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ABSTRACT

A new two-fluid mathematical model for fully three-dimensional steady solidification under
the influence of an arbitrary acceleration vector and with or without an arbitrary externally applied
steady magnetic field have been formulated and integrated numerically. The model includes Joule
heating and allows for separate temperature-dependent physical properties within the melt and the
solid. Latent heat of phase change duri.ng melting/solidification was incorporated using an enthalpy
method. Mushy region was automatically captured by varying viscosity orders of magnitude
between liquidus and solidus temperature. Computational results were obtained for silicon melt
solidification in a paralIelepiped container cooled from above and from a side. The results confm'n
that the magnetic field has a profound influence on the solidifying melt flow field thus changing
convective heat transfer through the boundaries and the amount and shape of the solid accrued. This
suggests that development of a quick-response algorithm for active control of three-dimensional
solidification is feasible since it would require low strength magnetic fields.

INTRODUCTION

Possible means of devising controlling mechanisms for solidification and bulk single
crystal growth from a melt is of practical importance to many industrial processes [Kosovic,
Dulikravich and Lee 1991; Dulikravich, Kosovic and Lee 1992]. We will demonstrate the
quantified effects of a fully three-dimensional solidification control using magnetic fields. If there
are no electric charges in the melt and no external electric field is applied, a magnetohydrodynamic
(MHD) model [Stuetzer 1962] can be applied. MHD flows without solidification have already
been numerically analyzed in three-dimensions [Ozoe and Okada 1989; Lee and Dulikravich 1991].
It was only recently that various researchers have demonstrated numerically the effects of the
magnetic field in two-dimensional [Salcudean and Sabhapathy 1990; Dulikravich, Kosovic and Lee
1991; Kosovie and Dulikravich 1991] and in three-dimensional [Dulikravich, Ahuja and Lee
1993a, 1993b; Dulikravich and Ahuja 1993] solidification.

Our objective is to use a single system of governing equations in the entire domain which
could consist of the melt, mixture of the melt and the solid (mushy region), or the solid alone. In
other words, we want to use a single system of partial differential equations that treats both the
melt and the solid as liquids, while allowing each of the two liquids to have its own set of
temperature-dependent physical properties (density, heat capacity, thermal conductivity, electric
permitivity, thermal expansion, magnetic permeability, etc.). A crucial difference between the two
liquids is that the liquid which models the solid phase (T < Tsolidus) must be assigned extremely

high viscosity. Hence, velocities interior to the regions occupied by the liquid that models the solid
phase wiU be practically zero. Consequently, we will refer to this artificially extremely viscous
liquid as solid", while the pure melt (T > Tliquidus ) will be called "liquid".

Ill

Associate Professor.
lilt

GraduateResearch Assistant.

449



Mass fraction of the liquid at any point in the domain determines locally to what extent

should physical properties of the liquid or the solid be taken into account. Since latent heat
released or absorbed per unit mass of the mushy region is proportional to the local volumetric
fraction, f, occupied by the liquid in a particular computational cell, this ratio is often modeled

[Voller and Swaminathan 1991] as

0- 0solidu s n
Vliquid ( ) (1)

f- Vliqui d + Vsolid - 01iquidu s - 0solidu s ___

where the exponent "n" is typically 0.2 < n < 5. Here, the non-dimensional temperature is defined

as 0 = (T - T0)/AT o where T is the temperature measured in degrees. Typically, either

AT o = Tliquidus - Tsolidu s and T O = Tsolidus or AT o = Thot - Tcold and T O = Tcold. The latent

heat, L, is released in the mushy region (where Tliquidus > T > Tsolidu s) in proportion to the- ........

fraction f of the liquid in the mixture. L/quid density, Pl is assumed to vary line_ly as a function

of non-dimensional temperature

a(pl/p01)[ *
Pl' = 1 + ao l0 (o" o0) = 1 - a01(o - o 0) (2): 7 : " : ....

with a similar expression for the solid phase. We will use subscripts 'T' and "s" to designate liquid
and solid phase, respectively. If subscript "o" designates reference values, then the non-
dimensionalization can be performed as follows

* _ g*=--g-- H* H , x t*- t Ivol *- P (3)
v = ivol lgo! -tHol x =_ 1° P Po Ivo 12

=-

* P01 * I't01 * _'o cl' al = m al'pl.._p.._.opI, Vi= _.IXl, kl=_ kl, Cl=cOl aOlao (4)

with similar expressions for the solid phase. Here, v, g, H and x are vectors of velocity, gravity

acceleration, magnetic field and spatial position vector, respectively. Similarly, Ix, k, c and (x are

coefficients of viscosity, heat conductivity, heat capacity and thermal expansion, respectively.
Hydrodynamic pressure, coefficients of electric conductivity and magnetic permeability are

designated with p, ff and y, respectively. In this work we assumed that (r and y do not vary with

temperature (or1 = o01/ff o, (rs = a0s/C o, YI = Y01/?o and ys = T0s/Yo). Since the reference values

designated with the subscript "o" are arbitrary, the non-dimensional numbers can be defined as

Ivo 12 Ivo 12
Re = Po Vo lo Fr 2 - Ec =

Ixo Ig°l 1° Co AT°

Ixo Co Co ATo Yo ao Ixo

Pr= ko Sic- Lo Pm = Po

(5)

(6)
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2 COo igol AT ° 3 i_iI/2
Gr = Po Io Ht = Yo IHol Io (7)

2

_o

Then, adopting an extended Boussinesq approximation [Gray and Giorgini 1976] to MHD flows,
the non-dimensional Navier-Stokes equations for phase-changing mixtures of two liquids

[Dulikravich and Ahuja 1993] become:
Mass conservation for two-phase MHD flows

V*.v =0 (8)

Linear momentum conservation for two-phase MHD flows with thermal buoyancy and
magnetic force

v*

-,. gl * * Ht 2 * Gr____O0g,)]
=ftV (_-_(V*v* + (V*v*lT)) + Pl (71p_c2 (V*x H*)x H*+ _ Re 2

• * * Gr0
, gs Ht2 (V*x H*)x H*+o_ _g*)]

+(l-f)[V .(_ (V'v*+ (V*v*)T)) +Ps (Ys PmRe2 Re 2

Energy conservation for incompressible two-phase _ flows including Joule heating

(9)

m * * * *V*.(C;s0V*)• * * * _30 fPl V .(Cel0V*)+(1-f)ps
(fPl (eel0),0 + (l-f)Ps(Ces0),0) _t* +

I ** * *

(klVo)+ Y;Ht 2 Ec (V*x H*).(V*x H*))

a; pm2Re

Ys Ht 2 .Ec (V*x H*).(V*x H*))

_s pm2Re3

(I0)

Magnetic field transport equations for two-phase MHD flows

OH*.. V*x (v*x H*) = f/(*l Y1) + (1 - f)/(o sYs ) V,2H *

c3t* Pm Re
(II)

Here, p = f Pl + (1 - f) Ps ' where f = 1 for 0 > Oliquidus and f = 0 for 0 < Osolidu s. Non-

dimensional hydrostatic, hydrodynamic, and magnetic pressures were combined to give
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* ¢* Y; Ht 2

=u,
Ol PmRe2

* 2

-* (I)* Ys Ht H*.H*
Ps = P-_*+ F---r'_+_

Ps PmRe2

(12)

* V*¢*.where 0" is the non-dimensional gravity potential defined as g = We used an enthalpy

method to formulate the equivalent specific heat coefficients in the liquid and the solid phases are
* * I Of , * * 1 Of ........

eel = c1 =_ x--2 ana Ces = c s = _ _'7, respectively. This expresszon allows latent neat to 0e
_e O0 te O0

released in the mushy region according to the empirical law given in equation (I).
At the solid walls, the velocity csmponents were set to zero and the wall pressure was ....

determined from the normal momentum equation. Wall temperatures were either specified or
oLmined from the specified wall heat fluxes and the points on the first grid layer off the walls.
Magnetic field was either specified as uniform on a particular wail, or its normal derivative to the
wall was set to zero. The governing system of eight partial differential equations (8- I I) was
transformed into a non-orthogonal curvilinear coordinate system compatible with a typical three-

dimensional boundary-conforming structured computational grid, In such a way, the resulting " _
finite difference algorithm for an iterative integration of the system can be applied to relatively

arbitrary three-dimensional configurations, Since the system is singular (its time-dependent term in
the mass conservation equation is zero), it can be integrated simultaneously only after introducing
an artificially time-dependent term [Chorin 1967] in the mass conservation. Consequently, such _
"artificial compressibility" iterative process does not follow physical time, but rather an artificial
time coordinate. As a result, intermediate solutions are not time-accurate pictures of the flow field,
but the final converged steady solution is accurate since the artificial compressibility term variation
with iterations then becomes zero.

We are using an explicit four-step time-integration and central differencing in space. Since
the magnetic field transport equations (I I) are strongly parabolic (for the given velocity field), their
allowable integration time step is much smaller than in the case of the Navier-Stokes equations (7-
I0). Consequendy, we coded the three magnetic transport equations separately from the three-
dimensional Navier=Stokes equations [Lee and Dulikravich 1991] so that we can use different time

steps for the two systems. Communication between the two systems based on periodically
updating source terms (thermal buoyancy and magnetic effect s) in the Navier-Stokes system.

NUMERICAL RESULTS

Based on this analytical model for a two-fluid MHD solidification, a fully three-dimensional
MHD flow analysis computer program was developed. Numerical results from this code were
compared with known three-dimensional MHD analytical solutions in the case of no heat transfer
[Lee and Dulikravich 1991] and in the case of heat transfer but without solidification [Ozoe and
Okada 1991]. In both cases the code proved to be highly accurate [Dulikravich, Ahuja and Lee
1993a]. This code was then augmented to incorporate temperature-dependent physical properties of
the melt and the solid phase and the effects of latent heat release with an adequate account of the
mushy region.

We decided to study the three-dimensional MHD effects on solidification by numerically
analyzing an MHD solidification in a paralletepipedal closed container initially filled with molten

silicon. The container was discretized with 40 x 20 x 20 ffrid cells that were clustered

symmetrically towards all the walls (Figure 1). Gravity was assumed to act vertically downward in
the positive z-direction. If not indicated otherwise, the solid walls were thermally insulated. The

values of the reference parameters were: Ivol = 0.02342 m s -1, 1o = 0.02 m, Igol = 9.81 m s -2.

Physical properties for silicon were compiled from a number of references (Table 1) which lead to
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the following values of the non-dimensional numbers: Gr = 2.89 x 106, Re = Gr 1/2 = 1702, Ec =

2.589 x 10 -8, Pr = 0.01161, Pr = 4.255 x 10 -6 and Ht = 837.3 Bo, where Bo is measured in

Teslas. The exponent used in the model for latent heat release (1) was n = 5. Test cases were run
with Ht = 0, 20, 30, 60 corresponding to the magnetic fields having strengths of 0 Tesla, 0.02389

Tesla, 0.03583 Tesla and 0.07166 Tesla, respectively.

Solidification From the Top

In this case the container had dimensions 0.04 m x 0.02 m x 0.02 m. Top wall was

uniformly cooled below freezing temperature (0 = - 0.5) and the bottom wall was uniformly heated

(0 = 0.5). A solidification case was first run without the magnetic field (Ht = 0). The computed

contours of equal vertical velocity magnitude evaluated in the z* = 0.3 horizontal plane (Fig. 2a)
indicate strong upward melt motion mainly along the short vertical walls and a centrally located

downward jet. This is more evident in Figures 2b (evaluated at y* = 0.5 vertical mid-plane) and 2c

(evaluated at x* - 0.5 vertical mid-plan_e) where it is clear that almost one-third (4926 solidified

cells out of 16000 computational cells in the container) solidified starting from the top wall [Kerr et
al. 1990]. Evidently, heat transfer is carried out by both conduction and convection. The computed

isotherms in the vertical y* = 0.5 mid-plane (Fig. 2d) and in the vertical x* = 0.5 mid-plane (Fig.
2e) indicate that the solid/melt interface is somewhat pulled down in the central part of the container

due to the strong centrally located downward melt jet. After reaching the bottom of the container,
the jet spreads out and starts mowing upwards along the side wails thus forming a deformed
vertical thoroidal melt motion.

A uniform steady magnetic field of Ht = 20 was then assigned in the vertically downward
direction (same as the gravity direction). The computed contours of equal vertical velocity

magnitude evaluated in the z* = 0.25 horizontal plane (Fig. 3a) now indicate that the peak upward

melt motion is mainly along the long vertical walls, while the centrally located downward jet
became narrower and developed a non-parabolic profile. It is especially important to notice that the
velocity profiles close to the walls and the solid/melt interface became steeper (Fig. 3b and 3c)
which is typical of MHD flows. This in turn caused enhanced heat convection in the mushy region

resulting in less accrued solid (4773 solidified computational ceils). Because of the stronger
downward centrally located jet the computed isotherms in the vertical mid-planes indicate slight
sagging of the solid/melt interface (Hg. 3d and 3e).

Finally, a uniform steady magnetic field of Ht = 60 was assigned in the vertically
downward direction. The computed contours of equal vertical velocity magnitude evaluated in the

z* = 0.25 horizontal plane (Fig. 4a) indicate a dramatic change as compared to the two previous

cases. Specifically, the peak upward melt motion is contained in a narrow region along the short
vertical walls, while the centrally located downward jet became wider and developed a strongly
double-parabolic profile (Fig. 4a). The magnitudes of velocity vector components in the entire flow
field were substantially reduced (Fig. 4b and 4c) to about 30% of those in the case with Ht = 20.
Because of the weaker and less concentrated downward centrally located jet the computed isotherms
in the vertical mid-planes indicate that the solid/melt interface is more planar (Fig. 4d and 4e). In
this case there were 4676 solidified computational cells.

Solidification From a Side

The solidification was then tested for the case where one vertical wall (x* = 0) was kept

uniformly hot (0 ---0.5) and the opposite vertical wall (x* = 1) was at a uniformly below freezing

temperature (0 --- - 0.5). Three runs were performed; one without the magnetic field (Ht = 0) and

the other two with a uniform external magnetic field (Ht = 30) applied in the vertical z-direction and
horizontal x-direction, respectively. The container size in this case was 0.01 m x 0.01 m x 0.02 m.
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In thecaseof no magnetic field (I-It = 0), the computed contours of equal z-momentum

evaluated in the z* = 0.5 horizontal mid-plane indicate (Fig. 5a) a single large vortex that rises the

melt at the hot wall and descends it at the solid/melt interface (Fig. 5b). The computed isotherms in

the vertical y* = 0.5 (Fig. 5c) and x* = 0.5 (Fig. 5d) mid-planes show that the solid/melt interface

is highly curved and three-dimensional, in this case there were 3990 solidified computational cells.
When the uniform magnetic field of Ht = 30 was applied downward, the computed contours

of equal z-momentum evaluated in the z* = 0.5 horizontal mid-plane indicate (Fig. 6a) that the
intensity of the single large vortex decreased (Fig. 6b). Also, a recirculation mini-vortex that

existed at the lower corner of the hot vertical wall in the case without a magnetic field (Fig. 5b) was
now eliminated. Computed isotherms in the vertical mid-planes (Fig. 6c and 6d) indicate that the
solid/melt surface in this case became essentially two-dimensional. The number of solidified
computational cells in this case increased significandy to 4283.

A uniform magnetic field of I-It = 30 was then applied horizontally in the hot-to-cold x-

direction. The computed contours of equal z-momentum evaluated in the z* = 0.5 horizontal mid-

plane indicate (Fig. 7a) that the in_nsity of the single large vortex decreased even further (Fig. 7b).
Computed isotherms in the vertical mid-planes (Fig. 7c and 7(:I) indicate that the solid/melt interface
became essentially two-dimensional. The number of solidified computational cells in this case
increased significandy to 4311.
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Pl [kg m-3]

Ps [kg m "3]

Cl [J kg -1 K-l]

Cs [J kg -1 K-l]

k 1 [W m -1 K- 1]

k s [W m -1 K -1]

T 1 [K]

T m [K']

Ts[K]

2550

2330

1059

1038

64

22
III

1685

1683

1681
i ii

Ix [kg m -1 s-1] 7.018 x 10 -4

¢Xl[K-l] 1.41 x 10 -4

1.41 x I0 -4

1803000

12.3 x 105

4.3 x 10 4

4_ x 10 -6

a s [K -1]

I., [J kg -I]
i i |i ii i

¢_I [W-I m-l]

(Ys [W'I m-l]

7[Tm A-I]

Table I. Physical propemes used for silicon.

° l
t t _/

Figure 1. Computational grid and coordinate system
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Figu_ 2. Solidificationfrom the top:Ht = 0.

a)constantverticalvelocitycomponent contoursatz* = 0.3horizontalplane;b) velocityvectorfield

inve_'ticaly* = 0.5 mid-plane;c)velocityvectorfieldinverticalx* = 0.5 mid-plane;d) isothermsin

verticaly* = 0.5mid-plane; e)isothermsinverticalx* = 0.5 mid-plane.
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Figure 3. Solidification from the top: Ht = 20.

a) constant vertical velocity component contours at z* = 0.3 horizontal plane; b) velocity vector field

in vertical y* = 0.5 mid-plane; c) velocity vector field in vertical x* = 0.5 mid-plane; d) isotherms in

vertical y* = 0.5 mid-plane; e) isotherms in vertical x* = 0.5 mid-plane.
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Figure 4. Solidification from the top: Ht = 60.

a) constant veztical velocity component contours at z* ffi 0.3 horizontal plane; b) velocity vector field

in vertical y* = 0.5 mid-plane; c) velocity vector fidd in vea'tical x* = 0.5 mid-plane; d) isotherms in

vertical y* = 0.S mid-plane; ¢) isotherms in vertical x* = 0.5 mid-plane.
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Hgurc 5. Solidification from the side: Ht = 0.

a) constant vertical velocity component contours at z* = 0.5 horizontal mid-plane; b) velocity vector

field in vertical y* = 0.5 mid-plane; c) isotherms in vertical y* = 0.5 mid-plane; d) isotherms in

vertical x* -- 0.5 mid-plane.
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Figuze 6. Solidification from the side: Ht = 30 applied vertically.

a) constant vertical velocity component contours at z* = 0.5 horizontal mid-plane; b) velocity vector

field in vertical y* = 0.5 mid-plane; c) isotherms in vertical y* = 0.5 mid-plane; d) isotherms in
vertical x* = 0.5 mid-plane.
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Figur¢ 7. Solidification from the side: Ht = 30 applied in hot-to-cold direction.

a) constant vertical velocity component contours at z* = 0.5 horizontal mid-plane; b) velocity vector

field in vertical y* = 0.5 mid-plane; c) isotherms in vertical y* = 0.5 mid-plane; d) isotherms in
vertical x* = 0.5 mid-plane.
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