it may be inconsistent and say nothing at all), or it may say what we wanted--but

what we wanted was wrong.

Most of these are issues of validation, and were covered in Section 2.3. The

primary methods for validating a formal specification are inspection and challenges-

that is, posing questions that should be answered by the specification. It cannot

be stated too forcefully that validation of formal specifications is critical to their

utility. Simply writing specifications in a formal notation does not guarantee their

quality.

The fault ofoverspecification--saying too much and thereby reducing subsequent

design freedom--is less amenable to detection by these means than other kinds of

fault. Jones [Jon90, Chapter 9] gives some technical criteria for implementation bias

in model-oriented specifications, but this is generally a fault that requires judgment

and experience to evaluate---and for these reasons is one of the most common faults

observed in formal specifications, especially in those written by people whose prior

experience is mainly of programming.

2.5.2 Fallibilities of Formal Verifications

The general arguments against formal verification can be summarized as: (1) mathe-

matical modeling cannot account,for the behavior of real-world artifacts with perfect

accuracy, and therefore the whole endeavor is futile, and (2) the formal conception

of proof does not correspond to the evidence that convinces human reviewers. More

specific concerns include the possibility that.formal proofs, including those checked

by machine, may be incorrect. As in the previous section, I begin with the general

arguments.

Fetzer [Fet88] observes that the behavior of computer systems in execution de-

pends on that of physical devices (the computer circuitry and, in the case of control

systems, sensors and actuators) and logical artifacts (the compiler and operating

system) whose actual operation may not match that formalized in the verification.
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This is, of course, true--as it is true of all applications of mathematical modeling

in engineering, whether fluid dynamics, mechanics, or theories of combustion. Fet-
zer does not mention that similar concerns attend the fidelity of the requirements

specification at the other end of the verification.

Whether formally verified or not, a system is a designed artifact, constructed

consciously to achieve certain goals subject to certain assumptions and constraints.

The system may fail if the assumptions on which it is based, or the requirements it is

built to satisfy, prove erroneous. The only difference made by formal, as opposed to

informal verification, is that formal verification makes all the assumptions and the

requirements explicit, and provides a very strong guarantee that the design satisfies

the requirements, subject to the assumptions. It is the job of validation to provide

assurance that the requirements and assumptions accord with external reality and

expectations. Fetzer seems unaware of the concept of validation and seems to believe

that proponents of formal verification assert that it provides unequivocal "proof of

correctness" and can replace testing. He bolsters his case with selected quotations

(mostly rather old) from Hoare, Dijkstra, and others that appear to lend credence
to this claim.

As I hope the earlier sections of this report have made clear, modern concep-

tions of formal methods do not claim unequivocal "correctness" (see, for exam-

ple [Coh89b]) and, in fact, are deeply concerned with balanced, whole-lifecycle ap-

proaches to assurance. Far from ignoring assumptions about the behavior of the

physical world, formal methods help identify these assumptions more clearly, so

that they may be examined and validated--empirically, if necessary. A concept
associated with formal methods for critical systems is design .for validation [JB92],

which holds that systems should be designed so that it is feasible to validate all

assumptions, and to measure all parameters, empirically. The argument for this

approach focuses on the transition probabilities of Markov reliability models, but it

is applicable to all assumptions that underlie the design of critical systems. If an

assumption cannot be validated, or a parameter measured, in feasible time on test,

then the system should be redesigned so that it does not depend on those uncer-

tain properties. Often, this may entail use of more sophisticated reasoning. If, for

example, a fault-tolerant system is designed to tolerate specific failure modes, then

we should require quantified or analytic evidence that no other modes of failure can

occur. If it is infeasible to provide such evidence, then perhaps the system should

be redesigned so that it does not depend on those specific assumptions. Providing

and demonstrating fault tolerance in the absence of assumptions about faults is dif-

ficult (this is what Byzantine fault tolerance is all about), and it may require formal
methods to achieve an adequate level of assurance that this has been achieved.

An older argument against formal verification is due to De Millo, Lipton, and

Perlis [DLP79]. Their case is that a proof is truly an argument that convinces other
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people, not the formalist conception of a sequence of inferences in some formal

system: they claim that a proof can become accepted as such only through a "social

process" of human review. There is something to this point of view (which is

primarily an argument against automated Level 3 applications of formal methods):

at the highest level the arguments that sustain a verification should be subjected

to responsible human review, not delegated to an automatic theorem prover. Few

proponents of formal methods would disagree with this, but De Millo, Lipton, and

Perlis invent a parody of their position and excoriate them for it:

"The scenario envisaged by the proponents of verification goes something

like this: the programmer inserts his 300-line input/output package into

the verifier. Several hours later, he returns. There is his 20,000-line

verification and the message 'VERIFIED'."

In fact, a formal verification system or, more particularly, its theorem prover

does not act as an oracle that certifies programs for inscrutable reasons, but as an

implacable skeptic that insists on its human user providing justification for every

significant step of the argument. After persuading a formal verification system to

accept a verification, at least one human--the user of the verification system--

will have achieved great insight into the arguments that sustain the proof. In my

experience, this insight is deeper than that obtained by ordinary informal proofs,

but can be distilled into an informal proof that can be communicated to others.

Often, this informal distillation of a formal proof is superior to an informal proof

constructed normally in its attention to details and boundary cases, and yet is

sometimes simpler, too.

So a formal verification need not usurp the social process but can enhance it,

by providing a better proof for consideration. This is important because, while the

social process may be valuable in evaluating the broad structure of an argument,

it does not seem particularly effective at scrutinizing intricate details. It is impor-

tant to recognize that the arguments involved in verification are rather different

from those of conventional mathematical theorems, which De Millo, Lipton, and

Perlis take as their model. First, the arguments in verification are seldom intrinsi-

cally interesting, nor are the theorems proved of general interest--facts that limit

widespread participation in a social process. Second, the arguments tend to be full

of intricate detail, boundary conditions, and case analysis--the types of reasoning

where human faculties seem most fallible, and mechanical assistance most effective.

I can cite my own experience in support of these observations. The journal

proof [LMS85] that the Interactive Convergence Clock Synchronization Algorithm

maintains synchronization despite the occurrence of Byzantine faults comprises five

lemmas and a main theorem. Formal analysis, conducted by Friedrich yon Henke

and myself using EHDM, demonstrated that four of the five lemmas, and the main
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theorem, were false as stated [Rvtt91a]. As far as I know, these flaws had not pre-

viously been detected by the "social process" of refereeing prior to publication and

peer scrutiny afterwards, despite this being a frequently cited paper. Some of the

faults in the proofs are painfully obvious once they have been spotted: for example,

the problem in the main theorem is that it seeks to establish a strict inequality by

an inductive proof, but the inductive step yields only an "approximate" inequal-

ity. Another example includes a modified algorithm for interactive consistency (the

problem of distributing consistent sensor samples in the presence of faults) [TP88]

that contains an outright bug, despite a refereed and published informal proof. If

published proofs of important algorithms are inadequately checked by the social

process, how are the larger and less interesting arguments for particular systems

to be adequately examined? Barwise [Bar89b] provides a thoughtful discussion of

these and related issues raised by Fetzer and by De Millo, Lipton, and Perlis.

Even those who are undisturbed by the general arguments against formal verifi-

cation may be troubled by use of mechanical theorem provers: "what if the prover is

wrong?" is a frequently asked question. Although this concern cannot be dismissed,

I do not consider it a significant threat to the overall utility of formally checked

verification--just as concern for possible numerical inaccuracies in programs for

finite-element analysis does not prevent engineers building better and safer struc-

tures with the aid of such programs than without. The crucial contribution of a

mechanical theorem prover is not that it guarantees "correctness," but that it iden-

tifies faults not detected by other means.

In an ideal world, the theorem prover itself would be verified and validated to

the highest levels of assurance, but this has not been done for current systems, s°

However, if a hazard analysis were to be undertaken of the event that a faulty system

is placed in service despite thorough validation, testing, and formal verification, I

believe that "faulty theorem prover" would be among the least significant h_ards.

For although theorem provers can be complex programs, much of the complexity is

in the search procedures that look for an appropriate deduction to apply; once such

a deduction is found, the code that applies it can be relatively straightforward. A

bug in the search procedure will affect the prover's ability to find proofs, but not

the soundness of the proofs produced. Soundness depends on the relatively small

part of the system that applies the rules of inference, sl This code can reflect quite

directly the corresponding rules of inference in the logic 52 and is exercised with great

5°Although feasibility studies for a verified proof checker are being undertaken.
s_It also depends on the soundness of the representation used for formulas of the language. In

particular, nested quantifier and other variable-binding operators (such as h-expressions) must be
handled with great care in order to avoid ",rariable capture2 Experts generally favor the _de Bruijn
representation" for this purpose.

S_Some theorem provers are deliberately built on very few rules of inference, with very direct
implementations. HOL [Gor88], for example, has only seven primitive inferences. On the other
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frequency: often there are no more than a few dozen such rules, and they are called

tens or hundreds of thousands of times in even quite modest-sized proofs. This

enormous exposure tends to exercise them rather well and to shake out bugs.

Of course, bugs in a theorem prover must be detected by a user noticing some-

thing wrong. Some may be skeptical of a user's ability to notice faulty reasoning

in a theorem prover, and will complain that I am guilty of a double standard: I

advocate the use of mechanically checked proofs because human reasoning can be

unreliable, and I minimize the seriousness of bugs in the theorem prover because

the human user will catch them. This is not quite so implausible as it may seem: if

the individual inference steps are well-matched to those employed by humans (i.e.,

slightly more detailed than the steps of a journal proof), then the user and the

theorem prover are engaged in a kind of "social process," each checking the other's
work.

Finally, it should be remembered that the reason for using mechanized theorem

proving is not to relieve human users of responsibility, but to augment their ability

to conduct arguments at extremely detailed levels. This recognition should also

guard against extravagant interpretations of terms like "formally proved." As noted

in the introduction and explained in more technical detail in the earlier sections

of this chapter, "proof" is a technical term for a certain kind of "logical calcula-

tion," and does not, on its own, connote complete certainty nor fitness for purpose.

An interesting lesson in this regard can be drawn from circumstances attending

the British VIPER. microprocessor. The following description is summarized from

MacKenzie [Mac91].

VIPER. was a microprocessor designed by an agency of the British Ministry of

Defence for safety-critical applications [Cul88]. The specification and verification of

this device used a variety of Level 1, 2, and 3 formal methods [CP85, Pyg88]. The

portions that were subjected to Level 3 analysis employed HOL [Coh88, Coh89a].

A commercial company licensed some aspects of VIPER. and promoted it vigorously

using claims such as "the first commercially available microprocessor with a formal

specification and a proof that the chip conforms to it."

When a NASA-commissioned review of the VIPER. concluded that the VIPER.

had been "extensively simulated and informally checked.., but not formally veri-

fied" [BH90, BHgl] (the reviewers reserved the term "formally verified" for top-to-

bottom Level 3 applications and seemed to miss some of the pragmatic utility of

the compromises made in the VIPER. development), the company that had licensed

hand, HOL and similar systems are vastly less productive for proof development than more au-

tomated systems and it is economically infeasible to use them to prove theorems of any scale or

complexity in other than research environments. Those who can be satisfied only with a proof that

is checked by a system such as HOL with a very direct implementation of the rules of inference for

its underlying logic should consider using a more automated system for a similar logic to actually

develop the proof and switch to the more "secure" system only for its final _certification. _
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VIPER technology took legal action in the British High Court, alleging that the

claim that VIPER had been "proved" was negligent misrepresentation, sa Shortly

thereafter, the company went into liquidation and dropped the case, so the court

did not have to rule on what constitutes mathematical proof.

The lesson here is that the dispute did not center on whether there was adequate

assurance that the VIPER was fit for its intended (safety critical) purpose, but on

whether the particular combination of formal methods that had been applied to

it constituted "proof." Repetition of this foolishness should be avoided. Formal

methods can provide important evidence for consideration in certification, but they

can no more "prove" that an artifact of significant logical complexity is fit for its

purpose than a finite-element calculation can "prove" that a wing spar will do its

job. Certification must consider multiple sources of evidence, and ultimately rests

on informed engineering judgment and experience.

2.6 Mechanized Support for Formal Methods

In this section I discuss the main themes and directions in the development of

support systems and tools for formal methods; I focus primarily on those intended

for Level 3 applications. This is not a survey of particular systems, and I mention

by name only a few that are representative of the main directions that I identify.

My intent is to provide information that will enable users and certifiers to calibrate
claims about the effectiveness of various approaches and to alert them to potential

drawbacks as welt as advantages. The reader should beware that this section reflects

personal opinions (acquired over more than a decade spent building and using tools

for formal methods), and does not represent a consensus view. 54

There can be value in applying the techniques of formal methods using just pencil

and paper (i.e., Level 1). However, larger specifications may benefit from mechan-

ical assistance. Parsing and typechecking of specifications (i.e., Level 2) generally

detects numerous small mistakes, and attempting to prove conjectured properties of

a specification usually detects many more, and deeper, errors. Proofs of properties

of specifications or implementations often involve very lengthy, detailed, and error-

prone chains of argument. Use of automated theorem provers or proof-checkers (i.e.,

Level 3) can eliminate these errors, and allows a truly exacting degree of scrutiny

SaThe scientific papers describing verification of VIPERare scrupulously careful to describe the
limitations of what had been accomplished [Coh88, Coh89a, Coh89b]. It seems that the plaintiffs
were unaware of these papers.

S4The reader should also beware that two systems which receive favorable mention here (EHDM

and PVS) are products of the laboratory to which I belong, and therefore conform to my own
prejudices.
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that is infeasible by other means. It is through use of mechanized tools that for-

mal methods contribute most obviously to assurance for safety-critical systems--by

replacing intuition and group consensus with repeatable, checkable, analysis.

A formal specification language and its Level 3 support tools need to be grounded

on formal logic, but simply mechanizing the standard notations of logic and the

techniques of proof theory would provide utterly inadequate support for practical

formal methods. The formal systems of logic were developed for study, not for

use: they were designed to answer questions about the foundations of mathematics

and about their own consistency and completeness. Logicians are satisfied to show

that it is possible in principle to formalize parts of mathematics in some formal

system or other, they are not interested in actually doing so (at least, not since

Russell and Whitehead). In formal methods, we want to formalize concepts and

undertake formal proofs in practice--a quite different goal from that of logicians.

The languages and techniques that serve logicians are no more appropriate for formal

methods in computer science than the 5-tuples of a Turing machine are suitable as

a practical programming language.

Hence, the challenge in developing languages and support tools for formal meth-

ods is to create systems that draw on the soundness and other properties and tech-

niques of logic, while recasting them in a manner that allows them to be used pro-

ductively in a practical setting. In the case of language design, this means a search

for conveniently expressive notations that nonetheless have a simple foundation (in-

expressive notations lead to the "Turing Tarpit" where everything is possible, but

nothing is easy); and in the case of theorem proving, it means a search for a combi-

nation of relatively few, relatively powerful basic inference mechanisms, that can be

combined to prove useful results in a manner that is both efficient and enhghtening.

Basing a theorem prover on some standard method from logic (for example, natural

deduction) is to completely miss the point: we are not interested in mechanizing

what logicians do--their systems were built for their purposes, ours need to be built

for ours. Those who believe that only by mechanizing very elementary deductive

systems can we be assured of soundness, need to face the consequence of that choice:

namely, that it will be practically or economically infeasible to mechanically verify

results of any significant interest (another variation on the Turing Tarpit: everything

is possible in principle, but almost nothing is in practice), ss The more productive

approach is to establish the soundness of the implementations of techniques that are

effective in practice.

Current verification systems represent three separate lines of development. One,

which I will call the integrated line of development, consciously attempts to inte-

grate a specification language and a mechanized theorem prover or proof checker

sS"Just as in algebraic calculation and in almost all forms of notation commonly used by math-
ematicians, a workable instrument is preferable to one which is theoretically more perfect but in
practice far more cumbersome. _ [Bou68, page 10]
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into a single coherent system. The integrated verification systems were the first

to be developed. Early systems of this type generally made many compromises in

order to accommodate the technological limitations of their time: for example, the

specification language was generally a fairly simple extension to first-order pred-

icate calculus (sometimes closely linked to a programming language of the Pascal

family), and the proof checker was generally fairly primitive. Early examples of inte-

grated verification systems include Affirm [GMT+80, Mus80], FDM [LSSE80, SJ84],

Gypsy [GAS89, SGD88], Iota [NY82, YN85], HDM [RLS79, RL76, SLR78], and the

Stanford Pascal Verifier JILL75, LGvtI+79]. Most of these systems embodied a par-

ticular approach to formal specification and analysis (e.g., state machines in the

case of HDM and FDM, or equational specifications for abstract data types in the

case of Affirm), and their versatility was correspondingly limited.

The second line of development grew from theorem-proving research; the avail-

ability of effective theorem provers encouraged people to write specifications directly

in the logics supported by those provers. In most cases, the logic lacked the con-

veniences of a specification language (e.g., conventional syntax, computer-science

type data structures, support for modular specifications), but users were willing to

trade those linguistic advantages for effective theorem-proving support. Examples

of theorem provers that have been used for verification include the Boyer-Moore

prover [BM79, BM88], IsabeUe [PauS8], Otter [McC90] and RRL [gz88].

The third line of development derives from efforts to provide truly expressive and

attractive specification languages, initially without concern for their mechanization.

Examples include VDM [Jon90] and Z [Spi89]. Users found these methods and

notations helpful [Hay87, HK91] and later started developing mechanized support

for them. Initially, the support was limited to typesetting, then parsing and type-

checking were provided, and more recently support for theorem proving has been

added [BRgl, Nic89]. However, the capabilities of these tools, particularly the the-

orem provers, are currently very limited, scarcely equaling those of the integrated

verification systems developed more than a decade earlier (although the languages

are much richer).

None of the lines of development described above has yet provided a totally sat-

isfactory system for formal specification and verification: the theorem-proving line

offers inadequate support for specification, the specification line offers inadequate

support for verification, and most examples in the line of integrated verification sys-

tems have been comprehensively inadequate. When and where, then, can we expect

truly effective verification systems to emerge? I roughly characterize such a system
as one that ........

• Supports a specification language as attractive and rich as those that have

found favor in unmechanized applications,
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Provides support tools to assist in the validation and documentation of speci-

fications, including parsing and typechecking of sufficient strictness that most

simple faults are quickly flushed out,

Is supplied with a theorem prover or proof checker that allows conjectures

of all kinds (large, small, easy, difficult, valid and invalid) to be proved or
found in error with an efficiency at least equal to that of the best stand-alone

theorem provers.

One school believes that bringing modern theorem-proving techniques to bear

on the specification-language line of development will produce the desired result.

As noted, these attempts have not been successful so far, and I do not think it

likely that they will be. Rich specification languages such as Z and VDM are not

particularly well-suited to mechanical analysis. Their logical foundation is axiomatic

set theory, which is an essentially untyped system. Thus, strict typechecking, which

is desirable in a system subject to mechanical analysis, has to be grafted on in

an ad-hoc and necessarily partial way [DttB91] (also recall Subsection 2.3.1.1). In

addition, there are loose ends in the semantics of these notations, which may be of

little moment when they are used quasiformally by people of good will, but which

cannot be tolerated in fully mechanized systems that relieve the user of some of the

responsibility for ensuring soundness. In Z, for example, the exact interpretation

of partial functions, and of some aspects of schemas, still seem open to debate.
Resolution of these loose ends in ways that axe amenable to effective mechanical

analysis and verification is proving difficult.

Faced with the challenge of mechanizing very rich logics, those developing the-

orem provers for the specification language line of verification systems have chosen

to provide relatively little in-built automation and instead provide an interface that

allows the user to select and apply basic rules of inference and to compose these into

larger units (the theorem provers of Raise [RAI92], the Balzac/Zola support system

for Z [Hax91], and mural [JJLM91] for VDM are like this). Attractive interfaces

with multiple windows and menus have been provided and the systems are referred

to as "proof assistants," the implication being that they actively help "a human user

develop and check a proof. Some systems of this kind, for example mural, aim to

be generic with respect to the formal system they support, so that the specific rules

for reasoning about VDM (its main application) are not built in to mural, but are

loaded as a library (although the result "is not a fully-fledged support environment

for VDM" [BRgl, page 387]).

The motivation behind these approaches is reasonable, but the efficiency and

power of the theorem-proving support that is achieved leaves much to be desired.

Of one small example using mural, the authors state
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"the task of verifying and validating an example like the one presented

here may take an experienced user two weeks. This is not a problem

specific to mural, but is more to do with the level of detail at which one

is forced to work when doing 'fully formal' development" [FEG92].

I can see nothing in this example that should detain an experienced user, armed with

effective tools, for more than a few hours. A step-by-step diary of the development

of what seems to me to be a rather more challenging--though still small--example

(correctness of a compiler for additions and assignments) using the Boyer-Moore

prover indicates that it was completed in about ten hours [WW93]. This seems a

more reasonable expenditure of effort, and is consistent with my own experience:

theorem provers with built-in mechanisms for automation are orders of magnitude

more productive than systems that lack such mechanisms.

The woeful inefficiency of the "proof assistant" type of theorem prover does not

rule out more effective automation for the specification language line of verification

systems. However, theorem proving for the rich formal systems underlying the

attractive specification languages is a challenging problem--it is no accident that the

most powerful theorem provers tend to be associated with the most restricted logics.

For example, functions are inherently partial in set theory (where they are defined as

sets of pairs), and this is inimical to efficient theorem proving. VDM, for example,

uses a nonstandard three-valued logic to accommodate partial functions [BCJ84]

and incurs the necessity to constantly discharge definedness obligations at proof

time. 56 Set operations also lend themselves less well to mechanical deduction than

predicates (the comparable notion in systems built on higher-order logic). All of

these problems can doubtless be overcome, but there is little indication that current

work in the specification language line of development is headed in directions that

will do so. s7

If the specification language line of development is not yielding truly productive

verification systems, what of the theorem-proving line? Could we not take an effec-

tive theorem prover and use its logic as a foundation for a specification language?

5SCheng and Jones [CJ90] consider some of the choices among multiple-valued logics. Other
treatments of partial functions retain the standard two-valued logic, but change the interpretation
of the quantifier rules. The_e are described in Appendix Section A.11.2.

57Building a theorem prover, let alone a complete verification system, is a demanding undertaking

that poses many challenges. I know of no group that got it right on their first attempt, so a good
question to ask the purveyors of any tool is: _how many previous tools of this kind have you built,
and what was wrong with them?" At the end of a very good tutorial paper [Pau92] on theorem

prover design, Paulson states: _My final advice is this. Don't write a theorem prover. Try to use
someone else's. _ For the same reason, I encourage those who would build special-purpose tools
for their own applications to think again: before long you will find yourselves involved in language

design and implementation, and in theorem proving techniques, and you will be distracted ever
further from the problems you set out to solve. An approach that is more likely to be productive
is to collaborate with the developers of an existing tool in order to augment it to provide the
specialized analyses desired.
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An obvious difficulty is that, as noted above, the most effective theorem provers are

associated with the most restricted logics (e.g., the logic of the very powerful Boyer-

Moore prover is an unquantified, highly constructive first-order logic of recursive

equations) and therefore provide the least comfortable foundation for an attractive

specification language. Conversely, the proof checkers associated with more attrac-

tive logics, such as the higher-order logic of HOL [Gor88] and TPS [AINP88] are

not particularly powerful. Intermediate points include provers for pure first-order

logic such as Otter [McC90], and first-order equations such as RRL [KZ88].

But the main reason why pure theorem provers offer an imperfect foundation

for verification systems is that few of them have the attributes required for really

effective theorem proving in support of verification. Formal verification is a spe-

cialized application of mechanized deduction and imposes distinctive requirements

on the theorem-proving tools that support it. It is not enough simply to provide

a "powerful" theorem prover; the prover must be tailored to the requirements of

verification. My colleagues and I, and others who have undertaken substantial

verifications [SGGtt91], have found not only that verification imposes specialized

requirements on a theorem prover, but that different theorem-proving requirements

emerge at different stages of a verification and that truly productive theorem proving

must support the requirements of all stages.

My experience has been that each formal verification evolves through a succession

of phases, not unlike the lifecycle in software development. I have found it useful to

identify four phases in the "verification lifecycle" as follows.

Exploration: In the early stages of developing a formal specification and verifica-

tion, we are chiefly concerned with exploring the best way to approach the

chosen problem. Many of the approaches will be flawed, and thus many of

the theorems that we attempt to prove will be false. It is precisely in the

discovery and isolation of mistakes that formal verification can be of most

value. Indeed, the philosopher Lakatos argues similarly for the role of proof in

mathematics [Lak76] (see the quotation at the head of Section 3.6). According

to this view, successful completion is among the least interesting and useful

outcomes of a proof attempt at this stage; the real benefit comes from failed

proof attempts, since these challenge us to revise our hypotheses, sharpen our

statements, and achieve a deeper understanding of our problem: proofs are

"less instruments of justification than tools of discovery" [Klegl].

The fact that many putative theorems will be false imposes a novel requirement

on theorem proving in support of verification: it is at least as important for the

theorem prover to provide assistance in the discovery of error, as that it should

be able to prove true theorems with aplomb. Most research on automatic

theorem proving has concentrated on proving true theorems; accordingly, few
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heavily automated provers terminate quickly on false theorems, nor do they

return useful information from failed proof attempts. By the same token,

powerful heuristic techniques are of questionable value in this phase, since

they require the user to figure out whether a failed proof attempt is due to an

inadequate heuristic, or a false theorem.

Development: Following the exploration phase, we expect to have a specification

that is mostly correct and a body of theorems that are mostly true. Although

debugging will still be important, the emphasis in the development phase will

be on efficient construction of the overall verification. Here we can expect

to be dealing with a very large body of theorems spanning a wide range of

difficulty. Accordingly, efficient proof construction will require a wide range

of capabilities. We would like small or simple theorems to be dealt with

automatically. Large and complex theorems will require human control of the

proof process, and we would like this control to be as straightforward and

direct as possible.

Experience shows that formal verification of even a moderately sized example

can generate many hundreds of theorems, many of which involve arithmetic.
Effective automation of arithmetic, that is the ability to instantly discharge

formulas such as

x_<yAx_ 1-yA2XX:> 1DF(2xx)=F(1)

(where x and y are rational numbers), is therefore essential to productive

theorem proving in this context. 5s Decision procedures are known for certain

other common theories, but to be useful these need to work with each other and

with those for arithmetic in order to decide the combination of their theories.

Practical methods for doing this are known [N079, Sho84] and are used in

some systems.

Other common operations in proofs arising from formal verification are to ex-

pand the definition of a function and to replace one side of an equation by

the corresponding instance of the other. Both of these can be automated by a

technique called rewriting. But it is not enough for a prover to have arithmetic

and rewriting capabilities that are individually powerful: these two capabil-

ities need to be tightly integrated, For example, the arithmetic procedures

6aThe formal system known as Presburger Arithmetic, that is arithmetic with constants and vari-
ables, addition and subtraction, but with multiplication restricted to the linear case (i.e., multiplica-
tion by literal constants only), together with the relations <, >, __, _, =, and :_, is decidable--this
means there is an algorithm that can tell whether any such expression is valid or not. Imple-
mentations for verification systems generally need to consider extensions (e.g., the presence of
uninterpreted function symbols) that are undecidable in the general (quantified) case. Restriction
to the unquantified (also called "ground")case is often feasible, and practical decision procedures
have been developed for this case [Sho77, Sho78, Slio79] and are highly effective in practice.
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must be capable of invoking rewriting for simplification--and the rewriter

should employ the arithmetic procedures in discharging the conditions of a

conditional equation, or in simplifying expanded definitions by eliminating ir-

relevant cases. Theorem provers that are productive in verification systems

derive much of their effectiveness from tight integration of powerful primitives

such as rewriting and arithmetic decision procedures. And the real skill in

developing such provers is in constructing these integrations [BM86]. More

visibly impressive capabilities such as automatic induction heuristics are use-

ful, but of much less importance than competence in combining powerful basic

inference steps including arithmetic and rewriting.

An integrated collection of highly effective primitive inference steps is one

requirement for productive theorem proving during the proof development

phase; another is an effective way for the user to control and guide the prover

through larger steps. Even "automatic" theorem provers need some human

guidance or control in the construction and checking of proofs. Some perform

deduction steps on direct instructions from the user (PVS [ORS92] is like this);

others receive guidance indirectly, either through the order and selection of

results they are invited to consider (the Boyer-Moore prover IBM79, BM88] is

like this), or in the form of a program that specifies the proof strategy to be

used (the "tactics" of LCF-style provers [GMW79] such as HOL [GM93] are

like this), or through the settings of various "knobs and dials" that control

search parameters (Otter [McC90] is like this). In skilled hands, any of these

forms of control can be effective, although direct instruction is the easiest to

understand (provided the repertoire of basic steps is not too large).

A large verification often decomposes into smaller parts that are very similar to

each other. For example, the top-level verification of a microprocessor design

generally divides into a case analysis that separately considers each instruction

in the order code, and many of these instructions will have much in common

with each other. Similarly, a large part of verification of operating system

security reduces to showing that each operation preserves certain properties.

In these cases it is useful if the user can develop a customized proof control

"strategy" that can automate the repetitive elements of the proof. Methods

inspired by LCF-style tactics can do this very effectively.

Presentation: Formal verification may be undertaken for a variety of purposes;

the "presentation" phase is the one in which the chosen purpose is satisfied.

For example, one important purpose is to provide evidence to be considered in

certifying that a system is fit for its intended application. I do not believe the

mere fact that certain properties have been formally verified should constitute

grounds for certification; the content of the verification should be examined,

and human judgment brought to bear. This means that one product of verifi-



2.6. Mechanized Support for Formal Methods 93

cation must be a genuine proof--that is a chain of argument that will convince

a human reviewer. It is this proof that distills the insight into why a certain

design does its job, and it is this proof that we will need to examine if we

subsequently wish to change the design or its requirements. Many powerful

theorem-proving techniques (for example, resolution) work in ways that do not
lend themselves to the extraction of a readable proof, and are unattractive on

this count.

Generalization and Maintenance: Designs are seldom static; user requirements

may change with time, as may the interfaces and services provided by other

components of the overall system. A verification may therefore need to be

revisited periodically and adjusted in the light of changes, or explored in or-

der to predict the consequences of proposed changes. Thus, in addition to

the human-readable proof, a second product of formal verification should be

a description that guides the theorem prover to repeat the verification with-

out human guidance. This proof description should be robust--describing a

strategy rather than a line-by-line argument--so that small changes to the

specification of lemmas will not derail it. The easy rerunning of proofs is es-

sential in order that incorporation of improvements and adaptation to changed

requirements or environment may be assisted, not discouraged, by investment

in an existing verification.

In addition to the modifications and adjustments that may be made to accom-

modate changes in the original application, another class of modifications--

generalizations--may be made in order to support reuse in future applications,

or to distill general principles. For example, we may extract and generalize

some part of the specification as a reusable and verified component to be stored

in a library.

The conclusion I draw from this analysis is that although there is much that

must be learned from the specification language and the theorem-prover lines of de-

velopment, truly effective verification systems require careful compromise between

language and theorem-proving conveniences and a tight integration between lan-

guage and prover. This is the path of tl_'e integrated verification systems--a line of

development whose early examples were comprehensively inadequate. Later exam-

ples such as Eves [CKM+91], ttOL [GM93], Imps [FGT90], Larch [GwSJGJ+93],

Suprl [C+S6], PVS [OR.$92], and Veritas [HDL89] have achieved much more so-

phisticated integration of capabilities and one or two of these systems have been

proved effective on large or difficult problems. I believe that the next generation of

integrated verification systems will provide truly productive environments for Level

3 formal methods.

This assessment of the classes of verification systems and their development is

not intended to discourage potential users of this technology, nor to suggest that only
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certain approaches and systems are worthwhile; rather, it is intended to encourage a

realistic appraisal of the likely capabilities, strengths, and weaknesses of the various

approaches. Almost all tools for formal methods can be and have been used to

undertake worthwhile activities. But successful application of any tool requires

an appreciation of its capabilities. Using one of the tools for a rich specification

language to support a Level 2 application could be very successful; using it for

heavy theorem-proving exercise will lead to disappointment. Conversely, a theorem

prover for a raw logic might dispatch a verification very efficiently, but it might not

be easy for others to understand what it is that has been verified.

Unfortunately, there are no agreed benchmarks for evaluating verification sys-

tems and their theorem provers, nor are there many cases of the same exercises

being undertaken in more than one system, so potential users must evaluate differ-

ent systems very much on their own. The evaluation should focus on the needs of

the type and the scale of application concerned: small demonstration examples and

tutorial exercises can give very misleading impressions of the capabilities required

to undertake larger examples.

Finally, note that not all applications of formal methods require a general-

purpose support tool; for some purposes, a state-exploration system, or an ex-

ecutable specification, language, or an environment similar to a CASE tool with

searching and cross-reference facilities may be all that is required.

2.7 Industrial Applications of Formal Methods

Formal methods can contribute to the development of systems in two ways (and

ideally both together):

1. They can improve the development process, leading to a better product,

and/or reduced time and cost, and

2. They can contribute to the assurance and certification of a system.

Most uses of formal methods that claim success in delivering the first of these

benefits have used primarily Level 1 or 2 formal methods in the early lifecycle;

those that have aimed at the second have been primarily late-lifecycle applications

of Level 3 formal methods. In my opinion, these characteristics reflect accidents of

history, rather than guides to future action. In this section I briefly outline a few of

the documented applications and point the reader toward the articles that describe

them in detail.

A good introduction to Level 1 and 2 formal methods in industry is the pa-

per by Hall [Hal90], which is one of the very best nontechnical papers available on
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formal methods, ttall cites a number of successful applications of the Z notation.

One of these, which appears in the same issue of the journal as Hall's paper, de-

scribes use of formal methods to model oscilloscopes at Tektronix [DG90]. Unlike

most uses of formal methods, this exercise was not concerned with a specific de-

sign, but with gaining insight into system architectures for electronic instruments.
Informally checked proofs were used to probe and challenge the formal models that

were developed. Although it is not described in the paper, it seems that the real

benefit obtained from this exercise was the capture and explicit documentation of

much scattered experience and wisdom concerning system design for oscilloscopes

(a process called "asset capture"). Tektronix apparently regards the product of this

exercise as having outstanding proprietary value.

Perhaps the most widely known successful commercial, application of formal

methods is IBM's use of Z in the development of a major new release of its transac-

tion processing system CICS [HKgl]. The motivations for the use of formal methods

were to improve the quality of the product and to reduce development costs, primar-

ily by reducing the overall number of faults and by detecting the remaining faults

as early as possible in the development cycle. The new release contained 500,000

lines of unmodified code, and 268,000 lines of modified code, of which 37,000 lines

were produced from Z specifications and designs, and a further 11,000 were par-

tially specified in Z. About 2,000 pages of formal specifications were produced. The

formally specified portion of the system had fewer faults at all development stages

except the very first, and a higher proportion of its faults were detected in the

earlier stages, compared with the portion of the system that had not been formally

specified. The numbers of problems per line of code reported by customers following

release were in the approximate ratio 2:5 for the formally specified and nonformally

specified portions of the system. It was estimated that use of formal methods re-

duced costs for that portion by 9%. The formal specifications were subjected to

formal inspections. A tool for parsing, typechecking, and cross-referencing Z speci-
fications became available halfway through the project and markedly increased the

productivity of the specifiers and inspectors.

Other similar examples include the use of formal methods by the semiconductor

manufacturer Inmos in the development of a floating point unit for the T800 Trans-

puter [Bar89a]. It was estimated that use of formal methods enabled the chip to be

developed in less than half the time that would have been required for traditional

methods. Furthermore, faults were found in the IEEE floating point standard and

in other implementations used for back-to-back testing. Industrial applications of

the Cleanroom methodology are described by Dyer [Dye92], while industrial use of

VDM is considered by Plat [Pla93].

Fenton [Fen93] excoriates the claims of improved quality and reduced cost made

in many of the references cited above, and also the attribution of these to formal
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methods. He argues that the data collected are so poorly controlled that they provide

anecdotal evidence, at best, for the efficacy of the methods concerned. For example,

skeptics might wonder whether the formal inspection process (or the fact that the

developers were working on a second version of the system) might have contributed

as much to the success of the CICS project as the use of formal methods.

A rather different criticism of claims made on behalf of formal methods con-

cerns the British VIPER microprocessor. The controversy surrounding this was

described in Section 2.5.2, but the salient point is that although the person who

performed the HOL verification was scrupulously careful to explain what had been

accomplished [Coh89b], some of the marketing material for VIPER made rather

extravagant claims, suggesting that the device had a complete formal verification

from the specification of its external behavior down to its gate-level design. This

was rightly condemned in a report on the verification of VIPER commissioned by

NASA [BH90, BH91].

The VIPER story repeats, to an uncanny degree, some of the failings of the

SIFT project of a decade earlier. SIFT (Software Implemented Fault Tolerance)

was originally a systems design and implementation project whose goal was to

develop a fault-tolerant computer of sufficient reliability for fly-by-wire passenger

aircraft [W+78, Go187]. Prior to SIFT, the units of redundancy in fault-tolerant

systems were generally components or functional blocks, not full computer channels

(the IBM Launch Vehicle Digital Computer for the Saturn V rocket [Tom87, page

212] is a classic example). SIFT took a radically different approach: running iden-

tical software in separate, synchronized channels, and subjecting the results to ma-

jority voting in order to mask faulty channels. While attempting to develop the

justification for the SIFT approach, Pease, Shostak, and Lamport (exploring intu-

itions described by NASA personnel) realized that there were fault modes in the

distribution of singIe Source data that could not be overcome by simple majority

voting. Thus was the whole field of Byzantine agreement born [PSLS0, LSP82].

When SIFT was well underway, a new project was started to apply formal ver-

ification to some aspects of the SIFT architecture. After several years, a formal

specification and verification of some aspects of the fault-tolerance mechanisms of

an abstraction of the SIFT architecture were developed. Another piece of work ver-

ified some pieces of code that resembled (small) parts of the SIFT operating system.

However, the design and construction of the SIFT system, and of its code, were con-

ducted entirely separately from its verification. What ran was not what was verified.

It is not clear what relationship, if any, existed between the actual SIFT system and

the abstractions that were subjected to verification. The papers that described the

SIFT verification did not make this clear: they gave the impression that what had

been verified was an actual flight-control system: "the formal proof, that a SIFT

system in a 'safe' state operates correctly despite the presence of arbitrary faults,



2.7. Industrial Applications of FormM Methods
97

has been completed all the way from the most abstract specification to the Pascal

program" [MSS82]. A peer review convened by NASA to examine the substantia-
tion for these claims found them unwarranted: "Many publications and conference

presentations concerning SIFT appear to have misrepresented the accomplishments

of the project. In many cases, the misrepresentation stems from omission of facts
rather than from inclusion of falsehood... Several panel members expressed serious

concerns regarding both the possible effects of such misunderstandings on those

seeking to apply the work and the reactions that might follow the discovery that
the work had been overstated." [NAS83, page 24].

"Those who cannot remember the past are condemned to repeat it"

[George Santayana]

One would hope that the lessons of SIFT and VIPER would remove any temp-

tation to overstate the accomplishments of formal methods. Yet even in 1992 one

could find a paper bearing the title "Formal Verification of a Fault Tolerant Com-

puter" [BJ92] that describes work which, whatever its merits, amounts to rather less

than is claimed by its title. In my opinion, the enthusiasm of the formal methods

community for its own accomplishments should be tempered by a rather greater

respect for the scale of the challenges faced by those who develop and certify real

safety-critical systems.

Formal methods in support of certification have been mainly undertaken in the

United States and in order to qualify for the government's highest (A1) rating for

secure computer systems [DoD85]. The criteria against which these evaluations are

performed were drawn up in the early 1980s and based on concepts for secure systems

that were a good deal older than that [BL76]. The criteria require Level 3 verifi-

cation using either Gypsy [GAS89] or FDM [LSSE80, SJ84] (HDM [Fei80, RLS79]

and its variants [HOPW87] were also used in the early days)--all tools with their

roots in the 1970s. The tools, evaluation criteria, and contractual mechanisms

that were imposed sometimes had the effect of divorcing the formal specification
and verification activities from the main development efforts. Nonetheless, several

substantial projects were completed, and some significant flaws were apparently

detected and corrected by these means [Si183, Lin88, Wei88]. Some of these verifi-

cations were quite large: the proof logs for 461 lemmas undertaken for one project

totalled nearly 18 million characters and would have occupied 7,600 pages if printed

out [DGK+90]. The verification of a secure system called "Multinet Gateway" is
one of the case studies described in a recent survey of industrial applications of for-

mal methods [CGR93b] (summaries appear in [CGR93a, GCR93]). In the following

paragraphs I will mention three other cases covered in that study; readers should

consult the study report for more details.
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Darlington is a nuclear power station under development on a site east of

Toronto. Each reactor has two independent shutdown systems, which are among the

first such systems to employ software. When the plant was almost ready to come

on line, the regulatory body (Atomic Energy Control Board of Canada) became

very concerned about assurance for the shutdown software. Eventually, this led to

retroactive application of formal methods in order to document and analyze the

shutdown code [AttW+90]. The methods used were derived from the A7 method-

ology [It+78], and were performed almost entirely by hand. (A spreadsheet was

used to record the "function tables.") Parnas [Par93] exhibits some simple theo-

rems that are "more difficult than the majority of the theorems that arose in the

documentation and inspection of the Darlington Nuclear Plant Shutdown Systems."

He also exhibits the function tables that gave rise to those example theorems and

states that the Darlington exercise "resulted in about 40 kg. of such trivial tables."

The overall cost of the Darlington shutdown computer systems (including hardware)

was about $16 million (Canadian). Of that total, 25% was spent on the verification

effort. The code concerned was 1,362 lines of Fortran and 1,185 lines of assembler.

Being required to delay operation of the plant and to undertake a formal methods

effort unexpectedly at a time when interest charges were costing the project $20 mil-

lion a month was "upsetting to the nuclear industry" and "resulted in considerable

unfavorable publicity "to the project as well as enormous additional cost" [Cra92].

A rather happier "reverse-engineering" of formal specifications occurred on the

SACEM project for one line of the commuter train network in Paris [GH90]. Initially,

pre- and post- conditions and loop invariants were derived for the program code from

its informal design documentation, and Hoare-style code verification was performed

by hand. Later, an _ter-the-fact formal specification (it is called a "formal re-

expression") was constructed in order to validate the theorems that had been proved.

Review of the formal specification "was not particularly easy because some of the

best signaling experts were not able to read mathematical material.., for this reason

the re-expression team rewrites separately and directly from the formal specification

a complete natural language specification. It is this last specification which has been

checked by [signaling] experts.., doing formal specifications forced the specification

teams to clarify everything and to go deeper into the real nature of the problem

to be solved" [GHg0, page 191]. The total code was 21,000 lines of Modula-2, of

which 63% were considered safety-critical and subjected to formal specification and

verification. The V&V activity for SACEM required 315,000 hours of effort (i.e.,

rather more than 150 man-years, which was about 1.5 times the effort to develop the

system), oi; which formal proof consumed 32.4%, module testing 20.1%, functional

testing 25.9%, and formal re-expression 21.6%. For the on-board component of

the system, 111 of 180 procedures were formally proved, while for the trackside

component 21 of 167 procedures were formally proved. The developers of SACEM

have subsequently refined their formal development methodology (it is derived from
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the "B Method" of Jean-Raymond Abrial [ALN+91]) and have partial automated

some of the proof-generation and checking [Cha92]. The method is being applied to

a project for the Calcutta subway and is being proposed for a new driverless train

for the Paris Metro.

Another project where formal specification has apparently led to improved un-

derstanding concerns the Traffic Alert and Collision Avoidance System (TCAS II),

which is required to be installed on all airline aircraft with more than 30 seats by 31

December 1993. The purpose of the TCAS family of instruments (of which TCAS

II is a member) is to reduce the risk of midair collisions between aircraft. As a

result of the discovery of flaws in the "Minimum Operational Performance Stan-

dards" [RTC89] which is essentially a pseudo-code description of TCAS II require-

ments, the RTCA formed a special committee (147A) to develop a new specification

and, ultimately, commissioned Nancy Leveson (University of California at Irvine)

to develop a formal specification. Leveson's specification is based loosely on stat-

echarts [Har86]; it represents decision logic in a tabular manner and is carefully

typeset and presented. In my terminology, it represents a sophisticated Level 1

formal method. Reviewers, who include engineers and pilots, consider the formal

notation better than the pseudocode and certainly better than the English language

specification that was developed in parallel. No tools were used in the development

of the formal specification. Even without using analysis tools, there appears to have

been general increase in confidence and understanding of the TCAS requirements.

At the other extreme from TCAS are projects involving state-exploration

methods--where powerful tools are of the essence. Protocol verification has been a

fruitful target for these techniques; errors have been discovered in the very impor-

tant and subtle cache-coherence protocols used in shared-store multiprocessors, and

some have been formally verified in this way [DDHY92, CGH+92, MS91]. AT&T's

COSPAN system [HK90] has been used in the design of several significant VLSI

devices, with major reductions in the effort required (one project that was esti-

mated to require 30 man-years using conventional methods was completed in 6

using COSPAN). In addition, faults have been detected in certain protocols and
devices that had been subjected to very thorough conventional analysis (one had

been simulated for 13 months with no errors detected in the last 4; COSPAN found

a "showstopper" fault almost immediately). Intel apparently uses a similar system

to COSPAN to probe some of the trickier design problems in its advanced micro-

processors. It is interesting to note that whereas conventional formal methods are

often applied to simple problems such as sequential code and the datapaths of VLSI

devices, state-exploration is often applied to the very hardest problems: protocols

and other distributed algorithms, and to control-dominated devices.

Although hardly an industrial activity, the products of a research program

sponsored by NASA Langley Research Center are worth mentioning here since
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they are among the few examples where formal methods have been applied to

problems taken directly from avionics applications. The program has undertaken

mechanically-checked formal verification of the basic algorithmic and architectural

aspects of synchronous fault-tolerant systems [BCDgl], including their global fault-

masking and transient-recovery properties [DB92, Rus93], and the crucial clock-

synchronization [RvH93, Sha92] and sensor-distribution [BY92, LR93a] algorithms

and their implementations [SB91, SB92]. In addition, some Ada library routines

have been subjected to mechanically-checked program verification [EH93]. Current

work involves collaborative projects between organizations with specialist skill in for-

mal methods (Computational Logic Incorporated, ORA, and SRI International) and

several aerospace companies (Allied Signal, Boeing, Honeywell, IBM, and Rockwell-

Collins).

Another documented example of formal methods applied to an avionics problem

involved use of the LOTOS languages and tools to specify and model software for

the Flight Warning Computer (FWC) of the Airbus 330 and 340 aircraft [GH93].

The goal of the project, which was undertaken by Aerospatiale, INRIA, CEAT (the

French certification authority), and British Aerospace, was to see whether formal

processes could significantly reduce development costs for avionics software. The

planned development, process was to write the detailed design in an executable

specification language, assess its correctness by formal verification, and then gener-

ate executable code directly from the formal design. Assuming this last step were

performed by a verified compiler, unit test would be eliminated, thereby achieving

large cost savings. The specification language chosen for the exercise was LOTOS,

which is an ISO standard notation (based on process algebra with an algebraic

datatype facility) intended for specification and analysis of telecommunications pro-

tocols [IS088]. The FWC was chosen as a test case since it is representative of the

type and complexity of many other airborne systems, and because it had already

been implemented--thereby providing a base for comparison (and a debugged set

of requirements).

The FWC is a distributed system composed of three Intel 80386 CPUs, with

software programmed in Ada, PL/M and assembler. Its purpose is to monitor inputs

from several analog, discrete, and digital input sources, check them for validity (these

are the functions of the of CPU 1), identify alarm conditions and post these to the

Display Management Computer (these are the functions of CPU 2; essentially it

simulates a large combinational Boolean circuit, reducing 11,000 possible signals to

2,000 possible alarms, and then executes %omplex and imperative rules" to select

and organize presentation of the alarms). CPU 3 is used to generate audible alarms

and synthesized speech.

It was found that 95% of the design specification for the FWC comprised descrip-

tions of data structures and sequential algorithms. The data structures concerned
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were those of a typical programming language (enumerations, records, arrays) plus

"memories," which model the I/0 and communications resources of the FWC. The

datatype facility of LOTOS was inconvenient for these purposes, so a preprocessor

was written to "compile" these structures into the recursive equational form re-

quired by LOTOS. (At least two other such preprocessors were later discovered to

have been developed elsewhere in Europe). Similarly, the constructs required for

the sequential algorithms executed by the CPUs were those of a typical program-

ming language (if, case, while, for etc.) and, again, the facilities of LOTOS did

not provide particularly convenient expression for these concepts (they had to be

encoded in terms of guarded commands, recursion, and sequential composition).

The remaining 5% of the design specification concerned real-time aspects, and

these could not be expressed in LOTOS since it lacks the concept of an urgent action

(the nearest equivalent is nondetermlnistic, which is unacceptable in airborne appli-

cations). Consequently, the real-time aspects of the design were specified as timing

diagrams (and would have been translated into Ada by hand if the experiment had

been completed).

The design description for the FWC comprised over 27,500 lines of LOTOS (a

total of 43,021 lines were written when the preliminary design is included). It was

observed that the LOTOS specification for CPU 2 was approximately the same size

and level of abstraction as the existing Ada code. However, about 30% greater

effort was required to develop the LOTOS specifications than the Ada code (some

of this was expended on tool development), and it took longer to debug the LOTOS

specifications than the Ada code (since the LOTOS diagnostics were insufficiently

explicit).

The LOTOS design specifications of the FWC were too large to be processed by

the available formal verification tools. Consequently, the specification was validated

by simulation and testing. A special-purpose program was written to check for

nondeterminism (this seems to havebeen a simulator, driven by specific test data,

rather than a model checker to detect all nondeterminism). C code was compiled

from the LOTOS design specification and subjedted to a number of tests; the va-

lidity of the output behavior was determined visually by an Aerospatiale engineer.

Several faults were detected in the LOTOS specifications by this means. The C code

generated from the specifications for CPUs 1 and 2 compiled into an object program

of 2.5 Mbytes that was able to process a set of input data ``in some minutes" on a

SPARC 10. (The size and performance of the existing Ada code is not documented,

but the frame rate of the FWC is stated as 480 msec.) Due to lack of time, CPU 3

was not analyzed.

It is argued that because of the particularly simple, deterministic, character of

the computations performed by CPU 1 and CPU 2 (basically, straight-line com-

putations), formal verification, simulation, and testing all coindde. Thus, "it was
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not necessary to use sophisticated verification tools ...which are intended to [sic]

the verification of complex systems, where concurrency and nondeterminism play

an important role."

The lessons of the industrial applications of formal methods described in this

section are mixed. The applications where formal proofs were performed on de-

tailed designs or code (Darlington and SACEM) were from industries with little

prior experience of safety-critical software, and which lacked the established require-
ments and practices for stringent software quality assurance found in the aerospace

industry, s9 It is debatable whether the formal methods concerned would add much

to the assurance currently achieved for flight-critical software. The relevance of the

relatively simple, small, sequential (and largely loop-free) systems of Darlington and

SACEM to the far greater size and complexity of flight-control systems (which are

generally measured in hundreds of thousands of lines of code and are replete with

the challenges of fault tolerance and of distributed, concurrent processing) is also

questionable. 8°

For similar reasons, the cost and quality improvements found in applications

such as CICS are of limited relevance to airborne software: formal methods may

improve the development process for commercial data processing, but evidence that
would translate to increased assurance for safety-critical functions is slight.

The TCAS experiment seems more encouraging: well-chosen and well-presented

formalized notations can apparently improve the review and inspection process

(SACEM has similar elements). Experience with COSPAN and similar systems

is also promising, suggesting that state-exploration methods can find bugs in com-

plex systems that have gone undetected by other methods (similar experience is also

reported by the NASA program using conventional theorem proving).

Finally, the experiment involving the Airbus 330/340 flight warning computer

serves as a salutary lesson in the misapplication of formal methods: choosing an

inappropriate goal, selecting unsuitable formal languages and techniques, targeting

a problem too large for the available tools, or too simple for them to be of much

value, are all good ways to vitiate any potential benefits of formal methods.

We should bear these lessons in mind when we consider the role of formal meth-

ods in validation of airborne systems.

59I understand that formal methods were required for Darlington only after the developers had
been unwilling or unable to perform more traditional processes for software assurance to the satis-
faction of the regulatory authorities.

s°With few exceptions [AN89, CV91], digital railroad switching and train control does not use the
redundant channels of flight-control systems (perhaps because there is a safe state: stop the train).
Instead they use single processors with extensive self-checks, redundant computations, and error
correcting codes (the terminology is of "vital_ systems and %oded processors_) that are intended
to make for fall-safe operation [Mon92, Mar92, Pat92, Ho186, HB86, Rut90].
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2.8 Further Reading

In this section I mention some books that may prove useful for those who wish to

learn more about formal methods and related topics.

Logic and discrete mathematics provide the basis for formal methods and I

recommend the text by Gries and Schneider [GS93] as the best introduction to

these topics for those who wish to use them as tools in computer science. Those

who seek an introduction or refresher on the construction of traditional (i.e., not

specifically formal) mathematical proofs are recommended to consult Solow [Sol90].

Lakatos [Lak76] provides a thoughtful examination of the role of proof in mathe-

matics, much of which also applies to formal methods in computer science.

The standard notation and constructions of logic and discrete mathematics, and

the traditional mathematical conception of proof, are sufficient to undertake formal

methods with the rigor that I call "Level 1." Moving beyond this, to the second level

of rigor, we find self-contained specification languages, and more structured treat-

ments of proof obligations, and (sometimes) of proofs themselves. Unfortunately,

I have found no books that can be recommended unreservedly as good general in-

troductions to this level of formal methods. Many of the current texts on formal

methods are from the United Kingdom and generally introduce formal methods in

the style of Z or VDM with no discussion of alternatives. They also tend to stress

data structures and applications that resemble data processing; they are weak on the

kinds of problems that give most concern in safety-critical systems, fail to address

adequately the need to validate complex specifications, and make little reference

to automation and mechanized proof checking. With those caveats, the texts by

Ince [Inc88] and by Woodcock and Loomis [WL89] can be recommended as intro-

ductions to the use of mathematical concepts in specification, in the style of VDM

and Z, respectively, while Cohen, Harwood, and Jackson give a brief and fairly

general overview of formal specification techniques [CHJ86].

A book explicitly intended as an introduction to Z is that by Words-

worth [Wor92], while Spivey's texts are the standard descriptions of Z [Spi89, Spi88].

A collection of case studies undertaken in Z has been published by Hayes [Hay87] (a

new edition is due shortly), and a more eclectic collection (using other notations such

as LOTOS) by $charbach [Sch89]. VDM is introduced by Jones [Jon86, Jong0], and

the somewhat related RAISE languages and tools by George and colleagues [RAI92].

Formal methods supported by automated tools, and especially those that provide

proof checking or theorem proving for the third level of rigor, are generally described

in books that are specific to individual systems. The HOL system, which is a the-

orem proving environment for higher-order logic, is described by Gordon and Mel-

ham [GM93]. LCF (the progenitor of HOL) is described by Paulson [Pau87], while

the mural proof assistant (whose main application is VDM) is described in [JJLM91].
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Returning to the United States, the ANNA annotation language for Ada is de-

scribed in [Luc90], the Larch languages and tools in [GwSJGJ+93], and the Clean-

room methodology in [Dye92]. The Nuprl system is described in [C+86] and the

Boyer-Moore prover is described in IBM88].

A modern introduction to the basics of theorem proving is given by Paul-

son [Pau92]; an older but still useful account is given by Bundy [Bun83]. Connections

between specification and prototyping are explored by Hekmatpour and Ince [HI88]

(using VDM), by Alexander and Jones [A J90], and by Henderson [Hen93].

Many of the books cited above describe formal methods and tools that could

be considered (by their authors at least) to be "ready for use." Those who wish

to explore more widely should examine some of the classic texts, such as those of

Dijkstra [Dij76] (the debate [Dij89] is particularly accessible), and Hoare [HoaSb,

Hoa89] on mathematical approaches to computer programming and should also seek
out current research articles on the formal modeling of concurrency, real time, and

fault tolerance.

Safety critical systems, with passing mention of formal methods, are considered

by Pyle [Py191], and jet engine control, also with some mention of formal methods,

by Thompson [Tho92]. A collection edited by Sennett [Sen89] provides more ex-
tended treatment of formal methods in the context of safety-critical systems. The

compendium edited by McDermid [McD93] contains good short survey treatments
of a number of relevant topics, including formal methods, background mathemat-

ics, safety, and management. All of these books axe from the UK and reflect that

perspective.

Those seeking a technical introduction to logic should examine Baxwise [Bax78],

Hodges [Hod83], or Ryan and Sadier [RS92]. Manna and Waldinger provide an

introduction to logic for computer science [MW85, MW90], though many readers

will find the pace slow and the detail excessive (a condensed version in one volume

is available [MW93]). Many other books on logic are mentioned in the Appendix.

Those considering the issues of transferring formal methods from research to

practice may wish to consult Austin and Paxkin [AP93], who analyze 126 ques-

tionnaires returned by organizations, mostly in the UK, on industrial use of formal

methods. Good accounts of the general problems of technology transfer are given

by Davis [Dav92] and by Potts [Pot93].



Chapter 3

Formal Methods and Digital

Systems Validation

"Are we just going to happily scale up from system sizes in which you

can contemplate the whole system in front of you ? A system that is small

enough that you can contemplate it in your head and have some idea of

what is going on in it. What happens as we go to systems that are beyond

the easy scope of an individual imagination, beyond the easy scope of a

single programmer running one single set of programs that that program-

mer can examine? What happens when it gets bigger than that?... We

abstract certain things. We aggregate parts of it and say: 'Now we have

a model.' When we analyze the model, we will in some sense understand

and have analyzed the thing itself... What is the nature of verifiability

when you say 'I have a model and it describes what the object will be

like '--especially if it is a very complicated object so that testability is not

a very easy thing to do? ... When we build things, how are we sure that

the model we have abstracted from the reality.., is a good enough model to

enable us to find all those peculiarities? How are we going to do enough

testing so we know that some of those peculiarities (that we think are

well outside the operating range) don't turn out to be inside the operat-

ing range for some strange operating configuration somebody is bound to

try when you have 1011 tries a year, and which you can't find when the

test program has 10 3 or 10 4 tries per year... We can, I'm sure succeed

in finding statistical methods to assure us that on the whole, everything

is all right. The bad cases are well out at the edge, and they are improb-

able; while in the region of the mean, or average behavior, everything is

fine. I must remind you, however, that disaster does not occur in the

mean. Disaster always occurs in the variance. That's where the problem

is: where something unanticipated and unanticipatable happens." From

a speech by former NASA Administrator Robert Frosch [Fro85].

105
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The more severe classes of aircraft failure conditions must be extremely rare. In

particular, system failures that could lead to a catastrophic failure condition must

be "extremely improbable," which means that they must be "so unlikely that they

are not anticipated to occur during the entire operational life of all airplanes of one

type" [FAA88, paragraph 9.e(3)]. "When using quantitative analyses...numerical

probabilities.., on the order of 10 -9 per flight-hour I may be used...as aids to en-

gineering judgment.., to...help determine compliance ... with the requirement for

extremely improbable failure conditions" [FAA88, paragraph 10.b].

Clearly, software components of systems that have the potential for catastrophic

failure conditions must have low probabilities of anomalous behaviors, but this does

not mean that the software need have a reliability of 1 - 10-9: it may have much

lower reliability provided its failures do not contribute to serious failure conditions.

However, it does mean that software failures or anomalies that can lead to seri-
ous failure conditions must be extremely rare, and that strong assurances must be

provided that they are so. In this chapter, I consider how such assurances can be

provided for software (and custom digital devices such as ASICs, which have sim-

ilar characteristics to software), and examine the potential contributions of formal

methods.

3.1 Background to Assurance

Requirements and considerations for certification of software in airborne systems are
described in FAA Advisory Circular 25.1309-1A [FAA88] and in DO-178B [RTC92],

which is incorporated by reference into the former document (see [FAA93], part of

which is reproduced in Section 3.2). However, in order to best understand the poten-

tial contributions of formal methods, it is first necessary to examine the intellectual

basis for assurance of safety-critical software.

The general approach to development and certification of safety-critical systems

is grounded in hazard analysis. Potential hazards (conditions that can lead to an

accident) are identified and analyzed for risk (the combination of severity and like-

lihood). Unacceptable risks are eliminated or reduced by respecification of require-

ments, redesign, incorporation of safety features, or (as a last resort) incorporation

of warning devices.

The criticality of a particular component or system is a measure of the severity

of the possible effects that could follow from failure of that component or system.

Failure includes the possibility of performing functions incorrectly, or performing

unintended functions, as well as the loss of intended functions. Design alternatives

are explored in order to reduce the number of critical components and systems,

I Justification for this number was given in the Note on Terminology on page 4.
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and their degree of criticality. The degree of criticality associated with a particular

component or system determines the degree of assurance that should be provided for

it: a system whose failure could have grave consequences will be considered highly

critical and will require very strong assurances that its failure will be extremely

improbable.

Failures can be random or systematic; the former are due to latent manufactur-

ing defects, wear-out and other effects of aging, environmental stress (e.g., single-

event upsets caused by cosmic rays), and other degradation mechanisms that afflict

hardware components, while the latter (which are sometimes called generic faults)

are due to faults in the specification, design, or construction of the system. The

probability of random failure in a system can be measured by sufficiently extensive

and realistic testing, or (for suitably simple systems) it can be calculated from his-

torical reliability data for its component devices and other known factors, such as

environmental conditions. Classical fault-tolerance mechanisms (e.g., n-modular re-

dundancy, stand-by spares, back-up systems) can be used to reduce the probability

of system failure due to random component failures to acceptable levels, though at

some cost in system complexity--which is itself a potential source of (systematic)

design faults.

Systematic failures are not random: faults in specification, design, or construc-

tion will cause the system to fail under specific combinations of system state and

input values, and the failure is certain whenever those combinations arise. But

although systematic failures occur in specific circumstances, occurrences of those

circumstances are associated with a random process, namely, the sequence over

time of inputs to the system. 2 Thus, the manifestations of systematic failures be-

have as stochastic processes and can be treated probabilistically: to talk about a

piece of software having a failure rate of less than, say 10 -9 per hour, is to say

that the probability of encountering a sequence of inputs that will cause it to ex-
hibit a systematic failure is less than 10-9 per hour. Note that this probabilistic

measure applies whether we are talking about system reliability or system safety;

what changes is the definition of fa_ure. For reliability, a failure is a departure

from required or expected behavior, whereas for safety, failure is any behavior that

constitutes a hazard to the continued safe operation of the airplane. This, appar-

ently small, difference between the notions of reliability and safety nonetheless has

a profound impact on techniques for achieving and assuring those properties.

First, although there may be many behaviors that constitute failure from the

reliability point of view, there may be relatively few that constitute safety failures--

especially of the higher severity classes. Thus, whereas reliability engineering seeks

to improve the quality of the system in general, safety engineering may prefer _0

2Its environment--the states of the other systems with which it interacts--is considered among

the inputs to a system.
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concentrate on the few specific failures that constitute major hazards; at the risk

of reducing these complex issues almost to caricature, we could say that reliability
tries to maximize the extent to which the system works well, while safety engineering

tries to minimize the extent to which it can fail badly.

Second, techniques for improving reliability naturally deal first with the major

sources of unreliability: that is, the most frequently encountered bugs get fixed first.

There is a huge variation in the rate at which different faults lead to failure, and

also in the severity of their consequences. Currit, Dyer, and Mills [CDM86] report

data from major IBM systems showing that one third of the faults identified had

a mean time to failure (MTTF) of over 5,000 years (and thus have an insignificant

effect on overall MTTF), and a mere 2% of the faults accounted for i,000 times
more failures than the 60% of faults encountered least often. Reliability-based ap-

proaches would concentrate on detecting and removing the faults that contribute

most to unreliability (indeed, the cited data are used by Currit, Dyer, and Mills
to demonstrate that random testing would be 30 times more effective than struc-

tural testing in improving the reliability of the systems concerned). The most rarely
encountered faults can therefore hide for a long while under a testing and repair

regime aimed at improving reliability--but if just one or two rare faults could lead

to catastrophic failure conditions, we could have a reliable but unsafe system. 3 Data

cited by Hecht [Hec93] indicates that such rare faults may be the dominant cause

of safety- and mission-critical failures.

Third, the reliability-engineering approach can lead to concentration on the re-

liability of individual components and functions, whereas some of the most serious

safety failures have been traced to poorly understood top-level requirements and

to unanticipated subsystem interactions, often in the presence of multiple failures

(Leveson [Lev86] quotes some examples and, although it does not concern software,

Perrow's classic study [Per84] is still worth examination).

Elements of both the reliability and safety engineering approaches are likely to

be needed in most airborne systems: although a reliable system can be unsafe,

an unreliable system is unlikely to be safe in these applications. (Primarily because

there are few safe failure modes in flight-control applications. This can be contrasted

with nuclear power generation, where a protection system that shuts the reactor

down unnecessarily may be unreliable, but perfectly safe.)

Just as the subtly different characteristics of reliability and safety lead to differ-

ences in methods used to achieve those properties, so they also lead to differences in

their methods of assurance. Both reliability and safety are measured in probabilistic

terms and can, in principle, be assessed by similar means. However, the numerical

requirements for safety in airborne systems are orders of magnitude more stringent

aWith 500 deployed systems, a single serious fault with a MTTF of 5,000 years could provoke
several catastrophic failure conditions over the lifetime of the fleet.
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than those normally encountered for reliability. Systems designated "highly reli-

able" may be required to achieve failure rates in the range 10 -3 to 10 -6 per hour,

whereas requirements for safety often stipulate failure rates in the range 10 -7 to

10 -1_ per hour. 4 I will speak of required failure rates of 10 -7 to 10 -12 per hour as

the "ultra-dependable" range, and will talk of such systems as "ultra-dependable."

Bear in mind that these probabilities generally refer only to the incidence of safety-

critical failures, and not to the general reliability of the systems concerned, and are

assessed on complete systems--not just the software they contain.

The change in acceptable failure rates between highly-reliable and safety-critical

systems has such a profound impact that it goes beyond a difference of degree and

becomes a difference in kind: the reason being that it is generally impossible to

experimentally validate failure rates as low as those stipulated for safety.

There are two ways to estimate the failure rate of a system: the experimental

approach seeks to measure it directly in a test environment; the other approach

tries to calculate it from the known or measured failure rates of its components,

plus knowledge of its design or structure (Markov models are often used for this

purpose).

The experimental approach faces two difficulties: first is the question of how

accurately the test environment reproduces the circumstances that will be encoun-

tered in operation; second is the large number of tests required. If we are looking

for very rare failures, it will be necessary to subject the system to "all up" tests

in a highly realistic test environment--installed in the real airplane, or very close

facsimile (e.g., an "iron bird"), with the same sensors and actuators as will be used

in flight. Furthermore, it will clearly be necessary to subject the system to very

large numbers of tests (just how large a number is a topic I will come to shortly)-

and if we are dealing with a control system, then a test input is not a single event,

but a whole trajectory of inputs that drives the system through many states, s And

since we are dealing with a component of a larger system, it will be necessary to

conduct tests under conditions of single and multiple failures of components that

interact with the system under test. Obviously, it will be very expensive to set up

4Nuclear protection systems require a probability of failure on demand of less than 10-4; failures
that could contribute to a major failure condition in an aircraft require a failure rate less than 10-s
per hour [FAA88, paragraph 10.b(2)]; the Advanced Automation System for Air Traffic Control
has a requirement for less than 3 seconds unavailability per year (about 10-7) [CDD90]; failures
that could contribute to a catastrophic failure condition in an aircraft require a failure rate less
than 10-' per hour [FAA88, paragraph 10.b(3)]; controllers for urban trains must have failure rates
lower than 10-12 [LS93].

5The key issue here is the extent to which the system accumulates state; systems that reinitialize
themselves periodically can be tested using shorter trajectories than those that must run for long
periods. For example, the clock-drift error that led to failure of Patriot missiles [GAO92b] required
many hours of continuous operation to manifest itself in a way that was externally detectable.
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and run such a test environment, and very time-consuming to generate the large

and complex sets of test inputs and fault injections required.

So how many tests will be required? Using both classical and Bayesian proba-

bilistic approaches, it Call be showl_ that if we want a median time to failure of n

hours, then we need to see approximately n hours of failure-free operation under

test [LS93]. 6 So if we are concerned with catastrophic failure conditions, we will
need to see 109 failure-free hours of operation under test. And 109 hours is a little

over 114,000 years! 7

To reduce the time under test, we could run several systems in parallel, and we

could try "accelerated testing," in which the inputs to the system are fed in faster

than real time and, if necessary, the system is run on faster hardware than that which

will be used in actual operation. (This naturally raises questions on the realism of

the test environment--particularly when one considers the delicacy of timing issues

in control systems, s) But at best these will reduce the time required by only one or

two orders of magnitude, and even the most wildly optimistic assumptions cannot

bring the time needed on test within the realm of feasibility. Similarly, quibbles

concerning the probability models used to derive the numbers cannot eliminate

the gap of several orders of magnitude between the amount of testing required to

determine ultra-dependable failure rates experimentally, and that which is feasible.

The analyses I have considered so far assume that no failures are encountered

during validation tests; any failures will set back the validation process and lower

our estimate of the failure rate achieved. "Reliability growth models" are statistical

models that avoid the need to restart the reliability estimation process each time an

error is detected and repaired; they allow operational reliability to be predicted from

observations during system test, as bugs are being detected and repaired [MI087].

But although they are effective in commercial software development, where only

modest levels of reliability are required, reliability growth models are quite imprac-

tical for requirements in the ultra-dependable region. Apart from concerns about

the accuracy of the model employed, 9 a law of diminishing returns greatly lessens

6The Bayesian analysis shows that if we bring no prior belief to the problem, then following n

hours of failure-free operation, there is a 50:50 chance that a further n hours will elapse before the

first failure.

_Butler and Finem [BF91] present a similar analysis and conclusion (see also Hamlet [Ham92]).

Pumas, van Schouwen, and Kwan [PvSKg0] use a slightly different model. They are concerned

with estimating trustworthiness--the probability that software contains no potentially catastrophic

flaws--but again the broad conclusion is the same.

Slts feasibility is also questionable given the fault injections that are needed to test the fault-

tolerance mechanisms of safety-critical systems: experiments must allow a reasonable time to elapse

after each injected fault to see if it leads to faJJure, and this limits the amount of speed-up that is

possible.

°Dit_erent reliability growth models often make very different predictions, and no single model

is uniformly superior to the others; however, it is possible to determine which models are effective

in a particular case, but only at modest reliability levels [BL92].
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the benefit of reliability growth modeling when very high levels of reliability are

required [LS93].

Since empirical quantification of software failure rates is infeasible in the ultra-

dependable region, we might consider the alternative approach of calculating the

overall failure rate from those of smaller components. To be feasible, this approach

must require relatively modest reliabilities of the components (otherwise we cannot

measure them); the components must fail independently, or very nearly so (otherwise

we do not achieve the multiplicative effect required to deliver ultra-dependability

from components of lesser dependability); and the interrelationships among the

components must be simple (otherwise we cannot use reliability of the components

to calculate that of the whole). Ordinary software structures do not have this last

property: the components communicate freely and share state, so one failure can

corrupt the operation of other components [PvSK90]. However, specialized fault-

tolerant system structures have been proposed that seek to avoid these difficulties.

One such approach is "multiple-version dissimilar software" [RTC92, Subsection

2.3.2] generally organized in the form of N-Version software [AL86, AviS5] or as
"Recovery Blocks" [Ran75a]. The idea here is to use two or more independently

developed software versions in conjunction with comparison or voting to avoid sys-

tem failures due to systematic failures in individual software versions. For the N-

Version technique to be effective, failures of the separate software versions must be

almost independent of each other, l° The difficulty is that since independence can-

not be assumed (experiments indicate that coincident failures of different versions

are not negligible [ECK+91, KL86], and theoretical studies suggest that indepen-

dent faults can produce correlated failures [EL85]--though the correlation can be

negative [LM89]), the probability of coincident failures must be measured. But

for this design approach to be effective, the incidence of coincident failures must

be in the ultra-dependable region--and we are again faced with the infeasibility

of experimental quantification of extremely rare events [BF91]. For these reasons,

the degree of protection provided by software diversity "is not usually measurable"

and dissimilar software versions do not provide a means for achieving safety-critical

requirements, but "are usually used as a means of providing additional protection

after the software verification process objectives for the software level.., have been

met" [RTC92, Subsection 2.3.2]. A further limitation on the utility of N-version soft-

ware is that, anticipating data presented in the next section, the most serious faults

are generally observed in complex functions such as redundancy management and

distributed coordination. These employ fault-tolerant algorithms that work under

specific fault-hypotheses. For example, fault-tolerant sensor-distribution algorithms

1°For the Recovery Block technique to be effective, failure of the _Acceptance Test" must be
almost independent of failures of the implementations comprising the body of the recovery block.
The test and the body are intrinsically "more dissimilar" than N-Version _:omponeats, which must
all accomplish the same goal, but it is difficult to develop acceptance tests of the stringency required.
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are based on very carefully chosen voting techniques, and plausible alternatives can

fail [LR93b]. Supplying N implementations and additional voting does not neces-

sarily make these functions more robust, but it certainly changes them and may

violate the constraints and fault-hypotheses under which they work correctly. The

daunting truth is that some of the core algorithms and architectural mechanisms in

fault-tolerant systems are single points of faihlre: they just have to work correctly.

Another design technique suggested by the desire to achieve ultra-dependability

through a combination of less-dependable components is use of unsynchronized

channels with independent input sampling. Redundant computer channels (typi-

cally triplex or quadruplex) are required for fault tolerance with respect to random

hardware failures in digital flight-control systems. The channels can operate either

asynchronously, or synchronously. One advantage claimed for the asynchronous ap-

proach is that the separate channels will sample sensors at slightly different times

and thereby obtain slightly different values [McG90]. Thus, even if one channel suf-

fers a systematic failure, the others, operating on slightly different input values, may

not. Like design diversity, effectiveness of this "data diversity" depends on failures

exhibiting truly random behavior: in this case the requirement is that activations

of faults should not cluster together in the input space. As with the independence

assumption in design, diversity, experimental evidence suggests that this property

cannot simply be assumed (there is some evidence for "error crystals" [DF90]) and
it must therefore be measured. And as before, experimental determination of this

property is infeasible at the low fault densities required. 11

If we cannot validate ultra-dependable software by experimental quantification

of its failure rate, and we cannot make substantiated predictions about N-version or

other combinations of less-dependable software components, there seems no alter-

native but to base certification at least partly on other factors, such as analysis of

the design and construction of the software, examination of the life-cycle processes

used in its development, operational experience gained with similar systems, and

perhaps the qualifications of its developers.

We might hope that if these "subjective" factors gave us a reasonable prior

expectation of high dependability, then a comparatively modest run of failure-free
tests would be sufficient to confirm ultra-dependability. Unfortunately, a Bayesian

analysis shows that feasible time on test cannot confirm ultra-dependability, unless

our prior belief is already one of ultra-dependability [LS93] (see also [MMN+92] for

a detailed analysis of the probability of failure when testing reveals no failures). In

1_Like N-vetch software, asynchronous operation could also be proposed as a way to provide
additional protection beyond that required and achieved by an individual software channel. This
proposal overlooks the possibility that an asynchronous approach will complicate the overall design,
having ramifications throughout the system, from fault detection, through reconfiguration, to the
control laws. As the AFTI-F16 flight tests revealed (these are described below), this additional,
unmastered complexity has become the primary source of failure in at least one system.
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other words, the requirement of ultra-dependability is so many orders of magnitude

removed from the failure rates that can be experimentally determined in feasible time

on test, that essentially all our assurance of ultra-dependability has to come from

"subjective" factors such as examination of the lifecycle processes of its development,

and review and analysis of the software itself.

This is a rather chastening conc]usion: assurance of ultra-dependability has to

come from scrutiny of the software and scrupulous attention to the processes of

its creation; since we cannot measure "how well we've done" we instead look at

"how hard we tried." This, in essence, is the burden of DO-178B (and most other

guidelines and standards for safety-critical software). Of course, extensive testing
is still required, but it is perhaps best seen as serving to validate the assumptions

that underpin the software design, and to corroborate the broad argument for its

correctness, rather than as a validation of reliability claims. Indeed, most standards

for safety-critical software state explicitly that probabilities are not assigned or

assessed for software that is certified by examination of its development processes:

"...it is not feasible to assess the number or kinds of software errors,

if any, that may remain after the completion of system design, develop-

ment, and test" [FAA88, paragraph 7.i].

"Development of software to a software level does not imply the assign-

ment of a failure rate for that software. Thus, software levels or software

reliability rates based on software levels cannot be used by the system

safety assessment process as can hardware failure rates" [R.TC92, Sub-

section 2.2.3].

(See also [MOD91b, paragraph 6.6 and Annex F].)

The infeasibility of experimental quantification of ultra-dependable software not

only impacts the process of validating software, it also places constraints on the

design of redundancy management mechanisms for tolerating hardware failures.

Although the assumption of independent failures cannot be assumed for diffdrent
software versions, it is a reasonable assumption for properly configured redundant

hardware channels. Overall reliability of such a redundant system then depends

on the failure rates of its components, and on properties of the architecture and

implementation of the fault-tolerance mechanisms that tie it together (in particular,

the coverage of its fault-detection mechanisms). The overall system reliability can

be calculated using reliability models whose structure and transition probabilities

are determined by hardware component reliabilities and by properties of the fault-
tolerance mechanisms. These transition probabilities must either be calculated in

some justifiable manner, or they must be measured: if they cannot be calculated

or measured in feasible time on test, the architecture cannot be validated and its

design must be revised.
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This analysis motivates the methodology for fault-tolerant architectures known

as "design for validation" [JB92], which is based on the following principles.

1. The system must be designed so that a complete and accurate reliability model

can be constructed. All parameters of the model that cannot be deduced

analytically must be measurable in feasible time under test.

2. The reliability model

analytical arguments

cause system failure.

does not include transitions representing design faults;

must be presented to show that design faults will not

3. Design tradeoffs are made in favor of designs that minimize the number of

parameters that must be measured, and that simplify the analytic arguments.

Johnson and Butler [JB92] present a couple of representative examples to show

how these principles might apply in practice. In one case, a dual-channel system

is shown to be able to meet its mission reliability requirements provided the fault-

tolerance software (which has to correctly recognize and shut down a faulty channel)

has coverage greater than 0.9995.12 Further analysis reveals that 20,000 tests will be

required to validate the fault-tolerance software to the necessary level of statistical

accuracy. If fault injections can be performed at the rate of one per minute, then

333 hours (a little over 14 days) of continuous time on test will be required. This is

feasible, and so this attribute of the proposed architecture can indeed be validated.

The second example concerns a two-fault-tolerant 5-plex. In this case, it is

shown that the coverage of the fault-tolerance mechanisms must exceed 0.9999982,

and that over a million fault-injections will be required to validate satisfaction of this

requirement. This amount of testing is probably infeasible (it is equivalent to 1.9

years on continuous test at one fault-injection per minute). We therefore have little

alternative but to abandon this architecture in favor of one whose critical design

parameters can be measured in feasible time. 13

To summarize the discussion so far: all software failures are of the systematic

variety--there is nothing to go wrong but the processes of specification, design, and

l_What I am concerned with here is not design faults in the software, but the fact that it is

(provably) not possible to always correctly identify the faulty channel in a pair. The effectiveness (or
coverage) of a particular detecii0n and diagr.osis scheme generally has to be evaluated empirically.

lair might seem that we could enumerate all hard'rare failure modes and prove that the fault-

tolerance mec.hanisms correctly counter each one. The difficulty is providing evidence (to the
required level of statistical significance) that all failure modes have been accounted for (the issue
is called _assumption coverage" [Pow92]). There is an alternative, however: it is possible to prove

that certain architectures can mask failures (up to a specified number), no matter what the mode
o]]ailure [HL91, KWFT88, K+89, W+78]. These architectures are based on Byzantine-resilient
algorithms [LSP82, PSL80, Sch90], which are proved correct without making any assumptions about
the behavior of failed components.



3.2. RTCA Document DO-178B
115

construction. Nonetheless, software failure can be treated as a random process and

can be quantified probabilistically. However, validation of achieved failure rates by

experimental quantification is infeasible in the ultra-dependable region. (This also

places constraints on the design of fault-tolerant architectures, since system relia-

bility models require accurately measured or calculated probabilities of coverage for

the redundancy-management and fault-tolerance software.) The realization that ex-

perimental validation is infeasible for software in the ultra-dependable region means
that its validation must derive chiefly from analysis of the software and from control

and evaluation of its development processes. Thus, the goals of the very disciplined

lifecycle processes required by almost all standards and guidelines for safety-critical

software are to minimize the opportunities for introduction of faults into a design,

and to maximize the likelihood and timeliness of detection and removal of the faults

that do creep in. The means for achieving these goals are structured development

methods, extensive documentation tracing all requirements and design decisions,

and careful reviews, analyses, and tests. The more critical a piece of software, the

more stringent will be the application of these means of control and assurance. In

the next section, I briefly describe the particular form given to these general consid-

erations in the RTCA Document DO-178B and also reproduce the sections of that

document that address formal methods directly.

3.2 RTCA Document DO-178B

The RTCA ("Requirements and Technical Concepts for Aviation," Inc.) document

known as DO-178B [RTC92] (a revision to the earlier DO-178A) provides industry-

accepted guidelines for meeting certification requirements for software used in air-

borne systems and equipment, and is incorporated by reference into United States

and European regulatory and advisory documents:

"RTCA Document RTCA/DO-178B was developed to establish soft-

ware considerations for developers installers, and users when the aircraft

equipment design is implemented using microcomputer techniques. It

is expected that current and future avionics designs will make exten-

sive use of this technology. The RTCA document outlines verification,

validation, documentation, and software configuration management and

quality assurance disciplines to be used in microcomputer systems.

"An applicant for a TSO (Technical Standard Order), TC (Type Certi-

fication), or STC (Supplemental Type Certification) for any electronic

equipment or system employing digital computer technology may use
the considerations outlined in RTCA document RTCA/DO-178B as a

means, but not the only means, to secure FAA approval of the digital
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computer software. The FAA may publish advisory circulars for specific

FAR's (Federal Aviation Regulations) outlining the relationship between

the criticality of the software-based systems and the appropriate 'soft-

ware level' as defined in RTCA/DO-178B. Those may differ from and

will take precedence over the application of RTCA/DO-178B." [FAA93]

DO-178B is quite long (over 90 pages when the appendices and index are in-

cluded) and densely packed with information, Here, I simply give an overview and

explain how formal methods are admitted into its guidelines. Where I quote material

from DO-178B, I present it in italics.

As noted in the FAA Advisory Circular quoted above, DO-178B provides guide-

lines and does not lay down specific certification requirements--those are based on

existing regulations or special conditions decided by the certification authority in

consultation with the applicant. This process is outlined in Sections 9 and 10 of

DO-178B. I interleave paragraphs from these two sections since it seems to make
for easier comprehension.

10.1. Certification Basis: The certification authority establishes the certification

basis for the aircraft or engine in consultation with the applicant. The certifica-

tion basis defines the particular regulations together with any special conditions

which may supplement the published regulations.

9°1° Means of Compliance and Planning: The applicant proposes a means of

compliance that defines how the development of the airborne system or equip-

ment will satisfy the certification basis. The Plan for Software Aspects of

Certification defines the software aspects of the airborne system or equipment

within the context of the proposed means of compliance. This plan also states

the software level(s) as determined by the system safety assessment process.

The applicant should

c. Obtain agreement with the certification authority on the Plan for Software

Aspects of Certification.

10.2. Software Aspects of Certification: The certification authority assesses

the Plan for Software Aspects of Certification for completeness and consis-

tency with the means of compliance that was agreed upon to satisfy the certifi-

cation basis. The certification authority satisfies itself that the software level(s)

proposed by the applicant is consistent with the outputs of the system safety

assessment process and other system life cycle data. The certification author-

ity informs the applicant of any issues with the proposed software plans that

need to be satisfied prior to certification authority agreement.
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9.2. Compliance Substantiation: The applicant provides evidence that the soft-

ware life cycle processes satisfy the software plans. Certification authority

reviews may take place at the applicant's facilities or the applicant suppliers'

facilities. This may involve discussion with the applicant or its suppliers. 14

The applicant arranges these reviews of the activities of the software life cycle

processes and makes software life cycle data available as needed. The applicant

should

b. Submit the Software Accomplishment Summary... to the certification au-

thority.

10.3. Compliance Determination: Prior to certification, the certification au-

thority determines that the aircraft or engine (including the software aspects

of its systems or equipment) complies with the certification basis. For the

software, this is accomplished by reviewing the Software Accomplishment Sum-

mary and evidence of compliance. The certification authority uses the Software

Accomplishment Summary as an overview for the software aspects of certifica-

tion.

Section 10 of DO-178B also notes that

"the certification authority considers the software as part of the airborne

system or equipment installed on the aircraft or engine; that is, the certi-

fication authority does not approve the software as a unique, stand-alone

product."

Thus, the software must be considered in its relationship to the total system of

which it forms a part. As the design for the overall system develops, it generates

l_The Federal Aviation Act authorizes the FAA to delegate certification activities to designated,

FAA-approved employees of the manufacturer. These Designated Engineering Representatives
(DElLs) act as surrogates of the FAA in axtalyzing, testing, and examining aircraft designs and
systems. FAA staff axe responsible for overseeing DERs' activities and making the final determina-
tion as to whether a design meets FAA's safety requirements. Between 90 and 95% of all activities

axe currently delegated to Boeing and McDonnell Douglas DERs; delegation to DERs can be even
greater in some softwaxe systems--for example, approval of the entire 747-400 flight management
system was delegated to Boeing DERs because FAA staff _were not sufficiently familiar with the
system to provide meaningful inputs to the testing requirements or to verify compliance with reg-
ulatory standards" [GAO93, pp. 17, 19, 20, 27]. For aircraft imported into the United States, the
FAA relies on foreign authorities to conduct many of the necessary certification activities, but is

responsible for certifying that the aircraft meet its requirements.
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requirements for software components; and as the design of the software develops,

so it feeds constraints and requirements back into the system development process.

Among the important requirements and constraints that pass back and forth in

this way are those for system safety. The relationship between system and software

safety is discussed in Section 2 of DO-178B.

"The failure condition category of a system is established by consid-

ering the severity of failure conditions on the aircraft and its occu-

pants" [RTC92, Section 2.2].

Failure condition categories are a five-point scale from "catastrophic" through

"hazardous/severe-major," "major," and "minor" to "no effect."

"An error in software may cause a fault that contributes to a failure con-

dition. Thus, the level of software integrity necessary for safe operation

is related to the system failure conditions" [RTC92, Section 2.2].

Software levels are identified as Level A through E based on the severity of

their potential failure conditions (i.e., Level A is software whose malfunction could

contribute to a catastrophic failure condition). The software level determines the

amount of effort and evidence required to show compliance with certification require-

ments [RTC92, Subsection 2.2.2]; it does not imply the assignment of a reliability

figure or failure rate to the software [RTC92, Subsection 2.2.3]. The variations of

processes and products by software level are tabulated in Annex A to DO-178B.

These variations include the extent to which configuration management controls are

imposed (lifecycle data in Control Category I (CC1)are subject to full configuration

management, those in Control Category 2 (CC2) to a subset of the configuration

management guidelines; the allocation of lifecycle data to CC1 or CC2 varies with

software level), and the extent to which independence (the involvement of people

other than the originators) is required during evaluations.

Section 3 of DO-178B discusses the processes of the software lifecycle. These

processes are divided into three major categories: "planning," "development," and

"integral" processes. The "planning" processes tie the development and integral pro-

cesses together. The development processes include software requirements analysis,

design, coding, and integration. The integral processes support the development

processes by ensuring the correctness and quality of all processes and the delivered

software. These processes comprise "software verification," "software configuration

management," "software quality assurance," and "certification liaison." DO-178B

discusses the planning process in its Section 4, and the development processes in

Section 5. The integral processes are discussed in Sections 6 through 9, which cover

verification, configuration management, software quality assurance, and certification
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liaison, respectively. Section 10 of DO-178B discusses airborne system certification

(most of this section and a large part of Section 9 is reproduced above), and Section

11 describes software lifecycle data, which are produced to plan, direct, explain,

define, record: and provide evidence of activities throughout the software lifecycle.

Section 6 of DO-178B makes a distinction between reviews and analyses that is

pertinent when considering formal methods.

6.0. Software Verification Process: ...

Verification is not simply testing. Testing, in general, cannot show the absence

of errors. As a result, the following subsections use the them "verify" instead

of "test" when the software verification objectives being discussed are typically

a combination of reviews, analyses, and tests.

6.2. Software Verification Process Activities: ...

d. When it is not possible to verify specific software requirements by exercising

the software in a realistic test environment, other means should be pro-

vided and their justification for satisfying the software verification process

objectives...

6.3. Software Reviews and Analyses: Reviews and analyses are applied to the

results of the software development processes and software verification process.

One distinction between reviews and analyses is that analyses provide repeat-

able evidence of correctness and reviews provide a qualitative assessment of

correctness. (An earlier draft of DO-178B said "The primary distinction be-

tween reviews and analyses is that analyses provide repeatable evidence, and

reviews provide a group consensus of correctness.") A review may consist of

an inspection of an output of a process guided by a checklist or similar aid.

An analysis may examine in detail the functionality, performance, traceabil-

ity and safety implications of a software component, and its relationship to

other components within the airborne system or equipment. (An earlier draft

of DO-178B added "An analysis may include the use of a formal proof of

correctness").

Section 12 of DO-178B discusses a variety of additional considerations. In par-

ticular, its Section 12.3 introduces "alternative methods," among which are included

formal methods.
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12.3. Alternative Methods: Some methods were not discussed in the previous

sections of this document because of inadequate maturity at the time this doc-

ument was written or limited applicability for airborne software. It is not the

intention of this document to restrict the implement_tion of any current or

future methods. Any single alternative method discussed in this subsection is

not considered an alternative to the set of methods recommended by this doc-

ument, but may be used in satisfying one or more of the objectives of in [sic]

this document.

Alternative methods may be used to support one another. For ezample, formal

methods may assist tool qualification, or a qualified tool may assist the use of

formal methods.

An alternative method cannot be considered in isolation from the suite of soft-

ware development process. The effort for obtaining certification credit of an

alternative method is dependent on the software level and the impact of the

alternative method on the software life cycle processes. Guidance for using an
alternative method includes:

a. An alternative method should be shown to satisfy the objectives of this doc-

ument.

b. The applicant should specify in the Plan for Software Aspects of Certifica-

tion, and obtain agreement from the certification authority for:

(1) The impact of the proposed method on the software development pro-

cesses.

(2) The impact of the proposed method on the software life cycle data.

(3) The rationale for use of the alternative method which shows that the

system safety objectives are satisfied.

The rationale should be substantiated by software plans, processes, ex-

pected results, and evidence of the use of the method.

12.3.1. Formal Methods: Formal methods involve the use of formal logic, dis-

crete mathematics, and computer-readable languages to improve the specifi-

cation and verification of software. These methods could produce an imple-

mentation whose operational behavior is known with confidence to be within a

defined domain. In their most thorough application, formal methods could be

equivalent to exhaustive analysis of a system with respect to its requirements.

Such analysis could provide:

• Evidence that the system is complete and correct with respect to its re-

quirements.
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• Determination of which code, software requirements or software architec-

ture satisfy the nezt higher level of software requirements.

The goal of applying formal methods is to prevent and eliminate requirements,

design and code errors throughout the software development processes. Thus,

formal methods are complementary to testing. Testing shows that functional

requirements are satisfied and detects errors, and formal methods could be used

to increase confidence that anomalous behavior will not occur (for inputs that

are out of range) or unlikely to occur.

Formal methods may be applied to software development processes with con-

sideration of these factors:

Levels of the design refinement: The use of formal methods begins by

specifying software high-level requirements in a formal specification lan-

guage and verifying by formal proofs that they satisfy system require-

ments, especially constraints on acceptable operation. The next lower

level of requirements are then shown to satisfy the high-level requirements.

Performing this process down to the Source Code provides evidence that

the software satisfies system requirements. Application of formal methods

can start and stop with any consecutive levels o/the design refinement,

providing evidence that those levels of requirements are specified correctly.

Coverage of software requirements and software architecture:

Formal methods may be applied to software requirements that:

• Are safety-related.

• Can be defined by discrete mathematics.

• Involve complex behavior, such as concurrency, distributed process-

ing, redundancy management, and synchronization.

These criteria can be used to determine the set of requirements at the

level of the design refinement to which formal methods are applied.

Degree of rigor: Formal methods include these increasingly rigorous levels:

• formal specification with no proofs.

• formal specifications with manual proofs.

• formal specifications with automatically checked or generated proofs.

The use of formal specifications alone forces requirements to be unambiguous.

Manual proof is a well-understood process that can be used when there is little

detail. Automatically checked or generated proofs can aid the human proof pro-

cess and offer a higher degree of dependability, especially for more complicated

proofs.
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The three areas identified in the quotation above for possible tradeoffs in the

application of formal methods (levels of the design hierarchy, coverage of software

requirements and architectures, and degree of rigor) correspond to those discussed in

Sections 2.1 and 2.2 of this Report. The degrees of rigor identified in DO-178B for the

application of formal methods do not quite correspond to my Levels 1, 2, and 3: DO-

178B does not consider methods corresponding to my Level 1 (general use of concepts

and notation from discrete mathematics), and subdivides my Level 2 into its degrees

of rigor 1 and 2, depending on whether manual proofs are performed; we agree on

level 3. The reason I do not subdivide my Level 2 according to whether proofs

are performed is that I attach little credibility (or utility) to specifications whose

consequences have not been explored by proof. For safety-critical applications, I

believe that my interpretation of Level 1 rigor (semi-formal mathematical notation

and proofs) is preferable to DO-178B's (formal specifications and no proofs).

An earlier section of DO-178B considers the qualification of any tools used during"

system development--which could include those to support formal methods. As

defined by DO-178B, such tools fall in the category of "Software Verification Tools"

and the qualification criteria are primarily that the tools must be shown to perform

as specified in normal operational use.

12.2. Tool Qualification: Qualification of a tool is needed when processes of this

document are eliminated, reduced, or automated by the use of a software tool

without its output being verified... The use of software tools to automate activi-

ties of the software life cycle processes can help satisfy safety objectives insofar

as they can enforce conformance with software development standards and use
automatic checks.

The objective of the tool qualification process is to ensure that the tool provides

confidence at least equivalent to that of the process(es) eliminated, reduced, or
automated.

°o°

Software tools can be classified as one of two types:

o°°

Software verification tools: Tools that cannot introduce errors, but may

fail to detect them. For example, a static analyzer, that automates a

software verification process activity should be qualified if the function

that it performs is not verified by another activity. Type checkers, analysis

tools and test tools are other examples.

A tool may be qualified only for use on a specific system where the intention

to use the tool is stated in the Plan for Software Aspects of Certification.
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12.2.2. Qualification Criteria for Software Verification Tools The qualifi-

cation criteria for software verification tooL_ should be achieved by demon-

stration that the tool complies with its Tool Operational Requirements under

normal operational conditions.

12.2.3.2. Tool Operational Requirements Tool Operational Requirements de-

scribe the tool's operational functionality. This dala should include:

a. A description of the tool's functions and technical features.

b. User information, such as installation guides and user manuals.

c. A description of the tool's operational environment.

This excerpt concludes my overview of DO-178B. Before considering how formal

methods might contribute to the objectives of that document, I next present a brief

survey of experimental data on the efficacy of various software engineering and

assurance methods, and of the historical data on faults and failures discovered in

safety-critical systems. By knowing what seems to work, and what goes wrong, we

may be able to decide how formal methods can best supplement current assurance
methods.

3.3 Experimental and Historical Data on Assurance,

Faults and Failures

A rather startling fact is that very little documented evidence attests to the efficacy

of the various methods for software quality control and assurance when applied to

safety-critical software.

There are, however, studies that indicate significant reductions in "defects per

KSLOC" (i.e., programming faults per thousand lines of source code), compared

with industry averages, when certain software engineering methods or techniques

are employed. For example, Dyer describes a study performed by the Software

Engineering Laboratory (SEL) of the Goddard Space Flight Center, in which a

component of the ground support software for a satellite was developed using the

Cleanroom methodology. The component comprised 31,000 lines of Fortran and

testing revealed a defect rate of 3.3 faults per KSLOC, compared with an SEL

average of 6 faults per KSLOC [Dye92, page 34]. But although they seem relevant

to our concerns, numbers such as these need to be interpreted with care, and on two

counts: control and relevance.

Before we attribute reductions in defect-rate to specific processes, we need to

be sure that all other factors are adequately controlled. Although researchers such
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as Basil] and his colleagues [BW84, BSH86] have described sound methodological

approaches to the gathering of data on software engineering processes, it is difficult

and expensive to perform the necessary experiments, particularly on other than

"toy" examples. Consequently, although Dyer's data may have been well-controlled,

many of the other "successes" reported tor various software engineering practices,

including formal methods, must be considered to provide anecdotal rather than

objective evidence for the efficacy of the practices concerned. For example, Vessey

and Weber examined the empirical evidence in support of structured programming

and found the results to be problematical and "a manifestation of poor theory, poor

hypotheses, and poor methodology" [VW84, page 398]. Fenton [Fen93] is similarly

critical of data cited in support of formal methods (including Cleanroom)--recall

Section 2.7.

Leaving aside the question of experimental controls, we must also question the

relevance to safety-critical systems of much of the data cited in support of formal

methods. For example, the defect rate of 3.3 faults per KSLOC cited above is

nowhere near that required for safety-critical applications. And even if there were

objective evidence that certain practices reduce the density of defects in delivered

software to extremely low levels, this would not necessarily guarantee fewer safety-

critical failures in operation--for the relationship between density of faults and rate

of serious failure is not straightforward (see, e.g., IBis93]). It could be that certain

practices are good at reducing the total number of faults, but are not specially

effective on those that can lead to safety-critical failures (recall the earlier discussion

of the differences between reliability and safety). 15 Thus, although there could be

evidence that various methods are effective in quality control (i.e., in preventing,

15Recent work by Voas and others is pertinent here. Voas [Voa92] defines the testability of a
program P as the probability that if P could fail, P will fail under test (given a particular testing
strategy). Assessment of testability depends on a model of the relationship between faults and
failures. Voas proposes a simple model (with admitted defects): each location in a program is
considered to be the potential location of a fault. A possible fault can result in failure if and only
if all the following conditions apply.

Execution: An input results in execution reaching the location of the fault.

Infection: The data state that results from execution of the fault is in error.

Propagation: The error leads to failure.

A program with low testability "hides its faults" in the sense that they are unlikely to come to
light under test; this can be due to low probability of execution, infection, or propagation. Voas

proposes ways to estimate each of these factors separately. Hamlet and Voas [HV93] discuss ways to
_amplify" reliability estimates derived from testing (i.e., ways ensure that the true reliability will be
greater than that estimated), by taking testability into account. They also give plausible accounts
why systematic test strategies (e.g., structural unit testing) may be superior to random testing in
the ultra-dependable region, and Caution that instead of amplifying reliability, formal met-hods may
only reduce testability (i.e., rather than reducing the number of faults, formal methods may replace

faults that axe easily found in testing by those that are hard to find). Based on this analysis, they
recommend two improvements that could be made to formal development methods (specifically,
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detecting, and eliminating faults during the development process), there seems little

objective evidence to correlate these successes with any quantifiable level of quality

assurance, especially for failure densities at the safety-critical level.

Since controlled experimental evidence is lacking that various software engineer-

ing techniques confer ultra-dependable levels of assurance, perhaps we should turn to

the operational record. It can be argued that some deployed systems have demon-

strated the desired levels of ultra-dependability in actual operation; for example,

some Full-Authority Digital Engine Controls (FADECs) may be approaching 109

hours of operation--with no catastrophic failures. 16 Surely, following similar devel-

opment practices should enable subsequent systems to achieve similar safety records.

Laprie [Lap92] argues this point of view, observing that we are not certifying iso-

lated products, but representatives of a continuing process with a measurable track

record. There is much sense in this argument, but it is not totally convincing.

First, what does it mean to follow similar development practices? ]tow do we

know that certain unobserved and uncontrolled variables were not responsible for

the quality achieved on those previous projects? The first project might have been

particularly successful because it was the .first, and attracted especially talented

and motivated people) 7 We might retain or even improve the objective practices,

yet miss the unknown something (it could be luck) that separates success in the

ultra-dependable region (10 -9 , and the expectation of no catastrophic failures) from

failure (10 -s, and the expectation of 5 catastrophic failures in the lifetime of the

fleet). The point here is not to cast doubt on the seriousness and effectiveness of

past and present practices, but simply to make it clear that we do not know in any

quantifiable sense what the contribution Of any particular method or practice is to

the achievement, or to the assurance of achievement, of ultra-dependability.

Second, the generation of airborne software that is approaching operational

demonstration of ultra-dependability was developed a dozen or more years ago,

and is vastly simpler in design and functionality than, say, recent architectures

for primary flight computers (PFCs). Current goals for PFCs include the ability

to continue normal operation despite failed components (until regular scheduling

brings the airplane to a maint'enance base). One architecture developed to this

requirement uses asynchronously operating triple-redundant lanes (each employing

Cleanroom): behavior on erroneous and out-of-range inputs should be analyzed, and structural
partition tests should be performed. In my opinion, this work is worth careful study.

lSDigital autopilots have also been in use for many years. Up to the present, no airplane crash
has been attributed to a software problem. However, _service experience showing that the failure
mode has not yet occurred may be extensive, but it can never be enough" [FAA88, paragraph 7.g].

17Petroski's book subtitled _the role of failure in successful design" [Pet85] is interesting in this

regard. It indicates that seldom does the first of a new kind of bridge structure collapse: disastrous
bridge failures are usually the result of later developments that, often in ignorance of the rationale
for some of the design decisions taken in the original, proceed to shave margins, or stretch capability,
or make apparently small variations in the design without comprehending their consequences.



126 Chapter 3. Formal Methods and Digital Systems Validation

different hardware and programming languages is) within each of three synchronous

channels [DH90]. Such elaborate architectures bear little resemblance to a dual-

redundant FADEC. Elsewhere, there seems interest in shaving redundancy from

quad to triple [SM92]. Previously isolated functions are being integrated, 19 and the

sheer quantity of on-board software is much greater (e.g., 20 Mbytes in the case of

the Airbus A340 [GH93]) than previously. All of these developments raise the scale

of the challenge, and diminish the relevance of earlier projects.

Given the absence of experimental evidence on the efficacy of formal methods

in safety-critical systems, let us turn instead to the fault and failure data for such

systems and see whether it offers any guidance on the best uses, and likely benefits,

of formal methods in quality control and assurance for safety-critical systems.

Considering quality control first of all, we can perhaps best seek guidance by

examining documented critical failures or critical faults found late in the assurance

process, and asking whether formal methods, or any other techniques, might have

been effective in eliminating the introduction, or at least reliably detecting the pres-

ence, of the faults concerned. As usual, paucity of documented evidence hampers

this exercise. 2° There are extensive data on failures in information-processing sys-

tems, but these have little similarity to critical airborne systems, and few studies

identify the procedural or intellectual source of the faults that led to failure.

Fortunately, one paper does provide some relevant and interesting data:

Lutz [Lut93a] reports on 387 software faults detected during integration and system

testing of the Voyager and Galileo spacecraft. 21 197 of the faults were characterized

aSThis architecture has evolved into that used for the PFCs of the Boeing 777. The goal of
programming the software independently and in a different programming language for each of the
three lanes has been abandoned because it led to too many nuisance disagreements. Different
processors and compilers continue to be used for each lane, but now only a single source program
is used.

agFor example, the MD-11 Automatic Flight System (AFS) provides "in addition to autoland

and windshear functions,... Longitudinal Stability Augmentation Systems (LSAS) and roll control
wheel steering when autopflot is disengaged; speed envelope protection via autothrottle or LSAS;

yaw damper and turn coordination; elevator load feel and flap limiting control; attitude alert;
stall warning with stick shaker and autoslat extend; automatic ground spoilers; wheel spin-up
and horizontal stabilizer in motion detection; automatic throttle and engine trim via the FADEC;
takeoff, cruise, and Cat II approach autopilot and flight director; in flight maintenance monitoring
and ground maintenance functions interfacing with the central fault display system; annunciation,
warning, and alert interfaces with the electronic instrumentation system" [DG93].

_°It is not only that the evidence may be considered proprietary and is therefore unpublished,
it is not clear that some of the most vital data are even collected. For example, it seems that
voting disagreement between redundant channels is not recorded in flight. Mandatory collection
and public atign of such data wo_d be of considerable scientifi_c value ....

21Another interesting data point is provided by the Space Shuttle on-board flight-control software.
This comprises about 500,000 lines of code, and has a good record: typically at most one or two
defects are identified in each mission, and some have achieved their %ero-defect" goal (six faults
that could have been life-threatening if activated are know to have flown, all of them prior to the



3.3. Experimental and Historical Data on Assurance, Faults and Failures 127

as having potentially significant or catastrophic effects (with respect to the space-

craft's missions). Lutz calls these 197 faults "safety-critical." Although spacecraft
have obvious differences to airplanes, the embedded, real-time control software ex-

amined by Lutz may be expected to have many similarities with airborne systems,

and the development practices at the Jet Propulsion Laboratory may also be con-

sidered representative of the aerospace industry (though bear in mind that Galileo

was built a decade ago, and Voyager a decade before that).

Lutz classified the faults using a scheme introduced by Nakajo and Kume [NK91]

that identifies the "human flaws" (root causes) as well as the "process flaws" re-

sponsible for the fault. Only 3 of the safety-critical faults found were programming

mistakes, and very few problems attributable to faults in programming have oc-

curred during flight. It seems that these faults are eliminated very effectively by the

development processes employed. The remaining faults were divided approximately

3:1 overall between "function faults" (faults within a single software module) and

interface faults (interactions with other modules or system components).

Two thirds of functional faults were attributed to flawed requirements; the re-

maining one third were due to incorrect implementation of requirements. Omissions

constituted the majority of flawed requirements, the rest were due to imprecise,

unsystematic, or wrong specifications of requirements. Incorrect implementation of

requirements (i.e., faulty design or algorithms) tended to involve inherent technical

complexity, rather than a failure to follow the letter of the requirements.

Half of all interface faults concerned misunderstood hardware interfaces. As is

to be expected, the large majority of interface faults (93% on Voyager and 78%

on Galileo) were attributed to poor communication between (as opposed to within)

teams, primarily between software developers and system engineers. Particularly
troublesome were undocumented or anomalous features of interfaces and of hard-

ware devices that led software developers to make incorrect assumptions about their

behavior.

Lutz' own recommendations for improving the development and assurance pro-

cesses include: an early focus on internal interfaces, particular those between soft-

ware and hardware; early identification of hazards; use of formal specification tech-

niques; promotion of communication between teams, especially as requirements

evolve; and use of defensive design techniques.

What specific contributions could formal methods make? It seems clear that de-

veloping and communicating requirements and assumptions (particularly concern-

ing hardware behavior and interfaces) is the major problem. Use of a pseudocode

based on a modern programming language such as Ada would allow the syntactic

attributes of interfaces to be specified, but it appears that the real problems are

Challenger disaster). However, there are over 400 _user notes" that document various kinds of

anomalies concerning the interpretation, or satisfaxtion, of the requirements for this softwaxe.
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associated with semantic attributes of the interfaces, such as initial states, timing

and sequencing constraints, sampling frequencies, fault modes, and so on. Formal

methods seem well suited to the task of documenting and modeling such properties
of hardware interfaces.

Regarding missed requirements: rapid prototyping, animation, and other ex-

perimental approaches are advocated as ways to elicit complete and accurate re-

quirements specifications. But while these methods seem appropriate for soft-

ware with significant human interactions, they seem less so for embedded control

systems. 22 The proposals of Jaffe, Leveson, and Melhart [3L89, 3LHM91] (recall

Subsection 2.3.2) seem more apposite to this case, and require at least a semi-

formal method of requirements specification. 23 Formal specification of requirements

could also support formal challenges as a means of validation (similar to the "sce-

narios" generally employed today), and might allow more requirements to be stated

in terms of constraints or invariants--which may be more robust and complete than

imperative statements of required behavior.

Lutz' data identifies weaknesses in software quality control, but what does it

suggest about assurance? One obvious, but important point is that if our primary

assurance of ultra-dependability is to come from control and scrutiny of the software

development process,'then every fault that is discovered at a later stage of the

lifecycle than that in which it was introduced casts doubt on the adequacy of all

the intervening quality control processes. The greater the number of such faults

that are discovered, and the greater the number of lifecycle stages that separate the

comission and detection of each fault, the more seriously should the adequacy of the

development and control processes be questioned.

The faults described by Lutz were detected during system and integration test;

thus, though they were detected late, they were caught during what may be regarded

as part of the normal software development process. I now turn to software failures

in critical airborne systems detected during flight test: serious failures detected

this late focus attention on the credibility of the processes employed for software

assurance.

The flight tests of the experimental Advanced Fighter Technology Integration

(AFTI) F16 were conducted by NASA, and are unusually well-documented [IRM84,

Mac88]. The AFTI-F16 had a triple-redundant digital flight-control system (DFCS),

2_Although Duke [Duk89] documents a methodology used at NASA Dryden that apparently
involves development of a working software prototype, extraction of requirements from that pro-
totype, development of fully engineered software to those requirements, and iteration until both
software versions and the requirements agree. Duke notes that this approach seems best suited to
the development of experimental systems.

23In recent work, Lutz [Lut93b] reports that a checklist derived from Jaffe, Leveson and Melhart's
proposals would have identified 149 (i.e., over 75%) of the %afety-critical" faults examined in her
study.
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with an analog backup. The DFCS had different control modes optimized for air-to-

air combat and air-to-ground attack. The Stores Management System (SMS) was

responsible for signaling requests for mode change to the DFCS. On flight test 15,
an unknown failure in the SMS caused it to request mode changes 50 times a second.

The DFCS could not keep up, but responded at a rate of 5 mode changes per second.

The pilot reported that the aircraft felt like it was in turbulence; subsequent analysis

showed that if the aircraft had been maneuvering at the time, the DFCS would have

failed.

The DFCS of the AFTI-F16 employed an "asynchronous" design. In such de-

signs, the redundant channels run fairly independently of each other: each computer

samples sensors independently, evaluates the control laws independently, and sends
its actuator commands to an averaging or selection component that drives the ac-

tuator concerned. Because the unsynchronized individual computers may sample

sensors at slightly different times, they can obtain readings that differ quite ap-

preciably from one another. The gain in the control laws can amplify these input
differences to provide even larger differences in the results submitted to the output

selection algorithm. During ground qualification of the AFTI-F16, it was found
that these differences sometimes resulted in a channel being declared failed when

no real failure had occurred [Mac84, p. 478]. Accordingly, a rather wide spread of

values must be accepted by the threshold algorithms that determine whether sensor

inputs and actuator outputs are to be considered "good." For example, the output
thresholds of the AFTI-F16 were set at 15% plus the rate of change of the variable

concerned; in addition, the gains in the control laws were reduced. This increases the

latency for detection of faulty sensors and channels, and also allows a failing sensor

to drag the value of any averaging functions quite a long way before it is excluded by

the input selection threshold; at that point, the average will change with a thump
that could have adverse effects on the handling of the aircraft [Mac88, Figure 20].

The danger of wide sensor selection thresholds is illustrated by a problem discov-

ered in the X29A. This aircraft has three sources of air data: a nose probe and two

side probes. The selection algorithm used the data from the nose probe, provided

it was within some threshold of the data from both side probes. The threshold

was large to accommodate position errors in certain flight modes, it was discovered

in simulation that if the nose probe failed to zero at low speed, it would still be

within the threshold of correct readings, causing the aircraft to become unstable

and "depart." Although this fault was found in simulation, 162 flights had been at

risk before it was detected [MA89a].

An even more serious shortcoming of asynchronous systems arises when the

control laws contain decision points. Here, sensor noise and sampling skew may

cause independent channels to take different paths at the decision points and to

produce widely divergent outputs. This occurred on Flight 44 of the AFTI-F16
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flight tests [Mac88, p. 44]. Each channel declared the others failed; the analog
back-up was not selected because the simultaneous failure of two channels had not

been anticipated and the aircraft was flown home on a single digital channel. Notice
that all protective redundancy had been lost, and the aircraft was flown home in a

mode for which it had not been designed--yet no hardware failure had Occurred.

Another illustration is provided by a 3-second "departure" on Flight 36 of the

AFTI-F16 flight tests, during which sideslip exceeded 20 °, normal acceleration ex-

ceeded first -4g, then +7g, angle of attack went to -10 °, then +20 °, the aircraft

rolled 360 °, the vertical tail exceeded design load, all control surfaces were oper-

ating at rate limits, and failure indications were received from the hydraulics and

canard actuators. The problem was traced to a fault in the control laws, but sub-

sequent analysis showed that the side air-data probe was blanked by the canard at

the high angle of attack and sideslip achieved during the excursion; the wide input

threshold passed the incorrect value through, and different channels took different

paths through the control laws. Analysis showed this would have caused complete

failure of the DFCS and reversion to analog backup for several areas of the flight
envelope [Mac88, pp. 41-42].

Several other difficulties and failure indications on the AFTI-F16 were traced to

the same source: asynchronous operation allowing different channels to take different

paths at certain selection points. The repair was to introduce voting at some of these
"software switches. ''24 In one particular case, repeated channel failure indications

in flight were traced to a roU-axis software switch. It was decided to vote the switch

(which, of course, required ad hoc synchronization) and extensive simulation and

testing were performed on the changes necessary to achieve this. On the next flight,

the problem was there still. Analysis showed that although the switch value was

voted, it was the unvoted value that was used [Mac88, p. 38]. 25

The AFTI-F16 flight tests revealed numerous other problems of a similar na-

ture. Summarizing, Mackall, the engineer who conducted the flight-test program,
writes [Mac88, pp. 40-41]:

"The criticality and number of anomalies discovered in flight and

ground tests owing to design oversights are more significant than those
anomalies caused by actual hardware failures or software errors.

_4The problems of channels diverging at decision l_oints, and also the thumps caused as channels
and sensors are excluded and later reaximitted by averaging and selection algorithms, are sometimes
minimized by modifying the control laws to ramp in and out more smoothly in these cases. However,
modifying control laws can bring other problems in its train and raises further validation issues.

25This bug is an illuminating example. At first, it looks like programming slip--the sort of late-
lifecyde fault that was earlier claimed to be very reliably eliminated by conventional V&V. Further
thought, however, shows that it is really a manifestation of a serious design oversight in the early
lifecycle (the requirement to synchronize channels at decision points in the control laws) that has
been ldudged late in llfecycle.
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"... qualification of such a complex system as this, to some given level

of reliability, is difficult ...[because] the number of test conditions be-

comes so large that conventional testing methods would require a decade

for completion. The fault-tolerant design can also affect overall sys-

tem reliability by being made too complex and by adding characteristics

which are random in nature, creating an untestable design.

"As the operational requirements of avionics systems increase, com-

plexity increases... If the complexity is required, a method to make sys-

tem designs more understandable, more visible, is needed.

"...The asynchronous design of the [AFTI-F16] DFCS introduced a

random, unpredictable characteristic into the system. The system be-

came untestable in that testing for each of the possible time relationships

between the computers was impossible. This random time relationship

was a major contributor to the flight test anomalies. Adversely affecting

testability and having only postulated benefits, asynchronous operation

of the DFCS demonstrated the need to avoid random, unpredictable,

and uncompensated design characteristics."

Clearly, much of Mackall's criticism is directed at the consequences of the asyn-

chronous design of the AFTI-F16 DFCS. Beyond that, however, I think the really

crucial point is that captured in the phrase "random, unpredictable characteristics."

Surely, a system worthy of certification in the ultra-dependable region should have

the opposite properties--should, in fact, be predictable: that is, it should be possible
to achieve a comprehensive understanding of all its possible behaviors. What other

basis for an "engineering judgment" that a system is fit for its purpose can there

be, but a complete understanding of how the thing works and behaves? Further-

more, for the purpose of certification, that understanding must be communicated to

others--if you understand why a thing works as it should, you can write it down,

and others can see if they agree with you. Of course, writing down how something

as complicated as how a fault-tolerant flight-control system works is a formidable

task--and one that will only be feasible if the system is constructed on rational

principles, with aggressive use of abstraction, layering, information-hiding, and any
other technique that can advance the intellectual manageability of the task. This

calls strongly for an architecture that promotes separation of concerns (whose lack

seems to be the main weakness of asynchronous designs), and for a method of de-

scription that exposes the rationale for design decisions and that allows, in principle,
the behavior of the system to be calculated (i.e., predicted or, in the limit, proved).

It is, in my view, in satisfying this need for design descriptions which, in principle at

least, would allow properties of the designs to be proved, that formal methods can

make their strongest contribution to quality assurance for ultra-dependable systems:

they address (as nothing else does) Mackall's plea for "a method to make system

designs more understandable, more visible."
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The AFTI-F16 flight tests are unusually well documented; I know of no other

flight-control system for which comparable data are publicly available. However,

press accounts and occasional technical articles reinforce the AFTI-F16 data by

suggesting that timing, redundancy management, and coordination of replicated

computing channels are tricky problems that are routinely debugged during flight
test.

During flight tests of the HiMAT remotely piloted vehicle, an anomaly oc-

curred that resulted in the aircraft landing with its landing skids retracted.

"The anomaly was caused by a timing change made in the ground-based sys-

tem and the onboard software for uplinking the [landing] gear deployment

command. This coupled with the on-board failure of one uplink receiver to

cause the anomaly. The timing change was thoroughly tested with the on-

board flight software for unfailed conditions. However, the flight software

operated differently when an up]ink failure was present" [MA89a, page 112].

A significant software fault was discovered in flight testing the YC-14. "The

error, which caused mistracking of the control-law computation in the three

channels, was the result of incorrect use of cross-channel data for one pa-

rameter. Each gynchro output was multiplied in software by a factor equal

to the ratio of the nominal reference voltage to the actual reference voltage.

Both the synchro outputs and the reference voltages were transmitted between

channels, and the three inputs would be compensated in each channel prior

to signal selection. However, because of an error in timing, each channel was

using the current correction factor for its own sensor, whereas the correction

factors for the other two sensors were from the previous frame. Thus, each

channel performed signal selections on a different set of values, resulting in

different selected input data for the three channels. Although the discrepan-

cies were small, the effect of threshold detectors and integrators led to large

mistracking between channels during flight. In the laboratory, the variations

in the simulated synchro reference voltages were sufficiently small that this

error would not be detected unless a bit-by-bit comparison between channels

had been made" [MG78].

In the flight tests of the X31 the control system "went into a reversionary mode

four times in the first nine flights, usually due to disagreement between the

two air-data sources. The air data logic dates back to the mid-1960s and had

a divide-by-zero that occurred briefly. This was not a problem in its previous

application, but the X31 flight-control system would not tolerate it." [Dor91].

It seems that either a potentia_y dangerous condition (i.e., divide-by-zero) had

been present but undetected in the previous application, or it was known (and

known not to be dangerous in that application) but undocumented. In either
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case, it seems to indicate inadequate assurance. This example also points

to one of the perils of reuse: just because a component worked in a previous

application, you cannot assume it wiU work in a new one unless all the relevant

characteristics and assumptions are known and taken into account.

The C17 has a quad-redundant digital fright-control system [KSQ92]. During

the initial flight test of the C17 "On three occasions, warning/caution lights

in the cockpit annunciated that flight-control computer (FCC) 'dropoffs' had

occurred .... FCC 3 dropped offiine twice, and both FCC 3 and FCC 4 dropped

off at the same time once" [Sco92]. For an account of software engineering and

management on the C17, see [GAO92a].

One of the purposes of flight test to uncover problems, and so the discovery of

those just described can be considered a vindication of the value of flight test. Some

might even consider these problems merely a matter of tuning, and regard their

identification and repair during flight test as the proper course. 2a Others might ar-

gue the opposite point of view: flight test is for evaluating and tuning handling and

controls, and the discovery of basic software problems indicates that the traditional

methods of assurance are seriously deficient. Whatever view is taken of the serious-

ness of these problems, the salient fact seems to be that serious software problems

discovered in flight test often concern redundancy management, coordination, and

timing.

Overall, present development and assurance practices for aircraft seem to have

worked so far: to my knowledge, there is no case of a software fault leading to a

serious failure condition in a military or commercial airplane. If we want to look at

software failures in actual operation, we have to look to fields other than aviation.

There are, of course, numerous examples of egregious software failures (see [Neu92]

for a partial list, and Wiener [Wie93] for an entertaining and generally balanced

discussion of the dangers of excessive dependence on software), but few of these

have arisen in fields that practice quality control and assurance to the levels used

in commercial aviation. 2r Some examples from telecommunications, space, and

missiles seem pertinent, however.

Ue"The FMS of the A320 'was still revealing software bugs until mid-January,' according to
G6rardGuyot (Airbus test and development director). There was no particular type of bug in any
particular function, he says. 'We just had a lot of flying to do in order to check it all out. Then
suddenly it was working,' he says with a grin" [Lea88].

_TThe most horrifying consequences of software faults known to me are those of the Therac 25
medical electron accelerator, which led to massive overdoses of radiation and the subsequent deaths
of six patients. However, as the account by Leveson and Turner [LT93] makes clear, no explicit
software quality control and assurance program was employed in the development of that machine,
and software engineering practices were rudimentary at best.
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The nationwide saturation of AT&:T switching systems on 15 January, 1990

was due to a timing problem in a fault recovery mechanism [Tra90]; "ironi-

cally, this was a condition that spread throughout the network because of our

redundancy," said the AT&T Chairman, Robert Allen [MB90]. The problem

affected all 114 of AT&T's 4ESS switching systems, and blocked about half of

the long-distance, international, SDN (software-defined network), and toll-free

800 calls dialed on AT&T's public-switched network for a period of 9 hours.

The first attempt to launch the Space Shuttle (STS-1) failed because the fifth

(backup) on-board computer could not be synchronized with the main quad:
"there was a very small, very improbable, very intricate, and very old mistake

in the initialization logic of the primary avionics software system" [GarS1].

Voyager spacecraft suffered 42 SEUs in the intense radiation surrounding

Jupiter [Wil90]. The clocks lost synchronization and skewed 8 seconds, caus-

ing some scientific data to be lost. Clock synchronization was reprogrammed

for Voyager 2's encounter with Neptune [Ano89].

The Magellan spacecraft broke Earth lock and lost communications several

times in August 1990 (soon after entering Venus orbit). It took over six months

to identify the source of the problem, which was a timing error in the flight

software.

"On February 25, 1991, a Patriot missile defense system operating at Dharan,

Saudi Arabia, during Operation Desert Storm failed to track and intercept

an incoming Scud. This Scud subsequently hit an Army barracks, killing

28 Americans." The fault was in the way clock ticks were accumulated and

converted to time. The conversion "results in a loss of precision causing a less

accurate time calculation. The effect of this inaccuracy on the range gate's

[i.e., target tracking] calculation is directly proportional to the target's velocity

and the length of time the system has been running" [GAO92b].

As before, a common feature of thesa examples is that the faults arose in the con-

text of redundancy management and timing-dependent coordination. Hecht [Hec93]

offers some suggestions why this may be so: using data from a variety of sources,

including the final testing of Release 8B of the Space Shuttle Avionics Software (this

was the first release following the loss of Challenger), Hecht shows that safety- and

mission-critical failures are associated disproportionately often with the occurrence

of "rare events," and that the simultaneous (and unanticipated) arrival of two or

more rare events seems the most common cause of severe failure. Rare events tend

to be component failures and exceptions of various kinds, and so it is the redundancy

management code that is stressed by these very unusual combinations of events.
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The lessons of the data cited in this section seem to be that there is little hard

experimental evidence that formal methods improve the quality of safety-critical

software (though there is anecdotal evidence that it may do so), and that the most

egregious and elusive faults in safety-critical systems are found in redundancy man-

agement, and in other elements of the software that coordinate distributed, concur-

rent, timing-dependent activities.

It seems to me that these two observations are not unrelated. Perhaps because it

is feared that their techniques and tools will be overstretched by larger challenges,

formal methods have usua_y been applied to relatively routine design problems,

where traditional methods are already adequate. But the areas that seem to need

most help are the hardest, most critical, and most fault-prone aspects of design--so

if formal methods are to make a real contribution to quality control in safety-critical

systems, this is where they should be put to work.

In addition, the quality assurance aspects of formal methods have not been fully

exploited. The problem with current methods of assurance is that they merely

reduce, and cannot eliminate, doubt. This is because assurance derives chiefly from

reviews, which are a consensus process: they increase our confidence that certain

faults are not present, but do not provide demonstrable evidence of that fact. Using

formal methods, we can replace or supplement reviews with analyses that do provide

repeatable evidence that certain kinds of faults are not present (at the stages of

development considered). There are powerful caveats on such assertions, however,

mainly concerning the fidelity of the mathematical modeling employed--so that

formal methods cannot eliminate doubt any more than can traditional processes.

But although they cannot eliminate doubt, formal methods can circumscribe it: with

their aid, we can become fully confident in the correctness of a critical algorithm,

say, and our residual doubts then focus on the fidelity of the assumptions employed,

the interpretation of the property that has been verified, and the correctness of the

implementation of the algorithm. Review processes can then be focussed on these
residual doubts.

In the next section I expand on these points and consider use of formal methods
in the context of DO-178B. In the section after that I discuss choice of the level of

rigor and the selection of tools.

3.4 Formal Methods in Support of Certification

There seem to be two reasons why an applicant might consider using formal methods

in support of certification: (1) to achieve the same level of quality control and

assurance as by other means, but to derive some other benefit such as reduced cost;

or (2) to provide a greater level of quality control and assurance than can be achieved

by other means. I will consider these cases separately.
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3.4.1 Use of Formal Methods for Reasons other than Improved

Quality Control and Assurance

In this subsection, I assume that a developer has decided that formal methods

offer some significant benefits, but that there is no intent to claim increased quality

control or assurance through their use. Presumably, the main motivation will be

to save time or money, and formal methods will be used either as a debugging

technique that can quickly eliminate faulty requirements, specifications, designs,

and implementations, or as a methodological aid that can systematize and render

more reliable the process of development. A rather more aggressive use of formal

methods to reduce development costs would be to substitute formal techniques for

certain review and test processes. It is up to the developer to decide whether formal

methods really can help achieve these improved efficiencies; here I consider only the

impact that formal methods might have on the process of certification. I consider

three increasingly ambitious applications of formal methods:

• To supplement traditional processes and documentation,

• To substitute formal specifications for some traditional documentation,

• To substitute formal proofs for some traditional reviews and analyses.

Formal methods as supplement to the traditional processes and docu-

mentation

In the most cautious form of this scenario, the standard development processes

would continue to be performed (though more efficiently, since it is to be hoped

that formal methods will ensure that less time and effort will be wasted on flawed

constructions), and the standard lifecycle data would be produced. This use of

formal methods is a strictly "internal" process, in that no external documentation

of their use is submitted in support of certification. It seems to me that this mode of

employing formal methods presents no challenges to certification; however, it seems

a useful precursor to more aggressive uses of formal methods, since it is one way to

gather "evidence of the use of the method" as required by Section 12.3 of DO-178B.

Formal specifications in place of some traditional documentation

A somewhat more aggressive use of formal methods would substitute formal speci-

fications for some of the requirements and design documents required by DO-178B,

but would retain traditional methods of review and analysis. This approach will

require attention to the software requirements and software design standards re-

quired by Sections 11.6 and 11.7 of DO-178B. For example, standards are required
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for "notations to be used to express requirements, such as data flow diagrams and

formal specification languages ''2s [RTC92, Section l l.6.b].

It will also require attention to the "guidance for using an alternative method"

documented in Section 12.3 of DO-178B (this was reproduced in Section 3.2

above). The most demanding of the guidance items requires a "rationale for use

of the alternative method which shows that the system, safety objectives are satis-

fied" [RTC92, Section 12.3.b(3)].

I think what is required here is evidence that (1) the formal specifications contain

at least the same information as the informal ones they are to replace, and (2) they

support review, analysis, and other lifecycle processes as least as well as the informal

specifications. Perhaps the most challenging of these will be to provide evidence that

formal specifications can be reviewed as effectively as traditional specifications using

natural language.

One approach, which was used in the SACEM example described in Section 2.7,

finesses this problem by deriving a natural language description from the formal

text and using the natural language version in the review process. This is really a

retreat to the less aggressive use of formal methods that was discussed earlier, so

let us now consider the case where the formal specification itself is used in reviews

and other processes.

At bottom, the issue comes down to the extent to which those who write and

review formal specifications can demonstrate mastery of the formal method or nota-

tion concerned. When the formalism is a relatively simple tabular representation of

state machine transitions, as with Leveson's TCAS specification or Parnas' function

tables for the Darlington shutdown system (both described in Section 2.7), then it

seems plausible that all who need to do so can achieve adequate mastery of the no-

tation (indeed, these notations were developed for just that purpose). Furthermore,

it is an essential element of Parnas' method that certain systematic analyses are

undertaken to check weU-formedness of the tables (e.g., the conditions heading the

columns of a table must be shown to exhaust all possibilities and to be palrwise

disjoint).

Use of more elaborate formal specification languages for limited purposes, such

as describing data structures (VDM is often used like this), should also present few

challenges to those with programming experience. The difficult choices begin with

2SThe standards concerned here are those of the project concerned: large aerospace projects

establish very detailed standards for every facet of their operation. These project standards incor-

porate relevant regulatory and professional standards and guidelines, company policy, and a host

of detailed prescriptions (extending, for example, to the naming of identifiers in programs). The

requirement on standards for formal specification languages does not imply that any language used

must have been standardized by some national or international body, but that there must be some

agreed reference for the language, and guidelines for its use.
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larger scale applications of Level 2 formal methods involving, for example, significant

numbers of axioms, or operations specified by complex pre- and post-conditions, or

constructions with subtle semantics (e.g., schemas in the language Z). The problem

is that it is difficult to provide objective evidence that the authors of a specification

can reliably express themselves in such forms, and that its reviewers can interpret

them correctly; the problem is compounded by the fact that such specifications

often contain the equivalent of "programming faults" that render them inconsistent

or incorrect.

Those who learn a Level 2 formal specification language from textbooks or train-

ing courses, but who do not perform numerous proofs (preferably with automated

checking), are in a very similar position to those who would learn a programming

language by the same means and without the opportunity to execute the programs

that they write--in fact, worse, since experience with other programming languages

is likely to help them learn a new one, whereas many of those learning a specification

language are receiving their first exposure to formal methods, as well as to abstract

and axiomatic forms of expression. Just as the failure of an "obviously correct"

program teaches us that programming is difficult, so the discovery through dialog

with a theorem prover that an expected property is not entailed by an "obviously

correct" formal specification teaches us that specification may be no easier than

programming. In my experience, everyone has to learn this for themselves: only the

personal shock of discovering egregious errors in our own specifications teaches us

the requisite humility.

It is my opinion that an essential step in ensuring an effective review process

for formal specifications is to require that they are subjected to stringent (and

preferably mechanized) analysis before they are submitted to reviews. The purpose

of the analysis is to eliminate as large a class of potential faults as possible by

purely formal means (i.e., by calculational processes), so that the review process

may concentrate on the intellectual substance of the specification. The specific

forms of analysis that should be considered (in ascending order of stringency) are:

* Parsing,

• Typechecking (there are many degrees of stringency possible here; the most

stringent generally require use of theorem proving),

• Well-formedness checking for definitions (i.e., assurance of conservative exten-

sion),

• Demonstration of consistency for axiomatic specifications (e.g., exhibition of

models),

• Animation (i.e., construction of an executable prototype from the formal spec-

ification, so that it can be subjected to experiment). This form of analysis has
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a rather different character than the others listed here, and should be used

for specific purposes that are defined beforehand--otherwise it can degenerate

into hacking.

• Formal challenges (i.e., posing and proving putative theorems that should be

entailed by the specification).

I have been surprised, and not a little shocked, to discover in some projects a re-

luctance to undertake some of these analyses (except animation). In one project, the

authors of a specification gave up attempting to typecheck it once the typechecker

revealed errors, yet they expected reviewers to study the specification. In another,

the proof obligations generated by typechecking were not discharged by the author,

but were examined during reviews; I consider it pointless to expend the intellectual

resources available during areview on matters that can be decided (more reliably)

by analytic processes.

The rationale submitted to satisfy Section 12.3.b(3) of DO178B, should clearly

state the analyses that are required to be completed prior to reviews, and should

describe the class of faults that are detected by means of these of analysis, and

whether the detection is certain, or merely likely. The number and stringency of the

analyses performed may be determined by the criticality and sophistication of the

formal specifications considered. If the means of analysis includes automated tools,

then it will also be necessary to attend to the requirements of Section 12.2 (Tool

Qualification) of DO178B (relevant excerpts were quoted earlier in Section 3.2).

My experience is that mechanicaily-supported analyses of the kinds suggested

above are extremely potent forms of fault-detection for formal specifications. I

expect that in many projects it will also be worthwhile to develop additional forms

of mechanized analysis to check for specific classes of faults. By these means, we can

ensure that the formal specifications submitted for review are free of gross defects

and the reviews can focus on deeper issues. The question then remains: how much

confidence can we have in reviews of formal specifications by personnel who may not

be experts in formal methods? It seems to me that we must trust to the integrity of

the review process to decide this. Currently, reviews are conducted using checklists

with items such as "do you consider the requirements are complete?" and it will

be necessary to add items such as "do you consider that you have been able to

fully comprehend the formal specification?" The assurance that participants fully

comprehend a formal specification may be enhanced if the suggestions of Parnas

and Weiss [PW85] are followed: for example, someone other than the author of a

specification should be expected to explain it during the review, and the author

should pose questions to the reviewers (rather than vice-versa).

My experience has been that engineers have little difficulty in learning to read

formal specifications and are quite willing to do so once they see a payoff. What
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constitutes an adequate payoff seems to be evidence that you can do something with

formal specifications--and one of the things that can be done is to eliminate most of

the trivial errors that waste a good deal of time in reviews of informal specifications.

Another payoff is that mechanical analysis may discharge some of the require-

ments for certification. For example, in its Section 6.3.1. (Reviews and Analyses of

High-Level Requirements), DO-178B requires

b. (Accuracy and consistency): The objective is to ensure that each high-level re-

quirement is accurate, unambiguous and sufficiently detailed and that the re-

quirements do not conflict with each other. (Similar considerations apply to

lower-level requirements described in DO-178B Section 6.3.2.).

Some aspects of consistency and non-conflict can be established mechanically for

formal specifications by strong typechecking and related analyses.

Yet another payoff of formal specifications, but one that requires very skilled

specifiers to achieve, is the ability to be precise without being excessively detailed.

Using natural language and informal methods of expression, the desire to be precise

often drives requirements authors into excessive levels of detail and to a notation

close to that of a pseudocode---but then the requirements become descriptions of

an implementation, and the rationale and intent behind them is lost. 29 This is a

serious flaw, since requirements validation is primarily an examination of rationale

and intent, and cannot be performed adequately if these are not recorded. Some

current trends are exacerbating this problem. For example, requirements are often

developed with the aid of simulators. In these circumstances, the system engineers

sometimes cut and paste sections of their simulation program into the software

requirements document: in effect, the simulation code becomes the requirements

specification. Requirements validation then necessitates "reverse engineering" from

the simulator code to the goals and constraints (i.e., to the "real" requirements)

that it is asserted to satisfy. A requirements analyst on one project observed that

the whole process then operates backwards: "the systems engineers write code, and

the software developers have to do systems engineering. "3°

29For example, Tomayko [Tom87, page 111] reports that C-Level requirements specifications for
the Space Shuttle flight-control system "include descriptions of flight events for each major portion
of the software, a structure chart of tasks to be done by the software during that major segment,
a functional data flowchart, and, for each module, its name, calculations, and operations to be

performed, and input and output lists of parameters, the latter already naraed and accompanied by
a short definition, source, precision, and what units each are in. This is Why one NASA manager
said that 'you can't see the forest for the trees' in Level C, oriented as it is to the production of
individual modules."

a°Another disadvantage of these excessively detailed forms of requirements specification is that

they close off implementation options. For example, one change to be introduced in the OI-24
version of the Space Shuttle on-board software is intended to ensure that reaction control jets are
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Formal methods could help reduce some of these problems: they offer the possi-

bility of documenting requirements precisely, yet without implementation detail, and

could also contribute to the documentation of rationale and intent (e.g., by allowing

intended consequences to be stated as theorems, and invariants and constraints to

be recorded as axioms or assumptions).

It requires considerable skill in formal methods to develop formal specifications

of this kind--and it also requires deep understanding of the problem domain and

of the lifecycle processes being followed. The last of these is sometimes overlooked

when formal methods experts and domain specialists are left to develop the spec-

ification on their own: it is not enough for the specification be elegant, or even

correct--it has to appropriate for the part it is to play in the development process.

This means it must be presented in a form that is suitable for review in the current

stage of the tifecycle and that can be used as an input to the next. The requirements

for these processes can range from formatting rules (e.g., lines must be numbered to

facilitate inspections), through identifier-naming conventions, to onerous documen-

tation standards. It seems that the diverse skills required for the development of

effective formal specifications are best brought together through the collaboration

of several individuals, each skilled in particular facets of the overall problem.

We have just considered formal specifications as a way to supplement or replace

some of the Software Requirements Data described in Section 11.9 of DO-178B.

Another opportunity is to apply formal methods to the Design Description required

by DO-178B Section 11.10.

11.10. Design Description: The Design Description is a definition of the soft-

ware architecture and the low-level requirements that will satisfy the software

high-level requirements. This data should include:

selected for firing in a way that minimizes the angle between the desired direction of acceleration and
that which will be produced by firing the selected jets (previously the aim had been to maximize the
scalar product between the desired acceleration and that produced by firing the selected jets; the
new scheme is intended to save propellant). The requirement is specified in pseudocode (probably

derived from a simulator) that has triply nested loops. An implementation of the requirement as
specified consumes 67 msec. of a frame in which only 40 msec. is available. Because the requirement
specification mandates a triply nested loop, rather than specify the properties desired of the output
of the computation, the implementors have little room for maneuver in reducing execution time. It
is possible that a costly revision to the requirements will be needed, or that this attempt to reduce
propellant usage will be abandoned.

In another example (found while performing formal verification), an optimization that could
safely be left to implementation (i.e., don't recompute which jets to fire if none of the inputs
have changed since the previous frame), is instead promoted to the requirements level, where it is
expressed in an obscure manner that appears to admit the possibility of firing a failed jet (a very

bad idea!) in certain circumstances.
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a. A detailed description of how the software satisfies the specified software

high-level requirements, including algorithms, data structures, and how

software requirements are allocated to processors and tasks.

Here the rationMe for formal methods would be to enhance communication

among members of the design a.nd implementation teams. Use of formal methods to

specify (sequential) algorithms, data structures, and interfaces is fairly straightfor-

ward, and some widely publicized, and apparently successful applications of formal

methods have been of this kind [HK91]. The concepts and notations employed

can be closer to those of programming and digital design than is appropriate for

requirements documentation and the consequences for certification seem slight.

Formal methods in place of some traditional processes

So far, I have envisaged that traditional reviews and analyses will continue to be

performed, although some traditional data may be supplemented or replaced by

formal specifications.

Larger savings may be possible if formal analyses can replace some of the tra-

ditional processes considered in certification. I have already suggested that formal

methods of analysis such as typechecking could supplement or replace reviews for

properties such as consistency of specifications. However, more significant savings

might be possible if formal "proofs of correctness" could replace some of the onerous

testing procedures required by DO-178B. (I have heard estimates that up to 30%

of all software development costs may be consumed in unit testing and that it costs

$100,000 for each bug found by structural unit test procedures--however, this latter

figure is of little relevance, since the purpose of unit testing in DO-178B is assur-

ance, not debugging.) The difficulty in doing this is the reason I put "correctness"

in quotes: formal methods deal with models of the system, not the system itself.

Consequently, some testing will be required to validate the modeling, though it is

plausible that this could be accomplished as part of integration testing, without

requiring unit testing. The Cleanroom methodology follows a very rigorous version

of this approach: developers must provide correctness arguments for their code and

are not allowed to run it; there are no unit tests, and integration tests use statistical

sampling methods [Dye92]. 31

The realities of airplane certification are such that unit test criteria are unlikely
to be relaxed in favor of formal verification or formal refinement without considerable

3iln order to support statistical testing, Cleanroom-deveiopers ]lave to document the expected

"operational profile" of their software. Apparently, this extra requirement causes developers to

think about their software from a novel perspective and has the unexpected side-effect of leading

them to discover faults that would otherwise have gone unnoticed at that stage.



3.4. Formal Methods in Support of Certification 143

evidence supporting a "rationale for use of the alternative method which shows that

the system safety objectives are satisfied" required by Section 12.3 b(3) of DO-178B.

Since one of the purposes of unit test is to exercise the compiled code 32 formal

verification of source code, or formal refinement of specifications into source code,

are unlikely to satisfy this safety objective (unless the compiler were verified).

However, it is feasible that formal methods could discharge one of the objectives

of testing rather more convincingly than conventional tests, and this may be a niche

that formal methods could occupy rather sooner than replacement of unit testing.

According to DO-178B [RTC92, Section 6.4]:

"Testing of airborne software has two complementary objectives. One ob-

jective is to demonstrate that the software satisfies its requirements. The

second objective is to demonstrate with a high degree of confidence that

errors which could lead to unacceptable failure conditions, as determined

by the system safety assessment process, have been removed."

The second of these objectives is rather difficult to verify by testing--it means

trying to demonstrate a negative. But if we can state precisely the properties that

could lead to unacceptable failure conditions, then formal methods can be used

to show the absence of those properties (we prove that the software entails the

negation of those properties for all inputs). This approach is suggested in DO-178B

itself [RTC92, Section 12.3.1]:

"Testing shows that functional requirements are satisfied and detects

errors, and formal methods could be used to increase confidence that

anomalous behavior will not occur (for inputs that are out of range or

unlikely to occur)."

One specific technique that addresses concern for "inputs that are out of range"

is use of formal verification to prove that specific exceptions (e.g., array bounds

violations) will not occur. Techniques of this kind can be considered a very strong

form of typechecking; they were pioneered by German [Ger78] and are now available

in commercial tools [Egg90]. Best and Cristian give a formal treatment of more

general kinds of exceptions [BCS1, Cri84].

32For example, the onerous unit test criterion required by DO-178B called Modified Condi-
tion/Decision Coverage (MC/DC) is intended to exercise all possible code sequences that a compiler
might generate from the Boolean expressions appearing in tests and loops [CM93].
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3.4.2 Use of Formal Methods to Improve Quality Control and As-

surance

Many of those who advocate use of formal methods for safety-critical systems do

so because they believe that existing practices are inadequate and that (only) for-

mal methods can significantly increase the assurance provided for these systems.

Standards, such as the British Interim Defence Standard 00-55 [MOD91a] and the

United States Trusted Systems Evaluation Criteria [DoD85], that mandate use of

formal methods for certain classes of systems seem motivated by these beliefs. In this

subsection I summarize the evidence in support of these beliefs, examine whether

increased quality control and assurance is needed for airborne systems (and if so,

for what aspects of those systems), and consider whether and how formal methods

can contribute to increased quality control and assurance.

The distinction between quality control and quality assurance is that the first

is concerned with methods for eliminating faults, while the second is concerned

with methods for demonstrating that no faults remain (although the distinction

is often somewhat blurred in practice). In considering how formal methods may

contribute to improved quality control, I will enquire whether there are classes of

faults that might escape detection using traditional processes (and might therefore

be present in operational systems), and I will examine whether formal methods

could help eliminate those faults. In considering their contribution to assurance, I

will enquire whether there axe classes of faults that are often detected much later

than the lifecycle stage where they are introduced, and will examine whether formal

methods could help detect those faults earlier, and give assurance that they have

been detected.

Formal Methods to Increase Quality Control

As reported in Section 3.3, there is no documented evidence of inadequate qual-

ity control for airborne software in current operation--but since the generation of
commercial airplanes with truly extensive flight-critical software has accumulated

relatively few flight-hours to date (the Airbus A320 has about a million hours, the

Airbus A330 and A340 are about to enter service, and the Boeing 777 has not yet

flown), the software would have to be very bad indeed for any significant faults to

have shown up. The evidence recounted in Section 3.3 from experimental aircraft

and from spacecraft, where faults have been documented in flight test or in opera-

tion, suggests that if current quality control methods axe inadequate, then they axe

most likely to be so in those areas of intrinsically high technical complexity concern-

ing the management of concurrent, distributed activities in the presence of faults or
other rare combinations of events. If this assumption is correct, then it is possible

that definitive evidence for individual software faults occurring in operation will
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never be forthcoming, even if software quality is inadequate--for the circumstances
in which residual faults will be activated will be those of multiple failure, where the

exact sequence of events will be very difficult to determine and next to impossible

to reproduce, and evidence that could implicate the software (e.g., a trace of its

execution) is simply unavailable (the necessary instrumentation is seldom retained

after flight test). It is possible, therefore, that the only evidence for the adequacy

or otherwise of current quality control practices for flight-critical software will be

statistical--and it may require a decade or more to accumulate the quantity of op-

erational experience (i.e., in excess of 107 flying hours) that may be expect,_d to

reveal very small, but unacceptable, failure rates.

In summary, software quality control and assurance practices have apparently

worked adequately in the past; if they are inadequate for the new generation of

software-intensive airplanes, their inadequacies will be on the margins and slow

to come to light, and the evidence will be equivocal. Therefore, in my opinion,

judgments concerning the adequacy of quality control methods for flight-critical

software must primarily be based on intellectual and introspective grounds. It is up

to systems developers and certification authorities to make these judgments, but I

think that if there are any areas where current processes for quality control might

be judged inadequate, then they will concern complex problems such as the coor-

dination, partitioning, timing, and synchronization of distributed and concurrent

activities in the presence of faults and other combinations of rare events. These are

areas of high and inherent technical complexity that must deal with vast numbers

of possible behaviors and are difficult, if not impossible, to validate through testing.

But can formal methods validate these vastly complex behaviors, and if so,

what type of formal methods? Once again, I believe the analysis must chiefly be an

intellectual and introspective one. And on that basis, the reason why formal methods

might be expected to help is that they provide a means for describing, specifying,

calculating, and thinking about complex behaviors: they can render intellectually

manageable a dimension of possibilities that otherwise exceeds our capacity. DO-

178B appears to concur with this assessment, and in its Section 12.3.1 states

Formal methods may be applied to software requirements that:

• Are safety-related.

• Can be defined by discrete mathematics.

• Involve complex behavior, such as concurrency, distributed processing, redun-

dancy management, and synchronization.

I suggest that those aspects of design that "involve complex behavior" should

be provided with at least the level of formal description and analysis that would
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be found in a refereed computer science journal. That is, for the mechanisms of,

say, fault tolerance, a specification of the relevant algorithms should be provided,

together with the fault assumptions, the fault masking or recovery objectives, and

a proof that the algorithms satisfy the objectives, subject to the assumptions. This

level of rigor of presentation is what I have been calling a "Level 1" formal method;

it is less rigorous than any of the levels of formality contemplated in Section 12.3.1

of DO-178B. Nonetheless, I believe this level of rigor would be an improvement on
current practice.

The mechanisms of fault tolerance, distributed coordination, and concurrency

management employed in aircraft systems owe little to those studied by academic

researchers. 33 This is not a criticism (there is little reason to suppose that academic

researchers know more about flight-control systems than those who actually develop

them), but the salient point is that, because they do not derive from academic

traditions, the architectures and mechanisms used in aircraft systems cannot draw

on the analyses and proofs that have been published and subjected to peer review

in computer science journals and conferences. Hence, if it is not done already (and

if it is, it is not described in the open literature), a very desirable first step towards

increased quality control and assurance would be use of formal methods, at a modest

level of rigor, to demonstrate the correctness of the basic mechanisms and algorithms

concerned with complex behaviors. The intent of this exercise would be to contribute

to satisfaction of the software verification process objectives stated in Section 6.1 of
DO-178B:

The general objectives are to verify that

b. The high-level requirements have been developed into a software ar-

chitecture and low-level requirements that satisfy the high-level re-

quirements...

At a more detailed, level, the verification objectives stated in Section 6.3.1 of DO-
178B include:

3aFor example:

"Not far from CNRS-LAAS [a French research establishment with considerable exper-
tise in fault tolerance], Airbus Industrie builds the Airbus A320s. These are the first
commercial aircraft controlled solely by a fault-tolerant, diverse computing system.
Strangely enough this development owes little to academia_ [Kir89].

The GEC architecture [DHg0] for the primary flight computers of the Boeing 777 is similarly
without academic forbears. An exception to this general rule is Allied Signal's MAFT architec-
ture [KWFT88], which was proposed for some of the design studies in the 7J7, 767X series.
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g. (Algorithm Aspects): The objective is to ensure the accuracy and

behavior of the proposed algorithms, especially in the area of dis-

continuities.

I suggest that the specific verification objective for formal methods would be to
demonstrate that certain fundamental algorithms and architectural mechanisms in-

volving complex behavior (i.e., behavior that consists almost exclusively of "discon-

tinuities") satisfy their corresponding high-level requirements.

Since such requirements and behaviors may not be testable under all combi-

nations of circumstances, this use of formal methods addresses the guidance for

software verification activities given in Section 6.2 of DO-178B:

°..

d. When it is not possible to verify specific software requirements by

exercising the software in a realistic test environment, other means

should be provided and their justification for satisfying the software

verification process objectives defined in the Software Verification

Plan or Software Verification Results.

In particular, I suggest that formal methods and proofs can provide the "other

means" required to satisfy the verification process objectives in the case of complex

behaviors.

I consider this objective an important one for formal methods since it addresses
the source of the observed faults described earlier in this chapter, and I do not see

how it can be accomplished by other means--though it seems prudent that formal

methods should supplement, not replace, existing practice.

The specific benefit provided by formal methods is that they allow "complex

behaviors" to be analyzed (by means of proofs), rather than merely reviewed--and

analyzed in their totality_ rather than merely sampled as by testing or simulation.

Thus, the benefit derives from proof, not from formal specification alone: formally

specifying the individual state machines at either end of a protocol, for example,

adds little to our understanding--we need to calculate their combined behavior in

order to ensure that they accomplish the desired goal.

Level 1 formal methods can provide assurance that critical algorithms and archi-

tectural mechanisms achieve their requirements, relative to the level and abstract-

ness of description used, and subject to the fidelity of the modeling employed and

accuracy of the proofs performed. Beyond the modest step just recommended, we

should consider the extent to which quality control and assurance might be further
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enhanced by increasing the level of formal rigor employed, or the number of stages

of the lifecycle subjected to formal analysis.

When the concern is to establish that certain tricky or crucial aspects of design

are correctly handled by the algorithms and architectural mechanisms employed, I

see little advantage to Level 2 formal methods over Level 1: it is the proofs that mat-

ter, and both levels employ the traditional kind (presented and checked informally

"by hand"); all that Level 2 would add is a fixed syntax for the specification language

and possibly some built-in models of computation and concurrency. These last may

be a mixed blessing: useful if they match the needs of the problems considered,

otherwise an obstacle to be overcome. In my opinion, the latter is most likely to be

the case, since the assumptions built in to many notations (e.g., synchronous com-

munication in LOTOS) require the very mechanisms (e.g., synchronization) whose

correctness we will be trying to establish.

But if Level 2 formal methods add very little in this domain, Level 3 may add

a great deal. We will be dealing with difficult problems, where a large number of

potential behaviors must be considered--that is why we have decided to use formal

methods--and the proofs may be expected to be replete with boundary conditions

and case analyses. These are precisely the kinds of arguments where informal reason-

ing may be expected to'go astray--and go astray it does: for example, the published

proof for one synchronization algorithm [LMS85] has flaws in its main theorem and

in four of its five lemmas [RvI-I91a], and one algorithm for distributed consensus

that was published with a detailed proof of its correctness [TP88] nonetheless con-

tains a bug [LR93b]. The flaws in the two examples just cited were discovered while

undertaking formal analysis at Level 3 and suggest the benefits that may be de-

rived from this level of rigor. As with Level 2, those Level 3 specification languages

that provide built-in models of computation and of concurrency may hinder rather

than help the kinds of analysis considered here; a specification language built on

an expressive but neutral logic, in which can be constructed models suited to the

problems at hand, may prove the most effective tool.

The value of undertaking mechanically-checked proofs is that the dialog with a

proof checker leads us to examine all cases and combinations of the argument. On

it own, a mechanically-checked proof is not a "means of compliance" with a certi-

fication basis and concern that "the theorem prover has not been proved correct"

is not an obstacle to deriving great benefit and additional assurance by applying

Level 3 formal methods in this domain (recall Section 3.2 where part of the Qual-

ification Criteria for Software Verification Tools was reproduced from DO-178B).

The analysis produced through dialog with any adequately validated proof-checker

will be considerably more complete and reliable (and repeatable) than one produced

without such aid--it is the ultimate walkthrough--but the "certificate" that comes

from a mechanized proof checker should not be accepted as unsupported evidence
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of fitness any more than should other computer-assisted calculations, such as those

of aerodynamic properties, or of mechanical stress. In my opinion, the analysis de-

veloped with the aid of a theorem prover should also be rendered into a clear and

compelling semi-formal (i.e., Level 1) argument that is subjected to intense human

review, and it is the combination of stringent mechanical and human scrutiny (and

other evidence, such as tests) that should be considered in certification. 34

The construction of a mechanically-checked proof that certain algorithms and

architectural mechanisms accomplish certain goals subject to certain assumptions,

addresses only part of the problem: we also need to validate the modeling employed.

That is to say, we need to be sure that the model of computation employed, and the

statements of the assumptions made and of the goals to be achieved, are all true in

the intended interpretation. We also need to be sure that the algorithm and archi-

tectural mechanisms considered in the proof will be correctly implemented. There

is a tension between these concerns: it is generally easier to validate models that

make a few broad and abstract assertions (e.g., "it is possible for a nonfaulty pro-

cessor to read the clock of another nonfaulty processor with at most a small error

e") than those that make many detailed ones (e.g., that talk about specific mecha-

nisms for reading clocks and the behavior of particular interface registers), but the

"gap" between the verified specification and its implementation will be greater in

the former case. In my opinion, since the assurance objective of this analysis is

to ensure there are no conceptual flaws in the basic algorithms and mechanisms,

credibility of validation should take precedence over proximity to implementation.

This argues for performing the analysis early in the lifecycle and using abstract

modeling (i.e., suppressing all detail judged irrelevant). Validation is accomplished

by peer review, supported by analyses (recall the list given in the previous subsec-

tion) that demonstrate, for example, that axiomatic specifications are sound (i.e.,

have a model), that intended models are not excluded (e.g., that clocks that keep

perfect time satisfy the axioms for a "good clock"), that definitions are well-formed,

and that expected properties (i.e., "challenges") can be proven to follow from the

specification. 35 Concern that implementations are faithful to their verified specifi-

cations is a separate problem, and can be handled using either formal methods, or

_4For this reason, I do not endorse the requirement in UK Interim Defence Standard 00-

55 [MODgla, paragraph 32.2.3] that a second mechanically-checked proof using a "diverse tool"
should be required. The resources required would be better expended on diverse analysis, and on
human scrutiny of the argument and modeling employed.

_sUK Interim Defence Standard 00-55 places great stress on validation through uanima-

tion" [MODgla, paragraph 29.3.1 and guidance paragraph 29.6]. By this is meant: (1) use of
"formal arguments" to demonstrate consistency with higher-level requirements and to undertake
what I call _challenges," and (2) construction of am _executable prototype _ to _examine and inves-

tigate particular aspects of the specification that have been identified in advance, with particular
emphasis on the safety features. _ While executable prototypes can be useful in some circumstances,
I do not consider it likely that they can contribute to increased quality control and assurance for

the difficult algorithms and architectural mechanisms under consideration here.
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traditional techniques for V&V. My personal opinion is that traditional techniques

are likely to be adequate: the evidence seems to be that it is the basic mechanisms

and algorithms that have been flawed, not their implementations.

A very reasonable concern about the type of formal methods activity I advocate

for increased assurance is that it requires specialized skills of a very high order: I am

suggesting nothing less than applying the most rigorous kinds of formal methods to

the hardest and most difficult aspects of design. But if we accept that quality control

and assurance of airborne software already achieves very high standards, we can

hardly expect to push the standards still further without significant effort, training,

and skill. However, although technically difficult and intellectually demanding, the

applications of formal methods that I advocate are few in number (just the problems

where concern is greatest) and small in scale (since they will be undertaken in the

early lifecycle and can employ abstract models), and can therefore be accomplished

using relatively few (but highly skilled) people. Thus, the challenge for technology-

transfer of formal methods into high-assurance contexts is not to bring relatively

large numbers of people up to relatively modest levels of accomplishment, but to

train relatively few people to extremely high levels--and not just in formal methods,

for to formalize the topics of interest and to work effectively with the senior systems,

safety, and software engineers concerned will require expertise in many aspects of

safety-critical systems design.

Another reasonable concern is that formal methods tools, and theorem provers

in particular, will not be adequate to the challenge of the hardest problems. Those

whose experience has been restricted to "proof assistants," or other systems with

little automation, often have a very false impression of the capabilities of modern

theorem proving systems: they extrapolate from their own experience and assume

that theorems a little harder than those they have been able to prove must be at

the limit of feasibility. In truth, the more automated of modern theorem-proving

systems can, under the guidance of skilled and experienced users, prove rather hard

theorems rather expeditiously. Certainly, however, problems can be posed that will

stress the capability of any current theorem prover--or, rather, the patience of its

user--but abstraction may allow us to "downsize" such problems to a manageable

scale (or to divide them into several smaller problems). It takes great skill to do

this without abstracting away matters of real significance, but the simplification

achieved is likely to be of independent value (providing a better grasp on the real

issues). Once a problem is reduced to a tractable form, mechanical theorem proving

is not a major impediment: most of the time spent in dialog with the theorem prover

is spent revising the specification in response to faults discovered, not in developing

the final proof [Sha88].
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Formal Methods to Increase Quality Assurance

Under the previous heading, I considered the potential contribution of formal meth-

ods to aspects of design where traditional methods of quality control might be

inadequate and where faults could persist in operational software. In this section, I

examine the case where quality control seems adequate, but quality assurance may

be considered less than satisfactory. I am interested here in those lifecycle processes

that have a high "leakage rate" (i.e., faults are discovered at a later stage of the

lifecycle than that which introduced them), or where the assurance processes are

poorly controlled, so that it is difficult to provide evidence for their coverage and

effectiveness. As seen in Section 3.3, both these characteristics are most strongly

expressed in the early lifecycle, and in requirements specification and analysis in

particular.

The general problem in the validation of requirements specifications is that it

is difficult to measure "coverage" in any objective sense. Requirements analysts

collect and study as much pertinent information as possible and examine the writ-

ten requirements from several perspectives in order to determine whether they are

complete, consistent, and free from major faults. In addition, they identify and
mentally execute "scenarios" that are rather like tests in tl_at each one explores

the ramifications of the requirements specification under a specific hypothesis. But

apart from the scenarios and reports of any deficiencies discovered, there are few

outputs from the requirements analysis process that are checkable or measurable--

basically all that is available is a statement "I checked this to the best of my ability

and apart from the items listed, I cannot find any other problems." The effective-

ness of the process is thus heavily dependent on the experience, intelligence, and

diligence of the personnel involved_ When faults are discovered later in the life-

cycle and those responsible for requirements analysis are asked how those faults

escaped their detection, they generally answer "I didn't know it was meant to (not)

do that," or "I didn't think of that scenario." While I do not suggest that formal

methods can eliminate these deficiencies, I do believe they can alleviate them, and

can contribute to a more analytical and manageable process. The objective would

be to contribute to satisfaction of DO-178B Section 6.3.1. (Reviews and Analyses

of High-Level Requirements):

a. (Compliance with system requirements): The objective is to ensure that the sys-

tem functions to be performed by the software are defined, that the functional,

performance, and safety-related requirements of the system are satisfied by the

software high-level requirements, and that derived requirements and the reason

for their ezistence are correctly defined. (Section 6.3.2., dealing with low-level

requirements, adds the objective of ensuring that ... derived requirements and

the design basis for their existence are correctly defined.)
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b. (Accuracy and consistency): The objective is to ensure that each high-level re-

q_tirement is accurate, unambiguous and sufficiently detailed and that the re-

quirements do not conflict with each other. (Similar considerations apply to

lower-level requirements described in DO-178B Section 6.3.2.).

c. (Compatibility with the target computer): The objective is to ensure that no

conflicts exist between the high-level requirements and the hardware/software

features of the target computer, especially, system response times and in-

put/output hardware.

d. (Verifiability): The objective is to ensure that each high-level requirement can be

verified.

f. (Traceability): The objective is to ensure that the functional, performance, and

safety-related requirements of the system that are allocated to software were

developed into the software high-level requirements.

The difficulties of requirements capture and documentation are larger than those

addressed by formal techniques alone; what is really needed is a systematic method

for approaching these problems (and for applying formal techniques to them). For

control systems, that developed by Parnas and colleagues--variously known as the

"AT" or "Software Cost Reduction" (SCR) method--seems most suitable. (A recent

description of the A7 method is given by van Schouwen [vSg0]). A more compre-

hensive approach, developed specifically for aerospace applications and combining

object-oriented techniques with those of AT, is the "Consortium Requirements En-

gineering" (CORE) method of the Software Productivity Consortium. (This method

is currently being applied to Lockheed's C-130J (Hercules) avionics upgrade.)

I suggest that formal specifications and formal analyses should supplement tra-

ditional methods for requirements specification and analysis. Within the framework

provided by a requirements engineering method, such as A7 or CORE, formal meth-

ods could render quality control and assurance of requirements a more systematic,

controlled, and repeatable process.

In particular, I believe that formal methods can help requirements authors state

what the component concerned is intended to-do, what it should not do, what con-

straints it must satisfy, and what assumptions may be made about its environment.

Present techniques may lose these vital items of information; demands for increased

precision only drive the specifier towards more operational descriptions of how the

system is to be constructed. Nor do methodologies such as OMT [RBP+91] address

these problems of stating what is required; while excellent for many purposes, they

serve mainly to provide perspectives on how the system is to be put together.
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Similarly, present techniques do not encourage requirements authors or analysts

to state explicitly the general constraints and assumptions that apply to a compo-

nent. Instead, scenarios are used to enumerate the intended circumstances of its

operation. Formally stated assumptions and constraints, on the other hand, could

capture general properties, and attempts to prove the conjecture

assumptions plus requirements specification imply constraints

should force systematic enumeration of all the significant scenarios.

In addition to systematic exploration of requirements specification in relation to

its assumptions and constraints, a suitably detailed specification can be scrutinized

with respect to a number of consistency and completeness criteria. A formal spec-

ification can be checked for a specific kind of consistency by typechecking, and by

showing that its axioms are satisfiable (again, recall the list given in the previous

subsection). Similarly, a certain form of completeness can be systematically checked

using the methods of Jaffe, Leveson and Melhart [JLHM91].

It would not be necessary to use explicitly formal methods to follow some of

the steps suggested above. Natural language, possibly supplemented by diagrams,

tables, and some mathematical notation could be adequate for many purposes. And

some of the proposed analyses could be reduced to checklists without losing all ef-

fectiveness (recall Lutz' report [Lut93b] that a checklist derived from Jaffe, Leveson

and Melhart's proposals would have identified more than 75% of the safety-critical

faults discovered in the Voyager and Galileo spacecraft). However, specifically for-

mai methods would provide the additional benefit that some review steps could be

replaced or supplemented by analyses: that is by repeatable processes amenable

to independent, and possibly mechanical, checking. Such systematic analyses seem

most likely to contribute to an improvement in assurance.

Item [c.] "Compatibility with the target computer" in DO-178B Section 6.3.1.

(reproduced above) seems to raise the general question of interfaces (under "in-

put/output hardware"). Recalling Lutz' data from Section 3.3 that 25% of all safety

critical faults in Voyager and Galileo were interface faults, and that half of those

concerned misunderstood hardware interfaces, it seems that more precise specifica-

tion of such interfaces would be advantageous. Since faults seem to be associated

with semantic attributes of the interfaces (e.g., initial states, fault modes, timing

and sequencing constraints), a formal notation that permits the expression of such

attributes is required; specification of syntactic attributes (e.g., using pseudocode)
will be insufficient.



154 Chapter 3. Formal Methods and Digital Systems Validation

3.5 Selection of Formal Methods, Levels and Tools

Before applying formal methods to a system development, it is important to consider

carefully a number of choices and decisions: for what purpose are formal methods

to be applied, to what components and properties, and with what level of rigor?

Once these basic decisions are taken, more specific ones can be addressed, such as

the selection of individual methods and of tools.

In the previous section, I identified a number of ways in which formal methods

could be used in support of certification. The common thread among those different

ways is the ability of formal methods to reduce certain questions to calculation,

thereby allowing analyses to replace or supplement reviews. Even when the intel-

lectual substance of a formal specification is chiefly examined through reviews, it

is surely the fact that some questions, such as syntactic or type consistency, Call

be settled by calculational processes that distinguishes it from a nonformal specifi-

cation; if we do not make use of the fact that formal specifications permit formal

calculations, then we have not used formal methods in any significant way and there

is no need to consider their impact on certification. (This is not to say that the no-

tationai, educational, or mental aspects of formal methods might not benefit the

software engineering process--merely that they produce little novel evidence that

can be examined in support of certification.)

Therefore, in my opinion, the selection of a level of rigor, formal method, and

tools, should be largely determined by the type of analysis we wish to perform. Once

the kind of analysis is chosen, i believe it will generally be most useful to decide next

the level of rigor. If the goal is to analyze the correctness of crucial algorithms and

architectural mechanisms, then Level 1 rigor and carefully constructed traditional

proofs may be adequate (and certainly superior to no analysis at all); if the proofs

are intricate or numerous, then Level 3 rigor and mechanically-checked proofs may

be preferable. When specifications are mainly to be used as documentation and

examined by review, then a formalized specification notation and Level 2 rigor may

be appropriate--provided the notation is supported by tools that perform effective

detection of syntactic and semantic faults.

Once we have identified the type of analysis and level of rigor, we can select

the most appropriatemethods and tools. For Level 2 documentation of sequential

components, a notation such as VDM or Z supported by a typechecker may be a

good choice. Alternatively, we may prefer the richer mechanization and stronger

guarantees of consistency afforded by the tools of a system that is normally used
at Level 3. The problem domain will naturally influence the choice of methods and

tools: for example, with real-time applications we have to decide whether to use

a system that supports those concerns directly, or whether to model them within

some more general framework.
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For Level 3 applications (i.e., those involving mechanized proof checking), it

will be necessary to match the capabilities of the tools used to the requirements

of the problem domain: it will seldom be productive to use a process-algebra such

as LOTOS for the description of sequential programs and low-level data structures

(recall [GH93]), nor is a program verification system likely to be the best choice

for abstract design specifications (see [SB89]). The intended analyses must also be

considered, and the methods and tools chosen appropriately. For example, if the

goal is to examine whether mode-switching or other complex control logic admits

undesirable properties, then a state-exploration system may be the most suitable.

But for verification of the correctness of fault-tolerant algorithms, a more general-

purpose theorem prover will be a better choice.

These points may seem obvious, but I know of projects where methods and tools

were selected apparently by chance, resulting in some strange pairings. For example,

one organization purchased a tool intended for the formal development of hardware

designs--and it is a perfectly fine tool for that purpose. When a later project was

started to formally analyze voting and redundancy management mechanisms, they

used the same tool. Now although it is possible to drive screws with a hammer,

the practice is unlikely to lead to sturdy joints, nor to refined appreciation of the

capabilities of either screws or hammers. Accordingly, in the next few pages, I list

some questions that should be considered when selecting tools to support formal

methods.

The questions are largely technical ones bearing on the effectiveness of the auto-

mated analyses that can be supported by the tools under consideration--although I

recognize that political and other nontechnical considerations may also be influential

in the selection of methods and tools. Principal among these nontechnical factors

are popularity, availability of training courses and textbooks, and standardization

and endorsement by various national and international bodies. These factors will

be important in many applications of formal methods, but I believe they should

generally be outweighed by technical considerations when contemplating applica-

tion to airborne systems. For flight software, we are less concerned with general

improvements in software engineering and more concerned with assurance of soft-

ware quality--in an industry that already achieves extremely high standards. The

main contribution that formal methods can make in assurance for flight software

is in providing mechanicaUy-checked analyses for strong properties of requirements,

specifications, algorithms, and programs. These mechanized analyses require state-

of-the-art capabilities in formal methods and theit'support tools, and the art is

advancing very rapidly. Popular and standardized methods have generally achieved

that status over many years and therefore generally lag the state-of-the-art, and their

very popularity and standardization make the processes of change and improvement

rather ponderous.
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3.5.1 Issues in Tool Selection

Most of the topics mentioned here were considered at some length in the previous

chapter and are gathered together here mainly for convenience. I assume the tools

under consideration provide a formal specification language, parser, typechecker,

various utilities, and some support for mechanized proof checking or theorem prov-

ing. I generally refer to such a tool as a "verification system" (or simply "system"),

and consider its capabilities in the order listed in the previous sentence.

Verification System

Does the system have adequate documentation and examples?

Clearly, these are required if productive use is to be made of the system.

However, it should not be an absolute disqualification if the documentation is

not precisely of the form desired: most aerospace projects develop substantial

standards and procedures documents, and it is likely that some specially tai-

lored description of the chosen formal method and system will be required, no

matter how good its own documentation.

Examples are important for evaluation and training. If examples directly

relevant to the planned application are not available, then a pilot project to
create them should be considered.

Has the system been used on real problems?

Embarking on a major project using an untried verification system is risky.

Generally, users should expect that the chosen system has already shown its

mettle on some significant project, and preferably has been used for purposes

similar to those planned.

Is it easy to learn? And does it provide effective support for experienced users?

An attractive user-interface, perhaps with pop-up menus and other conve-

niences, can ease the process of learning a new system. It is more important,

however, that the system should be a productive tool in the hands of experi-

enced users. A key requirement for a system to be truly easy to use is that it

should have a rational structure, so that users can form a mental model of its

operation that corresponds to its actual behavior [Nor88].

Users should be wary of opinions formed of verification systems on the basis

of demonstrations or elementary examples. Greater familiarity and more sub-

staaatial exercises are required in order to estimate how a system will serve on

large projects.
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Does the system support the selected .formal methods and analyses effectively?

A verification system should be chosen to support the analyses desired, not

vice-versa. If the desired analysis is very strong typechecking, then a system

that uses an untyped logic will unsuitable, no matter how great its other capa-

bilities. Conversely, if the goal is to analyze correctness of difficult algorithms,

then a system with a feeble "proof assistant" will provide more frustration
than assistance.

In my opinion, ability to perform the desired analyses should take precedence

over support for a particular formal method. For example, if proofs of de-

sired properties are beyond the capabilities of the available proof assistants

for VDM, say, then it will be better to adopt the notation supported by a

system whose theorem prover is adequate to the task than to abandon the

analysis. It should also be borne in mind that resources are generally finite

and bounded: heroic efforts to perform an analysis with an unsuitable tool will

consume resources that might have been better used elsewhere in the overall

scheme of enhancing software quality control and assurance.

Is the system generic or specific to a particular logic and language ?

While most systems are crafted around a particular specification language

and its associated theorem-proving requirements, some provide a more generic

foundation that can be adapted to different notations and logics. Is-

abelle [Pan88], which has been instantiated for several logics including type

theory and ZF set theory, is an example of a system that provides a fairly

general-purpose foundation. Instantiating such a foundation for a particu-

lar logic requires rather specialized skill, and is unlikely to be attempted by

projects or users that are primarily interested in using, rather than building,

support tools for formal methods. Most users, therefore, will find it more

appropriate to evaluate the suitability to their needs of specific instantiations

(e.g., type theory in Isabelle), rather than the general foundation itself. How-

ever, an advantage of systems instantiated on a general foundation is that it

may be possible for users to extend or modify them to match special require-

ments; a potential disadvantage is that their capabilities may be less than

those of one hand-crafted for the logic or specification language concerned.

An alternative that can provide some of the advantages of a generic system is

one based on a very rich foundation, such as higher-order logic (type theory).

It is possible to encode the semantics of other logics (e.g., temporal logics,

or Hoare logics) or specification notations (e.g., Z) in higher-order logic. A

disadvantage of this approach is that some of the details of the encoding used

may obtrude into specifications or proofs and, as with generic systems, the
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capabilities achieved may be less than those of a system hand-crafted for the

logic or specification language concerned.

Does the system support the implementation language concerned?

If the desired analyses include verification of implementation-level descriptions,

such as those written in Ada, then the verification system must support the

programming language concerned. However, it may be worth reexamining

the purpose of formal analysis of such low-level descriptions. The unit tests

required by DO-178B are extremely onerous and cannot easily be eliminated,

since they are intended to examine the code generated by the compiler and its

operation in the context of the particular operating system, run-time support

system, and hardware concerned. These tests accomplish many of the purposes

that would be achieved by code-level verification. If, on reflection, it seems

that the goals of the formal analysis were more concerned with correctness, or

other properties, of the algorithm employed, then more abstract modeling can

be used, and the link to a specific programming language will not be needed.

Specification Language

Does the language have an explicit semantics?

A formal specification language must itself have a secure grounding in logic.

A complete formal semantics is probably not necessary, though it is desirable,

if the language is built on a fairly standard foundation (e.g., classical first or

higher-order logic) without many embellishments. However, when novel or
nonstandard constructions are employed, the user has a right to expect that

an adequately detailed and formal semantic account has been subjected to

peer scrutiny and is available for examination.

Is the logic underlying the specification language at least as expressive as first-

order predicate calculus, or is it a more specialized logic?

First-order predicate calculus with equality is generally considered the min-

imum foundation for a conveniently expressive specification language; more

restricted foundations may be adequate for specialized applications and may

offer compensating benefits, such as executability, or very powerfully auto-

mated theorem proving. For maximum versatility and convenience of expres-

sion, more powerful foundations than pure predicate calculus can be desirable;

examples include set theory and higher-order logic. The best choice will de-

pend on the intended application.

• Does the language have computer-science type constructions (such as records,

tuples, enumerations, updates)?
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Specification languages, as opposed to raw logics, generally provide built-in

notations for these constructions, which are a great convenience in computer-

science applications. It is often possible to simulate these constructions if they

are absent, but considerable notational convenience will be lost, and theorem

proving support will also be less automated. Updates (also known as overrid-

ing) are the way in which new values of structured types (such as functions, and

records) are constructed from existing values in a purely functional manner

(they correspond to assignment to array elements or record fields in imperative

programming languages) and it is usually important for the theorem prover

to deal with them in a very efficient manner.

Does the language have familiar and convenient syntax (e.g., infix + etc.)?

Although lisp-like prefix notation has some adherents, most users prefer more

familiar notation (i.e., x,y+z rather than (plus (times x y) z)). The no-

tation used within the system assumes less importance if there are facilities for

typesetting it in a more attractive form for documentation and review. Some

systems use true mathematical notation (i.e., V, rather than a keyword such

as FORALL); this is not an unmixed blessing, since it can require a nonstandard

editor to create such symbols.

Is the specification language strongly typed? How rich is the type-system, and

how stringent is the error-checking performed by the typechecker?

Strong typing is generally considered an advantage in specification languages,

just as it is in programming languages. In specification languages, however, the

type-system can be richer than is generally feasible for programming languages.

Among the more powerful type-constructions are those for predicate subtypes,

dependent types, and disjoint unions.

How does the logic deal with partial functions?

Partial functions are those whose value is undefined for some values of their

arguments. Developing a semantics for a specification language that admits

partial functions is a challenging problem. The main choices are multiple-

valued logics (e.g., LPF [BCJ84]), or logics of partial terms (e.g., Beeson's

LPT [Bee86]). The alternative is to treat all functions as total; this can be

rather unnatural (e.g., allowing division by zero) in languages with only el-

ementary type-systems, but becomes very effective when predicate subtypes

and dependent types are available. Some examples of these approaches were

presented in Subsection 2.3.1.2. In most cases, rather sophisticated theorem

proving is required for a sound treatment (LPF and LPT usually generate de-

finedness goals as proof-time, predicate and dependent types generally require

theorem proving during typechecking).
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• Does the specification language allow formulas to be introduced as axioms?

Specification languages that do not allow the introduction of axioms can im-

pose a rather constructive style: requiring the user to define a function (say)

having a required property, rather than being able to simply assert the prop-

erty axiomatically. The extent to which this is a drawback depends on the

application. Axioms are particularly useful when we wish to state assumptions
about the environment, and when we wish only to constrain (rather than fix)

certain properties.

When axioms are allowed, the system should support methods for demonstrat-

ing their consistency.

• Does the specification language have a definitional principle that guarantees

conservative extension? ls it mechanically checked?

It is not always desirable or necessary to introduce concepts axiomatically.

Properly constructed definitions have the advantage that they cannot in-

troduce inconsistencies; they are also conducive to efficient theorem proving

and can allow specifications to be directly executed. It is desirable for well-

definedness to be enforced by the system, so that malformed definitions are not

admitted. Checkihg the well-define'dness of some constructions (e.g., recursive

definitions) cast require theorem proving.

• Does the system support definition of recursively defined abstract data types?

"Shell" mechanisms for introducing recursively-defined abstract data types

(such as lists, trees, etc.) are extremely useful; similar mechanisms can be

provided for inductively-defined types and functions (such as transitive clo-

sure). Disjoint unions (which are very useful for adjoining an "error" value

to some other type) can often be manufactured using an abstract data type

facility if they are not provided directly.

• Are specifications required to be model-oriented, or property-oriented, or can

both styles be accommodated?

This question is closely related to those concerning whether axioms or defini-

tions are admitted. The model-oriented style is usually associated with def-

initional mechanism; the property-oriented with axioms. Ideally both styles

should be supported.

• Does the language have overloading and type inference?

Strongly-typed languages can become notationally complex if the system does

not provide some automatic way to associate appropriate types with expres-

sions. For example, addition on integers is often a different function from
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that on the reals in many specification languages, but it is generally con-

venient if both are denoted by the single symbol + (so that the symbol is

"overloaded"), and the system uses context to determine whether real or in-

teger addition is intended. Many degrees of sophistication are possible in

type-inference mechanisms; it becomes especially challenging (and necessary)

in systems that support higher-order logic, subtypes, dependent types, and

parameterized modules.

Are specifications purely functional, or expressed in terms of pre- and post-

conditions on a state, or can both styles be accommodated?

Purely functional specifications are closer to ordinary logic and it is generally

easier to provide effective theorem proving for this case than for specifications

involving state. When art implicit state is present, it is generally necessary to

enrich the logic with ttoare sentences or some equivalent construction, or to

reduce the problem to ordinary logic by generating verification conditions.

When state is present, it is often necessary to distinguish variables and con-

stants that are part of the state from those that are purely logical (e.g., bound

variables). Some specification languages do not do this very well.

Specifications involving state are often appropriate for late-llfecyde program

verification, but can lead to overly complex and prescriptive specifications at

earlier stages, when functional specifications may be preferable.

Does the specification language have an encapsulation or modularization mech-
anism? Can modules be parameterized? Can semantic constraints be placed

on the instantiations of parameters? How ave the constraints enforced?

Just as reuse is supported in programming by procedures, and packages, so it is

also useful to encapsulate specifications in modules. And as with programming

languages, parameterization greatly increases the utility and genericity of such

specification modules: it is desirable to specify sorting, for instance, generically

in the type of entity to be sorted, and the ordering relation that is to be

used. When specification modules can be parameterized, it is usually essential

to be able to place semantic constraints on the allowed instantiations; we
should not be allowed to instantiate the sorting module with a relation that

is not an ordering. Specifying these kinds of constraints can either be done

directly, by attaching; assumptions to the formal parameters that must be

discharged whenever the module is instantiated, or by allowing modules to

be parameterized by theories--OBJ [FGJM85] does this, and more elaborate
ideas are discussed in the language proposal Clear [BG77].

• Does the language have a built-in model of computation?
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In most applications, formal methods are used to reason about computational

processes. Thus, the chosen specification language must be able to represent

the kinds of computations concerned. Some specification languages have a par-

ticular model of computation built-in, in the form of programming-language

constructs (e.g., Gypsy), or a process algebra (e.g., LOTOS). If such built-in

mechanisms are lacking, it may still be possible to model them if the under-

lying logic is sufficiently rich enough. For example, imperative, concurrent,

distributed, and real-time computations have all been specified quite success-

fully in specification languages based oa higher-order logic. Almost any logic

can represent sequential programs by means of function applications and com-

positions (i.e., they can model functional programming quite directly). As

noted in Section 2.2.1.3, important properties of distributed systems can of-

ten be analyzed without requiring an explicit model of distributed or parallel

computation--for example, important properties of distributed, fault-tolerant

algorithms can be verified in models that treat them as recursive functions.

When a model of computation is built in, it is important to be sure that it is

suitable for the analysis concerned: a notation based on synchronous commu-

nication is not a suitable foundation for studying synchronization algorithms.

Is the specification language executable, or does it have an executable subset,

or are there some capabilities for animating specifications?

Execution and animation provide ways to validate specifications; another way

to perform validation is by attempting to prove putative "challenge" theo-

rems. The argument against executable specification languages is that the

demands of executability may compromise its effectiveness as a specification

medium [HJ89].

• Is there support for state exploration, model checking, and related methods?

As explained in Section 2.2.3, some analyses can be performed efficiently using

a sophisticated form of brute-force that allows exploration of all the reachable

states entailed by certain kinds of specification. At present, theorem-proving

and state-exploration systems tend to be distinct breeds, so that if an analysis
will best yield to state-exploration, then it will advisable to use a system

specialized to that purpose. If theorem proving is required as well, then it

may be necessary to use two systems. An active area of research is concerned

with finding effective ways to combine these techniques, so potential users will

not be faced with quite such a sharp dichotomy in the future.
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Utilities

Does the Formal Method have a comprehensive library of standard types, func-

tions, and other constructions? How well validated is the library

A frustration to many who use a verification system is the discovery that very

little "background knowledge" is built-in or available in libraries. Each new

problem area may require significant investment in order to formalize the ba-

sic building blocks of the field. Some systems do have libraries of such basic

constructions as n-bit words, searching, sorting, maxima and minima, major-

ity, and so on (those systems that do not have them built-in will also require

libraries for basic arithmetic, sets, trees etc.), and it can be a substantial

advantage if the appropriate foundation is already available in this form. Li-

braries can differ in quality, and it is important to know how well validated are

those on which reliance is placed: an inconsistency in a library specification

may undermine a significant verification.

When it is necessary to construct or extend a library of basic definitions in

order to support a particular project, the process should not generally be

exposed to the "customer": those who want formal methods to help them

understand some difficult design problem do not want to be asked to review

axiomatizations of, say, the majority function. The senior hardware designer

for one project refused to participate in further reviews of formal specifications

after a morning spent laboring over the theory of n-bit words--that level of

detail was not his concern.

Does the system provide editing tools? Are they free-form or structure based,

or both?

Some form of editor is required in order to create and modify specifications.

Some verification systems require or allow this to be done using a separate

editor. The advantage of this arrangement is that it allows users to use their

own preferred editor; its disadvantage is that the interface between the prepa-

ration and the analysis of specifications may not be completely smooth. Other

systems require specifications to be created and modified using a particular

editor that is integrated with the verification system. The editor provided

may be a standard one such as Emacs or vi, or it may be special purpose.

Since they are widely used, standard editors may be considered free of gross

defects, but users often have strong preferences for one or the other, and this

is a factor that should be considered.

Special-purpose editors increase the time and effort required to learn the sys-

tem, and may be less capable than standard ones. Special purpose editors

are often structure-based (meaning that they "understand" the syntax of the
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language concerned). These are often impressive in demonstrations, and seem

attractive on small examples. Skilled users can become very frustrated with

such an interface, however, and it is very desirable that free-form text editing

should also be supported.

Some preferences concerning style of editing and interaction with the system

may be cultural: in North America, almost all engineers and scientists are

fast touch-typists, whereas this is a very unusual accomplishment among tech-

nical personnel in Europe. Thus, the keyboard-intensive style of interaction

preferred in North America may be very uncomfortable for Europeans; con-

versely, Americans, who may do all their interaction within Emacs and leave

their workstation's pointing device untouched from one day to the next, can

be driven to distraction by the need to traverse lengthy menus and to point
and click on selections.

Does the system support reviews and formal inspections?

Aerospace and other application areas that require high assurance make exten-

sive use of formal reviews, walkthroughs, or inspections. Formal specifications

will probably be subjected to the same processes and some tool support may

be useful. Basic,support includes facilities for browsing and prettyprinting

specifications, and for generating cross-reference tables. More sophisticated

capabilities might include requirements tracing.

Specifications that are to be subjected to formal inspections must generally ad-

here to rigid standards for style and presentation. It is useful if a prettyprinter

can generate the required layout automatically. Note that it is often required

that lines should be numbered--a simple capability that is often lacking from

the prettyprinters of specification languages. Large projects often standardize

on a single document-preparation system, and compatibility with the chosen

documentation standard can be a make or break issue in selecting a formal

methods tool for such projects. The typesetting and document-preparation

tools that are familiar in academic and research environments (i.e., LATEX and

troff) are largely unknown in industry.

Systematic renaming of the identifiers may be necessary in order to conform

to style standards. This can play havoc with saved proofs, and it is valuable

if a "rename identifier" command is prQvided to perform this elementary but

vital function in a fuUy robust manner.

Does the system have facilities for producing nicely typeset specifications, or

for presenting specification in the form of tables, or diagrams?

Purely logical formulations may be most effective for deduction, and straight

ascii representations may be necessary for mechanical processing, but alterna-
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tive presentations may be best suited for human review, especially with those

unused to formal specification.

At the very least, it should be possible to typeset specifications in an attractive

manner, and mathematical or other compact and familiar notation should

be available to the user. Graphical or tabular representations may require

special-purpose support, but is desirable that the verification system provide

the necessary "hooks" to allow users to provide such extensions.

• Does the system provide facilities for cross-referencing, browsing, and require-

ments tracing ?

Browsing capabilities, which allow the user to instantly refer to the definition

or uses of a term, can boost productivity quite considerably during the devel-

opment of large specifications or proofs. Cross-reference listings (preferably

typeset) provide comparable information in a static form suitable for docu-

mentation. These capabilities provide some support for requirements tracing

(which is usually a manual operation). It is possible that requirements tracing

can be partially automated in some applications, given suitable standards and

conventions. This will require special-purpose support and, again, it is prefer-

able if the verification system provides "hooks" so that users can provide such
extensions themselves.

• Does the system record the state of a development (including proofs) from one

session to the next, so that work can pick up where it left off?

This capability is obviously desirable. Naturally, it is best if saving the current

state of development is done continuously (so that not everything will be lost

if a machine crashes) and incrementally (so that work is not interrupted while

the entire state is saved in a single shot).

• Does the system support a mechanisms for change control and version man-

agement ?

Large specifications and verifications are likely to require the efforts of many

people and some mechanism for coordinating access and changes will be re-

quired. Depending on their design, these capabilities can either be built-in

and specialized to the verification system, or can employ a generic version

management system such as RCS [Tic85].

• Does the system propagate the consequences of changes to the specification

appropriately? At what granularity are changes recognized? Are updates per-

formed incrementally?

Version management is concerned with the control of changes to a formal devel-

opment: ensuring that two people do not modify a component simultaneously,
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for example. A related, but different, issue concerns propagation of the conse-

quences of changes. If a definition is changed, for example, then any proof or

theorem which refers to that definition becomes suspect and so, transitively,

do any further proofs or theorems that refer to those newly suspect entities.

It is essential for a verification system to deal soundly with this propagation

of changes: whenever a component is pronounced type-correct, or a theorem

proved, these statements must be correct with respect to current versions of
the specifications and proofs. Not all systems manage these matters properly.

For example, HOL is often praised as a system with a very secure foundation,

but its early version did not track changes--so that it was possible to prove

a theorem, then modify definitions, and the system would still consider the

theorem proved.

Tracking the propagation of changes can be performed at many levels of gran-

ularity. At the coarsest level, the state of the entire development can be reset

when any part of it is changed; at a finer level, changes can be tracked at the

module level; and at the finest level of granularity, they can be tracked at the

level of individual declarations.

Once the consequences of changes have been propagated, another choice needs

to be made: should the affected parts be reprocessed at once, or only when

needed. Clearly, a more complex implementation is required to track changes

at the finer levels of granularity, and to reprocess affected parts incrementally

and as needed. However, the more complex implementation provides enormous

improvements in user's productivity. 36

Theorem Prover

• Does the system allow lemmas to be used before they are proved?

Lemmas are small theorems that are used in the proof of larger ones (rather like

subroutines in programming). When a lemma is first proposed, one generally

wants to know whether it is useful before attempting to prove it. Thus, it

is generally convenient to be able to cite unproven lemmas in the proof of a

larger theorem. The lemma can then be proven later, when its utility has

been established. Some systems do not allow things to be done in this order,

instead requiring that all lemmas are proved before they are used. In systems

that do allow use of unproven lemmas, it is necessary to provide some kind of

macroscopic "proof tree" analysis which checks that all postponed proofs are

eventually performed.

36These and other statements about productivity gains are derived from my own experience:

over the years we at SRI have incorporated new capabilities in our EHDM and PVS systems and
observed the benefits. These observations are qualitative and informal, however: we have not

conducted scientific measurements.
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Does the system allow new definitions to be introduced during proof? Does it

allow existing definitions to be modified?

Beyond even the use of unproved lemmas is the ability to invent and introduce

lemmas or definitions during an ongoing proof; such flexibility is very valuable,

but requires tight integration between the theorem prover and the rest of the

verification system.

A yet more daring freedom is the ability to modify the statement of a lemma

or definition during an ongoing proof. Much of what happens during a proof

attempt is the discovery of inadequacies, oversights, and faults in the spec-

ification that is intended to support the theorem. Having to abandon the

current proof attempt, correct the problem, and then get back to the previous

position in the proof, can be very time consuming. A system that allows the

underlying specification to be extended and modified during a proof confers

enormous gains in productivity. Needless to say, the mechanisms needed to

support this in a sound way are quite complex.

Does the system identify all the a_.ioms, definitions, assumptions and lemmas

used in the proof of a formula (and so on recursively, for all the lemmas used

in the proof)?

This is another aspect of the "proof tree" analysis mentioned above. Even

in systems that require all lemmas to be proved before they are used, it is

useful, at the end of a proof, to be able to discover its foundations. Such

information helps eliminate unnecessary axioms and definitions from theories,

and identifies the assumptions that must be validated by external means.

Does the theorem prover provide information that will help construct a human-

readable journal-style proof?

Proofs of significant theorem should be subjected to human review as well

as mechanical proof checking. It is beneficial if there is some similarity be-

tween the human- and machine-checked proofs: _ preliminary informal proof

should help guide interaction with the theorem prover, and the mechanically-

checked proof should help construct a compelling journal-level argument. Not

all theorem-proving systems work in ways that resemble the steps of a journal-

style proof, and for some purposes may be considered unacceptable on that

account. Note that what are required are steps that resemble those of tra-

ditional mathematical demonstrations, not the primitive steps of textbook
treatments of formal deduction.

Is it easy to reverify a theorem following slight changes to the specification?

Assumptions and requirements may change after a verification has been com-

pleted; often, too, it is necessary to revisit the earlier parts of a large ver-
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ification as later work reveals the need for changes and extensions. Ideally,

the investment in completed portions of the verification should assist and

encourage these improvements by making it relatively easy to explore the con-

sequences of changes. This requires that proofs should be robust in the face

of small changes to the specification. Theorem provers are inherently more

robust than proof checkers in this regard, since they perform more of the

proof search themselves. However, apparently minor design choices can have

a significant impact on the robustness of a proof: for example, are quantified

variables recorded by name (so that a simple renaming of identifiers in the

specification may derail a saved proof) or by position? And if the latter, is
the order sensitive to the number or order of presentation of other quantified

variables (so that adding a new variable will throw a proof off track), or to

deeper measures that may be expected to remain invariant over minor changes

to the specification?

When a change to the specification is sufficiently large that saved proofs cannot

automatically adjust to their new circumstances, the user must take over to

fix things. Once again, small design decisions can have great impact on the

ease of proof maintenance. 37 For example, is the prover able to present the

user with just the failing proof branches, or must the user redevelop the whole

proof? And does the prover have "fast-forward," "single step," and "undo"
facilities so that the user can interactively "zoom in" on the failed parts of the

proof to splice in corrections?

While some of the facilities required for proof development are also useful in

proof maintenance, a verification system will be better suited to large tasks if

its developers have explicitly considered the maintenance issue.

Does the theorem prover perform rewriting?

Rewriting (replacing an instance of one side of an equation by the correspond-

ing instance of the other) is one of the most useful strategies in theorem prov-

ing and a theorem prover that lacks this capability is unlikely to prove very

productive. 3s For maximum productivity, however, much more than just a

straightforward rewriter is required. Conditional equations (those of the form

P D A = B) are very common, and require effective strategies39; the match-

ing that selects applicable instances of equations for rewriting must often be

STLife imitates art: Dijkstra's series of EWD memos includes several parodies from the Chairman

of Mathematics Inc., such as "our Proof of the Riemann Hypothesis has been brought into fhe field,

contrary to the advice of our marketing manager who felt it still required too much maintenance.., at

the end of March, we transferred fifty mathematicians from Production to Field Support _ [Dij82].

aaSome technical background on rewriting is provided in Appendix section A.5.1.2.

3_The most conservative strategy will only do the rewrite if P can be discharged immediately;

another strategy will do the rewrite and carry P along as an additional hypothesis.
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performed modulo some theory4°; and it is usually very important to silently

solve the conditional part when expanding definitions so that the user is not
overwhelmed with irrelevant cases 41.

• How is the theorem prover controlled and guided?

The distinction between a theorem prover and a proof checker is in the quantity

and nature of guidance that must be supplied by the user: theorem provers

require less guidance, and less direct guidance than proof checkers. Apart from

those based on exhaustive search 42, even the most powerful theorem provers

require some direction from the user. The Boyer-Moore prover, for example,

is guided through the order in which lemmas are presented, and by the form

of those lemmas (for example, A = B has a different effect than B = A). The

advantage of a very automatic theorem prover is that the user has to provide

less information, and proofs tend to be robust in the face of changes. The

disadvantage is that guidance is provided in a very indirect manner: which

requires intimate understanding of the operation of the prover: users must

anticipate how the theorem prover will search for a proof, rather than instruct

it to execute their proof.

Proof checkers can require differing degrees of guidance, and the guidance

may be presented interactively, or up front. Those that require guidance to

be presented up front, and thereafter operate autonomously, generally cause

the user to break the proof down into many small lemmas, for it is difficult to

plan a proof in complete detail without seeing some of the intermediate steps.

Proof checkers that operate interactively are generally the easiest for users to

understand. Interactive checkers that require considerable guidance are often
called "proof assistants."

My experience and that of my colleagues is that the most powerful interac-

tive proof checkers are comparable to the most powerful automatic theorem

provers in terms of human productivity, and are easier to learn and to use.

Noninteractive proof checkers require a great deal of skill to use effectively.
The productivity of proof checkers that lack effective low-level automation

(such as integrated arithmetic and rewriting) is orders of magnitude less than

that of more powerfully automated systems; the productivity of some proof

assistants may be so low as to render them unsuited to realistic applications.

_°For example, an equation f(x + 1) = g(z) +... can be matched against ... f(x + 2 - 1)... only
in the presence of arithmetic. Cases of this kind arise very frequently indeed.

41For example, expanding a definition of the form f(x) = if z = 0 then A else B endifin the
context f(z + 1), where z is a natural number, should cause the prover to discharge the condition
z >_0 D z ÷ 1 _ 0, thereby allowing f(z ÷ 1) to be rewritten directly to B.

4_Resolution provers, for example, perform exhaustive search. Even these require human control,
in the form of selecting strategies, and assigning values to various parameters.
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• Does the theorem prover provide automated support for arithmetic reasoniTag?

Most proofs require some reasoning involving the properties of numbers. Sire-

ple facts about the natural numbers and the integers arise in almost every

proof (often as a result of induction or counting arguments); 43 more sophisti-

cated properties, and also properties involving rational or real numbers, arise

in explicitly numerical algorithms (which are common in flight-control appfica-

tions). It is possible to provide powerful automation for arithmetic reasoning
in the form of "decision procedures" that guarantee to solve all arithmetic

problems within a certain class (e.g., Presburger arithmetic). As with rewrit-

ing, this facility needs to be closely integrated with other reasoning procedures
for maximum benefit. Effective automation of arithmetic reasoning provides

an enormous boost to user productivity in all application domains, and is

essential for any work involving explicitly numerical calculations (e.g., clock

synchronization algorithms).

• Can the theorem prover handle large propositional expressions efficiently?

Does it employ BDDs ?

Some problem areas (e.g., hardware design, or mode-switching and alarm logic

in avionics) can generate very large propositional formulas (i.e., boolean ex-

pressions), involving dozens or even hundreds of terms. Simple truth-table or

tableau-based procedures for propositional tautology checking or'simplifica-

tion are easily overwhelmed by such formulas and may take hours to return a

result. There are, however, alternative procedures that generally operate much

faster (the speed-ups are often two or more orders of magnitude). Those based

on ordered Boolean (or Binary) Decision Diagrams (BDDs) are generally the

most efficient. 44 As always, it is not sufficient for the theorem prover simply

to call a BDD package: efficient propositional reasoning needs to be tightly

integrated with the other basic inference mechanisms.

• Does the theorem prover present users with their own formulas or with canon-

ical representations? Are quantifiers retained?

Interactive theorem provers or proof checkers must display the evolving state

of a proof so that the user can study it and propose the next step. It is

generally much easier for the user to comprehend the proof display if it is

expressed in the same terms as the original specification. Provers that display
formulas in some canonical or "simplified" form are likely to complicate the

user's task. Obviously, formulas change as proof steps are performed, but it

is usually best if each transformation in the displayed proof corresponds to an

action explicitly invoked by the user. Thus, for example, universal quantifiers

43Some technical background is provided in Appendix section A.5.2.
44Some references are given in Appendix section A.3.1.
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are almost always eliminated at some stage by the process of Skolemization,

but it is usually best to perform this only when the user explicitly requests it
be done.

Does the theorem prover minimize the quantity and maximize the relevance of

information presented to the user?

Interactive theorem provers must avoid overwhelming the user with informa-

tion. That is why, as noted earlier, irrelevant cases should be silently discarded

when expanding definitions. Ideally, the user should be expected to examine

less than a screenful of information at each interaction. It can require powerful

low level automation to prune (only) irrelevant information effectively. The

system can assist comprehension by highlighting what has changed since the

last display.

Does the theorem prover provide facilities for comprehending the overall struc-

ture of a proof?

Losing sight of the forest is easy when grappling among the trees of a lengthy

proof. The system should provide mechanisms for displaying the overall struc-

ture of the ongoing proof.

Does the theorem prover allow cases to be postponed, and to be tackled in any
order?

Most interactive theorem provers work backwards from the theorem to be

proved, generating smaller and smaller subcases. Often, the user will be most

interested in the main line of the proof, and may wish to postpone minor cases

and boundary conditions until satisfied that the overall argument is likely to

succeed. Provers that do not allow cases to be postponed and reordered are

likely to disrupt the user's thought processes.

Proofs by induction are very common, and it is often quite easy to generate

the necessary lemmas automatically, once the user has proposed the induction

scheme to be used. Doing so can be a very useful service to the user. Some

theorem provers (notably that of Boyer and Moore) provide very sophisticated

heuristics that are able to propose induction schemes in an automated manner.

Although impressive to behold, these may not provide large productivity gains

in general, 4s although there is certainly no harm in automating the common

cases.

• Does the theorem prover provide automated support for instantiation of quan-

tified variables?

4SBecause it lacks quantification, the Boyer Moore prover must often use induction to deal with

cases that would otherwise be disposed of by quantificational reasoning.
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The major step in many proofs consists in supplying the appropriate instantia-

tions for existentially quantified variables. 46 Often, however, plausible instan-

tiations can be found through the mechanism of unification. Productivity can

be considerably enhanced if the system assists the user with mechanizations

of this sort.

Can proofs be "cut and pasted" from one formula to another?

Often several formulas are sufficiently similar that a proof for one will also work

(perhaps following small adjustments) on the others: It is therefore useful if

the proof for one can be "cut and pasted" on to the others. The proof must
be rerun to see if it works in the new context; if it does not, the facilities for

proof maintenance can be used to make the necessary adjustments.

Does the theorem prover allow the user to compose proof steps into larger

ones?

Within a given application, proofs often take on a repetitive pattern: for ex-

ample, "rewrite with these formulas, then use induction and arithmetic." The

"cut and paste" model of proof development described above can deal with

very repetitive cases, but more varied problems may best be dealt with by

user-written proof "macros" or "subroutines" (often called "tactics" or "strate-

gies") that can be applied as single steps. Provers differ in the sophistication

of the "control language" that guides the application of such macros--some

providing only elementary selection ("apply these proof steps in order until

one succeeds") and iteration ("repeat this proof step until it fails") opera-

tors, while others provide full programming languages (e.g., the programming

language ML was originally developed as the control language for the LCF the-

orem prover). Generally speaking, a prover whose primitive steps are powerful
and robust can use a less elaborate control language than one whose primitive

steps are small and fragile.

Can users extend the capabilities of the theorem prover with their own code ?

Does the theorem prover have a "safe" mode that performs only the built-in

inference procedures?

Beyond macros lie abilities to extend the theorem prover itself. The advan-

tage of prover extensions over simple macros is that a prover extension can
examine the data structures maintained by the prover in order to perform

specialized search procedures. Clearly, any code that manipulates the data

4eThe Herbrand-Skolem-GSdel theorem reduces first order theorem proving to instantiation plus

propositional calculus; since propositional calculus is decidable, it can be argued that instantiation

is the essentially hard part of first order theorem proving.
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structures maintained by the prover has the capability to introduce unsound-

ness. Soundness can be retained, however, if user-written code is used on]y for

search and is constrained to call the (presumably sound) standard inference
functions of the prover in order to change the data structures. 47

More ambitious capabilities allow new proof procedures to be added, provided

that are proven correct beforehand. The metafunctions of the Boyer-Moore

prover [BM81] have this character. "l{eflective" theorem provers, a research

topic, support reasoning about their own proof procedures and can be extended

in quite general ways.

3.6 Conclusion

"In science, nothing capable of proof ought to be accepted without

proof." [Ded63, page 31]

"The virtue of a logical proof is not that it compels belief but that it

suggests doubts." [Lak76, page 48]

This report has covered a lot of material, a:nd I have tried to present it in a

balanced and neutral manner. In this section I will state my personal conclusions
and recommendations.

Formal methods should be part of the education of every computer scientist

and software engineer, just as the appropriate branch of applied mathematics is

a necessary part of the education of all other engineers. Formal methods provide

the intellectual underpinnings of our field; they can shape our thinking and help

direct our approach to problems along productive paths; they provide notations

for documenting requirements and designs, and for communicating our thoughts

to others in a precise and perspicuous manner; and they provide us with analytical

tools for calculating the properties and consequences of the requirements and designs
that we document.

However, it will be many years before even a small proportion of those working

in industry have been exposed to a thorough grounding in formal methods, and

it is simply impractical to demand large scale application of formal methods in

airborne software---and unnecessary too, since the industry seems to be doing a

mostly satisfactory job using nonformal methods.

4tin systems based on the LCF model, there is no distinction between proof macros (called
"tactics" and =tacticals" in LCF) and prover extensions, and soundness is enforced in a very clever
way using the type system of ML. In PVS, on the other hand, macros are written in a limited
=strategy language," while prover extensions are written in a restricted, purely applicative, fragment
of lisp and soundness is maintained because prover extensions cannot have side-effects.
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Nonetheless, I believe the industry should be strongly encouraged to develop and

apply formal methods that will permit more complete analysis and exploration of

those aspects of design that seem least well covered by present techniques. These
include those associated with fault tolerance, concurrency, and nondeterminism--

such as redundancy management, partitioning, synchronization and coordination of

distributed components, and certain timing properties. Scrupulous informal reviews,

massive simulation, near-complete unit testing of components, and extensive all-up

testing do not provide the same level of assurance for these properties as they do for

sequential code--because the properties of interest are not manifest in individual

components, and because execution is susceptible to subtle variations in timing and
fault status that are virtually impossible to set up and cover in tests.

These formal analyses should be additional to those presently undertaken and

can increase assurance without necessarily being complete: the value of formal meth-

ods lies not in eliminating doubt but in circumscribing it. For example, in addition

to all the other assurance techniques that may be applied, it will be valuable to prove

that mode-switching logic does not contain states with no escape, and that sensor
data is distributed consistently despite the presence of faults. To deal with such

problems using current technology for formal methods it will often be necessary to

abstract away irrelevant detail, and possibly to simplify even relevant detail. Doing

so while continuing to model the issues of real concern in a faithful way requires

considerable talent and training. On the other hand, since we will be dealing only

with relatively small, albeit crucial, elements of the system, the number of people

required to possess that talent and training in formal methods will be small.

The benefit provided by these formal analyses is a complete exploration of a

model of possible behaviors. Subject to the fidelity of the modeling employed (and
that must be established by extensive challenge and review), we will be assured

that certain kinds of faults are not present at the level of description and stage of

the lifecycle considered. One source of doubt will have been eliminated, and others

posed more sharply. To be sure, this does not guarantee that the implementation

will not reintroduce the very faults that have been excluded by the formal analysis,

but current practices seem effective at tracing implementations. As resources and

capability permit, it will be worth seeing if formal methods can increase assurance

for these aspects also, but initially we should focus on cases where current prac-

tice seems weakest, not where it seems effective. By that measure, other promising

applications for formal methods are in the general area of requirements specifica-

tion and analysis--where current processes, though fairly effective, are ad-hoc and

unstructured.

In principle, all formal methods support the notion that properties of designs

should be calculated (i.e., proved) from their formal specification; in practice, formal

methods differ greatly in the extent to which they support the reality of that notion.
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In my opinion, formal methods can provide benefit to industries that already employ

stringent processes for quality control and assurance only to the extent that they

exploit the opportunity to reduce questions to calculation; the unique attribute of

formal methods is that they can replace reviews (i.e., activities based on consensus)

by analysis (i.e., repeatable, checkable, calculational activities). Thus, I consider

that only Level 3 formal methods are likely to be fully effective in the role described:

that is, methods supported by mechanized proof-checking or state-exploration tools.

To be maximally effective, these methods need to be applied early in the lifeeycle,

to the hardest and nmst critical aspects of design, expressed in relatively abstract

form. By focusing on the hardest and most critical problems, formal methods may

best contribute to assurance; by using abstract modeling, we render the verification

and validation problems tractable; and by working in the early lifecycle, the cost

benefits of early debugging may offset the expense of applying formal methods.

These conclusions and recommendations may seem modest to those who believe

that formal methods should be used more extensively (for example, in the manner

required by UK Interim Defence Standard 00-55), but I believe that the first step is

to get them used at all. They may also seem a retreat from the traditional goals of

formal verification: there would no claims of "proving correctness," and no ambition

to apply formal methods from "top to bottom" (i.e., from requirements down to code

or gates). Rather, the goal would be to establish that certain properties hold, and

certain conceptual faults are absent, in formal models of some of the basic mecha-

nisms necessary to safe operation of the system. These may seem small claims in the

total scheme of things, but they are the claims that I think are least well supported

by current practice and which cause the most concern, since they are the most fun-

damental. Those who argue that more should be required--that formal methods

should be carried down to code or gates, or that formal specifications should be used

as part of the software engineering process--need to provide evidence that this will

increase assurance in an industry that has an excellent record of accomplishment

using traditional methods. In my opinion, arguments for more extensive use of for-

mal methods are better made on grounds of cost: the standard practice does seem

to work, but it is undeniably expensive. This represents an opportunity for formal

methods, but it is not one that requires regulatory enforcement.

On the other hand, my recommendations may seem excessive to some: I propose

that the'most stringent forms of formal methods should be applied to the hardest

problems of design. These pose tough challenges, to be sure, but how could anything

less be expected to improve a process that is already very effective? And although

these challenges are tough, they are relatively few in number and small in scale,

and can be undertaken by a small team of highly skilled people. The tools that are

currently available to support these ambitious applications of formal methods are

not ideal, but I believe they are adequate.
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Finally, I would like to observe that even using all the techniques at our dis-

posal, including formal methods, I do not believe we can provide assurance that

software of any significant complexity achieves failure rates on the order of 10 -9

per hour for sustained periods, and we should not build systems that depend on

such undemonstrable properties. To achieve a credible probability of catastrophic

system failure below 10-9 , software must be buttressed by mechanisms depending

on quite different technologies that provide robust forms of diversity. In the case of

flight control for commercial aircraft, this probably means that stout cables should

connect the control yoke and rudder pedals to the control surfaces.
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Appendix A

A Rapid Introduction to

Mathematical Logic

"... our interest in formalized languages being less often in their actual

and practical use as languages than in the general theory of such use and

its possibilities in principle." [Chu56, page 47]

"The formal systems of logic were created in order to be studied, not in

order to be used. It is an interesting ezercise to try to formalize Hardy

and Wright's number theory book in Peano Arithmetic. Any logician

will see that it can theoretically be done. But to do it in practice is far

too cumbersome... This has not bothered logicians, who.., have not been

interested in actually formalizing anything, but only in the possibilities

of doing so." [Bee86, pages 53-54]

Formal methods are grounded in mathematical logic, and some familiarity with

the main concepts and terminology of that field are essential to an understanding
of formal methods. Unfortunately, most textbooks on formal methods introduce

only the fragments of logic relevant to their particular methods and leave the reader

uninformed of alternatives. Textbooks on mathematical logic are also unsatisfactory

for those seeking an introduction to the background of formal methods: elementary

texts such as [Hod77, Cop67, Lem87], while excellent for their intended purpose,

omit much that is of importance concerning logic as a foundation for formal methods

in computer science, while more advanced texts such as [Chu56, End72, Kle52,

Men64, Mon76, Sho67] are rather challenging, yet still omit some of the topics

necessary for an appreciation of the mechanization of mathematical logic in support

of formal methods (while including many that are unnecessary for that purpose).

To help readers gain the necessary background, I provide in this appendix a

minimal introduction to mathematical logic without all the technicalities usually
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introduced in logic texts. My main goal is simply to acquaint the reader with the

main concepts and terminology of the field. There is, however, one important topic

where the going does get a little technical: this is the explanation of interpretation

and model in Sections A.2, A.3, and A.4. An appreciation of these concepts is

necessary in order to understand the relationship between "true" and "provable,"
and between the notions "sound" and "complete," and I urge readers to whom this

material is new to persevere with it. Recent controversies, such as that surrounding

the British Viper microprocessor (see Section 2.5.2 in the main text) show that the

formal notion of "proof" is no longer of merely specialist interest: all those concerned
with formal methods and certification should understand the technical meaning of

"proof" as used in logic. Later sections that deal with somewhat esoteric topics that

can be skipped at first reading are marked with the "dangerous bend" sign (x_-

A secondary goal of this presentation is to sketch the origins and motivations
for some of the foundational approaches taken in mathematical logic, and to iden-

tify some of the alternatives that are often omitted from elementary introductions

to logic. The reason for doing this can be found in the quotations at the head

of this chapter: mathematical logic was developed by mathematicians to address

matters of concern to them. Initially, those concerns were to provide a minimal

and self-evident foundation for mathematics; later, technical questions about logic

itself became important. For these reasons, much of mathematical logic is set up

for metamathematical purposes: to show that certain elementary concepts allow

some parts of mathematics to be formalized in principle, and to support (relatively)

simple proofs of properties such as soundness and completeness. Formal methods in

computer science, on the other hand, is concerned with formalizing requirements,

designs, algorithms and programs, and with developing formal proofs in practice.

Thus, formal systems and approaches that are very suitable for mathematicians'

purposes may not be so suitable as a foundation for formal methods in computer

science---especially when mechanized checking of formalizations is desired. This is

partict_larly the case, in my opinion, with axiomatic set theoryl--yet many books
on formal methods take their lead from the mathematicians and use axiomatic set

theory and Hilbert-style formalizations of predicate calculus as a foundation. Those

who are curious about alternatives and might want to learn something about type

theory, or the sequent calculus, say, must generally turn to rather advanced texts

on mathematical logic. So although this Appendix cannot provide an adequate

introduction to these alternatives, it does at least sketch them, and describe the

motivations behind the various different approaches, and some of their strengths

and weaknesses. I hope that readers who persevere to the end will find this mate-

1This is not to say that the notation of set theory is not useful in formal methods; the question

is whether set theory should be the foundation for formal methods.
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rial helps them to become more knowledgeable and critical in their use of formal
methods.

A.1 Introduction

Logic is concerned with methods for sound reasoning. More particularly, mathe-

matical or formal logic is concerned with methods that are sound because of their

form, and independent of their content. For example, the deduction

That jaberwocky is a tove;

All toves are slithy;

Therefore that jaberwocky is slithy

seems perfectly sound, because of its form, even though we have no idea what a

jaberwocky or a rove might be, nor what it means to be slithy. On the other hand,
the deduction

That plane is a Boeing 737;

Therefore it has two engines

is not logically sound, even though its conclusion is true, because the line of reasoning

employed is not generally valid--it jumps to a conclusion that is not supported by

the facts explicitly enumerated. The argument used has the same form as

That car is a Chrysler;

Therefore it has two engines,

which is palpable nonsense. We can correct the problem by adding a premise to

make explicit the "knowledge" used in coming to the conclusion:

That plane is a Boeing 737;

All Boeing planes, except the 747, have two engines;

Therefore that plane has two engines.

The line of reasoning is now sound; it doesn't depend on the meaning of "Boeing

737" and the other terms appearing in its statement. To see this, we can abstract

the argument to the form

That A is an X;

P is true of all A's, except Y;
Therefore P is true of that A
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2and observe that it seems to be sound independently of what A, X, Y, or P mean.

Note, however, that although the soundness of this line of reasoning does not

depend on what a "Boeing 737" is, it depends crucially on what "all," "except," and

"and" mean. Logic chooses some elements of language (such as "all," and "and"),

gives them a very precise meaning, and then investigates the lines of reasoning and

argument that can be built up from those elements; in particular, logic seeks to

identify those lines of reasoning that are valid independently of the meaning of the

other (so-called proper) terms that appear in the argument. Logics differ from one

another in their choice of primitive elements, in the ways in which they allow terms

to be combined, and in the lines of reasoning that they permit.

Notice that a valid or sound argument does not guarantee that the conclusion

we draw will be true. For example, if the plane we saw was a Boeing 707 (or

727), the perfectly valid pattern of deduction given above would cause us to deduce,
incorrectly, that the plane has only two engines. A sound method of reasoning

guarantees true conclusions only if the premises are true statements. The truth of
a statement such as

All Boeing planes have two engines, except the 747

depends on the real-world interpretation we place on the terms such as "Boeing

planes." If the interpretation we choose is "all Boeing passenger planes in current

service," then this premise to our argument is false, and a perfectly valid line of

reasoning can lead us to a false conclusion.

Two sources of error can lead us to draw false conclusions about the world:

we can reason correctly from incorrect premises, and we can reason incorrectly from

correct premises (and, of course, we can also go doubly wrong and reason incorrectly

from bad premises). The contribution of mathematical logic is that it gives us the
tools to eliminate the second of these ways to draw incorrect conclusions. Logic

tells us what follows from what, so that we can be sure that our conclusions will

be at least as good as our premises. However, no formal method can assure us

that our premises are true statements in the intended interpretation; we have to

introspect, discuss them with others, test their consequences, and generally use

informal methods to accomplish this important task. 3

2Though it does depend on knowing that an X is not a Y (i.e., a 737 is not a 747). When we

come to formalize this (in Section A.4), we will have to make even this _obvious _ fact explicit.

aHowever, formal methods provide a precise and standardized notation, a repertoire of standard

constructions, and well-accepted sets of premises (i.e., axiomatizations) for many familiar notions.

In addition, formal methods can help us establish that our premises are mutually consistent, and

can support systematic exploration of their consequences (through attempts to prove properties

that ought to be true if the premises are correct). Thus the informal process of validating premises

can be made more systematic using formal methods.
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The practical value of mathematical logic arises when we use long or difficult

lines of reasoning to draw an important conclusion. If we can satisfy ourselves,

by informal methods, that the premises to our argument are true in our intended

interpretation, then mathematical logic can assure us that the conclusion will also

be true in that interpretation.

"The true method should provide us with.., a certain sensible mate-

rial means which will lead the intellect, like the lines drawn in geometry

and the forms of operations which are prescribed to novices in arith-

metic. Without this, our minds will not be able to travel a long path

without going astray." Leibniz, quoted in [Bou68, page 303].

Mathematical logic--Leibniz' "true method"--provides us with rules of deduction,

analogous to those of arithmetic, that allow the validity of an argument to be checked

by a process akin to calculation.

A.2 General Concepts

In this section I give more detailed and precise explanations to some of the notions
introduced above. 4 The explanations are given in terms of the abstract notion of

"formal system" and are generic to all logics; I give examples of specific logics and

theories in the subsections that follow.

The first thing that must be specified about a particular formal system is the

language in which its statements are expressed. Just as with a programming lan-

guage, there must be some grammar that defines the syntactic form of the things

we can write in the system. Mathematicians tend to prefer very terse, succinct lan-

guages, so the statements in most of their formal systems look very cryptic to the

untrained eye. Legal strings of symbols in the language of a formal system are called

well-formed formulas or wffs. Wffs that are "self contained" (technically, contain

no free variables) are called sentences.

Formal systems come in families, and there axe-usually two parts to a formal

system: one part that is common to all the systems in a given family, and one part

that changes from one member of the family to another. The first part is called the

logical part of the system, and the second the nonlogicaI or extralogical or proper

part. (I will use only the first of these alternative terms). For example, all first-order
theories have a common logical part variously called first-order logic or first order

predicate calculus, or elementary logic or quantification theory. (I will use the simple

name predicate calculus.)

4My treatment draws on [Tar76, Dav89].
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Those symbols of the system that belong to the logical part are called the logical

symbols of the system. The other symbols are called the nonlogical symbols of the

formal system. The logical symbols generally include the propositional connectives

"not" (a monadic operator, usually written as prefix -, or .._ by mathematicians),

"and" (a dyadic operator, often called conjunction and written as infix ^), "or"

(dyadic, often called disjunction and written as infix V), "implies" (dyadic, written

as infix D, ---*, or =¢,), and "if and only if" (dyadic, sometimes called equivalence,

and written as infix iff, _, ¢_, or --). More powerful logics include function sym-

bols (such as f, g, and some that may be given a built-in interpretation such as +),

predicate symbols (such as P, Q, and some that may be given a built-in interpreta-

tion such as = and <), the quantifiers "for all" (V) and "there exists" (3), and/or

modalities such as "necessary" ([]) and "possible" (<>).

The propositional connectives developed out of attempts to understand and cod-

ify principles of sound argument, and were intended to capture important construc-

tions used in natural language. Prior to the development of modern formal logic, the

usages of natural language were arbiters of what the connectives should mean, and

there could be disagreement over this: for example, some medieval logicians treated

"or" as inclusive ("either one or the other or both"), while others regarded it as

exclusive ("either one or the other, but not both"). In formal logic, the meanings

of the operators are defined by the rules of deduction (as explained shortly) and do
not depend on intuitive notions.

Although the meanings of the logical operators do not depend on in-

tuitive notions, they should clearly correspond to them--since logic is

intended to support and strengthen our innate capabilities, not oppose

them. Most of the logical operators do directly correspond to familiar

notions, but the "implies" operator is a little less straightforward.

The symbol D of logic is sometimes called material implication in

order to distinguish it from the unadorned term "implication" used in

ordinary discourse. The intent is that A D B should capture conditional

constructions of the form "if A then B." From this intuition, it follows

that if A is a true statement, then A D B should be considered true only
if B is also a true statement. Thus

2 q- 2 = 4 D Paris is the Capital of France

is a true sentence (because both the antecedent or condition "2 + 2 = 4"

and consequent or conclusion "Paris is the Capital of France" are true).

Observe that this example indicates one of the unintuitive aspects of
material implication: there need be no "causal" connection between the

antecedent and consequent. In natural language, we generally expect
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some connection or association between the clauses of a conditional,

such as "if Paris is the seat of French Government then Paris is the

Capital of France."

Leaving these doubts aside, and proceeding with our examination of

material implication, we can see that

2 + 2 = 4 D London is the Capital of France

is a false sentence (because the antecedent is true but the consequent is

false). But what if A, the antecedent is false? Should

2 + 2 = 5 D Paris is the Capital of France

be considered a true sentence? And how about

2 + 2 = 5 D London is the Capital of France?

In natural language one could make a plausible case for any of the al-

ternatives, but in logic we adopt the convention that if A is false, then

A D B is true, whatever the value of B. One way to see that this is

reasonable is to consider the alternatives. We know that when A is true,

A D B must be true exactly when B is true. To complete the definition,

we need to assign truth values to A D B when A is false, and there are

just four possible ways to do this: (1) it could be false whatever the

value of B, (2) it could be true exactly when B is true, (3) it could be

true exactly when B is false, and (4) it could be true whatever the value

of B. If we choose the first of these alternatives, then A D B is exactly

the same as A A B (i.e., "implies" is the same as "and"); if we choose the

second, then A D B is the same as B and the value of A is irrelevant; and

if we choose the third, then A D B turns out to be the same as A - B.

None of these corresponds to any reasonable interpretation of "implies"

or "if... then... ," and so we are left with the fourth alternative.

Although this treatment of material implication works perfectly well,

some logicians remain unhappy that it does not correspond exactly to in-

formal usages and have sought different formulations, such as the notions

of "strict" and "relevant" implication. The consideration of alternatives

that we conducted above shows that any satisfactory formulation that

is different to material implication will require modification of the basic

logic, not just tinkering with the operators. Consequently, strict im-

plication requires modal logic (which is described later), and relevant

implication requires relevance logic [Dun85]. Material implication may

seem a little strange at first, but it soon becomes familiar. 5 Alternative

5Particularly once some important laws are learned, such as that A D B D C is parsed as

A D (B D C), and is equivalent to (A A B) D C. Some of these laws are listed in Section A.3.
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formalizations of conditional sentences are of philosophical and techni-

cal interest, but do not rival the practical utility and importance of the

classical formulation in terms of material implication.

In addition to its language, a formal system specifies a selected (possibly infinite)

set of sentences that are taken as given and called axioms, and a set of rules of

inference, which are ways of deducing new sentences from given sets of sentences.

Axioms are divided into logical and nonlogical axioms; rules of inference usually

belong to the logical part of the system. The axioms and the rules of inference

constitute the deductive system of the formal system considered.

Axioms are generally specified by axiom schemes, such as

¢ v -,¢,

where ¢ stands for an arbitrary sentence. This example (it is the law of the excluded

middle) states that for any sentence ¢, either 4) or its negation must be true (there

is no middle ground). When we substitute a particular sentence (e.g., "it will rain

tomorrow") for ¢, we obtain a specific axiom as an instance of the axiom scheme,
such as

"it will rain tomorrow" V _ "it will rain tomorrow."

Axiom schemes are convenient, because they allow an infinite number of axioms to

be specified in a finite manner.

Similarly, rules of inference are often written in the form of schema, exemplified

by

¢

where ¢ and ¢ stand for arbitrary sentences. This example (it is the rule known

as modus ponens) states that from a pair of sentences, one of the form ¢ and one

of the form ¢ D ¢, we may deduce the sentence ¢. We say that ¢ and ¢ D ¢

are the premises or antecedents to this rule of inference, and ¢ is its conclusion or

consequent.

Notice that there are two mathematical languages in use here. One, the object

language, is the formal system we are trying to define; the other is the metalanguage
that we are using: iodo the definition. Here, the object language is a fragment of

propositional calculus, and our metalanguage is the traditional language of informal

mathematics expressed in English. It is necessary to keep the distinction between

object language and metalanguage clearly in mind, especially when the same symbols

are used in both; logicians use the terms use and mention to distinguish these cases.

When we talk about some object, we are said to mention it; when we use an object
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to refer to some other object, we are said to use it. No confusion is likely with

physical objects (we do not use the planet Mars to refer to something else), but it

is possible with names or symbols. For example, from

"Toby is a short haired cat" and

"Toby is a name with four letters"

we might conclude that a certain name with four letters is a cat [Cur77]. In order to

avoid this absurdity, we must recognize that "Toby" is used in quite different senses

in these two sentences: in the first it is used to refer a certain cat, while in the

second it is mentioned as a particular word. In order to reduce confusion, symbols

are often enclosed in quotes when they are mentioned rather than used:

"'Toby' is a name with four letters"

The variables ¢ and ¢ used in the examples given earlier are metalinguistic vari-

ables, since they stand for arbitrary sentences of the object language. Axiom schema

and the operation of substituting sentences for metavariables are operations in the

metalanguage. The resulting axioms are part of the object language. Similarly,

it is necessary to distinguish proofs and theorems about the object language (i.e.,

metaproofs and metatheorems) from proofs and theorems in the object language. I

am now ready to define the latter kind of proofs and theorems.

A proof of a sentence ¢ from a set of sentences F is a finite sequence ¢1,..., Cn

of sentences with Cn = ¢, and in which each ¢_ is either an axiom, or a member of

F, or else follows from earlier Cj's by one of the rules of inference. We say that _b

is provable from the assumptions F and write F _- _b.6 A theorem is a sentence that

is provable without assumptions, and we write simply _- ¢.7 The theory of a given

formal system is the set of all its theorems.

A system is consistent if it contains no sentence ¢ such that both ¢ and its

negation are theorems (i.e., if its theory does not contain both ¢ and -_¢). It is a
metatheorem that all sentences are provable in an inconsistent system, and such

systems are therefore useless.

A system is decidable if there is an algorithm (i.e., a computer program that is

guaranteed to terminate) that can determine whether or not any given sentence is a
theorem. A system is semidecidable if there is an algorithm that can recognize the

_The symbol _- is usually pronounced _turnstile."

7The axioms can be thought of as assumptions that come "for free. _ The reason we add (nonlog-

ical) axioms to a formal system, rather than simply carry them as assumptions to all our theorems,

is that there is generally an infinite number of axioms, and we need the metalinguistic notion of

schema to represent them conveniently. Of course, we could introduce a notion of _assumption

schema," but this would not be the way things have traditionally been done.
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theorems (i.e., the algorithm is guaranteed to halt with the answer "yes" if given

a theorem, but that need not halt if given a nontheorem--though if it does halt,

it must give the answer "no" in this case). A system is undecidabIe if it is neither
decidable nor semidecidable.

Notice that proofs and theorems are purely syntactic notions. That is, they

are marks on paper (or symbols in a computer), and the formal system provides

rules for transforming one set of marks into another. A proof is simply a set of

transformations that conforms to the rules and ends up with a series of marks that

we call the theorem. We do not have to know what any of these marks "mean" in

order to tell whether or not a purported proof really is a correct proof of a given

theorem; we simply have to check whether it follows the rules of the formal system

concerned. Of course, the rules of formal systems are not chosen arbitrarily; they

are chosen in the hope that if we interpret the marks on paper in some consistent

way as statements about the real world, then the theorems of the system will be

true statements .about the world. The relationship between language and the world

is the concern of semantics, and the goal of mathematical logic is to set things up so

that the syntactic notion of theorem coincides with the semantic notion of truth. If

this can be done, and if our axioms and assumptions correspond to true statements

about (some aspect of)'the real world, then the theorems that we can prove will also

cortespond to true statements about the world. In other words, we will be able to

deduce (new) true facts about the world from given true facts simply by following

the syntactic rules of our chosen formal system. We do not need to "understand" the

world in order to carry out these syntactic operations; all our "understanding" (of

the particular domain of interest) is encoded in the nonlogical axioms of the formal

system used (and in the assumptions, if any, of the particular proofs performed).

Since no "understanding" of the world is required to construct (or check) the purely

syntactic objects that are proofs, these operations can, in principle, be performed by

machine. Understanding of the world is needed only to choose the nonlogical axioms

(and assumptions) and to interpret the utility of the theorems proved. Thus, the

attraction of formal methods is that the necessary intuition and understanding of

the world (i.e., the properties of the application domain concerned) are recorded

explicitly in axioms and assumptions that can be subjected to intense scrutiny, and

all the rest follows by deductions that can be mechanically checked.

The connection between syntax and semantics is established by an interpretation
that identifies some real-world "domain" _) and associates a true or false statement

about T_ with each sentence. The statement associated with sentence ¢ is called

its valuation in _. Interpretations must satisfy certain structural properties that

depend on the formal system concerned. (For example, if the formal system has

function symbols, then the interpretation of f(z,y) must be determined by the

interpretations of f, x, and y.)
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An interpretation is a model for a formal system if it valuates all its axioms to

true; in addition, an interpretation is a model for a set of sentences T if, as well

as being a model for the formal system concerned, it also valuates all the sentences
in T to true. A set of sentences is satisfiable if it has a model. We say that a set

of sentences T entails a sentence ¢ and write T _ _b if every model of T is also a

model of c--that is, if ¢ valuates to true in every model of T. We say a sentence _,

is (universally) valid and write _ ¢ if it valuates to true in all models of its formal

system. This connection between syntax and semantics, and the corresponding

relationship between "provable" and "valid" were first stated explicitly by Tarski.

A formal system is sound if F _ ¢ whenever F _- 0; it is complete if F }- ¢

whenever F _ ¢. Roughly speaking, soundness ensures every provable fact is true,

completeness ensures every true fact is provable. Notice that an inconsistent system

cannot be sound. Obviously, only sound systems are of use in formal methods (or

mathematics), s It would be nice if they were also complete (and even nicer if they

were decidable), but I will observe later that most interesting formal systems are

incomplete (and very few are decidable).

(_In some formal systems, additional constraints are placed on the selec-
tion of models, and it is sometimes necessary to distinguish between

soundness and completeness results relative to all models and those rel-

ative to certain preferred models. Other formal systems are constructed

in the hope that they capture some aspect of reality exactly--that is,

in the hope that they will have only one model, the intended or stan-

dard one. For example, the Euclidean axioms were intended to exactly

capture "ordinary" geometry; the invention of non-Euclidean geometries

showed that, without the fifth postulate, these axioms admit quite un-

expected models. In general, it is not possible to limit theories to just a

single model; most interesting theories have unintended or nonstandard

models in addition to the intended or standard ones (see section A.5.2).

Having established the general framework, I will now consider some specific

formal systems that are of particular importance.

A.3 Propositional Calculus

The simplest formal system generally considered is the propositional calculus, whose

purpose is to provide a meaning for the propositional connectives listed earlier (Sub-

sit was a goal of the formalist school, led by Hilbert, to demonstrate that the formal systems

proposed as foundations for mathematics (such as set theory with the Axiom of Choice---see Sec-

tion A.5.4) are sound. GSdel's results (see Section A.5.2) destroyed this plan. Soundness of the

formal systems underlying mathematics cannot be demonstrated conclusively within those same

systems, and must ultimately appeal to our experience and intuition.
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section A.2). 9 In its leanest form, the nonlogical part of the prol)ositional calculus

is empty, and its logical part considers only the connectives "implies" (written here

as infix D) and "not" (written here as prefix -_). The rest of its language consists of

the parentheses, and some set of proposition symbols, which mathematicians gener-

a]ly write as P, Q, R, but which can be arbitrary strings such as "the cat is on the

mat" that are considered atomic (i.e., without internal structure). The grammar of

propositional calculus defines its sentences as follows:

• Any proposition symbol is a sentence, and

• If ¢ and ¢ are sentences, then so are (-_¢) and (¢ D ¢).

(This is the mathematicians' description of propositional calculus, in which every

compound sentence is fully parenthesized. Mathematicians drop parentheses--and

so will I--when they are deemed unnecessary according to some informal rules.

Computer scientists might give a context-free grammar for the language and make

all these details explicit.)

There are three axiom schema for propositional calculus:

A1. CD(¢D¢),

A2. (¢D(¢Dp))D ((¢D¢)D (¢Dp)),

A3. (-(-¢)) ¢10

and one rule of inference

¢

(modus ponens, often abbreviated MP).

The axioms of propositional calculus are infinite in number, since there are
instances of each of the three schema for all possible combinations of propositions.

The symbols ¢, ¢, and p appearing in the axiom schema (and rule of inference) above

are metalinguistic variables (or metavariables). An axiom instance is obtained by

substituting propositions consistently for the.metalinguistic variables in one of the
axiom schema. I indicate the axiom instance of schema 1 with P substituted for ¢

and Q for ¢ by writing AI[¢ _ P, ¢ _ Q].n

9Sources used for this section include Barwise [Bar78b] and De Long [DeL70].
1°Sometimes ((-,4,) D (-_¢)) D (_bD _b)is used instead.
t l Mathematicians usually indicate a substitution instance by writing AI[P/¢] rather than Al[_b

P].
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Using this machinery, we can prove the theorem b- (P D P).

1. ((PD((PDP) DR)) D((PD(PDP))D(PDP)))

A2[¢ _ P,¢ _ (P D P),p _ P]

2. (P5 ((PDP) DP)) AI[¢_P,¢_(PDP)]

3. ((P D (P D P)) D (P D P)) MPon 1 and 2

4. (P D (P D P)) AI[¢ ,--- P,¢ _ P]

5. (PDP) MPon3 and 4.

This derivation is completely unintuitive; the advantage of the "Hilbert-style" ax-

iomatization I have been using is that it allows the interpretations of the proposi-

tional calculus to be defined in a concise manner. This is done in the next couple

of pages. Following that, I introduce an alternative system that allows proofs in

propositional calculus to be developed in an intuitive manner.

The domain of the interpretations of the propositional calculus is the set of truth

values {T, .T} (T is an abbreviation for truth, .T for falsehood). An interpretation

of the propositional calculus assigns exactly one of these truth values (called its

valuation) to every proposition. Let v(¢) denote the valuation given to the propo-

sition ¢ in a particular interpretation. Then we require that the valuation given to

compound propositions in that interpretation is derived by recursive application of

the following two truth tables:

¢ 7¢
T F

9r T

¢ ¢ ¢5¢
T T T

T .T F

_- T T

.Y av T.

Sentences of the propositional calculus that valuate to T in all interpretations (i.e.,

the universally valid sentences) are called tautologies.

Interpretations constructed as described above provide models for the propo-

sitional calculus and it is possible to prove that the theorems and the tautologies

coincide. Thus, the propositional.calculus is sound (all theorems are tautologies)

and complete (all tautologies are theorems). Furthermore, the propositional cal-

culus is decidable--simply transfer into the semantic domain and use truth tables.

Thus, another way to demonstrate _- (P D P) is to construct the truth table for

(P D P) by substituting P for both ¢ and ¢ in the general truth table for D given

above (note the second and third lines of the general table disappear, since they are

impossible when ¢ and ¢ have to take the same value)

P PDP

T T

F T
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and observe that its value is always T. Hence, _ (P D P), and so, by the complete-

ness of propositional calculus, F- (P D P).

The version of the propositional calculus I have given so far is rather impover-

ished. It is easy to add new connectives, either by treating them as abbreviations

(i.e., macros), or by extending the formal system. Using macros, we would, for

example, regard disjunction (¢ V ¢) as simply an abbreviation for (-_¢) D ¢ and

would replace all substitution instances of ¢ V ¢ by their corresponding expansions

in both the syntactic and semantic domains. Observe that this is a metalinguistic

approach.

Using the alternative approach of expanding the formal system, we would add

V to the language as a logical symbol, and add the corresponding rules of inference

¢ v ¢ (-_¢) _ ¢
(-_¢) _ ¢ ¢v ¢

Similarly, the interpretation of v would be supplied by the truth table

¢ ¢ ¢v¢
7" 7 T

7- _c 7"

7" T

It is usually a matter of taste whether the properties of new connectives are

added to the formal system by a rule of inference or by an axiom schema. For

example, if the equivalence (=-) connective has already been introduced, we can

define v by the axiom schema

(¢ v ¢) = ((-_¢)D ¢)

instead of the rule of inference given earlier. (Usually things are done in the opposite

order, and ¢ -- ¢ is viewed as an abbreviation for (¢ D ¢) ^ (¢ D ¢).)
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There are a number of tautologies (often called "laws") that are worth learning
by heart for use in systems that contain a generous collection of connectives:

¢ V -_¢ law of the excluded middle

',(¢ A _¢) law of contradiction

(¢V¢) - ¢ laws of

(¢A¢) -= ¢ tautology

-_-_¢ -= ¢ law of double negation

¢ D ¢ - _¢ V ¢ verum sequitur ad quodlibet

¢ D ¢ - -_¢ D -_¢ law of contraposition

-1(¢ V ¢) = -1¢ A -_¢ De Morgan's

_(¢ A¢) = -_¢v -_¢ laws
CV(¢V#) - (eVe) V# Associative

¢A(¢^_) -= (¢^¢)^# laws
CV(¢A#) -- (¢Vp) A(¢V#) Distributive

CA(¢VD) -- (¢Ap) V(¢Ap) laws

¢D(¢Dp) = (¢A¢)Dp law of exportation

(¢A¢)Dp ---- (¢Dp) V(¢D#) unnamed

(¢ v ¢) _, = (¢ _ _) A(¢ _ ,) laws

It is also worth remembering the derived inference rule

-_¢,¢_ ¢
-_¢

known as modus tollens. It follows from modus ponens by the tautology

¢ _ ¢ = -_¢ _ -_¢.

Conventionally, the equivalence ¢ - ¢ is regarded as an abbreviation for a pair

of "simpler" expressions, such as (¢ D ¢) ^ (¢ D ¢) or (-_¢ ^ -_¢) V (¢ ^ ¢) and it is

often expanded into one of these forms whenever it is encountered during a proof.

However, equivalence satisfies some beautiful laws, such as the Golden Rule:

(¢A¢)=¢= ¢=(¢V¢)

(one of whose beautiful properties is that it does not matter how we associate---i.e.,

parenthesize--the equivalences). The book by Dijkstra and Scholten [DS90] make
extensive and effective use of laws for equivalence.

The propositional connectives introduced so far are not the only ones. Those

called hand and nor are defined by

Cnand ¢ = -_(¢A¢)

Cnor¢ = -_(¢V¢)
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and are often used in digital circuits. All the other propositional connectives can

be defined in terms of either one of these two--a property first discovered by Pierce

but often attributed to ShelTer (who wrote nor in the form ClUb, where I is known

as "Sheffer's stroke").

Computer scientists generally like to have the three-way if... then.., else con-

nective available. It can be defined by

if ¢ then _b else j, -- (¢ D ¢) A (-_¢ D p).12

Finally, note that the constants trite and false can be introduced by

true =- (¢ V -_0),

false =- (¢ A -_¢).

A.3.1 Propositional Sequent Calculus

The axiom schema and rule of inference I have given for propositional calculus make

for rather tedious proofs and are "barbarously unintuitive" [Hod83]. Usually, it is

simpler to exploit the soundness and completeness of the propositional calculus and
transfer into the semantic domain where theorems can be established using truth

tables, x3 A case against doing this is that a proof should represent an argument for
the truth a theorem and should lead to improved understanding (not least when the

putative theorem is actually false and the proof attempt fails), whereas the truth-

table method merely says "true" or "false." On the other hand, the propositional

calculus is so limited, and its theorems so straightforward, that the opportunity

to gain insight from proofs is distinctly limited. 14 In richer systems, however, the

l_In richer logics, i]... then.., else is often extended to a polyrnorphic form that denotes a value of

a different sort (or type--these notions are explained in Sections A.9 and A.10) than a proposition.

For example, in

Izl=ifz<0 then -x else z

the i]... then.., else denotes a numerical value. These polymorphic forms can be converted to the

propositional kind by "lifting" the i]... then.., else over adjacent relations:

ifx < 0 then [z I =-z-else Ix] = x.

aDLarge propositional expressions can arise in the specification and analysis of hardware circuits.

Methods based on Boolean (or Binary) Decision Diagrams (BDDs) [Ake78, Bry86, Bry92] axe

generally the most efficient in practice by a considerable margin, and should be a basic component

of any tool for formal methods that is intended to address such problems.

a4This is not to say that errors in using propositional calculus are not common in formal methods,

only that the line by line reasoning of a formal proof is seldom needed to detect or explain them.
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ability to construct reasonably natural proofs in a reasonably effective manner will

clearly be desirable, so I use the propositional calculus to illustrate one approach to
doing this.

First, note that proofs can be simplified by using previously-proved theorems

(which effectively enriches the set of sentences that can be used as axioms), and by

deriving additional rules of inference. For example, there is an important metathe-

orem about propositional calculus called the deduction theorem, which I state as
follows:

s (¢ D ¢)

where S is any set of sentences and 5",¢ is interpreted as the union S U {¢). Notice

that I have stated the Deduction Theorem as an extended rule of inference: formerly
rules of inference were relations on sets of sentences; now I allow them to be relations

on proofs as well. This proves extremely convenient.

The deduction theorem is a metatheorem because it is a theorem about propo-

sitional calculus, not a theorem in propositional calculus. In order to prove the

deduction theorem, we can either use informal mathematical arguments based on

the informal definitions of proof and so on given earlier, or we can formalize propo-

sitional calculus within some more powerful formal system and do the proof within

that system. In either case, the proof is by induction on the length of the derivation
of ¢ from S, ¢.

Using the deduction theorem, the proof of _- (P D P) becomes trivial:

1. P F-P Definition of proof

2. F- (P D P) Deduction Wheorem[S _ 0,¢ _- P,¢ _ P].

But even with additions such as these, it seems clear that it will not be easy

or natural to develop formal proofs using the formulation of propositional calculus

that we have seen so far. This is not surprising, for that formulation is a "Hilbert-

style" calculus designed for metamathematical convenience--that is, it is chosen

to allow short statements of notions such as "interpretation," and relatively simple

proofs of soundness and completeness. It is not, however, designed for actually doing
proofs. For that purpose, alternative formulations due to Gentzen are much more
convenient.

Gentzen's natural deduction and sequent calculus formulations use fewer axioms

and more rules of inference than ttilbert-style formulations, and allow more "natu-

ral" proofs. 15 Of Gentzen's two formulations, natural deduction is quite convenient

on the (hand)written page or whiteboard, but the sequent calculus is much to be

lSSources used for this section include Barwise [Bar78b], Gallier [Ga186],and Sundholm [Sun83].
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preferred for computer-assisted activity since all the information relevant to the lo-

ca] part of a proof is gathered together in a convenient way. A sequent is written
the form F ---* A 1_ where r and A are lists of sentences called the antecedents and

succedents, respectively. The intuitive interpretation is that the conjunction of the

antecedents should imply the disjunction of the succedents.

A proof in sequent calculus is a tree of sequents, whose root (at the bottom) is

a sequent of the form ---* ¢ (i.e., with empty antecedent), where ¢ is the sentence to

be proved. The proof tree is "grown" upwards from the root by applying inference

rules of the form
FI-*A1 ..- r.-*A,_ N.

F--*A

This says that the rule named N takes a leaf node of a proof tree of the form r --. A,
and adds n new leaves of the form given (n may be zero, in which case that branch

of the proof tree terminates). The goal is to apply rules of inference to construct a

proof tree whose branches axe all terminated. This is sometimes called "backwards"

proof, since we start with the conclusion to be proved. (Natural deduction, on the
other hand, is an example of a "forwards" approach to proof in which we start with

assumptions and work towards the conclusion.) Although the proof is constructed

"backwards," it can subsequently be read "forwards."

I now give the inference rules for the propositional sequent calculus with the

operators ^,V, D, and -, (omitting the "structural rules," which simply say that
the order of sentences within an antecedent or succedent is unimportant, and that

sentences can always be deleted from the antecedent or succedent). In the following,

upper case greek letters r and A represent lists of sentences, and lower case letters

¢, and ¢ represent individual sentences. I will often write sequents in a form such

as r, ¢ D _b --. A, meaning that the antecedents consist of some (possibly empty)

list I" and a sentence of the form ¢ D ¢.

The Propositional Axiom rule is the one that terminates a branch of the proof

tree. It applies when the same sentence appears in both the antecedent and succe-

dent.

AX.

r, ¢ --. ¢,A

This rule can be seen to be plausible by thinking of the sequent as expressing the

tautology (r^¢) D (eVA) where the lists r and A are interpreted as the conjunction

and disjunction, respectively, of their elements.

There are two rules for each of the propositional connectives, corresponding to

the antecedent and succedent occurrences of these connectives. The negation rules

_er _ z_ is _o used, but this may be confusing here.
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simply state that the appearance of a sentence in the antecedent is equivalent to the

appearance of its negated form in the succedent, and vice-versa.

r_¢,A F,¢_A

r, -_¢ _ A -_--" r _ _¢, A
----t -'to

The inference rules -_ _ and --, -1 are often called the rules for "negation on

the left" and "negation on the right," respectively. Similar naming conventions are
used for the other rules. One way to see that the rule -_ _, say, is reasonable is to

consider the sequent above the line as F D eVA, which is equivalent to -_FV(¢VA),

which is equivalent to (--F V ¢) V A, which is equivalent to -_(--F V ¢) _ A, which

is equivalent to (F ^ --¢) 3 A, which is an interpretation of the sequent below the
line. 17

The rule for conjunction on the left is a consequence of the fact that the an-

tecedents of a sequent are implicitly conjoined; the rule for conjunction on the right

causes the proof tree to divide into two branches, in which we separately prove each
of the two conjuncts.

¢, ¢, r---, A F _ ¢, A r _ ¢, A
A--*

¢^¢,r_a r--.¢^¢, a
--*A°

The rules for disjunction are "duals" of those for conjunction.

¢,r_A ¢,r_A r--. ¢, ¢, A
¢v¢,r_A v-_ r__. ¢v ¢, A __v.

The rule for implication on the right is a consequence of the implication "built

in" to the interpretation of a sequent; the rule for implication on the left splits the

proof into two branches: on one we must prove the antecedent to the implication,
and on the other we may assume the consequent.

¢, r--, A , P_¢,A
¢ D ¢, r---, A

r,¢_¢,A
r_¢D¢,A "_D-

Notice how the rules of the sequent calculus have an intuitively plausible charac-

ter, and entirely symmetric construction. This makes proof construction relatively

systematic and natural. To see how it works, consider a proof of the sentence

(P D Q D R) D (PA Q D R).

17In this chain of equivalences, I used the identities (_bD _b)- (--_bV_b), and one of De Morgan's
Laws.
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(Note, the implies symbol D associates to the right and binds less tightly than A,
so this sentence is actually an instance of the law of exportation.)

First we construct the goal sequent

--_(PDQDR) D(PAQ DR).

Then we must seek an inference rule whose part "below the line" has a substitution

instance equal to this sequent. There is only one choice in this case, since the sole

top level operator is an implication on the right. Hence, we apply the rule for

implication on the right (with [¢ _ (P D Q D R),¢ _ (P A Q ,-- R)] and P and A

empty):
(P D Q D R)--* (PA Q D R)

--*Z).

---*(PDQ DR) D(PAQDR)

Now we focus our attention on the sequent above the line:

(PDQDR)"*(PAQDR)

and look for a rule whose part below the line can be made to match this sequent.

There are two choices here: implication on the left or implication on the right. The

former rule will cause the proof tree to branch and it is usually best to put this

off as long as possible. So we again choose implication on the right (this time with

[F_(PDQ DR),¢_PAQ,_b_R]and Aempty):

(P D Q D R), (f h Q) ---* a

(PDQ DR)--_(PAQDR)

Again we focus on the sequent above the line

(PDQ D R), (P A Q) "* R

and seek an applicable rule. There are two candidates: implication on the left, or

conjunction on the left. The former rule will cause the proof tree to branch, so we

use conjunction on the left:

(f D Q D R),P,Q ..-* R
A-'-*

(P D Q D R),(P A Q) .-.* R

Now the sequent above the lineis

(P D Q D R),P,Q --4 R

and we have no choice but to use the rule for implication on the left:

(Q D R),P,Q -'-* R P,Q _ P,R
D'*

(P D Q D R),P,Q _ R
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The right-hand branch can be closed immediately:

Ax°

P,Q---. P,R

The left-hand branch requires another application of the rule for implication on the
left:

R,P,Q ---* R P,Q---* Q,R
_.-.4.

(Q D R),P,Q ---, R

Its left and right branches can then be closed:

Ax

R,P,Q..-. R

Ax

P,Q-..-, Q,R

Since all the branches are closed, the theorem is proved.

We can collect all the steps together into the following representation of the

proof tree:

Ax Ax
R,P,Q --.. R P,Q --.. Q,R

D_ Ax
(Q D R),P,Q _ R P,Q ---. P,R

(P D Q D R),P,Q _ R _-*"
_D

(P D Q D R) .--. (P ^ Q D R)

---*(PDQDR) D(PAQDR)
--*D

Notice how we were able to develop this proof in an entirely "logical" and orderly

way. The reader might want to compare this proof with one using the Hilbert-style

formulation of the propositional calculus introduced at the beginning of Section A.3.

A.4 Predicate Calculus

Propositional calculus is a very limited formal system and allows us to express only

very simple ideas. For example [Dav89, page 43], we cannot express the idea "if x

is even, then x + 1 is odd" in propositional calculus. To see this, suppose we try

and split the idea up as two propositions: [-_ will mean "x is even" and

will mean "z + 1 is odd." Then it might seem that we could express the intended

idea with the compound proposition [_ D [_]o" But this does not work: [_
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and [_]o are independent propositions without internal structure (which is why
I have written them in boxes), whereas the sense we want to convey requires that

both refer to the same x. The predicate calculus (also called first-order logic or

elementary logic or quantification theory) is an extension to propositional calculus

that gives us individual variables and the expressive power we need to make this

and very many other statements concerning mathematics and the world.

The formal system of the basic predicate calculus has no nonlogical part. Its log-

ical symbols include the propositional connectives and the quantifiers "for all" (also

called the universal quantifier and written V) and "there exists" (also called the ez-

istential quantifier and written q). The other symbols include constants (generally

written as lowercase letters near the front of the alphabet: a, b,...), variables (gen-

eraUy written as lowercase letters near the end of the alphabet: ..., y, z), function

symbols (generally written as the lowercase letters: f, g,...), and predicate symbols

(generally written as uppercase letters: P, Q,...).

The grammar of predicate calculus defines its language as follows:

• A term is a constant symbol, a variable symbol, or a function application

f(A, B,..., C) where f is a function symbol and A, B,..., C are metavariables

representing terms. For convenience, I often write function applications using

infix notation, such as 2 + 3, rather than +(2, 3).

• An atomic formula has the form P(A, B,..., C) where P is a predicate sym-

bol and A, B,..., C are metavariables representing terms. Computer scientists

may find it more familiar to think of predicates as functions that return truth

values (Russell and other early writers actually called them "propositional

functions"). For convenience, I often write atomic formulas using infix nota-

tion, such as 2 < 3, rather than < (2, 3).

There are obvious consistency constraints on the sentences we should write:

if f appears somewhere applied to two arguments (e.g., in a term of the form

f(x, y)) we should not use it somewhere else applied to fewer or greater num-

bers of arguments. The same applies to predicates, is

• A well-formed formula (wiT) is an atomic formula, or a series of wffs combined

using the propositional connectives, or an expression of the form (Vx : ¢) or

(3z : ¢) where x is a variable symbol and ¢ is a metavariable representing a
wff.

The scope of a quantifier is the wff to which it applies (i.e., the one following

the colon). For example, in

(vz: even(x)Dodd(x+ 1)) (A.1)

IBTo be really thorough, we should distinguish cI_fferentsets of u-ary function and predicate
symbols, for each n.
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the scope of the _/is the expression even(z) D odd(x + 1). A variable is bound

if it appears in an expression in the scope of a quantifier naming that variable;

otherwise it is free. A wff is open if it contains free variables, otherwise it is
closed.

The sentences of the predicate calculus are the closed wits. By convention,

open wffs are usually interpreted as sentences by automatically providing outer

levels of universal quantification to bind any free variables (this is called taking

the universal closure). Thus the open wff (3y : y = x + 1) is closed by

interpreting it as (\/x : (3y : y = x + 1)). 19

Numerous syntactic shorthands are generally applied to make predicate calculus

sentences more readable. For example, in the examples above, I used even and odd

as predicate symbols, and used infix = to denote a predicate symbol, infix + to

denote a function symbol, and 1 to denote a literal constant. In the most primitive

predicate calculus notation, we might have to write (A.1) as

(vx: E(x) DO(s(x)))

where s is intended to indicate the successor function on the integers, and E and

O are meant to indicate the "even" and "odd" predicates, respectively. No matter

how they are written, this example assumes that numbers, together with certain

functions (e.g., + or s) and predicates (e.g., odd or O) on them, are part of the

formal system concerned. In fact, these concepts are not part of the predicate
calculus, but must be axiomatized or defined within it. I examine how this can

be done in later sections; first I examine deduction and interpretation in the basic
predicate calculus.

In a Hilbert-style formulation, the axiom schema and rules of inference for pred-

icate calculus are those of propositional calculus (whose metavariables are now to

be replaced by formulas of predicate calculus rather than by propositions), together

with the two axiom and two rule schema shown below. In these schema, the no-

tation ¢(x) means a formula ¢ in which x is a free variable, and ¢[x _ t] means

the substitution instance of ¢ with.all free occurrences of x replaced by the term
symbolized by t.

The following axiom schema are added to those of propositional calculus given
on page 224:

'gNotice the difference between (¥z : (3y: It = x + 1)) and (3x : (¥y: y = z + 1)). The former
says that for each x, there is some y such that y = z + 1--this is obviously valid. The latter says
that there is an x such that, for every y, y = x + 1, i.e., x is one less than every y--which is
obviously unsatisfiable (in the usual interpretation of arithmetic).
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A4. (Vx : &(x)) D ¢[x _ t], provided no free occurrences of .T in ¢ lie in the scope of

any quantifier for a free variable appearing in the term t (we say that t is free

for x in ¢).20 This axiom scheme simply says that if some formula ¢ is true

for all x, then it is certainly true when some particular term t is substituted

for x in ¢ (provided no free variables get "captured").

A5. ¢[x _ t] D (3x : ¢(x)), provided t is fl'ee for x in ¢. This axiom scheme says

that we can conclude that there exists some x satisfyillg the formula ¢ if some

substitution instance of ¢ is true. 21

The following rule schema of generalization are added to those of propositional

calculus: ¢ ¢(v)
¢ D (vx: ¢(x))'

and ¢(v) D ¢

D ¢

where the variable v is not free in ¢. The rule of universal generalization can best be

understood by considering the simpler case where ¢ is true. Then the rule becomes

¢(v)
¢(x))

which says that if ¢ is true for some arbitrary v, then it must be true for all x.

Existential generalization can be derived from universal generalization by the trans-

formation mentioned in the previous footnote.

(_The models of predicate calculus are constructed as follows. 22 Given a nonempty
set _2 as the domain of interpretation, an interpretation associates an n-place

total function on _ with each n-place function symbol, an n-place relation with

each n-place predicate symbol, and an element of :D to each constant symbol. 23

2°This caveat is called the "occurs check." To see why it is necessary, let ¢ be (By : x -I- 1 = y)

and let ¢ be y. Prolog interpreters ignore the occurs check in the interest of speed, and are unsound
for this reason among others.

21Some axiomatizations include only the universal quantifier; in these cases, the existential quan-

tifier can be introduced by the definition (3x: ¢(z)) = -_(¥z :-_¢(z)).
22The definitions that follow use the terminology of set theory. An n-place relation on the set

is any set of n-tuples on T), that is any set of objects of the form (al, a2,..., a,), where each a, is a
member of _P. An n-place ]unction f on the set D can be considered as n-t- 1-plaze relation with the

property that if (a_, a2,..., an, x) and (al, a2,..., a,, y) are both members of f, then x = y (i.e.,
the last member of the tuple is uniquely determined by the first n). In this case, the application of

f to the arguments (al, a2,..., a,,) is written f(al, a_ .... , a,,) and yields the value x. A function
is total if it has a value for every combination of arguments.

2aI am simplifying a bit here. Interpretations are correctly defined relative to a sequence of values

from _ that supplies arbitrary but fixed, interpretations to free variables.
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The interpretation of P(tl,t2,...,t,) for predicate symbol P is true if and only

if the tuple (v(tl),v(t2),...v(t,_))is in the set v(P) where v(P)is the relation

interpreting P, and v(ti) is the interpretation of the term ti. The interpretation of

f(tl, t2,..., t,_) for function symbol f is the value v(f)(v(tl), v(t2),.., v(t,_)) where

v(f) is the function interpreting f, and v(ti) is the interpretation of the term ti.

The propositional connectives have their usual (truth-table) meaning; (Yz : ¢(x))

is interpreted to be true if and only if the interpretation of ¢ is true for all values

of the variable x in the domain D, and (3x : ¢(x)) is interpreted to be true if and

only if the interpretation of ¢ is true for some value of the variable x taken from the

domain :D. (If ¢ does not contain the variable x, the interpretations of (Vx : ¢(x))

and (3x : ¢(x)) are the same as the interpretation for ¢.)

Like propositional calculus, predicate calculus is sound and complete (soundness
is relatively straightforward; completeness was established by GSdel in his Ph.D.

thesis in 193024). That is, the theorems (i.e., the sentences that can be deduced

using the axioms and rules of inference given above) coincide with the universally

valid sentences (i.e., those that valuate to true in all interpretations).

We have now covered enough material to formalize and interpret the example
that began this appendix:

That plane is a Boeing 737;

All Boeing planes, except the 747, have two engines;

Therefore that plane has two engines.

We can formalize this in first-order predicate calculus

is_a_Boeing_plane(p)A is_a_737(p)

Vx :is_a_Boeing_plane(x)A -_is_a_747(x)D has_two_engines(x)

has_two_engines(p)

where is_a_Boeing_plane, is_a_737, is_a_747, and has_two_engines are predi-

cates, p is a constant, and z is a variable. A little thought shows that this deduction

is not valid: we also need another premise to state that 737s and 747s are different.

The following is adequate for our purposes:

vx: is_a_737(x)D- is_a_747(x)

Then, applying the logical axioms and rules of inference given earlier (use A4 to in-

stantiate the two universally quantified premises with [z _ p], then use propositional

reasoning), we can prove the conclusion from the three premises. Since predicate

24Skolem had essentially demonstrated consistency some years earlier, but did not realize
it [ttod83].
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calculus is sound, this tells us that the conclusion will be true in any interpretation

that vMuates the premises to true. Notice, however, that if we substitute is_a_727

for is_a_737, we would still have a valid proofi but a conclusion that is false when

the domain :D of interpretation is "airplanes in current service" and the predicates

have their intuitive meaning. How can this be? The explanation is that the second

premise

Vx :is_a_Boeing_plane(x) A _is_a_747(x) D has_two_engines(x)

is false in this interpretation. But if that is so, then our original conclusion (about the

737) is also suspect in this interpretation. And indeed it is: although the conclusion

happens to be true in this interpretation, and although the line of reasoning is

valid (so that the conclusion must be true in any interpretation that validates the

premises), one of the premises is false in the intended interpretation. This example
illustrates a central issue in formal methods: because we intend to make use of any

conclusion we prove, we must have a particular interpretation in mind and we need

to pay great attention to validating our premises in that interpretation.

A.4.1 Skolemization and Resolution

Unlike propositional calculus, predicate calculus is only semidecidable. Because it

introduces some concepts and terminology that are useful in understanding certain

theorem proving strategies, I will sketch one of the ways to demonstrate semidecid-

ability of predicate calculus. Recall that semidecidable means there must be some

computer program that is guaranteed to terminate with the answer "yes" when

given a theorem; it is not required to terminate when given a nontheorem (but if it

does, it must give the answer "no"). Because the predicate calculus is sound and

complete, the desired semidecision procedure could either be proof theoretic (i.e.,

it could look for a proof of the given sentence), or model theoretic (i.e., it could

attempt to show that the sentence is universally valid). The approach I will follow

is model theoretic.

Suppose we have to establish a sentence of the form (Vx : ¢(x)); to make things

concrete, consider (Vx : x < x + 1). If this sentence is.valid, then any particular
substitution instance, say 17 < 17+ 1, must be true. So one way to prove the sentence

might be to choose some substitution instance such as this "at random" and check
that one instance. The problem, of course, is that a particular, interpreted constant

such as 17 might have some special properties, and we might just happen to pick one
that satisfied the sentence, whereas another might not (e.g., (Vz: x x x = x) might

appear valid if it were enough to exhibit Ix +-- 1]). But if instead of a particular
numeral, we choose a new symbolic constant, say c, that appears nowhere else and

could still establish c < c+ 1, then we would surely have done enough to establish the
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original sentence. Reverting to the general case, the idea is to establish (Vx : ¢(x))

by establishing ¢(c) for some new constant c. Notice that ¢(c) has no quantifiers

nor variables: it is a propositional sentence and therefore, by the decidability of
the propositional calculus, we can decide its validity. We seem to have reduced the

decision problem for predicate calculus to that of propositional calculus.

Now consider a slightly more complicated sentence: (Vx : (3y : y = x + 1)). To
establish this, we can start by substituting some arbitrary constant, say c, for the

universally quantified variable x to yield the simpler sentence (3y : y = c÷ 1). Then,
to establish this existential sentence it is enough to find some constant term that

can be substituted for y in order to make y = c + 1 true (obviously, [y _- c + 1] does

the job here). The quantifier-free formula y = c + 1 is called a Skolem form of the

original formula (Vx : (3y : y = x + 1)). A substitution instance of the Skolem form,

in which all its free variables are replaced by terms involving only constant symbols,

is called a ground instance of the original formula. The idea behind the process I

am developing is that the original first-order sentence must be valid if some ground

instance is propositionally valid (i.e., a tautology). Now the construction of the

Skolem form is a mechanical process (I wilt explain it shortly), and propositional

validity is deddable--so to test the validity of a first-order formula, all we have

to do is generate the Skolem form, and then search for a ground instance that

is a tautology. 25 If the original formula is valid, then eventually our search will

terminate, but if it is invalid, then our search may go on forever, generating more

and more complicated ground instances without ever finding one that is a tautology.

I have just given a crude sketch of the semidecidability of first-order predicate

calculus. 26 This idea can be exploited in mechanical "theorem provers" (I use quotes

because this is a model-, not proof-theoretic approach)--although it is usual to

employ heuristics, or user-supplied hints, to generate ground instances rather than

exhaustive search. _z In order to use this approach, it is necessary to understand

Skolemization (as the process of constructing the Skolem form is called) in a little
more detail.

My simple example might have made it appear that to Skolemize a first-order

sentence, all we have to do is replace the universally quantified variables with (dif-

ferent) arbitrary constants, leave the existentially quantified variables alone, and

then remove all the quantifiers. If we apply this naive scheme to the (obviously

2_This is not quite accurate: as explained shortly, we may need a disjunction of ground instances
to obtain a tautology.

26My examples used predicate calculus enriched with arithmetic; this is also semidecidable, pro-
vided certain restrictions are placed on the fragment of arithmetic employed. This is discussed later
in Section A.5.2.

27If the search is not exhaustive, the process is no longer a semidecision procedure: if a valid
ground instance is found, then the original sentence is certainly valid, but there is no guarantee
that the search will find such an instance.
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false) sentence (3x: ¢(x)) D (Vy: ¢(y)) we would obtain ¢(x) D ¢(c), which has a

valid ground instance under the substitution [x _ c]. We have just "proved" a false

theorem, so something must have gone wrong.

Our mistake was that we did not take care of the "implicit" negation in the

antecedent to an implication. Since a _ b is the same as _a V b, the original sen-

tence could have been written as --(3x: ¢(x)) v (Vy: ¢(y)), and this is equivalent to

(Vx: _¢(x)) V (Vy: ¢(y)). Our Skolemization procedure (correctly) transforms this to

-_¢(d) V ¢(c), which is not a tautology. The problem, then, is that existential quanti-
tiers in the antecedent to an implication are "essentially" universal (and vice-versa).

We see that Skolemization has to replace the essentially universally quantified vari-

ables with different arbitrary constants, and to leave the essentially existential ones

alone. To determine the essential "parity" of a quantifier, simply count the number

of negations in whose scope it occurs, noting the implicit negation in the antecedent

of an implication (and expanding equivalences of the form ¢ - ¢ as two implications:

¢ D ¢ h ¢ D ¢); if a quantifier appears within an odd number of negations, then

its essential parity is the opposite of its appearance (i.e., an existential is essentially

universal, and vice-versa).

Even with this adjustment, our Skolemization process is still flawed. Consider

the example we looked at earlier, but with the order of the quantifiers reversed:

(3y : (Vx : y = x ÷ 1)). This sentence is unsatisfiable (it says there is some y which
is equal to x + 1 for every x, whereas the original, valid, sentence said that for

every x, there is some y that is equal to x ÷ 1). Yet our modified, but still naive,

Skolemization algorithm produces exactly the same Skolem form, namely y = c-t- 1,

as for the original sentence.

One way to better understand what is going on is to imagine the process of

forming the final ground instance as a contest between ourselves, seeking to find

substitutions for the essentially existential variables, and a malign opponent who

chooses instances for the essentially universal variables [Hod83]. We and our oppo-

nent take turns, working from the outside quantifiers towards the innermost; our

goal is reach a valid ground sentence, the opponent's goal is prevent us doing so.

If we first consider the valid sentence (Vx : (3y : y = x -t- 1)) we see that the

opponent plays first (since the outermost quantifier is essentially universal). The

opponent might decide to substitute 17, say, for x, leaving us with (3y. : y = 17+ 1).

We can now choose to substitute 18 for y, yielding 18 = 17 ÷ 1, so we win.

Now consider the unsatisfiable form: (3y : (Vx : y = x + 1)). Here, we have to

play first, sowe choose some arbitrary constant, say 9, to leave (Vx : 9 = x-t-1). Now

our opponent plays, and is careful to choose any number but 8--say 13--thereby

winning the contest.

Notice that what happened in the last case was that our opponent did not need

to choose a substitution for x until we had made a choice for y; thus, the choice
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made by the opponent could depend on our choice of y--in other words, it could be

some function f(y) of y. To perform Skolemization correctly, we may only replace

essentially universal variables with constants when they are nol in the scope of

some essentially existential quantifier. When they are in the scope of essentially

existential quantifiers, the universal variables must be replaced by arbitrary new

function symbols (called Skolem functions) that take the existential variables as

arguments. Thus, the correctly Skolemized form of (3y : (Vx : y = x -t- 1)) is

y = f(y) -F 1, which has no valid ground instance. For an example of this kind that

is valid, consider (3y : (Vx : y < x -t- 1)), where the variables are constrained to be

natural numbers. The Skolem form is y < f(y) + 1, which has the valid ground

instance 0 < f(0) + 1 (i.e., [y _ 0]). (The constraint to natural numbers ensures

0 <_ f(y) no matter what function is chosen for f.) Because we know nothing about
the Skolem function f, it models any strategy our opponent may choose. If we can

construct a valid ground instance in the presence of Skolem functions, it means we

can always win the contest, no matter what the opponent's strategy.

We now know how to Skolemize first-order sentences correctly, but there is one

last problem in this approach to theorem proving. To see this, consider the (valid)

sentence

¢(x)) v (3y : ¢(y)) D(3z : ¢(z) v ¢(z)).

The Skolem form of this sentence is

(¢(a) V ¢(b)) D (¢(z) V ¢(z))

where a and b are arbitrary Skolem constants, and we have to find a ground substi-

tution for z that win make the formula a tautology. Unfortunately, it is not hard to

see that no such substitution exists.

The problem is that we have to find a single substitution for z without knowing

which of ¢(a) or _/,(b) is true (although we do know that at least one of them is true).

If we knew which were true, we could find the right substitution ([z _ a] if ¢(a) is

true, otherwise [z _ b]). A little thought should convince us that this is enough:
no matter what the true state of affairs, there is always some satisfiable ground

instance. Indeed, this is enough, and the result that justifies it is the tterbrand-

Skolem-Gbdel theorem, 2s which says that a first order sentence is valid if and only

if some finite disjunction of ground instances of its Skolem form is tautological. In

the case of our example, the disjunction

(¢(a) v ¢(b)) D (¢(a) v
v

(¢(a) V ¢(b)) D (¢(b) V _b(b))

28This result in model theory should not be confused with Herbrand's Theorem, which is a much

deeper result in proof theory.
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is valid, and we have succeeded in proving the original theorem.

Almost all mechanical theorem provers employ Skolemization in one form or an-

other, so it is worth having some familiarity with the process. Some systems convert

formulas to prenez form (in which no quantifiers appear in the scope of a propo-

sitional connective) before Skolemizing. This is done by repeatedly using the law

(3x : ¢) = -,(Vz : -,¢) and its dual, and by renaming variables if necessary so that

expressions such as (Vx: ¢) V ¢ can be rewritten as (Vz: ¢ V ¢) (x must not occur

free in ¢), and similarly for expressions involving other connectives. In an interac-

tive system, such transformations are disadvantageous, since users are required to

examine formulas presented in a very different form than those they typed in. In au-

tomatic theorem provers, however, conversion to various special forms can assist the

systematic search for a proof. Resolution provers, for example, generally eliminate

all connectives other than A, V, and -1 (by, for example, transforming ¢ D ¢ into

--¢ V ¢), convert the resulting formulas to prenex form, Skolemize them, and then

convert to conjunctive normal form (CNF) by repeated applications of de Morgan's
laws. In CNF, each formula is written as a conjunction of clauses, where a clause is

a disjunction of literals, which are atomic formulas or negations of atomic formulas.

Propositional formulas in CNF can often be shown to be unsatisfiable by repeated

application of the one-literal rule: if a clause consists of just a single literal, then

that clause can be deleted, and all instances of the negated form of that literal 29

can be deleted from all other clauses: if that deletion results in any clause becoming

empty then the original formula was unsatisfiable. For example:

(P vQ V-R) A (Pv-,Q) A-P A RA S

(Q v -_R) A -_Q A R A S
-_RARAS

empty A S

apply one-literal rule to -,P

apply one-literal rule to -,Q

apply one-literal rule to -,R
we are done.

The resolution rule for propositional calculus extends the one-literal rule by

looking for clauses that contain a complementary pair of literals P and -_P. Such a

pair of clauses, for example (PVR) and (-_PvQ), are then replaced by their resolvent

(R v Q) (thus the one-literal rule is the special case of resolution when either R or

Q is empty). Resolution is extended to first-order clauses (i.e., those containing

variables) by seeking a single substitution that can be applied to two literals to

make them a complementary pair, and then applying the same substitution to the

resolvent. The process of constructing a substitution that will cause two literals to
become a complementary pair is called unification, and the substitution that results

is called a unifier. Here is an example of first-order resolution:

2°If the literal is a negation, then its negated form is the unnegated atomic formula (e.g., the
negated form of -,P is simply P).
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(_S(y) V C(y)) A S(b) A V(a, b) A (_C(z) V _V(a, z)) [y _ b] on clauses 1, 2

C(b) A V(a,b) A (_C(z) v -_V(a, z)) [z _ b] on clauses 1, 3

V(a, b) A --,V(a, b) Clauses 1, 2

empty we are done

Resolution is a complete refutation procedure for first order logic: if a sentence

is unsatisfiable, then resolution will terminate with an empty clause. For theorem

proving, we simply conjoin all the premises with the negated conclusion, and then use

resolution to test whether the result is unsatisfiable: if it is, then the original theorem

is true. If the original theorem was untrue, then resolution may not terminate.

The basic resolution and unification algorithms are due to Robinson [Rob65]. A

great many extensions and heuristic optimizations to resolution have been developed

over the years; some of the more fundamental ones are described in the standard text

by Chang and Lee [CL73]; Otter is a modern theorem prover based on highly efficient

implementations of several resolution strategies [McC90]. A variety of resolution

called SLD-resolution is very effective for Horn clauses (clauses that contain at most

one negated literal) and is the technique underlying interpreters for the language

Prolog.

Although resolution theorem provers can be quite effective in some domains, they

are of little use in formal methods. Formal methods generally require more than

just pure first-order predicate calculus (e.g., they require theories for arithmetic and

various datatypes, and possibly set theory or higher-order quantification), and res-

olution is not at all effective in these contexts. 3° In addition, many of the theorems

we try to prove in formal methods are untrue when first formulated, and resolution

provides little help in such cases (though it can sometimes generate counterexam-

ples). And for true theorems, resolution simply affirms their truth: it does not assist

us to develop an argument' that can be subjected to human review. Nonetheless,

some of the ideas from resolution find application in almost all modern theorem

provers. In particular, unification is a fundamental technique for creating substi-

tution instances, and highly efficient (i.e., linear-time) unification algorithms have

been developed, as have extensions to the higher-order case.

A.4.2 Sequent Calculus

The alternatives to model theoretic approaches to "theorem proving," such as that

sketched in the previous section, are proof theoretic approaches. These include

the first-order sequent calculus, which is obtained by extending the propositional

sequent calculus of Section A.3.1 with the following rules.

3°If we simply add the axioms for the theories concerned, then the search space becomes so huge
that resolution seldom terminates in reasonable time. If we add decision procedures for the theories
concerned, then unification needs to be performed modulo these interpreted theories and it is a
research topic to make this work effectively [Sti85].
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There are four "quantifier rules." In the _ V and 3 _ rules (i.e., those on the

top right and bottom left), a must be a new constant 31 (these rules are the analogs

of Skolemization).

F,A[x_-t]_A

F, (Vx: A) ---, A

F, A[x _ a] ---* A

r, (3z: A) --. t,

r A[z a], A
V---* _V

r ---, (Vx: A), A

r _ A[z _ t], A
3---* --*3

P ---, (3z: A), A

We also need a rule for terminating a branch of the proof tree when we en-

counter a nonlogical axiom or a previously-proved 1emma among the consequents of

a sequent:

Nonlog-ax
A

where ¢ is a nonlogical axiom or previously-proved lemma.

For convenience in developing proofs, it is useful to provide an additional rule

called "cut." This can be seen as a mechanism for introducing a case-split or lemma

into the proof of a sequent F ---* A to yield the subgoals F, ¢ ---* A and F ---, ¢, A.

These are equivalent to assuming ¢ along one branch and having to prove it on the
other .32

6, r--. A F ¢,A
F ---* A

Cut.

The Cut Elimination Theorem (also known as Gentzen's Hauptsatz) is one of

the most famous results in proof theory: it says that any derivation involving the

cut rule can be converted to another (possibly much longer one) that does not use

cut. Since cut is the only rule in which a formula (¢) appears above the line that

does not also appear below it, it is the ouly.rule whose use requires "invention"

or "insight"; thus the cut elimination theorem provides the foundation for another

demonstration of the semi-decidability of the predicate calculus.

31Actually, a constant that does not occur in the consequent of the sequent. This constraint is

called the eigenvariable condition.

32Alternatively, applying the rule for negation on the right, this can be seen as equivalent to

assuming ¢ along one branch and -_b along the other.
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A.5 First-Order Theories

First-order theories are simply those that add some nonlogical a_oms (and possibly

rules of inference) to the predicate calculus. In this section, I consider four very im-

portant classes of first-order theories: equality, arithmetic, simple computer science

datatypes (such as lists, trees etc.), and set theory.

All of these are very useful in computer science, and any system intended to

support formal methods should normally provide all four.

A.5.1 Equality

The first-order theory of equality (or "identity" as it is sometimes called) simply

adds a distinguished two-place predicate (generally called equals and written as infix

=) to the symbols of the predicate calculus. The fundamental idea of equality is

that x = y if and only if "anything that may be said of z may be said of y, and

vice-versa. "33 This idea of the "identity of indiseernibles" was first stated explicitly

by Leibniz. In more technical terms, if some property ¢ holds for x, and z = y, then

¢ should also hold when y is substituted for some or all instances of x in ¢. This
can be formalized as follows:

Leibniz' rule: (Vz, y :z = y :) ¢ D ¢[x ,-- y])34

where I use ¢[x *-- y], rather than ¢[x _ y], to indicate that only some instances

of x need be replaced by y.

To get things started, we assert that everything equals itself:

reflexivity: (Vz : x = z).

From these axiom schema, it is possible to deduce that = satisfies the prop-

erties of symmetry and transitivity in addition to reflexivity, and is therefore an

equivalence relation.

symmetry: (Vx, y : z = y D y = x),

transitivity: (Vx, y, z : z = y h y = z D x = z).

We can also deduce that = satisfies the property of substitutivity:

substitutivity: for any term or atomic formula ¢, z = y D ¢(x) = ¢[z *-- y]

33Most of this material is drawn from Tarski [Tar76].
34The symbol = binds tighter than the propositional connectives.
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which is what distinguishes true eqllality from a mere equivalence relation: it says

that we can always substitute equal_ for equals.

Sometimes the quantifier 3! (pronounced "there exists exactly one") is added to

first-order theories with equality. It is defined by

¢(x)) =_(3z: A(w,y: ¢(x) ^ ¢(y) D• = y).

Notice that the first conjunct on the right-hand side expresses "at least one," while

the second expresses "at most one."

The propositional connective - (equivalence, or "if and only if") satisfies Leibniz'

rule, and therefore functions as an equality relation on wffs. This means that certain

sentences can be proved by applying the rules for equality reasoning to =. For

example, (z --- y) D (x D y) can be proved from Leibniz rule (let ¢ be x). When this

approach can be used, it is fast and simple and generally to be preferred to reasoning

from the propositional properties of the connective. However, _= is more than an

equality relation, so equality reasoning does not capture all its properties and it

is sometimes necessary to revert to propositional reasoning on =-. For example,

(-_x V y) -= (x D y) requires propositional reasoning.

When constructing models for a first order theory with equality, we usually
want the interpretation of "=" to be the identity relation on the domain of the

interpretation. Such models are called normal and it is possible to show that a first

order system with equality has a model if and only if it has a normal model. Thus,

nothing is lost (or gained) by restricting attention to normal models.

(_ Often, we will also want our models to have "no confusion" and "no junk."
Suppose we have a theory with just two axioms: A = B and C = D (where

A, B, C, and D are constants). Then we could have a model in which the domain

of interpretation has but a single element, and all four constants are assigned to

that single element. The equation A = C will be true in this model, but cannot be

proved from our axioms: the model makes too many things equal (it has confusion).

Alternatively, we could have a model with six members a, b, c, d, and z and y. The

constants of our theory might be assigned to the first four, leaving the last two as

"junk" superfluous to our needs. Initial models are, roughly speaking, those that.

have enough elements so that those assigned to terms that the axioms do not require

to be equal can, in fact, be distinct (no confusion), yet with no elements left over

(no junk) [GTWW77].

A.5.1.1 Sequent Calculus Rules for Equality

These rules directly encode the axiom schema of reflexivity and Leibniz' rule.
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r_a=a,A
Refl Repl

a=b,r_A

Observe that the rule Refl is an instance of the rule Nonlog-ax given in the
previous section.

A.5.1.2 Rewriting and Decision Procedures for Equality

Reasoning about equality is so fundamental that most theorem provers provide

special treatment for it. For example, chains of equality reasoning such as that

required to prove the following theorem arise frequently in formal methods:

i = j A k = IA f(i) = g(k) Aj = f(j) A m = g(1) _ f(m) = b(k).

Trying to prove formulas such as this by repeated application of Leibniz' rule, or the

derived axioms and inference rules given earlier, soon becomes hopelessly inefficient

as the number or size of the formulas increases. A very efficient method for reasoning

with ground equalities of this kind is based on congruence closure [DSTS0, Sho78b].

Equations also commonly arise in the form of definitions, such as that for the
absolute value function:

[x[=ifx<Othen -xelsez.

One way to prove a theorem such as la+ b I < lal + Ibl is to expand the definitions

and then perform propositional and arithmetic reasoning. "Expanding a definition"
means finding a substitution for the left hand side of the definition that will cause

it to match a term in the formula (e.g., Ix _ a + b] will match Izl with la + b]),

and then replacing that term by the corresponding substitution instance of the right

hand side of the definition concerned--for example,

]a+b]=ifa+b<Othen -(a+b) elsea+b.

Expanding definitions is a special case of the more general technique of rewriting,

which can be used with arbitrary equations provided the free variables appearing

on the right hand side of each equation are a subset of those appearing on its left.
The idea is to find substitutions for the free variables in the left hand side of an

equation that will cause it to match some part of the formula being proved; that

part is then replaced ("rewritten") by the corresponding substitution instance of the

right hand side of the equation concerned. The process of finding substitutions for

the free variables in the left hand side by trying to make it equal some subexpression

in the formula of interest is called matching; it is similar to unification, except that

we only seek substitutions for the variables in the equation being matched, and not
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for the variables in the expression it is being matched against (hence. matching is

sometimes described as "one way" unification). Notice that although equations are

symmetric (i.e., they mean the same whether written as a = b or as b = a), rewriting

gives them a left-to-right orientation; when viewed in this way, they are generally
called rewrite rules rather than equations.

Selection and orientation of equations to be used as rewrite rules, and identifi-

cation of the target locations where rewriting is to be performed, can be performed

either by the user or by some automated strategy. One strategy is to rewrite when-

ever it is possible to do so. Unfortunately, this process may not terminate; a set of
rewrite rules is said to have the finite termination property if rewriting does always

terminate. 35 Often there will be two or more opportunities for rewriting in a given

expression; if the final result after rewriting to termination is independent of the
choices made at each step, then the set of rewrite rules is said to have the unique ter-

mination (also known as Church-Rosser) property. If a theory can be specified by a
set of rewrite rules with the finite and unique termination properties, then rewriting

can serve as a decision procedure for the theory concerned: to decide whether two

terms are equal, simply rewrite them to termination; if the results are syntactically

identical, then the original terms were equal (i.e., rewriting to termination yields a

normal form). This procedure is sound, and for ground formulas it is complete. We

must be careful, however, if we wish to deduce disequality. Suppose, for example,
we used the rewrite rules A ---*B and C _ D to rewrite A to B and C to D and

then observed that B and D are not syntactically identical: may we then deduce

A _ C? Plainly it would not be sound to do so in the standard semantics, since
we could have a model with only a single element (so that all terms are equal).

However, deducing disequalities in this way is sound (and complete) for the initial

model. Consequently, systems that use rewriting to normal form as their main (or

only) means of deduction generally use the initial model semantics (OBJ [Gog89]

does this), whereas systems that use rewriting as merely one method among several

generally use the classical semantics and do not infer disequalities from unequal
normal forms (disequality can then only be inferred from axioms that mention it

explicitly).

Given an arbitrary set of equations, there are some quite effective heuristic pro-

cedures for testing foi" the finite and unique termination properties [DJ90]; one,
known as Knuth-Bendix completion, can often extend a set of rewrite r_les that

aSRules that express commutativity (e.g., x + y = y + z) can be applied repeatedly (e.g., a + b ---,

b + a --* a + b...) and immediately render a set of rewrite rules nonterminating. This difficulty

can be overcome by imposing some restrictions that lead to a true normal form (e.g., only apply

the rewrite if the substitution instance for x is less than that for y in some suitable ordering).

Similar techniques can be used for operat6rs that are associative (and for the combined associative-

commutative case) [Sti81]. These techniques are usually embedded in the matching rather than the

rewriting mechanism, and referred to as AC-matching.
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does not have unique termination into one that does. Beyond ordinary rewriting is

conditional rewriting, which is used for axioms having the form a D b = c. Various

control strategies are possible: the simplest will only rewrite b to c if a can be proved,

others will do the rewrite and carry a along as an additional proof obligation.

Term rewriting is so effective that it provides the main means of deduction in

some systems, for example Affirm [MusS0], Larch [GwSJGJ+93], and RRL [KZ88].

The very powerful Boyer-Moore prover IBM79, BM88] integrates a number of tech-

niques, but rewriting is one of the most central. Techniques similar to rewriting
are used in resolution provers under the name "paramodulation" and its variants.

In general, congruence closure and term rewriting are fundamental to productive

theorem proving, and theorem provers lacking these mechanisms should find little
application in formal methods.

A.5.2 Arithmetic

Numbers are fundamental to mathematics. Peano's arithmetic [Pea67] (much of

which should really be attributed to Dedekind) is a formal system that characterizes

the natural numbers (i.e., the nonnegative integers 0, 1, 2,...)36 by adding nonlogicat

axioms to the predicate calculus with equa_ty. The first four axioms introduce the

constant 0, the successor function succ and the predicate Af, which we can read "is
a number":

• H(o)

•

• x(x)

(0 is a number),

D Af(succ(x)) (the successor of a number is a number),

D succ(x) ¢ 0 (0 is not the successor of any number),

JV'(x) A A/(y) A succ(x) = succ(y) D x = y (numbers with identical successors

are identical).

The fifth axiom is tlle scheme of mathematical induction:

• (¢(0) ^ (vx : zf(x)^ D D D¢(z)).

This says that to establish that some property ¢ holds for any natural number,

it is sufficient to prove that it holds for 0 and, given that it holds for some

arbitrary natural number x, to prove that it also holds for 8ucc(x).

S_Sometimes (and, indeed, in Peano's original formulation) the natural numbers are considered
to start at 1; nowadays it is more common to refer to the numbers starting from 1 as the positive
integers.
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The first four axioms imply that there are infinitely many numbers; the fifth axiom

ensures there are not too many.

The numerals are introduced by regarding 1 as succ(O), 2 as succ(1), and so on.

The remaining axioms introduce addition (written as infix +): and multiplication

(written as infix ×). I drop the tedious predicate Af and simply assume that the

variables range over numbers (cf. many-sorted logic in Section A.9):

• x+0=x,

• x +  ucc(y) =  , cc(x + y),

• xx0=0,

• x×succ(y)=z×y+x.

<_ Although Peano's system is considered sound, it is incomplete: there are validstatements in arithmetic that cannot be proved using Peano's axioms. It might

seem that this could be remedied by adding more powerful axioms, but this is not

so. GSdel's incompleteness theorems, probably the most famous theorems in the

whole of logic, show that all reasonably powerful formal systems are necessarily in-

complete. The first incompleteness theorem says that any consistent formal system
that includes arithmetic must be incomplete; 37 the second says that the consistency

of such a system cannot be proved within the system (i.e., the formula that asserts

consistency is an example of a true but unprovable statement). 3s Profound though

it is, GSdel's first incompleteness theorem is not a limitation on the decidability of
formulas that arise in formal methods any more than the existence of algorithmically

unsolvable problems (e.g., the halting problem for Turing machines) is a limitation

on the practical utility of computers. The true but unprovable statements concern

sweeping properties of logic itself, not the specific kinds of properties we are con-
cerned about in formal methods. 39 GSdel's incompleteness theorems are best seen

as affirmations of the remarkable expressive power of arithmetic, rather than limita-

tions on the everyday applicability of logic. The practical limitation on our ability

to decide whether or not a certain statement is valid is our ability to find a proof,

not whether a proof exists.

37The first incompleteness theorem has been formally verified [Sha86]--almost certainly the hard-

est mechanically-checked formal verification ever undertaken.

aSGentzen and GSdel demonstrated the consistency of Peano Arithmetic using metamathematical

arguments that cannot be formalized within Peano Arithmetic.

ZgA few unprovable formulas of a genuinely mathematical (as opposed to logical) character are

now known: "Since 1931, the year GSdel's Incompleteness Theorems were published, mathemati-

cians have been looking for a strictly mathematical example of an incompleteness in first-order

Peano arithmetic, one which is mathematically simple and interesting and does not require the

numerical encoding of notions from logic. The first such examples were found in 1977" [PH78].

The example in the cited paper concerns an extension to the Finite Ramsey Theorem.
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(_ There are other arithmetic theories besides Peano's. For example, there are
axiomatizations (mostly due to Dedekind IDeal63]) of the rational and the real

numbers [Fef89, Sup72]. Axiomatizations of the reals suffer from limitations as sur-

prising as those imposed by the incompleteness theorems. The LSwenheim-Skolem

Theorem says that if a theory has a model of infinite cardinality, then it has models

of all infinite cardinalities. 4° In particular, this means that any axiomatization of

the real numbers has a model that is only countably infinite (i.e., has only as many

elements as there are natural numbers). Since Cantor showed (by his "diagonal"

argument), that the real numbers are not countably infinite (i.e., they cannot be

put into 1-1 correspondence with the natural numbers), this means that no axioma-

tization of the real numbers can capture the properties of the reals uniquely--there

will always be nonstandard models that satisfy the axioms, but are different from

the reals. This discovery is not as disappointing as it may seem: it led to the in-

vention of nonstandard analysis [Rob66], which provides a consistent interpretation
to infinitesimals and allows analysis to be built up without recourse to the usual

notions of limits and convergence, thereby providing a rigorous reconstruction of

early treatments of the calculus [Dau88, Lak78]. Neither do these limitations di-

minish the practical _utifity of formal systems of arithmetic in computer science. In

fact, nonstandard analysis provides a basis for formal verification of the accuracy of

certain floating point calculations [Pra92].

(_ Since we can formalize Cantor's argument for the uncountability of the reals,
there must be some countable model that validates this theorem. A simpler

observation of the same kind is "Skolem's Paradox": the set of subsets of the natural

numbers must be uncountable (Cantor's Theorem establishes that the powerset of

a set has greater cardinality than the original set [Dun91, Chapter 12]), but the

formalization of this result is satisfied in some countable model. These are really

not the paradoxes they seem: the sets concerned will be uncountable in the model,

but countable in the "real universe" lEFT84].

Formal systems for integer and rational arithmetic similar to one first investi-

gated by Presburger in 1929 are very useful in computer science. Essentially, these

are linear arithmetics with addition, subtraction, multiplication, equality, and a

"less than" predicate <. (By simple constructions, the predicates >, _<, and > can

be added as well.) By linear is meant the restriction of multiplications to literal

constants--so that 3 x z is admitted, but e × y (where c is a symbolic constant) and

x × y (where x is a variable) are not. A valuable property of these arithmetics is that

they are decidable, and therefore conducive to efficient theorem proving [Rab78].
Since arithmetic is ubiquitous, support tools for formal methods that lack effective

automation of arithmetic reasoning are extremely tedious and unproductive to use.

4°Infinite cardinalities are explained in Section A.8.
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Classical Presburger arithmetic is a first-order theory (i.e., it permits quantification),

but it allows only simple constants and not function symbols. Because function sym-

bols are also ubiquitous (they can arise, through the process of Skolemization, even

in formulas that do not include them originMly), variations on Presburger arith-

metic that make different tradeoffs to maintain decidability can be more useful in

practice. In particular, tools for formal methods often use Presburger arithmetic

restricted to the propositional (i.e., ground) case only, but with extensions (such as

equality with uninterpreted function symbols) [N079, Sho77, Sho79, Sho84] that are

undecidable in the quantified theory. These arithmetics are adequately expressive

for most problems in computer science, and formal methods tools incorporating effi-

cient implementations of their decision procedures can be very effective in practical

applications.

A.5.3 Simple Datatypes

Peano's axioms serve as a prototype for axiom systems specifying other datatypes

commonly used in computer science, such as lists, trees, and so on. Usually, these

datatypes have some constructors, which are constants or functions that generate

values of the kind considered (e.g., 0 and succ in Peano arithmetic), and some

accessors, which are functions that reverse the process--breaking a value of the kind

under consideration into the components that generated it (there are no accessors

in Peano arithmetic as I defined it; the predecessor function would be an accessor

if it were added to the theory). Datatypes require some axioms to specify the

relationship among the constructors and accessors, others to specify that values

constructed from equal components are equal, yet others to specify that a value

is equal to that constructed from its components, and another that specifies art

induction scheme.

As an example, here is a theory of lists, with constructors A (a constant, rep-

resenting the empty list) and cons (a function that builds a new list from a term

and an existing list), and accessors car and cdr. £(1) is a predicate that recognizes

lists: it is true exactly when l is a list. The first three axioms state that A and cons

construct lists, and that A is different from any list constructed using cons.

• £:(A),

•  C(l)D f..(cons(x,l)),

• £(1) D # h.

The next two axioms describe the relationship between the accessors ear and cdr

and the constructor cons:
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• _(t) z ear(cons(x,t))= _,

• £(t) Dedr(eo_s(x,1))= l,
Note ear(A) and cdr(A) are left unspecified; they are usually taken as errors.

More sophisticated logics allow them to be explicitly disallowed.

Next is an eztensionality axiom (one that says values are equM if their components

are).

• ,_(/1)A'_(/2)AI 1 ¢ AAI 2 ¢ AAcar(ll) _- car(12)Acdr(/l) = cdr(12) _ l 1 -= 12.

The following is an example of what is sometimes called an eta rule (one that says

a value is equal to that constructed from its components); it is a lemma that can be

proved from extensionality.

. f_(l)^l ¢ ADl= cons(c_,r(O,cdr(O).

Finally, we have an induction scheme: to prove a property ¢ of a general list l, it is

enough to prove it for A and to prove that if it is true for a list It, then it will also

be true for the list cons(z, l').

• (¢(A) A (Vx, l': £(I') A ¢(/') D ¢(cons(x,/')))) D (V/:/:(l) D ¢(/)).

One consequence of the induction scheme is that all lists are either A or a cons:

• £(/) D l = A V 3x, l' : I = cons(x,l').

Many datatypes commonly used in computer science (such as trees, stacks, etc.)

can be specified by axioms similar to those shown above for lists. Because they

are so regular, some computer systems supporting formal specification languages

can generate suitable axioms automatically for a certain class of data structures,

given only a very compact description of the datatype concerned. For example,

PVS [0RS92] generates axioms equivalent to all those shown above (they are slightly

different because PVS is a typed logic) from the following specification.

list[t:TYPE] : DATATYPE

BEGIN

null: null?

cons (car: t, cdr: list): cons?

END list

The "shell" mechanism of the Boyer-Moore prover [BM88] provides similar capabil-

ity.
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A.5.4 Set Theory

During the nineteenth century, several mathematicians attempted to provide a de-

fensible basis for the manipulations performed in analysis (canceling by dx and the

like). Cauchy, for example, gave precise definitions to the notions of limit and conver-

gence that had troubled mathematicians since the invention of calculus. Dedekind
and Peano's abstract formulations of the real and natural numbers suggested that it

might be possible to construct all of mathematics on a few broad, basic principles.
Central to these constructions were the ideas of set theory (mainly developed by

Cantor) and logic. 41

Frege was the first to develop the notion of logic as a formal system in the

modern sense. His system was similar to a modern higher-order system, 42 with

a nonlogical component that defined a form of set theory, now known as naive set

theory. The nonlogical part of Frege's system included a two-place predicate written

as infix E and pronounced "is a member of." The intended interpretation is that

x E y expresses the idea that x is a member of the set y. The important point is

that as well as being composed of its members, a set can also be regarded as single

entity, and can itself be a member of other sets. Furthermore, it is essential to the

constructions of Dedeki_d and Cantor that sets can have infinitely many members.

It seems reasonable to suppose that two sets are equal if and only if they have

the same members. This is called the principle of extensionality, and it was an

axiom of Frege's system. A set can be specified extensionally by simply listing all

its members: for example

y = {red, blue, green).

Another way to specify a set is by stating a property that its members must satisfy:

for example,

y = {xl¢(x))

is the usual notation for saying that the set y consists of exactly those members

x satisfying the property ¢. This is called specifying a set intensionally. The

idea that every property determines a set (i.e., that we are al_Iowed to specify sets

intensionMly) is the principle of set comprehension (also called abstraction). The

principle of comprehension, which was another axiom of Frege's system, can be

expressed as

(_y: (W: x _ y- ¢(x))).

It says that for any property (wff) ¢ of one free variable, there is a set y consisting

of exactly those x satisfying ¢.

41Sources for this material include Hatcher [ttat82], Levy [Lev79], Fraenkel [FBHL84], and Shoen-

field [Sho78a].
4_Higher-ordersystems axe described in Section A.10.
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Frege showed that he was able to construct the building blocks of mathematics

(such as the natural numbers) within his system, and gave convincing arguments

that it could serve as a foundation for the whole of mathematics. Unfortunately,

this plan was destroyed by Russell in 1902 [Rus67], who pointed out that Frege's

system is inconsistent, and therefore unsound (any sentence can be proved in an

inconsistent system). Russell's Paradox, as it is called, 43 simply instantiates the

principle of comprehension with the definition

¢(x) = ¢ x.

Intuitively, this can be understood as follows: if every predicate determines a set,

then consider the set y determined by the predicate x ¢ x. That is, y is the set of all

sets that are not members of themselves. Now, is y a member of itself or not? If it

is, then it satisfies its defining predicate, so that y ¢ y--that is, it is not a member

of itself. Conversely, if y is not a member of itself, it does not satisfy the defining

predicate, so that y E y--that is, it is a member of itself. Either way we obtain a
contradiction.

Frege acknowledged that Russell's Paradox destroyed his system's founda-

tion [Fre67] but it was left to others to reconstruct those foundations on a secure

footing. The basic problem is in the unrestricted principle of comprehension; fixing

the foundations requires placing some control on the way this principle is employed.

There are two main approaches by which this can be done. Axiomatic set theory is

one approach, type theory is the other. Here I sketch the axiomatic approach; type

theory is described in Section A.10.

The idea behind axiomatic set theory is to allow new sets to be constructed only

from existing sets--that way, we avoid things getting out of hand and leading to

the antinomies. The best known axiomatic set theory is called Zermelo-Fraenke] (or

ZF), after its inventors. In the most austere presentations of ZF, everything is a

set (i.e., has zero or more members); sometimes "urelements" (also called "individ-

uals") are provided as well--these can be members of sets but cannot themselves

have members. Since everything can be encoded in set theory without urelements,

and since it makes some of the statements simpler, I will consider only sets. Also

note that ZF uses a very limited predicate calculus, in which E and = are the only

predicate symbols, and there are no function symbols. Functions and additional

predicates (not to mention numbers, and the whole of mathematics) are later con-
structed within ZF.

4sit should really not be called a paradox; it is a plain contradiction. Other contradictions were
known in naive set theory prior to Russell's discovery. These, too, are generally called paradoxes,
although technical fiterature often uses the term antinomies. These other antinomies (for example,
those of'Cantor and Burali-Forti) involve ideas from set theory (in particular, infinite cardinal and
ordinal numbers), whereas Russell's goes to very heart of logic itself.
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There are eight axioms in ZF; they can all be stated in several different forms

(see [FBHL84] for an extended discussion and [Hal84] for an examination of the
underlying intuitions), and I will merely describe them, rather than give their formal

statements, here.

Extensionality: says that two sets are equal if they have the same members, in

symbols
(Vx:xEa-xEb)-=a=b.

We can introduce the notion of subset by a similar construction:

(Vx:x E a D x E b) = a C_ b,

but notice that this is merely a definition (i.e., a metalinguistic abbreviation),

not an axiom.

Pair: says that if we have two sets a and b, then we can form a new set whose

members are just a and b. By taking a = b, this also allows us to form the

set (a,a), which by extensionality is the same as the singleton set {a). (This

axiom can be dispensed with if certain technical adjustments are made to

provide "functiori-classes" [Lev79]).

Separation: says that given a set a, we can form a new set b consisting of just those
members of a satisfying a property ¢. This is similar to the unsound axiom

of comprehension, except that members of the set defined by the property are

required to come from some existing set a. This construction is usually written

b = {x e al¢(x)}.

Union: says that if we have a set a (of sets), then we can form a new set consisting
of the members of all its members. This set is sometimes called the sum-set

and written U a.

Iterated application of the axioms of pairing, separation, and union allow us

to construct many familiar sets. For example, we can define the union a U b

of two sets a and b to be the sum-set of their pair-set. Then we can construct

the set {a, b, c,d} as the union of two pairs: {a,b} U {c, d}. Intersection and
set difference can be defined using separation:

a n b - (x E alx E b},

a \ b= {x e aix _. b},

and the properties of associativity and distributivity can be proved from these

definitions.
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Power set: says that the powerset of a set is a set (i.e., we can talk of the set of

all subsets of a given set). The powerset of a set a is usually denoted T'(a) or

2 a .

Infinity: says that there is an infinite set. The axioms introduced so far tell us

how to combine existing sets to yield new ones, but they do not assure us

that there are any sets with which to start the process. If we suppose that we

had a set to start with--call it X, say, then we could form the emptyset by

separation: @ = {x E XIx _ x}. We could then form an infinite collection of

sets by a recurrence such as

nO --

(SO that no = O, nl = {0),n2 = {0,(0)),n3 = {0, (0), {0, (0}}} and so on44).

But although we then have an infinite collection of sets, we have nothing that
allows us to call that collection a set, and no other way to be sure that there

is an infinite set.

There are many ways to state the axiom of infinity, but one way is to say that

the collection of sets ni defined as above is a set (it is usual also to state that

the emptyset is a set, in order to avoid the need to "seed" the process with

some arbitrary set X). The set of ni created in this way is called w, and it

plays a fundamental role in the development of numbers (the number 2, say,

is defined to be the set n2 and so on), but how do we know it is infinite? One

definition of an infinite set (due to Dedekind) is one whose members can be

put into one-to-one correspondence with some strict subset of itself. Since the

members ofw can be put into one-to-one correspondence with the strict subset

w \ no (just associate ni with hi+l) we see that w is infinite. The particular set

w might seem an arbitrary choice, so more general statements of the axiom of

infinity sanction the kind of recurrence we used to create the members ni of

w, without singling out that particular construction.

Replacement: says that if / is a function and x is a set, then the collection of all

/(y) for y E x is a set. I have expressed this axiom in terms of a function/,

but functions are not primitive in ZF (I will define them shortly), so formal

statements of the axiom can be rather complicated.

To understand why it is needed, consider the infinite collection of sets defined

by:

Yo = O

--

44Note the difference between the emptyset and the set having the emptyset as its only member.
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(so that V0 = 0, V1 = (0},V2 = (¢_.{0}},V3 = (0,(¢},((0}},(0,{0}}} and

so on). We would like to say that _his collection is a set, and the axiom of

replacement allows us to do so by exhibiting the function f such that f(n_) =

_. Since the ni form a set (by the a_om of infinity), so do the _.

Most of the axioms of ZF were first stated by Zermelo, but the axiom of re-

placement is usually credited to Fraenkel (although Skolem and yon Neumann

have stronger claims). The importance of this axiom is that it is what al-

lows the construction of the "higher" infinities (e.g., by allowing the collection

{w, P(w),P(P(w))...} to be a set; we then take its sum-set, and start taking

powersets again, and so on).

Regularity (also called foundation): says that every nonempty set (of sets) has

a member that has no members in common with the original set. This is a

technical axiom, intended to eliminate unintuitive possibilities, such as sets

which are members of themselves.

Among its consequences are that every set is well-founded: that is, if a is any

set and a0 E a, and al E a0 ...and a/+l E a_ and ..., then this sequence

eventua_y terminates. 45 Well-foundedness allows us to prove things about

sets by induction over the E relation. Non well-founded sets have been studied

recently, and may have some application in computer science [Acz88].

The eight axioms given above are generally augmented by one more:

Choice: says that for any set of sets, there is a choice function that selects a member

from each of the member sets. (By the axiom of replacement, we can then

form a set containing just the members so chosen.) This axiom was added

to support the constructions used in a number of important theorems (e.g.,

Zermelo's well-ordering of the reals).

ZF plus the axiom of choice is generally denoted ZFC and is considered an

adequate foundation for the whole of mathematics.

The axiom of choice is rather different from the other axioms because of its

essentially nonconstructive character: it asserts that a choice function exists,

but doesn't tell us how to construct one. For this reason, the axiom is some-

times considered a little suspect, and there have been many attempts to find

more constructive replacements for it. It turns out that weaker axioms are

unable to support some parts of mathelnatics, and alternative axioms of ad-

equate power (e.g., "every set can be well-ordered" or the result known as

Zorn's 46 Lemma) are all equivalent to the axiom of choice.

_A relation _ is weU-founded if there axe no "infinite descending chalns'--i.e., no infinite se-

quences a0 _- al _- ... _- ai _- ... A well-founded set is one such that the 9 relation (a _ b - b E a)

is well-founded. This and other properties of relations are described in more detail in Section A.7.

46It was published by Hausdorff 26 years before Zorn.



A.5. First-Order Theories 259

GSdel showed in 1939 that the axiom of choice was consistent with the other

axioms (i.e., if you couldn't get a contradiction from the other axioms, adding
the axiom of choice wouldn't enable you to get one). In 1963, Cohen showed

that the negation of the axiom of choice is also consistent with the other
axioms--so that this axiom is truly independent of the others.

(_ZFC minus the axiom of replacement is called Zermelo set theory, and is
strictly weaker than ZFC, since it excludes certain transfinite sets. There are

other set theories, of which the best known is that of von Neumann, Bernays

and GSdel (known as NBG or VNB set theory). This theory has a notion of

(proper) "classes" as well as sets. 47 NBG is sometimes preferred to ZFC be-
cause it has a finite axiomatization. 4s For computer science, these distinctions

are rather unimportant, and any of the accepted set theories is adequate for

the (necessarily finite) structures considered.

)The operator known as ttilbert's E symbol is sometimes confused with theaxiom of choice. When ¢ is some wff with a single free variable x, then _x : ¢

denotes "the x such that ¢"--that is some value that satisfies ¢, if any such

exists, otherwise some arbitrary value. The symbol can be defined by the

axiom scheme

¢(x)) ¢(Ex:¢)

and can be used to define a choice function (for a set a, let ¢ be x E a). If

we denote ZF plus the E symbol as ZF_, then it might look as though ZF, =

ZFC. This is not so, however, for ZFe merely adds the _ operator, it does not

strengthen the axioms of separation and replacement to allow wffs involving

(see [FBHL84, page 73, footnote 1] and [Lei69, section 4.4]); thus, although we
could use _ to select representatives from a set of sets, we cannot say that this

collection of representatives is a set. Hilbert's Second E Theorem states that

any theorem of ZF_ not involving E in its statement is also a theorem of ZF

(i.e., ZF_ is a conservative extension of ZF and so the axiom of choice is not
a theorem of ZF_). If the axioms of separation and replacement are extended

to allow wffs involving E, then we do obtain the axiom of choice.

I have already sketched how familiar set operators such as U and fl can be defined

within ZF, next I briefly describe how relations and functions are constructed. This

process is essentially similar to "programming" in a very restricted language.

First, the ordered pair (a,b) is represented by the set (a, (a, b}) (this "coding

trick" is due to Kuratowski and Wiener). Then we can define the Cartesian product

_TProper classes can have sets as members, but cannot themselves be the members of sets or

proper classes.
4sit is also a conservative extension of ZF. Conservative extensions are described in the next

section.
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x×yoftwosetsxandyby

x×y= {(a,b)laexAb•y}.

This construction can be justified (i.e., we can establish the right-hand side is a set)

by observing that

(a e x ^ b e y) D (a,b) E P(_'(x U y))

and then using the separation axiom. A predicate P on a set x is a subset of x, and

I generally write P(a) for a • P. A relation R between x and y is defined to be a

subset of x x y and I usually write aRb for (a, b) E R (if x = y, we say a relation

on x). The domain of Ris the set {a • xl3b • y : aRb} (i.e., the set of all first

compoaents of pairs in R), and its range is the set (b • yl3a E x : aRb} (i.e., the

set of M1 second components of pairs in R). (Relations on three or more sets can

be defined by iterating the construction). The domain restriction of R to a set s

is ((x, y) • RIx E s) and is denoted s ,_ R; The range restriction of R to a set s is

((x, y) • Riy • 8) and is denoted s _, R. The image of a set s under the relation R

is the range of s ,: R; the inverse image is the domain of R _ s. The inverse relation

R -_ of R is given by R -1 = {(b,a) • y x xl(a,b ) • R}.

A relation f is a function from x to y if (Va • x: (Vb, c • y : a f bA a f c D b = c))

(i.e., if at most one member of the range relates to each member of the domain); f is

total if its domain is the whole of x (otherwise it is partial); it is surjective if its range

is the whole of y. A function is injective if (Vc E y: (Va, b • x : a f cA b f c D a = b))

(i.e., if at most one member of the domain relates to each member of the range); a

function is bijective if it is both injective and surjective. When f is a total function

and a E x, the unique b such that a f b is denoted f(a). It is a matter of considerable

debate how f(a) should be treated when f is partial and a • x is not in its domain;

some of the options are discussed in Section A.11.2.

Although ZF set theory provides the underpinnings for some well-known spec-

ification notations such as Z [Spi88], there are rather few theorem proving sys-

tems for classical set theory. The theorem prover (called "Never") of the Eves

system [CKM+91] is one such. Decision procedures for fragments of set theory have

been extensively studied by Cantone and others (see, e.g., [Can91]).

A.6 Definitions and Conservative Extension

In Section A.3 I explained how new propositional connectives could be introduced

either as abbreviations (a metalogical approach), or by extending the formal system

with additional axioms. In this section I examine how new predicate and function

symbols can be introduced into a formal system. 49

_gSources for this section include Gordon [Gor88] and Shoenfield [Sho67].
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It is clear that we can introduce new predicate or relation symbols as abbre-

viations (they are then generally called defined symbols) and that we do not add

anything new (other than notational convenience) to the formal system by so doing

(since we can always simply expand the abbreviations). Thus, if we already have

the relation < available, we can introduce _< as a defined symbol using

x <<_y=_-x < yVx=y.

The = in this definition is not really the propositional connective "if and only if"

since z _< y is not all expression in our object language; what it means is that we

can replace any expression of the form x < y by one of the form x < y V x = y.

If we want x _< y to be an expression in the object language, then we must

expand that language by adding _< as a new predicate symbol, and then supplying

x_y_x<yVx=y

as a new axiom. In this case, the = really is the propositional equivalence symbol.

Now there are many sentences involving _< that we might have chosen to add as

its "defining axiom," and some of these might be dangerous. For example,

(x <yVx= y) A(x<yD(x <yVx--y))

enables us to deduce a contradiction (from 3 _ 2, deduce 3 < 2 from the first

conjunct, and hence the contradiction 3 < 2 V 3 = 2 from the second). What we

need are some simple rules that stop us ruining our formal system by introducing

inconsistencies under the guise of defining a new symbol. The requirement that a

defining axiom should leave the formal system consistent is a little too strong, since

the system might have already been inconsistent; what we can require is that the

defining axiom should add no new inconsistencies or, equivalently, that if the formal

system was consistent before, then it will remain so after the addition of our defining

axiom. Additions to a formal system that satisfy this latter requirement are called

conservative extensions, and so we can rephrase our requirement as one for rules of

definition that guarantee conservative extension.

In the case of a predicate symbol P, the rule that the defining axiom should be
of the form

P(xl,...,x,) = ¢,

where P does not appear in the wff ¢ and no variables but xl,...,z,_ are free

in ¢ does the job. Our original definition for _< has this form, and is obviously

satisfactory.

For a function symbol f, a suitable defining axiom is one of the form

r/= f(xl,..., x,) = ¢,



262 Appendix A. A Rapid Introduction to Mathematical Logic

where ¢ is a term not containing f and in which no variables but Zl,..., x,_ and y

are free, provided we can prove the existence condition

and the uniqueness condition

3y:¢

¢ ^ ¢[y z] D y = z.

For example, to introduce the square root function V/x, the defining axiom would

be

y=vf-x=_y×y=x

(so that ¢ is y × y = x), the existence condition would be

3y: y × y = x,

and the uniqueness requirement would be

y×y=xAz×z=xDy=z

(which might be hard to prove on the reals!).

An important special case is the one where y does not appear in ¢; in this case,

the defining axiom becomes the equation

f(Xl,...,Xn)-- ¢

and the existence and uniqueness conditions are always provable. This convenient

result can be extended to recursive definitions (i.e., those in which f appears in ¢)

provided they have certain simple forms.

The simplest such form is that of primitive recursion:

f(O,x,,...,x,_) "- g(xl,...,xn)

f(i + 1,xl,..., z_) = h(f(i, zx,...,z,O, i, zl,..., z,)

where g and h are already defined functions that need not take all of the arguments

zl,...,xn (nor i in the case of h). This can be also be written in the form

f(i, xl,...,x,_) = if i= O theng(zl,...,zn)
else h(f(i - 1, z_,..., z,,), i - 1, zl,..., xn).

(Clearly, the induction variable i need not be the first argument.) As an example,

observe that Peano's axioms for multiplication

xxO = 0

zx(i+l) = xxi+x
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are primitive recursive (n = 1, g(x) = O, h(z, i, z) = z + x) and can also be written

in the alternative form

x×i=ifi=0then 0else x×(i-1)+x.

When we enlarge our formal system with constants, functions, and predicates

that define some new "datatype," we often wish to define additional functions by

recursion on the structure of the datatype. For example, if we have introduced lists,

with A, cons, car, and cdr, we might want to define a function sum that adds up

the value of all the nodes. We might define this by

sum(A) = 0

sum(co, s( ,l)) = x+ s ,m(1)

or, equivalently, by

sum(1) = if 1 = A then 0 else car(1) + sum( cdr(1) ).

Plainly, we could prove a metalogical theorem that this construction provides con-

servative extension just as primitive recursion does, and we could even prove more

general results for all datatypes defined by certain structured sets of axioms. How-

ever, another way to justify these definitions is by providing a measure function

from the recursion variable (here l) to the natural numbers and proving that the

value of this function strictly decreases across the recursion. In this case, the obvi-

ous measure function is the length of the lists concerned, and the theorem we would

have to prove is

1 _ h _ length(cdr(1)) < length(1),

which will be provable in any well constructed theory of lists.

There are several tricky details that need to be taken care of in specification

languages that provide a "definitional principle" for recursions of this sort. For

example, taking the identity function as the measure, the definition

silly(n) = if n = 0 then 0 else silly(n - 2) × n

might appear conservative, despite the fact that it "steps over" the "termination

condition" n = 0 when applied to an argument that is an odd number. Obviously,

the definitional principle must eliminate this possibility if it is to be sound, but

methods for doing this are best examined in the context of the particular language
concerned, s°

Not all functions are primitive recursive. The standard example is a function

due to Ackerman, which in its modern form is given by

5°In PVS [ORS92], for example, the definition of silly would be considered type-incorrect because
the recursive argument n - 2 cannot be shown to be a natural number (unlike n - 1, which could
be shown to be a natural number if n is, in the context n _ 0).
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ack(m, ) = ifm =0 then n+l

elsif n = 0

then ack(m-1, 1)

else ack(m-1, ack(m, n-l)).

This function cannot be defined by (first order) primitive recursion. 51 However, a

definition such as this can be shown to be conservative by demonstrating that the

"size" of its p_r of arguments (notice that ack is recursive in both its arguments)

decreases across the recursions according to a lexicographic ordering on pairs: S_

(ml,nl)< (m2, n2) --- m! <m2V(ml = m2Anl < n2).

Here, we need

(m-l,1) < (m,0),

(m- 1,ack(m,n-1)) 53 < (re, n), and

(m,n- 1) < (m,n),

which axe all true in the lexicographic ordering.

We might try to justify use of lexicographic ordering to ensure conservative

extension using a naive extension to the measure function approach. That is, we

could look for a function size that would map the pair of arguments to ack into a

single number that is strictly decreasing across the recursions:

size(m - 1, 1)

size(m- 1,.ok(m,,,- 1))
size(m, n - 1)

< size(m, 0),

< size(m, n) and

< size(m, n).

A plausible function is

size(m, n) = _ x m + n,

provided _ is big enough to ensure

x (m- 1) + ack(m,n- 1) < _ x m + n

51Though it cart be defined by a higher-order primitive recursion: that is, a definition restricted
to the form of primitive recursion, but with functions allowed as arguments [Gor88, pp. 96, 97].

52Thls ordering is called lexicographic because it is the way words are ordered in a dictionary--
first on the initial letter, then on the second, and so on.

SaSince ack is the function whose termination we are trying to prove, it should not appear in its

own termination argument. A better form of this obligation is Vf: (m - 1, f(m, n - 1)) < (n, ra).
The quantification over all functions f (of the appropriate signature) is a higher-order construction.
Since I have not yet introduced higher-order logic (see section A.IO), I will continue with the rather

suspect construction that uses ack itself.
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(from the second case)--that is

> ack(m, n - 1) - n.

Now ack(m, n - 1) grows much faster than n, so the right-hand side is unbounded--

and this suggests that _ needs to be infinite!

In fact, this is not so implausible as it might seem, and it serves to motivate

introduction of the transfinite ordinals, which are numbers with the properties we
require.

A.7 Ordinal Numbers

Natural numbers can be used in two ways. If we have the members of a set somehow

arranged in order, then we can count offits members, and can speak of the "second"

member, and the 365th, and so on. Numbers used in this way are called ordinals.

Alternatively, we can simply ask how many members there are in the set; numbers

used in this way are called cardinals. For finite sets, the natural numbers serve

as both ordinals and cardinals; with infinite sets, however, things get a little more
complicated.

The extension of ordinal and cardinal numbers to infinite sets was the work of

Cantor. s4 First, though, it is necessary to distinguish different kinds of infinity.

Aristotle distinguished the potential from the actual or completed infinite; the po-
tential infinite typically arises when some variable can take on values without limit.

Any particular value is finite, but the range of possibilities is unbounded. Prior to

Cantor, it was generally assumed that mathematics could only be concerned with

the potential infinite; the actual infinite was considered unfathomable. Cantor broke

through this restriction of thought and divided the actual infinite into the increasable

infinite, or transfinite, and the absolute infinite. For Cantor, the transfinite

"is in itself constant, and larger than any finite, but nevertheless

unrestricted, increasable, and in this respect thus unbounded. Such an

infinite is in its way just as capable of being grasped by our restricted

understanding as is the finite in its way." [Hal84, page 14]

Ordinal numbers are used to count the members of a set arranged in some order,

so first we need some terminology for ordering relations. A binary relation < on a
set a is said to be

reflexive: if x < x,

54Sources for this section include Cantor [Can55], Hallett [Hal84], Hatcher [Hat82], and John-
stone [Job87].
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irreflexive: if-_(x < z),

symmetric: if z < y D y < x,

asymmetric: if x < y D --(Y < x),

antisymmetric: if x < y A y < x D x = y,

transitive: ifx<yhy<zDx<z,

connected: if z < y v y < x,

trichotomous: if x < y V y < x v x = y, and

well-founded: if Vb C_a : b _ 0 D 3x E b : -_3y E b : y < x (i.e., every nonempty

subset of a has a <-minimal member).

Furthermore < is said to be a

preorder: if it is reflexive and transitive,

partial order: if it is reflexive, transitive, and antisymmetric,

total order: if it is retiexive, transitive, antisymmetric, and trichotomous,

strict order: if it is irreflexive, transitive, and antisymmetric (actually, the third

is implied by the first two),

strict total (or linear) order: if it is irreflexive, transitive, antisymmetric, and

trichotomous (again, the third is implied by the first two),

well-orderlng: if it is irreflexive, transitive, antisymmetric, trichotomous, and well-

founded (actually, the last condition implies the first, the last two imply the

second, and the first two imply the third--so that all we really need is well-

founded and trichotomous). Equivalently, we can say that a well-ordering is a

well-founded linear order.

The idea of the ordinals is that they should be sets with a canonical weU-order.

Then, since every set has a well-ordering in ZFC (the existence of a well-ordering

is equivalent to the axiom of choice), the members of any set can be placed in

order alongside those of an ordinal, whose members then act as numbers for all the

positions in the line. (The unique ordinal isomorphic to a given set a, well-ordered

by <, is called the order-type of (a, <).)

In ZFC, the only primitive relations are E and =, and of these only E is a

candidate for forming a well-ordering. Then, in order to achieve trichotomy, we will
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need to construct sets whose members are such that of any distinct pair of members,

one is a member of the other (this is connectedness). It turns out that sets with

these properties can be found among the transitive sets, where a set a is called
transitive if

yE z andx E a D yE a.

(Transitive sets a have the properties U a ___a and a c_ 7)(a)--i.e., every element of

a is also a subset of a.) We then define the ordinals as the transitive sets that are

well-ordered by E (or, equivalently, the sets that are both transitive and connected).

¢ is an ordinal, and if x is an ordinal, then so is x U {x) (which I will denote

x'). Consequently, the sets no, nl,...n_,..., which were defined in just this way in

the previous section but one, are ordinals (they are called the yon Neumann natural

numbers). An ordinal y such that y = x I for some ordinal x is called a successor; all

other ordinals (except $) are called limits. Now, we know (from the axiom of infinity)
that the set w of all the von Neumann natural numbers exists; it can be shown to be

transitive and connected, and is therefore an ordinal. It can also be shown not to be

a successor, and is therefore a limit ordinal (in fact the smallest one). It is also our

first infinite number. We can create larger infinite ordinals by iterating the process

used to create w. That is, we can form the successors w', w _', win,.., and then collect

these (together with 0, 1, 2,... ,w) up into a set, which we will call w × 2 and which

is another ordinal. In this way we can form aJ × 3, w × 4,... To get further, we need

to define the operations of addition, multiplication, and exponentiation on ordinals.

These are each defined by recursion, with separate cases according to whether the

second argument is 0, a successor, or a limit.

a+O = o_

=

a+fl = L.J{a+TiT<fl} whereflisalimit

If a is the order-type of a set a, and fl the order type of a set b, then a + _ is the

order-type of the disjoint union of a and b under lexicographic ordering.

axO = 0

=

ax/3 = U{axTlT<fl}where_isalimit

If a is the order-type of a set a, and fl the order type of a set b, then a x _ is the

order-type of the Cartesian product a x b under lexicographic ordering.
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o_° ---- 1

OZ_ = O_B X a

c_0 = L.J{a'YI 0 < 3, </3) where/3 is a limit

If a is the order-type of a set a, and /3 the order type of a set b, then /3_ is the

order-type of the function space a --* b.

Note that the first two cases in each set of equations are the same as the corre-

sponding Peano axioms (with the i operator in place of suce), so that the successor

ordinals (and, in particular the von Neumann natural numbers) behave just fike the
natural numbers. The case of the limit ordinals is a little different, however, for

addition and multiplication are not commutative in these cases (e.g., 1 + _ =

whereas w + 1 = 0J, and 2 x w = w whereas w x 2 = w +w).

In this way we can form ordinals up to e0 = w _'_" (the ordinals continue beyond

this, but for formal methods e0 is usually adequate).

Each nonzero ordinal a has a unique representation (called Cantor normal form)

of the form

O_ = _o'0 X a O-Jr03 _1 X a 1 "Jr "''_'_n X an,

where c_ >_ c_0 _> cq _> .-. >_ c_ and a0,aa,...a,_ are nonzero natural numbers.

Constructive representations of the Cantor normal form are quite convenient in

formal methods to establish "termination" arguments for recursions on tree-like data

structures. Returning to the example of Ackerman's function that motivated this

introduction of the ordinals, we can now see that our treatment of its termination

becomes satisfactory if we set _ = w.

A.8 Cardinal Numbers

The transfinite ordinals are needed to establish the soundness of certain construc-

tions in formal methods. Transfinite cardinal numbers, on the other hand, find little

application in formal methods, so I will just briefly mention them. 5s

The cardinality (or cardinal number) of a set a, often written la], is the "number"

of members it contains. This concept of "number" is straightforward for finite sets,

but needs care when we consider infinite sets. The key idea (due to Cantor) is to

start by defining two sets to have the same "size" (the technical term is equipolIent)

if the members of one can be put into bijective (i.e., 1-1 and onto) correspondence

SSThis section draws on Halmos [Hal60].
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with those of the other. A set a is smaller than a set b if there is an injection (i.e.,

1-1 function) from a to b, but not vice-versa. 56

The cardinal number of a set could be defined as some canonical member chosen

from the collection of sets that have the same size. The trouble is that this collec-

tion is too big to be a set, so we cannot define it within set theory. However the

ordinals having the same size as a given set do constitute a set; and since any set

of ordinals is well-ordered, we can choose the least member of that set to be the

canonical representative that is the cardinal number of the original set. It is easy to
see that the transfinite cardinals are chosen from the limit ordinals. The smallest

transfinite cardinal is w; when considered as a cardinal, it is usually written R0 and

pronounced "aleph-null." Sets of cardinality Ro (i.e., those whose members can be

put into bijective correspondence with the natural numbers) are called countably or

denumerably infinite. (Recall Dedekind's definition that a set is infinite if it has the

same size as some strict subset of itself.) All the ordinals mentioned in the previous

section, including eo are countable. The smallest uncountable ordinal is denoted f_;

as a cardinal it is denoted R1.

Cantor's theorem demonstrates that the size of any set is strictly less than that

of its powerset, 57 so we know Iwl < I:P(w)]. We have defined Iwl = R0, and cardinal

arithmetic is defined so that [P(w)l = 2 a0. Thus R0 < R1 _< 2_°. The continuum

hypothesis conjectures that the second of these relations is not strict: i.e., R1 = 2 _°.

Now the set of real numbers has the same size as T'(w), so another (in fact, the

original) way to state the continuum hypothesis is that the cardinality of the reals

is the least uncountable cardinal. (The set of real numbers is also known as the

continuum, hence the name of the hypothesis.) The continuum hypothesis is known

(by results of GSdel and Cohen) to be independent of the axioms of set theory.

A.9 Many-Sorted Logic

Classical first-order theories treat all individuals as belonging to some single uni-

verse. It is sometimes convenient to distinguish different sorts of individuals within

the universe. For example, we may want some variables to represent natural num-

bers, others reals, and so on. Many-sorted logic allows first-order systems to be

extended in this way. Mathematicians generally use subscripts to indicate the sort

to which a variable belongs, so that x_, for example, indicates a variable x of some

sort called a. Quantification in many-sorted logic extends only over the sort of the

5OTheSchrfxiet Bernstein theorem states that if there is an injection from a to b, and vlce-versa,

then the two sets have the same size. Its proof is a standard test piece in mechanized theorem
proving.

5¢This is another standard small problem for mechanized theorem proving.
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variable concerned, so that

(vx : ¢(x))

means that the formula ¢ with free variable x is true whenever x is replaced by any

value of sort a (for simplicity, I generally drop the sort subscript once the variable

has been introduced). Functions and predicates also indicate the sorts of values

over which they operate. For example, the function abs whose value is the natural

number that is the absolute value of its integer argument will be described as having

signature Z _ A/', where Z is the sort of integers, and A/" that of natural numbers.
As with individuals, the signature of a function can be indicated in formulas as a

subscript, for example
xz _ 0 D absz--.Ar(xz) > O.

The model theory of predicate calculus is adjusted in the many-sorted case so

that each sort is interpreted by its own specific "carrier set" and various technical

adjustments are made (for example, sorts should generally not be empty) so that the

resulting system is sound and complete. Many-sorted systems are very natural for

computer science, since computer programs usually need to distinguish the different

kinds of objects represented and manipulated.

A.1O Typed Systems and Higher-Order Logic

While Zermelo and Fraenkel developed axiomatic set theory, Russell [WR25] ex-

plored a different approach to the construction of a consistent set theory. 5s Con-

sidered from one perspective, Russell's paradox demonstrates that Frege's axiom

of comprehension is dangerously unrestricted. This is, essentially, the perspective

of axiomatic set theory: the ZF axioms break the unrestricted connection between

predicates and sets given by the axiom of comprehension and substitute more con-
strained ways of constructing sets. But there must be more to it than this, for

it is possible to reproduce Russell's paradox without ever mentioning sets: simply

consider the predicate that characterizes those predicates that do not exemplify

themselves. 59 Predicates such as this are higher order: their construction involves

predicates that apply to predicates, and quantification over predicates. For example,

if we abbreviate the predicate that characterizes those predicates that do not exem-

plify themselves by PNET (for Predicates Not Exemplifying Themselves), then the

definition for this predicate is PNET(P) = -_P(P). Russell's paradox is obtained

_SSources for this material include Andrews [And86], Hatcher [Hat82], Benacerraf and Put-

nam [BP83], van Bentham and Doets [vBD83], and Hazen [Haz83].

5SA predicate exemplifies itself if it has the property that it characterizes: for example, the

predicate that characterizes the property of being a predicate is clearly a predicate, and does

exemplify itself; whereas the predicate that characterizes the property of being a man is not a man,

and so does not exemplify itself.
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by substituting PNET for the free predicate variable P in this definition to obtain

PNET( PNET) - --,PNET( PNET).

Frege's system was higher-order, and we can now see that axiomatic set theory

does much more than replace the axiom of comprehension with the axioms of ZF: it

also eliminates all functions and all predicates but E and = from the logic and re-

stricts quantification to the first order case (i.e., variables can range only over sets). 6°

ZF then reconstructs functions and predicates within set theory (as sets of pairs)

and in this way develops an adequate foundation for mathematics. This approach is

that associated with the formalist school of Hilbert, and is essentially mathematical

and pragmatic; it is mathematical because it is based on essentially mathematical

intuitions. No one would claim that the axiom of replacement, say, is an elementary

truth, fundamental to all rational thought; rather, it is a mathematical construction

(and a pragmatically motivated one at that).

Unlike the formalists, Frege and Russell were logicists: they wanted logic to

comprise exactly the fundamental truths of rational thought, and then wanted to

show that mathematics followed (inevitably) from such a logic: they didn't want

to axiomatize mathematics, they wanted to derive it. What Russell sought to do,

therefore, was to retain all the generalities of Frege's system, with arbitrary function

and predicate symbols, and higher-order quantification (because these are necessary

to capture informal logical discourse, and to derive mathematics without additional

axioms), but to find some minimal and plausibly motivated restriction that would

keep the antinomies at bay.

Russell and Poincar6, in the course of an exchange of letters, decided that the

source of the antinomies was what Russell called "vicious circle" constructions, and

what Poincar6 called impredicative definitions [Go188]. An impredicative definition

is one that has a particular kind of circularity; it is not the circularity of recursion,

but one where a thing is defined by means of a quantification whose range includes

the thing being defined. Thus, a set b is defined impredicatively if it is given by
forms such as

b= {xlVy e a:P(x,y)},

where P is a predicate and b may be an element of a.

In work culminating in the Principia Mathematica of 1905 [WR25] (written with

A. N. Whitehead), Russell developed his ramified theory of types that augments

higher-order logic with rules that exclude impredicative definitions. There are two

components to the ramified theory: types and orders. The second of these causes

certain technical difficulties, and Russell introduced an "axiom of reducibility" to get

around them. Chwistek and Ramsey noted that this axiom vitiates the purpose of

8°The idea that set theory should be based on first-order logic was due to Skolem. A very readable
account of the emergence of first-order logic is given by Moore [Moo88].
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orders, and one might as well have started out with just the notion of types and never

bothered with orders. However, this simpler theory is vulnerable to some paradoxes

that are avoided by the full ramified theory (without the axiom of reducibility).

Accordingly, Ramsey (building on an observation of Peano) divided the para-

doxes into those he called logical (such as Russell's, Cantor's and Burali-Forti's),

and those he called semantic (such as the Liar, Richard's, Grelling's, and Berry'sm);

he then argued that the semantic paradoxes are the concern of philosophy or linguis-

tics, not logic, since they concern the interpretation of concepts like "nameable," not

basic problems in the machinery of deduction. Ramsey argued that the requirement

on a logic is that it should exclude the logical paradoxes; excluding the semantic

ones is optional. He noted that types are adequate, on their own, to exclude the

logical paradoxes; orders and the complexities of the ramified theory are needed only

to exclude impredicative definitions and the semantic paradoxes. Ramsey [Ram90]

then reconstructed Russell's system (principally by eliminating orders) so that "its

blemishes may be avoided but its excellences retained" to yield what is now called

the simple theory of types (its modern formulation is due to Church). 62

Roughly speaking, simple type theory avoids the logical paradoxes of naive set

theory by "stratifying" sets according to their "type" or "level." Individual elements

can be considered to belong to level 0, sets of those elements to level 1, sets of sets

of elements to level 2, and so on. The comprehension axiom

(3y: (w e y -

is then restricted to the case where x is of a lower level than y. I say "roughly

speaking" because simple type theory is a logic of predicates rather than sets: instead

of saying "x is a member of the set y" (i.e., x E y), in type theory it is more common

to say "x has property y" (i.e., y(x)). In terms of predicates, simple type theory

requires that each predicate has a higher type than the objects to which it applies

(and therefore a predicate cannot apply to itself). The "definition" of the predicate

PNET given earlier is inadmissible because its right-hand side is not well-typed.

61Berry's is the easiest of these to describe: consider "the least natural number not nameable by
an English phrase of less than 200 letters." The material in quotation marks is an English phrase
of less than 200 letters that names this number.

6_It is possible to construct a predicative type theory (i.e., one that excludes impredicative defi-
nitions) similar to the ramified theory without resorting to an axiom of reducibility [Haz83]. Limi-
tation to predicative definitions is a powerful restriction: {t eliminates construction of the Dedekind
cut, and with it good part of analysis, and also Cantor's theorem and the general theory of cardinal
numbers and the higher infinities. Furthermore, from the Platonist perspective adopted by most

mathematicians (namely, that mathematical objects really exist), there is nothing objectionable in
impredicative definitions: the "vicious circle" disappears if we conceive of the offending definitions
as selecting some member from a pre-existing collection. Consequently, few mathematicians espouse

the rigors of a predicative type theory.
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I just said that simple type theory is a logic of predicates, but it is usually built

on a more primitive foundation that takes (total) functions as the basic elements,

with predicates as a special case. Within this framework, functions are allowed to

take other functions as arguments and may return functions as values. The type of

a function indicates the "level" at which it operates in a more sophisticated way

than the simple numbering scheme for levels suggested earlier. Thus, if _ is the type

of individuals (which can be considered as functions of zero arguments), the type of
functions from individuals to individuals can be denoted t ---* _, and a function on

those functions will have type (e _ t) --* (L _ e).63

It is generally convenient to use a many-sorted foundation, and to subsume

sorts within the type structure, so that a function type (Z _ Af) _ A/" indicates

a function whose values are of type 64 natural number and whose arguments are

functions from integers to natural numbers. Within this framework, we distinguish

a type B (for "Boolean," though mathematicians generally write it o), and then

view predicates as functions returning type B. Thus, the predicate < on the natural

numbers can be considered a function of type Af x Af ---, B. Next, since the principle

of comprehension holds that every predicate determines a set, we dispense with the

separate notion of set and simply identify sets with predicates: z E y is identified

with the truth of y(x).

In this scheme, dropping some of the more tedious subscripts, the comprehension
axiom becomes

(3y_--.t_ : (Vxa: y(x) -- AB))

where AB is a formula in which y does not occur free. The typing restrictions

attached to x and y prevent the kind of self-reference that leads to the paradoxes

of naive set theory. The same construction can be used to assert the existence of

general functions as well as predicates:

(3ya--.r : (Vx_: y(x) = Ar)). (A.2)

The function ya_.._ whose existence is thereby asserted can be denoted

(,_x_, : Ar)a--._.

The ,_ here is called the abstraction operator; (,kxq : A_),_.._ is the name of the

function whose value on argument xa is A_, where xa presumably occurs free in A_.

For example,

(,Xxz : (if x < 0 then - x else x)Ar)z-..]¢

SaTypes allow us to distinguish (t -- _) --, (, _ ,) from (t --* _) -. ,, which cannot be done by
simply numbering "levels."

6_Actually this is a sort, but the distinction between sorts and types is generally dropped in type
theory.
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is the "absolute value" function on the integers. A is a variable-binding operator,

just like the quantifiers. 65

Using this notation, the comprehension a_om (A.2) becomes

(Vxo: (Axa: Ar)a--.,(xa) = AT)

and since the innermost xo is bound by the A, whereas the others are bound by the

V, we can instantiate the V-bound instances with a term ta to obtain

(Aza: A,)o...,(t_) = A,[xo _ to],

which is the rule of fl-conversion.

Church first developed a system for defining and manipulating functions defined

by A-abstraction. His system is called the A-calculus, and it provides a foundation for

the semantics of functional programming languages. In addition to fl-conversion,

there are two other "conversions" (sometimes also called "reductions") in the A-
calculus.

alpha-conversion: this is the renaming of bound variables--that is,

(Axe: A_(x))o_._ = (Aye: A_(y))o-._.

eta reduction: this says that a function equals its own abstraction--that is,

(Axe, : fa--,r(x))a--,_ = fa--*r.

In axiomatic set theory, individuals, sets, sets of sets, and so on all belong to

the same universe, and quantification extends over the entire universe. In type the-

ory, the universe is stratified by the type hierarchy, so that quantification applies

to each type separately. This means that type theory allows (in fact, requires)

quantification over functions and predicates. For this reason, it is also known as

higher-order logic: propositional calculus allows no quantification and can be re-

garded as "zero-order" logic, predicate calculus allows quantification over individuals

and is also known as '_first-order" logic, "second-order" logic allows quantification

over functions and predicates of individuals, "third-order" allows quantification over

functions and predicates of functions, and sc_ on up to w-order logic, which allows

quantification over arbitrary types. In this scheme, type theory or higher-order logic

corresponds to w-order logic.

8Sin fact it is possible to define the quantltlers in terms of )t by means of the construction

(w: ¢) -- (_: ¢) = (x_: t,.e).
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<_In higher-order logic, functions can take other functions as arguments and re-
turn functions as values (functions that do so are sometimes called functionals,

and the term function is then reserved for those functions that operate on, and

return, simple values). Functions of several arguments can be treated as function-

als of a single argument in higher-order logic by a process known as "Currying"

(named after the logician H. B. Curry, although it was actually first described by

SchSnfinkel [Sch67]). To see how this works, suppose we have a function f that

takes two arguments and returns the result of adding the first to the square of the

second:

/ (),zz, yz : x + y2)z×z_z

so that we have f(2,3) = 11. We could instead define a functional f' that takes

a single argument and returns a function that takes another single argument and

returns the square of that value, plus the argument to the first functional:

I' deal(Azz : (Ay ¢ : x +

In this case we have f'(2) = (Ay: 2 + y2)Ar--.Af, so that f'(2)(3) = 11. In general, a

function application g(x, y,..., z) is equivalent to a sequence of Curried applications

g'(x)(y)... (z). Currying makes it easier to define the logic since it is only necessary
to consider functions and predicates of one argument (I am implicitly doing this

in the presentation here). Some formulations and mechanizations of higher-order

logic (e.g., HOL) require all functions to be Curried, whereas others merely allow

it. The mandatory use of Curried functions makes for unfamiliar constructions and

is a difficult hurdle for many users; however, the freedom to use functionals is very

valuable when used appropriately.

Type theory or higher-order logic has the same axioms and rules of inference

as first-order logic with equality (generalized to allow quantification over functions

and predicates), together with the type-restricted form of the comprehension axiom

given earlier, and an axiom of extensionality:

Extensionality: (Vx_ : fo_.._(x) = go--.r(x)) D f = g.

This simply says that two functions (or predicates) are equal if they take the same

value as each other for every value of their arguments.

<_>There are two main classes of models for type theory. The details are very
technical but a rough idea can be conveyed as follows. Since we can quantify

over functions in type theory, we have to ask what we mean when we speak of all

functions from D to D, say. Under the standard interpretation, we really do mean

all functions on the domain that interprets D. A formula is valid if it valuates to

true in all such interpretations. On the other hand, we might want to interpret all
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as ranging over just some particular class of functions (e.g., the continuous func-

tions). In this latter case, the interpretation is relative to what is variously called

a frame [Mon76] or a type structure [And86] that identifies the particular cla._s of

functions concerned. Under the general models interpretation of type theory (due

to Henkin), a formula is valid if it valuates to true in all frames or type struc-

tures. Since the standard interpretation is included as one frame among those of

the general models interpretation, it is clear that fewer formulas are valid under the

general models interpretation than under the standard one. The standard interpre-

tation is the more natural one, but the axioms given above are not complete in this

case (though they are sound and consistent). The advantage of the general models

interpretation is that the axiomatization is complete for this case (it cuts out the

valid but unprovable formulas), and several other metamathematical properties can

also be established. Furthermore, under the general models interpretation, there is

a way to translate or interpret higher-order logic formulas into (sorted) first-order

logic.

The logicist's hope was that with type theory as a "self evident" foundation, it

would be possible to derive mathematics in a consistent way without the need to

introduce additional axioms such as those of Peano, or Zermelo-Fraenkeh

"What were formerly taken, tacitly or explicitly, as axioms are either

unnecessary or demonstrable" [WR25, preface].

Natural numbers can be defined as using an idea due to Frege: 3, for example,

is the predicate that designates the property of being a triple. I will not give the

formal definitions here, since they are tricky, but the idea is that 0 is the property

of being the empty set, and the property of being the successor succ(n) to some

natural number n is that of being a set that can be formed by adding an element

to a set that has the property n. 66 The problem with this approach is that there

is nothing that requires the individuals to be infinite in number, and so we cannot

guarantee that any large numbers exist. This difficulty is overcome by adding an

axiom of infinity to the other axioms of type theory. There are several ways to

state this axiom, but one way is to assert that there exists some relation < on the

individuals that is irreflexive, transitive, and unbounded (i.e., (Vx : (3y: x < y))).

With this foundation, it is possible to derive Peano's axioms as theorems.

6°Since sets and properties are equivalent in type theory, another way to say this is than n is

the set of all n-element sets. This way of looking at things led to much criticism: surely the set

of all triples, conceived as a totality, is _an extravagant affair" [Car58, page 141]. This indicates

the significant difference between set theory and type theory. In set theory, sets are conceived as

totalities, and to avoid the paradoxes we have to make sure they do not get _too big." In type

theory, sets are conceived as determined by their properties, and to avoid the paradoxes we must

obey the restrictions of typing.
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As noted earlier, type theory without the axiom of infinity is consistent and

(under the general models interpretation) complete. Since the addition of the axiom

of infinity allows us to develop arithmetic, it is not surprising, in light of GSdel's

results, that the full system (with the axiom of infinity) is incomplete. In _erms of

power, this form of simple type theory is equivalent to Zermelo set theory (i.e., ZF

without the anion] of replacement). For computer science, the consequent loss of

the higher infinities is unimportant.

Type theory logic is notationally complex 67 and has some properties that math-

ematicians find inconvenient. For example, the empty set is not a simple notion: for

each type, the empty set of elements of that type is distinct from the empty set of

a different element type. This duplication seems perfectly acceptable on lillguistic

grounds (e.g., is having no money the same as having no worries?); rather less so is

the realization that the construction of the natural numbers undertaken above was

performed relative to a type (I glossed over this), so that every type has its own

version of the natural numbers, and its own arithmetic. For these reasons (although

the dominant reason may be mere familiarity) mathematicians are generally more

comfortable with axiomatic set theory than with type theory, ss

For formal methods in computer science, however, the balance of advantage

may be different; computer scientists are used to typed systems in programming

languages, and their practice of "declaring" variables and constants before use sim-

plifies some of the notation (by supplying type information implicitly); "overloading"

(allowing a single symbol such as + or "emptyset" to denote several similar func-

tions of different types that are distinguished by context) also contributes to simple,

familiar notation. 69 The duplication of numbers and arithmetics can be overcome

by simply adopting Peano's axioms, so that the (canonical) natural numbers are

available as a base sort. 7° The incompleteness of type theory under the standard

interpretation renders it unattractive to metamathematicians, but this is of little

concern in formal methods, since we will need arithmetic and other incomplete the-

ories in any case.

The great advantages of type theory as a foundation for formal specification

languages are the very strong and mechanized "typechecking" that can be provided

eTEspeciaUy using the mathematicians' notation; they Curry all functions, drop all punctuation,
reverse the order of the type-symbols, and write function application without parentheses--see

Andrews [And86], for example.
68Fraenkel, Bar-Hillel, and A. Levy call the =reduplication" of notions such as numbers and the

empty set _repugnant" [FBHL84, page 160].
69Russell employed a similar approach, which he called =typical ambiguity": type symbols were

usually omitted, and the user was expected to mentally supply them in a manner that provided a
well-formed construction.

7°This would be repugnant to Russell, since he wanted to minimize use of axioms; but for formal
methods we are concerned with utility, not philosophical purity.
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(this makes for very effective early error-detection in specifications), and the expres-

sive convenience of higher-order constructions and quantification. Constructions

that require metalogical assistance, such as schema, to specify in first-order theories

(e.g., induction, or Hilbert's _ operator), or that require set-theoretic constructions,

call often be stated simply and directly in type theory. The fact that everything is

built on total functions also allows for rather effective mechanical theorem proving

in type theory (recall that in set theory, total functions are a special case).

Formal methods and theorem proving systems based on the simple theory of

types include HOL [GM93], PVS [ORS92], and TPS [AINP88].

A.11 Special Topics

In this section I briefly touch on a number of topics. The aim here is simply to

give readers exposure to certain terms they may run across in the literature or
in discussions on formal methods. My treatment will be very brief and rather

superficial, but should at least point to the relevant literature and help the reader

identify the field to which a particular concept or piece of terminology belongs.

A.11.1 Modal Logics

Aristotle and, later, medieval logicians conceived of many modes of truth, such as

necessary truths, and those things that ought to be true, or that we know to be

true, or believe to be so.

It is possible to formalize these notions by adding the modal operators (also called

modalities) [] and O to the propositional calculus (thereby yielding a propositional

modal logic). 71 For example, •A can read as "it is necessary that A," in which case

_A is read as "it is possible that A."

All modal logics define O in terms of [] by the identity

OA = --,D-_A.

They also include all the theorems of propositional calculus (generalized to include

those with modal operators, such as [::]A D •A), modus ponens, and the inference

rule of necessitation:
A

hA"

rl Mints [Min92] is a good introduction to modal logic.
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What axiom schemes are added depends on the readings ascribed to the

modal operators. There are several axiom schemes with standardized names:

K: O(A D B) D (DA D DB)
D: DAD OA

T: DAD A

4: DA D r_DA

B: A D DOA

5: <)A D D<)A.

Modal logics are given names such as KT4, which identifies the logic that contains

just the axiom schema K, T, and 4. Some standard modal logics are KD, KT4 (also

known as $4), KT5 (also known as $5), and KD45. $5 is historically important

as the logic of necessity, but more recently it has become widely used in computer

science as a logic of knowledge (DA is then read as "it is known that A"). Using this

modal logic to reason about "who knows what" has proved a powerful way to analyze

distributed systems [HF89]. $4 gives rise to many temporal logics (DA is then read

as "always A" and OA as "sometimes" or "eventually" A), which can be used to

reason about the properties of concurrent and distributed systems. The modal logic

KD45 can be used as a logic of belief (DA is then read as "it is believed that

A') and has found applications in reasoning about cryptographic key distribution

protocols [Ran88]. KD is a "deontic" logic: one for reasoning about obligations.

Leibniz was the first to conceive a recognizably modern semantics for modal

logic. He imagined that there could be many worlds: necessary truths would be
those that are true in a_ worlds, possible truths would be those that are true in

only some of them. Models for modal logics are based on this idea of a "possible

world" semantics (also called "Kripke" semantics after Saul Kripke, who developed

the formal treatment while still in his teens). The details are a little too lengthy

to go into here, but a key component is an "accessibility" relation between pos-

sible worlds; the various standard modal logics can then be characterized by the

algebraic properties of the accessibility relation in their models. For example, $5

is characterized by an accessibility relation that is an equivalence relation. These

topics are developed in standard texts on modal logics, such as those by Hughes and

Cresswell [HC68, HC84], and Chellas [Che80].

As noted, temporal logics are modal logics (generally specializations of $4) in

which the operators [] and _ are read as "always" and "eventually," respectively.

Pnueli [Pnu77] was the first to recognize that these logics could be used to reason

about distributed computations and, in particular, about liveness properties (that

is, about things that must happen eventually). There are two families of temporal

logics: linear time and branching time [Lam83]. Both families have their adherents,

and both have led to effective specification techniques. It is usually necessary to em-

bellish the basic logics of either family with additional operators in order to achieve

a comfortable degree of expressiveness; examples include "next state," "until," and
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backwards-time operators. Interval logics are temporal logics specialized for reason-

ing over intervals of activity. The Temporal Logic of Actions (TLA) [Lain91] is a

temporal logic in which the modal operators are generalized from states to pairs of

states (actions); it achieves considerable expressiveness with very little mechanism.

As with predicate calculus, a valid formula in modal logic is one that valuates to

true in all interpretations. Many modal logics have what is called the "finite model

property," which renders them decidable. The models of temporal logic are essen-

tially finite-state machines; conversely a finite-state machine is a potential model

for a temporal logic formula. This observation gives rise to "model checking": the

goal is to check whether a finite-state machine describing a system implementation

satisfies a desired property specified as a temporal logic formula. This process is

equivalent to testing whether the specified machine is a model for the specified for-

mula. Because temporal logic can be quite expressive, and because model-checking

is decidable, this technique offers a completely automatic means for verifying cer-

tain properties of certain systems [CES86]. Very clever model-checking algorithms

allow finite-state machines with large numbers of states to be checked in reasonable

time [BCM+90]. Model checking is an example of a state-exploration method (recall

Section 2.2.3); it is not a replacement for conventional theorem proving in support

of verification (it is applicable to only certain properties and implementations), but

it can be a very valuable adjunct.

Despite their name, temporal logics do not provide ways to reason about "time"

in a direct or quantitative (i.e., "real-time') sense: they provide a tool for reasoning

about the order (i.e., temporal sequencing) of events, and about eventuality prop-

erties. Several extensions have been proposed to both temporal [AH89, Koy90] and

classical logic [JM86, Ost90] for reasoning about real-time properties, but these are

best regarded as promising research, rather than techniques ready for immediate

exploitation.

All the modal logics I have considered so far are propositional. It is possible to

combine modal operators with quantification to yield first-order modal logics, but

the details prove rather tricky (see [HC68]).

A:il:2 Logics for Partial Functions

Partial functions are those whose values are not defined for all arguments in their

domain: for example, division is not defined when the divisor is zero. The question

then is what meaning to ascribe to expressions such as

X

- x y = z (A.3)
Y

when it is possible that y could be zero. I briefly mention four main approaches.

Cheng and Jones [CJ90] consider a few others but do not, in my opinion, do adequate
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justice to the second and fourth of the alternatives below. Farmer [Far90] gives a

very readable discussion at the beginning of an otherwise very technical paper.

All functions are total. In this scheme, every function has some value assigned
for each member of its domain--so that __, for example, does have a value. We

can choose whether or not to supply axioms that enable any properties of such

"artificial" values to be deduced. If, for example, we choose not to specify any
properties of the value x_, then we will not be able to prove (A.3) as a general
theorem, though we will be able to prove the weaker form

X

y _ 0 D - x y = x. (A.4)
Y

The arguments against this approach are that it does not correspond to in-

formal mathematical practice, and that we have to be very careful to avoid

inadvertently defining (and hence having to implement) properties of the ar-

tificial values or, worse, introducing inconsistencies. For example, if we took

(A.3) as an axiom, then the case y = 0 gives _ x 0 = x. But another rule of
x

arithmetic is z x 0 = 0, so that the substitution z +- _ gives _ x 0 = 0, which
contradicts the earlier result (when x is nonzero).

Functions are total, on a precisely specified domain. This scheme is the

same as the first, except that it is performed in the context of a logic with a

very rich type system, including what are called predicate subtypes and depen-

dent types, that allow the domains of functions to be specified very precisely.

As its name suggests, a predicate subtype is one associated with a predicate.

In the case of division, for example, we can associate the subtype Q' of the

rationals Q with the predicate (Aq : q _ 0) and can then type the division

operation as a total function Q x Q_ _ Q. An expression like _ then has no

meaning since it does not satisfy the rules of typing. The expression (A.3)

is perfectly valid (and can be taken as an axiom), provided y is of type Q'.

More interestingly, the theorem (A.4) is valid, even when y is of type Q (and

could, therefore, be zero), because the value of the expression is independent

of the type-incorrect application 0_: if y = 0, then (A.4) is true because the an-

tecedent to the implication is false (and the value of _ is irrelevant); otherwise
y is of type Q' and (A.3) applies.

Dependent types are most easily understood by means of an example. Consider
the function

f(z, dof= V/X--y.

This function is undefined (on the reals) if its second argument is larger than

its first. But if we change the domain of the function from R x R to

z:Tt x {y:RIz >_ y} (A.5)
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(i.e., to pairs of real numbers in which the first is not less than the second),
then the partiality disappears: the function is total on this more precisely

specified domain. Types such as A.5 are called dependent because the type of

the second component depends on the value of the first.

The advantages of this approach over the previous one are that it obviates
2?

any need to construct artificial values or axioms for expressions such as _ or

pop(empty), and it disallows (and typechecking will flag) unsafe expressions

such as (A.3) when y is of type Q, thereby forcing us, early on, to recognize

the need for the guarded form (A.4). Its disadvantage is that typechecking

becomes undecidable: theorem proving may be needed to decide the accept-

ability of formulas. Pragmatically, however, this approach appears quite effec-

tive (especially when its mechanization includes a powerful theorem prover),
and seems attractively close to informal mathematical practice. Approaches

of this kind are used in the Nuprl [C+86], PVS [0RS92], and Veritas [HDL89]

systems.

Multiple-Valued Logics. If we admit truly partial functions into the logic, then
several further choices must be faced. One choice, typified by the "free" logics

discussed in the next item allows terms that have no denotation, but does not

allow "undefined" as a value. The alternative introduces a special "undefined"

value, often denoted .1_that can be manipulated like an ordinary value.

Once "undefined" is admitted as a value, we have to further decide whether

undefinedness is allowed to propagate from the term to the (logical) expression

level: for example, does an expression like f(z) < g(y) always yield an ordinary

truth value, even if f(x) could be undefined, or could the expression itself be

undefined? Attempts to restrict "undefined" to the term level have not been

very successful, so it is generally necessary to admit "undefined" into the logic
as an additional truth value. The Logic of Partial Functions (LPF) [BCJ84]

is of this kind; it provides the logical foundation for the VDM specification

notation. A disadvantage of this approach is that all the logical connectives

must be extended to the case of undefined expressions and, more importantly,

certain properties of traditional logic must be adjusted to retain soundness. In
the case of LPF this leads, for example, to the loss of the law of the excluded

middle and the deduction theorem.

The main argument against LPF is that it is clumsy, nonstandard and unfa-
miliar. A consideration of some alternative partial logics, and the identifica-

tion of one that is free of many of the disadvantages of LPF, has appeared

recently [Owe93].

Free Logics. The original motivation for free logics was to avoid certain "para-
doxes" that arise when constants are assumed always to refer to objects in
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the domain of quantification [Ben85]. For example, starting from the identity

K = K, where K is some constant, we can obtain the theorem (3x : x = K)

by existential generalization. If h" abbreviates "The King of France," then

we have just proved that there is a King of France! Free logic avoids this

anomaly by introducing a predicate E called the existence predicate (E(a) is

interpreted as "a exists") and restricting quantifiers to range only over existing

objects. The quantifier rules are modified so that we can deduce (3x : x = K)

from K = K only if we have already established E(K)--which is tantamount

to what we are trying to prove.

Logics to deal with partial functions have been proposed along these

lines [TvD88, volume I, chapter 2, section 2]. The challenge is to construct a

logic that is as faithful to informal mathematical practice as possible. Scott's

formulation [Sco79], for example, has the disadvantage that (Vx : ¢(x))is no

longer equivalent to ¢(x). Beeson introduced an alternative system that over-

comes most objections [Bee86] (more accessible references are [Bee85, Chapter

6, Section 1] and [Bee88, Section 5]).

Whereas Scott's is a logic of partial existence (it allows models with objects

that do not satisfy the existence predicate), Beeson's is a logic of partial terms

(LPT) that is concerned with the definedness of names and terms. LPT in-

troduces the atomic formula al, where a is a term, with the interpretation "a

is defined." The quantifier axioms become

A4'. (Vx: ¢(x)) Atl D ¢[x +--t],

AS'. ¢[x .-- t] ^ tl D (3x: ¢(x)).

In addition, we have cl and xl for each constant symbol c and variable x.

Atomic formulas evaluate to true only if their arguments are defined:

¢(s,t,..., u) _ _Î tl̂ ..- ^ ui, (A.6)

where s,t,..., u are metavariables representing terms. Two notions of equality

are used: = is strict equality (false if either of its arguments is undefined), and

is "Kleene equality," which is true if both its arguments are undefin, ed:

def ; ,
s_t = (s_vtl) Ds=t.

The equality axioms are

x = xA(x = y _ y=x),

s _ t A ¢(s) D ¢(t), and

s = t _ sl Atl.
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(Here x and y are variables). The last of these is a special case of (A.6), as is

u)l= sl ^ ^"" ^ ul

(i.e., functions are defined only if their arguments are).

PX [HN88] is a computational logic based on these ideas, while a (higher-

order) logic of this kind is mechanized in the IMPS system [Farg0, FGTg0],
and variants have been proposed for other specification languages [MR91].

Gumb [Gum89, Chapter 5] uses a free logic to express facts about execution-

time errors in programs, and Parnas presents a "logic for software engineer-

ing" [Par92] that uses similar ideas.

All these approaches to partial functions, except the first, generally require the

user to prove subsidiary theorems in order to discharge definedness obligations.

The second approach requires these subsidiary proofs to be performed during type-

checking, the third and fourth require them during proof construction. Doing the

subsidiary proofs at typecheck time avoids some duplication of effort (the other two

approaches can require the same subsidiary results to be proved separately in proofs

of different theorems), and allows some faults to be detected earlier. In addition to

their treatment of partial functions, the rich type systems of the second approach

allow terms to be typed more precisely, and thereby increase the information present

in a specification [HD92].

A.11.3 Constructive Systems

The earliest conceptions of mathematical existence were constructive: to Euclid,

proving that through every point there exists a line parallel to another given line
meant that there was a procedure for constructing that line (with ruler and compass).

There were some early proofs by contradiction (for example, of the irrationality

of v/2), but these dealt with nonexistence or impossibility, rather than existence.

More troubling are proofs of existence by contradiction. For example, there exist

two irrational numbers x and y such that x_ is rational: if v/_ is rational, we

are done; otherwise take this number as x and let y be v_. This is surely a little

unsatisfactory, as we do not know which of the two cases is true.

During the 19th and early 20th centuries, the advent and rapid application of

set theory led to many nonconstructive proofs of this kind. 72 One of the most
controversial was Zermelo's nonconstructive 1905 proof of the well ordering of the

Z2The Historical Appendix to Beeson's book [Bee85] is a good, brief source for those who would
like to read more of the history of these topics. Beeson's book and the two-volume work of Troelstra
and van Dalen [TvD88] are standard texts on constructive mathematics.
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reals. Several mathematicians were dissatisfied with such proofs, but it was Brouwer

who launched a full scale assault on the admissibility of nonconstructive methods:

"the only possible foundation of mathematics must be sought.., under the obligation

carefully to watch which constructions intuition allows and which not.., any other

attempt at such a foundation is doomed to failure." Brouwer's position became

known as intuitionism, and although he opposed several nonconstructive techniques

and concepts (for example, the completed infinite) it was his criticism of the "law"

of the excluded middle [Bro67] (i.e., ¢ V _¢, as used about x y above) that became

the sine qua non of intuitionistic mathematics.

Although Brouwer was not particularly interested in creating a formal system

for intuitionism (after all, he rejected the axiomatic method as a foundation), Kol-

morgorov, Heyting and others developed intuitionistic propositional and predicate

calculi that do without the law of the excluded middle; in this context, "ordinary"

logical systems that retain the excluded middle are called classical logics.

Both Brouwer and the opposing camp (the formalists, led by Hilbert) thought
that strict adherence to intuitionistic principles would force the abandonment of

large tracts of mathematics (by logicians at least; "practical" mathematics would

proceed undisturbed by such arcane disputes). The intuitionists seemed to accept

this, but the formalists saw it as a challenge to the relevance and utility of founda-

tional studies (for example, Ramsey writes of "the Bolshevik menace of Brouwer and

Weyl" [Ram90, page 229]) and were inspired to shore up their foundations: Hilbert

declared "Wherever there is any hope of salvage, we will carefully investigate fruitful

definitions and deductive methods. We will nurse them, strengthen them, and make
them useful. No one shall drive us out of the paradise which Cantor has created for

us" [Hil83].

However, GSdel later showed (via what is called the double-negation interpreta-

tion) that intuitionistic and classical arithmetic have the same strength, and Bishop

provided a practical demonstration that much of analysis could be developed in an

entirely constructive (though not specifically intuitionistic) manner. Thus, restric-

tion to constructive methods does not seem to limit to an unacceptable degree the
amount of mathematics that actually can be done.

What does all this have to do with computers? Well, anything that can be done

by a computer is necessarily constructive; thus, if we seek a logical foundation for

computing (as opposed to general mathematics) it seems natural to seek it within

a constructive framework. Intuitionistic logic is a particularly strong candidate

because of what is known as the "Curry-Howard isomorphism," which establishes a

direct correspondence between intuitionistic proofs and functional programs: 73 an

73This really goes back to Kleene, who showed that any formula that could be defined in intu-

itionistic (Heyting) arithmetic was Turing computable; thus, Heyting arithmetic could serve as a

high-level programming language.
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intuitionistic existence proof can be converted into a program that constructs the

thing concerned. An idea of the flavor of this approach can be obtained as follows.
In intuitionism, a proof that A implies B means a procedure which will take any

(intuitionistic) proof of A and convert it into a proof of B; thus, if we have a program
that constructs A, the proof of A D B gives us a program that constructs B.

As with classical systems, intuitionistic logics that are adequate for actually

specifying and reasoning about interesting computations require more than just the

intuitionistic fragment of predicate calculus: we need arithmetic, sets, and/or types.

Constructive type theories, especially those built on ideas first widely canvassed

by Martin-LSf, dominate this enterprise (often under the slogan "propositions as

types"). Martin-LSf's theories are not theories in ordinary predicate calculus, so

they cannot be described by simply listing their axioms: the entire apparatus of the

system has to be developed, and I do not have space to attempt this here. Interested

readers can find a good introduction in [Tho91].

Constructive type theories are the foundation for a number of interesting sys-

tems for formal specifications and proofs, of which the oldest and best known is

Nuprl [C+86] (which is based on, and extends, Martin-LSf's approach), and one of

the most recent is COQ [DFH+91] (which mechanizes the "Calculus of Construc-

tions," which itself is derived from a system variously known as the second-order

or polymorphic A-calculus and as "System-F.") Arguments in favor of these ap-

proaches are that they bring programming and proof into intimate correspondence.

Arguments against them are that their foundation is unfamiliar to most users, and

that the need to constantly discharge existence obligations is tedious. However, very

similar proof obligations arise in classical logics with rich type systems when try-

ing to establish admissibility of definitional forms or consistency of axiomatizations.

Hence, it may be that the actual practice of formal methods in constructive and

classical settings is more similar than might at first appear.

A.11.4 Programming Logics

Functional programs can be specified quite directly in any logic that supports re-

cursive definitions; reasoning about such programs can then be performed directly

within the logic concerned. Imperative programs, on the other hand, operate on an

implicit "state" that has no counterpart in ordinary logic. For example, the Fortran

assignment statement x -- x+l must be interpreted as saying that the value of x
in the "new state" is to be equal to 1 plus the value of x in the "old state." Pro-

gramming logics are logics that provide ways to specify and reason about imperative

programs and their effects on a program state.

Hoare [Hoa69] introduced the notation {P}S{Q} (often called a Hoare sentence)

for specifying the behavior of a program fragment S. In this construction, P and
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Q are exvressions involving the "variables" of the program S and the intuitive

interpretation is that if execution of S starts in a state in which the expression P

is true, and if execution terminates, then it will do so in a state in which Q is true.

A typical programming language logic will include the following axiom for the skip

(do nothing) statement

{P}skip{P)

and the following for the assignment statement

{P[v _ e]}v:= e {P},

where v is a "program variable" and e is an arithmetic expression, together with

axioms or rules of inference for each of the other constructs in the programming

language concerned. Standard rules inc]ude the following ones for sequential com-

position, and for the conditional and while statements, respectively:

{P)SI{Q} A {Q}S2{R}

{P}S1 ; S2{R} '

{P ^ B}SI{Q} ^ {P ^ _B}S2{Q)
{P} if B then S1 else $2 endif{Q}'

{PAB}S{P}

{P} while B do S {P ^-_B}"

In addition, there will be some rules concerning the interaction between the pro-

gramming logic and the classical logic that underlies it, such as the following rule

of precondition strengthening:

(P'DP) A{P}S{Q}

{P'}S{Q}

As an example, let us prove that the statement

if x < 0 then x: = -x else skip endif

causes the final value of x to be the absolute value of its initial value. We can specify

this requirement by

{z = X} if x < 0 then x: = -:v else skip endif {x = IX[),

where Xis a logical variable (implicitly universally quantified over the whole ttoare

sentence). By the rule for conditional statements, we need to prove

{_ = x A• < o} x: = -_ (x -IXl}



288 Appendix A. A Rapid Introduction to Mathematical Logic

and

{.,:= x A-_x< 0)skip{x = IXl).

By precondition strengthening, the second of these follows from

(x = x A-_ < 0 D x = IXl)A {_ = IXl)skip{_ = lXl},

whose first conjuct follows by predicate calculus, arithmetic, and the definition of

the absolute value function, and whose second conjuct is an instance of the skip rule

given earlier. The other case of the conditional follows by precondition strengthening

from

(x = x ^ • < 0 D -_ = IXl) ^ {-x -- IXl) x: = -z {_ = IXl),

whose first conjuct follows by predicate calculus, arithmetic, and the definition of
the absolute value function as before, and whose second conjuct is an instance of

the assignment rule given earlier.

A programming logic can be cast into the more familiar form of a classical logic

by making explicit the program state that is implicit in the axioms and rules of the

programming logic. In this interpretation, the precondition P and postcondition Q

of a Hoare sentence {P}S{Q} are regarded as classical predicates over the "before"

and "after" states s and t, respectively, and the program fragment S is regarded

as a shorthand for its denotation or "meaning" [S], which is a relation on states:

[S](s, t) is true if execution of the program fragment S, when started in state s, can
terminate in state t. Then the interpretation of the Hoare sentence {P}S{Q} is

w, t: P(_) A [sl(_, t) D Q(t).

In this interpretation, the rule of precondition strengthening becomes

(Vs: P'(s) b P(s)) h (Vs, t : P(s) A [S](s,t) D Q(t))

(Vs,t: P'(s) A[S](s,t) _ O(t))

which is classically valid.

Similarly, the rule for sequential composition becomes:

(w, t: P(s) ^ [S, lO,t) DQ(t)) ^ (w, t: Q(s) ^ [&lO, t) _ R(t))
(Vs, t: P(s) A [IS, ; S2](s, t) D R(t))

I have not gone into enough detail, nor developed enough notation, to give the

interpretation of the axiom for assignment in the general case (see Gordon [Gor89]),

but the general idea can be conveyed by considering the particular example

{-x = IXl) _:= -_ {x = Ixt}
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encountered earlier. The interpretation of an integer program "variable" such as

x i,_ a function from state to integer (so that x(s) is its value in state s), and the

interpretation of this Hoare sentence is then

(w,t,x : -x(s) = x ^ Ix: = -x](_,_) Dx(t) = I-¥1).

That concludes this rapid introduction to those aspects of formal logic that I

consider most relevant to formal methods. Experts will notice that I have simplified

or ignored some details--but not, I hope, to the point of inaccuracy. I recommend
those who wish to read further to consult initially the books noted near the beginning

of the section of this appendix that deals with the topic of interest to them.
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