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Abs act

Transparent conductive thin films are required for a variety
of optoelectronic applications, automotive and aircraft win-

dows as well as in solar cells for space applications. Transpar-

ent conductive coatings of indium-tin-oxide (ITO)--magne-

sium fluoride (MgF2) and aluminum doped zinc oxide (AZO)

at several dopant levels are investigated for electrical resistiv-
ity (sheet resistance), carrier concentration, optical properties,

and atomic oxygen durability. The sheet resistance valttes of

ITO-MgF 2 range from 102 to 101] ohms/El, with transmit-
tance of 75 to 86 percent. The AZO films sheet resistances
range from 107 to 1011 ohms/ILl with transmittances from

84 to 91 percent. It was found that in general, with respect to

the optical properties, the zinc oxide (ZnO), AZO, and the
high MgF 2 content ITO-MgF 2 samples, were all durable to

atomic oxygen plasma, while the low MgF 2 content of 1TO-

MgF 2 samples were not durable to atomic oxygen plasma ex-

posure.

Introduction

Transparent conducting thin film materials would have wide

application for heat mirrors, opto-electronic devices, 1gas sen-
sors, automotive and aircraft windows. The use of solar cells

for space applications also requires slightly conductive coat-

ings which are resistant to degradation caused by atomic oxy-

gen and ultraviolet (UV) radiation.

The development of a conductive protective coating is es-

sentia/for the operation and efficiency of photovoltaic sys-

tems for use in space environments. Atomic oxygen is the most

predominant environmental species from an altitude of
180 km (97 nmi) to 650 km (351 nmi) 2, and degradation by

atomic oxygen and or UV radiation may cause optical prop-

erty changes, thus affecting the performance of the system.

Another mechanism of degradation is surface charging,

which might lead to pinhole formation in the protective coat-

ings, as well as electronic interferences with the on-board

spacecraft systemsl A possible solution to this problem is to
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apply a surface coating material that is conductive, transpar-
ent, flexible, and resistant to atomic oxygen and UV radia-

tion. To discharge surfaces that are being charged by space

plasmas, a high resistivity to ground can be tolerated because
the plasma charging currents are small. 3 Materials applied over

a dielectric area must be grounded at the edges and must have

a resistivity less than 109 "ohms per square" (D/D) for geo-

synchronous orbit. The draining of surface charge for low Earth

orbit (LEO) polar spacecraft applications, requires a surface

was located approximately 20.3 cm downstream of the 2.5 cm

argon ion source. Various size wedges of magnesium fluoride

(MgF2) were placed on the riO target for simultaneous sput-
ter deposition with the 1TO. The same procedure was used for

simultaneous sputter deposition of ZnO and A1. The 2.5 cm

diameter ion source was operated at an ion beam energy of
1000 eV and an ion beam current of 35 mA. The water cooled

substrate holder was located approximately 15.3 cm from the

target and approximately 30.5 cm downstream of the 15 crn

resistivity of 108/Z/IZI. 4 Several candidate materials Which diameter source. To improve coating adherence, a 15 cm di-

might provide protection are transparent inorganic oxide coat- ameter ion source was operated with argon (Ar) at an ion en-

ings, and doped transparent inorganic oxide coatings, ergy of 250 eV and beam current of 35 mA to ion beam clean

The purpose of this research is to develop a conductive trans-

parent protective coating whose properties are durable to the

space environment. Indium-fin-oxide 0TO) has been recom-
mended as a conductive surface coating on spacecraft. 3 How-

ever, ITO atomic oxygen durability studies indicate that the
solar transmittance of 1TO is reduced as a result of the expo-

sure to atomic oxygen plasma, 4 (which also produces vacuum
UV radiation). Other studies have also shown an increase of

the ITO surface resistivity with atomic oxygen exposure. 4-6

Zinc oxide has been used in many applications due to its pi-

ezoelectric and pyroelectric properties. 1'7'$ Its properties, as

well as low cost, makes ZnO very attractive as a transparent

and conductive coating material. 9 Elements such as alumi-

num, !,9-12 indium, 1 and fluorine, 13 have been used to dope

zinc oxide to improve its optical and/or electrical properties.

In this paper we examine the surface resistivity (sheet resis-
tance), carrier concentration, mobility, and optical properties

of sputter deposited ITO-MgF 2, ZnO, and AZO. In addition
we examine the atomic oxygen durability of these thin film

materials.

Deposition of Thin Protective Coatings

An Ion Tech dual ion beam sputtering system was used to

sputter deposit thin film protective coatings oflTO-MgF 2 from

a water cooled, pressed powder target of In203 (91 percen0

SnO 2 (9 percent) with a wedge ofMgF 2 on the surface, a ZnO

(98 percent) A1203 (2 percent) (AZO) target, ZnO target, and
a ZnO with a wedge of A1 were also used. The configuration

of the ion source and target is illustrated in Fig. 1. The target

TARGET PACE

ITD TAROET-_

VATER COOLED- X
SUBSTRATE \ 15 cm ION SOURCE
HOLDER

. Ar I_ i . Ar

2.g c_ ION _

SOURCE i +

_-_--_ii -'-_- Ar

"-_I _ NEUTRALIZER

NEUTRALIZER d _mVATER CO[3LED
TARGET HOLDER

FigureI.-Dualionsourcesputterdepositionsystem.

the substrates for 2 rain prior to deposition. Air was also intro-

duced during deposition of ITO-MgF 2.Thin film coatings were

sputter deposited on fused silica substrates at an average 1TO-

MgF 2 deposition rate of 31 ]k/rain. Film thickness was mea-
sured on the fused silica substrates with a Sloan:Dektak llA

surface profiler. The film thickness ranged from approximately
900 to 1000 ]k. The average deposition rate for AZO on fused
silica substrates was 11/_/min, the film thickness ranged from

200 to 650 A.

A compromise between electrical conductivity and optical

transparency is required. An increase in thickness of the con-
ductive coating increases the electrical conductivity but it also

decreases the optical transmittance.

Qptical Properties

Optical measurements of coatings deposited on fused silica
substrates were made with a Perkin Elmer Lambda 9 UVMS/

NIR spectrophotometer operated with a 60 mm integrating

sphere. Integrated solar transmittance and solar reflectance
values were obtained by convoluting the spectral data into the

air-mass-zero (AM0) solar spectrum. The accuracy of mea-

surements are within +_2percent. Figure 2 illustrates the spec-

tral transmittance for ITO-MgF 2, AZO and ZnO thin films on
fused silica quartz. The transmittance of the ITO-MgF 2 coat-

ing increases with an increase in MgF 2 concentration. Spec-
tral variations at approximately 820 nm and 1920 nm are due

to the instrument filter changes.
The total transmittance and solar absorptance (oc) for the

thin films are shown in Table I. The absorptance was calcu-
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Table 1. Optical and Electrical properties of thin films

Thin Film

ITO

ITO/MgF,

(I - low)

ITO/MgF,

(II- high)

ITO/MgF, (III)

Total

Transmittance

0.720

0.750

0.855

0.790

Solar

Absorptanee

0.140

0.130

0.022

0.064

Total

Reflectance

0.140

0.120

0.123

0.146

Thickness

(t)

1000

1000

959

1115

Sheet

Resistance

(n /E])

I0'

I(F

I0'

I0'

ITO/MgF= (VI) 0.763 0.093 0.145 1042 103

ITO/MgFz (VII) 0.774 0.068 0.I59 I158 I0'

AZO (II) 0.833 0.013 0.153 624 10'

AZO 0ID 0.906 0.012 0.082 200 10"

ZBO 0.792 0.038 O.171 1068 I0'

lated from the reflectance and transmittance data. Values are

typically an average of two to five samples. A decrease in is

obtained with an increase of MgF 2 in the rro films.

Atomic Oxygen Durability.

Atomic oxygen exposure was conducted in a ground based-

plasma facility (SPI Plasma Prep IT). Atomic oxygen was gen-
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Figure &-Total spectral transmittance. (a) ITO/MgF (high MgF)

Before and after atomic oxygen exposure. (b) ITO/MgF (low

MgF) before and after atomic oxygen exposure,

erated in a small quartz vacuum chamber by RF (13.56 MHz)

dissociation of air at a pressure of approximately 90 mtorr.

The typical effective atomic oxygen flux during exposure was

approximately 8x 1015 atoms/cm2-sec based on the erosion of

Kapton in the plasma compared with known erosion in low

Earth orbit (LEO). 14 Samples were exposed to atomic oxygen
effective fluences between 5.4 and 6.4x1021 atomsdcm 2. Al-

though the atomic oxygen flux is accelerated compared to what

would be experienced in LEO, and the energy is lower (0.04

eV compared to 4.5 eV in LEO), plasma exposure can pro-
vide a good qualitative feel for material durability in LEO.

The changes in the spectral total transmittance of 1TO-MgF 2

upon exposure to atomic oxygen can be seen by comparison

on the plots shown in Fig. 3. Figure 3(a) shows the spectral

total transmittance of rro-MgF 2 (high MgF 2 concentration)
before and after exposure to an atomic oxygen fluence of

5.39xi021 atoms/cm 2. Figure 3Co) shows the total spectral

transmittance for a sample with a low dopant level of MgF 2

before and after atomic oxygen exposure to an effective fluence
of 5.39x1021 atoms/cm 2 or to same effective fluence as high

MgF 2. Figure 4 shows the total spectral transmittance for AZO

(2 percent A1) before and after atomic oxygen exposure.
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Table 2. The integrated solar optical properties of samples before and after atomic oxygen exposure

Thin Film

ITO-MgF2 CO

(low % MgF=)

ITO-MgF,(II)

(high % MgF2)

ITO-MgF= (III)

ITO-MgF= (IV)

ITO-MgF 2 (VII)

ITO-MgF 2 (VIII)

AZO or)

ZnO CO

Transmittance

•r.,: 0.748

x,: 0.741

Before AO

Reflectance
rl, w ....

x,: 0.855 p ,: 0.123-

x,: 0.841 p ,: 0.115

x,: 0.842

x,: 0.834

p ,: 0.146

p ,: 0.138

p ,: 0.119

p,: 0.112

p ,: 0.159

p ,: 0.154

•r,: 0.824 p ,: 0.145

t x,: 0.818 p ,: 0.136

x,: 0.833 p ,: o. 159

x,: 0.821 p ,: 0.149

p ,: 0.171

p ,: 0.157

Abserptance

ct: 0.105

Transmittance

After AO

Reflectance

p ,: 0.089

p ,: 0.083

Absorptance

cz: 0.256

a: 0.022 z,: 0.870 p ,: 0.086 a: 0.049

•q: 0.860 p ,: 0.076

ec: 0.064 "r.,:0.846 p ,: 0.108 a: 0.047

•q: 0.835 p ,: 0.096

a: 0.039 x,: 0.895 p ,: 0.085 a: 0.020

•q: 0.868 p ,: 0.075

ct: 0.068 x,: 0.657 p ,: 0.167 ¢: 0.176

L: 0.652 p ,: 0.162

_t: 0.032 _: 0.816 p ,: 0.094 a: 0.090

x,: 0.809 p ,: 0.089

a: 0.008 x,: 0.845 p ,: 0.136 a: 0.019

z,i 0.838 p ,: 0.131

ct: 0.038 a: 0.046•q: 0.838

'r,: 0.831

p ,: 0.116

p ,: 0.111

The integrated solar optical properties (total transn_ttance

(xt), specular transmittance (Xs), total reflectance (Pt), specular

reflectance (Ps) and absorptance) of all samples exposed to
atomic oxygen, prior to and after exposure, are l_ted in

Table 2. The rrO-MgF 2 samples with apparently low_MgF 2
content (I and VII) have initially lower total transnl!ttance

(0.748 and 0.774, respectively), similar to the ITO Without

any MgF 2 (0.720), and these samples are found to decrease in
transmittance and increase in absorptance with atomic oxy-

gen exposure. This behavior is very similar to the reaction of
ITO to atomic oxygen plasma exposures. 4Decreases in trans-

mittance of ITO samples are generally attributed to _e UV

radiation which is present during plasma ashing. 4'5 Tl_e addi-

tion of greater amounts of MgF 2 to ITO (II and IV) not: only

results in greater initial transmittance (0.855 and 0.8_42, re-

spectively), but these samples are found to increases in trans-
mittance with atomic oxygen exposure (to 0.870 and0.895,

respectively). The solar absorptance of the lower MgF2 con-
tent films (I and VID increased from 0.105 and 0.068 t_o0.256

and 0.176, respectively. While the absorptance of the-higher

MgF 2 content films (II and IV) increased and decreased, re-
spectively. These changes in the optical properties of_e high

MgF 2 content ITO samples may be attributed to index of re-
fraction changes associated with oxidation of the Mg_. ITO-

MgF 2 CII) increased from 0.020 to 0.049, while ITO-MgF 2
(IV) decreased from 0.039 to 0.020. Both the AZO and the

ZnO films reacted similarly when exposed to atomic oxygen.

Both the AZO CID and the ZnO (II) films increased _n total
transmittance from 0.833 and 0.792 to 0.845 and 0.838, re-

spectively, and increased in solar absorptance from 0.008 and
Z

0.038 to 0.019 to 0.046, respectively. All samples except one

(ITO-MgF 2 (VII)) experienced a decrease in both to_ti and

specular reflectance with atomic oxygen exposure. The-sample
which did not decrease in reflectance, increased only slighdy,

from a total reflectance of 0.159 to 0.167. In general, with

respect to the optical properties, the AZO, ZnO, and the high

MgF 2 content ITO-MgF 2 samples, were all found to be du-
rable to atomic oxygen, while the low MgF 2 content ITO-MgF 2

samples were not durable to UV containing atomic oxygen
environments.

Electrical Pro_rties

Sheet resistance measurements were made on film samples

using pressure contacts on wire leads attached with conduc-

tive silver paint. In general, alternating current (19.5 Hz) was

used for samples with sheet resistance below 104 D/El, direct

current was used for samples with higher resistance. Four-

lead techniques were used whenever possible; however, some

high-resistance samples were measured by two-lead methods.

Power dissipation in samples was kept below 15 _tW to avoid

self-heating effects. Hall measurements were made by similar

techniques in a magnetic field of 1.2 Tesla to obtain informa-

tion on carrier concentration and mobility.

Our results on the electrical properties of ITO-MgF 2, ZnO,
and AZO films are summarized in Table 3. The Hall data sug-

gests that adding MgF 2 to ITO reduces carrier concentration
and mobility, both increasing the resistance. This raises the

question of stability, since the resistance of pure ITO films,

prepared to have low carrier concentration and mobility,

changes drastically when heated.
The sheet resistance of several samples were measured af-

ter atomic oxygen exposure, are shown in Table 4. These pre-

liminary results suggest that the electrical properties are af-

fected by atomic oxygen exposure. More tests are planned to

investigate the effects of atomic oxygen on the electrical prop-

erties of these coatings.
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Table 3. Electrical properties of thiri films at room temperature

Thin Film Thickness

CA)
Sheet

Resistance

(t_ /t3 )

Carrier

Concentration

(electrons/_ra')

Mobility

(_W¢ s)

ITO 1000 10' I0 _ 17 - 20

ITO/MgF2 (1) 1000 I0:

(low % MgF_)

[TO/MgF, (II) 959 10'

(high % MgF3)

ITO/MgF 2 I 115 10_
(vzz)

ITO/MgF2 (VI) 1042 10' 10" 2.8

ITO/MgF: (VII) llY > 10" < 1

7.nO

1158

559AZO(I) 10'

AZO 01) 624 10'

AZO (III) 150 10"

1068 10_ 10" 5,8

Table 4. Sheet resistance of thin films before and after atomic oxygen exposure

Thin Film Sheet Resistance (1_ /D ) Sheet Resistance (0 /I"l )
(Before AO Exposure) (After AO Exposure)

ITO/MgF, (III) 1 x 10' 8 x IlY

ITO/MgF 2 (VTD 5 x 10J I x 10'

AZO 0J) I x 10' 2 x lf_

Conclusions

Transparent conductive coatings of indium-tin-oxide (ITO)-

magnesium fluoride (MgF2) and aluminum doped zinc oxide
(AZO) were prepared by ion beam sputter deposition. Simul-

taneous ion beam sputter deposited indium-tin-oxide (ITO)

and magnesium fluoride (MgF2) at several dopant levels were
investigated for electrical resistivity, optical properties and

atomic oxygen durability. Results show sheet resistance val-

ues ofITO-MgF 2 range from 102 to 10 11 D./,, with transmit-

tance of 75 to 86 percent. The AZO films investigated show a
sheet resistance value of 107 to 1011 D,/1SIand transmittance

of 84 to 91 percent. In general, with respect to the optical prop-

erties, the AZO, ZnO, and the high MgF 2 content ITO-MgF 2
samples, were all found to be durable to UV containing atomic

oxygen, while the low MgF 2 content ITO-MgF 2 samples were
not durable to UV containing atomic oxygen environments.
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