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SUMMARY

A time-and-space accmate and computationagy efficient fuUy three-dimensional unsteady
temperana'e field analysis computer code has been developed for truly arbitrary configurations. It
uses Boundary Element Method (BEM) formulation based on an unsteady Green's function
approach, multi-point Gaussian quadrature spatial integration on each panel and a highly clustered
time-step inte_ra.tion. The code g_epts either temperatures or heat flaxes as boundary conditions
that can vary m time on a point-by-_int basis. Comparisons of the BEM numerical results and
known analytical unsteady results for simple shapes demonstrate very high accuracy and reliability
of the algorithm. An example of computed three-dimensional temperature and heat flux fields in a
realisticagy shaped internally cooled turbine blade is also discussed.

INTRODUCTION

For linear boundary-value and initial-value problems it is computationally more efficient to
use BEM rather than finite differencing or finite element technique. An additional benefit is that
the BEM requires a relatively coarse grid and that it can be easily extended to non-linear
conduction problems via Kirchoff's transformation. Probably the most important fact is that the
BEM is essentially a non-iterative technique thus making the BEM codes more reliable
[Dniikravich and Hayes 1988; Dargush and Banerjee 1991].

!

THEORY OF 3-D BOUNDARY ELEMENFS

The governing equation for heat conduction in the absence of heat generators is

011

0"7 = aV'u (1)

where a is the thermal diffusivity such that a = k/pc, k is the thermal conductivity, p is the mass
density, and c is the specific heat. As the problem is now time-dependent, the weighted residual
statement must be integrated with relation to time and space. After integration by parts twice
[Brebbia and Dominguez 1989], one obtains

<, +rl,<,. .i'.l'<'q" + .,,.
mr mr ,_i

(2)

where to < '¢< t and the _u*_t term was obtained integrating by parts with respect to time.
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Thecorrespondingfundamentalsolution for this equation is

1 [r2]u* - [4 a(t- 4a(t-t) C3)

where D is ti_ number of spatial din_nsionality, that is, D = 3 for thr_-dimensional problems
and r is the distance from the point of integration, xj, to the observation point, xi. The
fundamental solution satisfies the auxiliary equation

V2u, 1 Ju* = 0
a Jt

and for t = %

(4)

0 forr # 0 _

Using theserclauons,one obtainstheboundary elementequationfor_eith controlpoint

CiU t +

The last term in the above formula represents the contribution of the initial state at t = tO.

Since the fundamental solution is time dependent, one does not need to solve this equation with
an iterative scheme as is usually done in finite elements or firfite differences. Instead, this
equation can be solved for any time step after a known initial state although small time intervals
am recotnmended. In the latter case, the potential at each node within the domain needs to be
evaluated at the end of each time step in order to determine the initial conditions for the next time

step. Although the primary advantage of boundary elements is lost (for unsteady problems, the
discretization of the volume is necessary), the matrix is much smaller than those in finite elements
and the inversion needs only be perfcmmd once if time-indepen_t boundary conditions are
enforced.

The region, O., and bounding surface, r', are discretized into NCELL volume ceils utilizing

.a total OfN ..IWr nodes and N_ surface elements using a total N nodes. Nodal quantities are
mtezpolated linearly across each individual cell or surface panel One also needs to assume a

variation in time for the functions u and q. If these functions do not vary significantly with

respecttotime,they may be treated as constantoversmalltimeintervalsand thetime integration
may be performedstepwise.Ifgreateraccuracyisrequired,thesefunctionsmay be assumed to
varylinearlysuchthat

u (Xi,Xj,t,z) f- to t - *"
m _U + _ UO (7)At At

where the subscript 0 indicate the variable at the previous time level and t is the current time level.

The time step is defined as At = t - to. Once fully discretized, the boundary element equation
may be expressed as

[HIU =[G]Q+P

for constant time elements.

(8)

If linearly varying time elements are used, the boundary element
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equationbe:on_

[H] U + [H 0] U0 = [G] Q + [G0] Qo + P (9)

The term U = (Ul,U2,U3,...,UN) is the vector of potentials and Q = (ql,q2,q3 .... ,qNsp) is a

vector of fluxes where each term qi contains four potential derivatives corresponding to the comer

vertices of the NSp quadrilatmal surface panels. In addition, each term in the [G] matrix contains

four terms corresponding to each qi temx The terms in the [H] matrix are the properly summed
coefficients corresponding to the potential at a specific node. The boundary element algorithm

developed for use in thr_Mimensions with the inverse design code was formulated with

fsoparatmtrie, quadrilateral surface panels and eight-point linearly deformed paraUelepiped

volume cells.Integrationin@ace was done numericallywithGaussian quadratureand time

integrationwas performednumericallyusingthetrapezoidrule.Sincethefundamentalsolutions

containa singularityattheend of eachtimestep(atthetimelevelz = 0, thetimeintegrationpoints

were clusteredstronglynearthesingularity,'t= t.

A transformationfrom theglobal(t,,Tl,_)coordinatesystemisnecessarytoalocalized(_I,_2)

coordinatesystemdefinedoverthesurfaceofthebody ortoa (_,r[,_)coordinatesystemdefined

forthevolume cellofintegration.The volume integralsaretransformedsuchthat

j'uu* d£_ = JJj'uu* IJI d_dr/d_"

whca'c LI!is the determinant of the Jacobian matrix of the transformation, that is,

_(x.y,z)

IJ1= d*tLO(l,n,¢))"

(10)

(11)

The terms of the G and H matrices for constant time dements may be written as

N t t

H. - _fCkq* dFjd_ and G. = ff_u* drjdf
k=t.rj .rj

(12)

for the jth surface panel The subscript m indicates the node number corresponding to the kth

vertex of the jill surface panel and N C is the number of surface panels connected to the mth node.

The function fk is the kth interpolation function corresponding to the value at the kth comer vertex
of the jth surface panel Discredzation of the surface is identical to that described in section 2.2.

If linearly varying time elements arc used, the terms of ihe [G] and [IT] matrices am similar and

are formed into pairs of coefficient matrices due to the initial state and the current time level at the
boundary.

N t

H_o = _.tfJ¢ i _" to q* dl"jdt
,.rj At

(I3)
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k=t=rj _ q* d1"j dr

The vector P indicates the contribution of the initial state throughout the domain on the ith

observation point and is of the form

(14)

_I k=l nj

(ly)

where Ok:is the kth _esr interpolation function of the:_early deformed parallelepiped cell and
is of the form

1(14. ±n)(1± (10

The term u0ik isthepotential on thekthvertexofthejthparallelepipcdvolmne cellattime '_= t0-

Indiscretize21form,thefundamentalsolutioncon_ theterm rrepresentingthedistancefi'om

thepointofintegrationon thejthvolume cellor surfacepaneltotheithcontrolpoint.The normal

derivativeo_the fundamentalsolutionmay bedeterminedas

q* = Or On [4_ta(t-,r)]°"2a(t-_) exp "4 _)' (17)

where d is defined by the normal distance from the ith point under consideration to the surface
panel If the control point is on the surface of integration, then q* = 0 and the diagonal of [H]
tna_. be computed implicitly by the application of a uniform potential over the whole domain,
which willgivezerononrml fluxes at theboundariessuchthat

H m = - _Hq + Pi (I8)

z,

NUMERICAL RESULTS

The accuracyand reliabilityoftheBEM formulationgoverningthree-dimensional,

unsteadyheattransferproblemshas beenverifiedversustheanalyticalsolutionfora f'mitelength
rod- Totalsurfaceofa cylinderof0.5m radiusand 1.0m inlengthwas modeled with216 nodes

and 108 surfacepanelsasshown inFigureI.The thermaldiffusivity,e.,was specifiedtobe 1.0

m 2 s"I.The initialtemperatureofthecylinderwas uniformly0 °C and containedno heatsources

or sinks.Then, suddenly,theboundary conditionson thecylinderwere spcci.ficdas 100 oc on

thefrontface,0 oc on theback facewhiletheouterradialsurfacewas keptadiabatic.The BEM

val_mu_thtn' used constant _ interl_o.._tion,3-pointGanssian quadrature for the surface and
mtegranon and a linearvananon ofthetemperatureand heatfluxalongthesurfacepanels

and volume cells.The analyticsolutionforthistestcasecorrespondedtotheone-dimensional
unsteadyheatflowina finitethinrod-Te_ were obtainedatvarioustimelevelsand at

severalaxiallocationsand arecompared totheanalyticresultsshown inFigure2. As seeninthis

figure,thereisa discrepancybetween thenumericaland analyticsolutionsaveragingabout 6oc.
Tbe geometry ofthecylinderwas thenmodeled differentlyby slightlyclusteringthesurface

panelsand volume cellsnearthehot end. Figure3 shows theresultsof theBEM inthiscase.
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Noticethattheaverageerrorhasreducedtoabout4 oC. The unsteadyBEM algorithmwas then
developed with a linear variation within each time step for the temperatures and heat fluxes. This
testcaseused thesame slightlyclusteredgeometrywithidenticalboundary and initialconditions.
A singleBEM analysisrun usinglineartimeinterpolationconsumed about 15% more CPU time
than the BEM formulation with constant time interpolation. It resulted in a solution which

averaged a 3 oC error compare:, to.the an.alytic solution. Figure. 4 shows the computed
temperatures from the BElVl nsmg linear nine interpolatton against the analync soluuon at several
axial locations. Figure 5 is a plot of the error between the B_ and the analytic solution.

The accuracy of the BEM algorithm could not be improved further while using the cylinder
test case. Instead, a different and simpler geometry was developed and the BEM solution with this
new geometry showed that much of the error in the previous tests was due to the cylindrical
geometry. That is, since the BEM uses fiat quadrilateral surface panels, the exact geometry of the
c_,linder surface could not be modeled properly. Figure I shows a discretized cross section of the
circular cylinder and clearly depicts the inability of a limited nund)er of fiat surface panels to
properly capture the surface curvature of the cylinder. Besides, elements surrounding the cylinder
axis are nearly triangular in shape. These situations produce surface and volume integrals which
behave somewhat singularly. The result is that the integrals are not properly integrated and may
involve ill-conditioned BEM solution matrices

The new geometry, a rectangular box ofO.1 m x 0.1 m base cross section and 1.0 m in

length, was then used instead of the cylinder. The geomeu'_, was divided into 10 axial cells of
equat size. t_e entire surface of the box was d_tiM _th 44 nodes (four nodes per each
section) and 44 fiat quadrilateral surface panels (four side panels per each section). The boundary

conditions on the box were specified as 100 oc on the front face, 0 °C on the back face while the
_de surfaces were kept adiabatic. The BEM algorithm used linear time interpolation, 5-point
tJaussian quam-anne and a linear variation of the temperature and heat flux along the surface panels
.ariavolume cells. Temperatures obtained with the unsteady BF_. algorithm for the rectangular
oox were comparea to the analyuc solution at several axial locations. Figure 6 illustrates that the
BEM solution for the box was much more accurate than those for the cylinder. Figure 7 shows
the absolute value of the error in the temperannea computed using the BEM. These results indicate
that the BEbi generates an error of 0.5 oc with the maximum error below 0.9 oc.

The.unste_,y BE_4.algorithmwas..thenmodifiedtoinc_ _nperatme-depcndcnt material
propernes.Atmougn me BEM somttonofthelinearheatconductionequationisquitefast
(requiringlessthanI0 CPU secondsfor25 timestepson an IBM 309{_fortherectangularbox),

eth_.a_ldiyon 9fmmt:_a_ -de.peg.dent ma..mrial properties greatly increases the computational
on. r_ormauy me t_eavtsoluuonmatricesneedonlytobe computed once ffthetimeintervals

and diffusivityareconstant.Sincethediffusivityisnow a functionoftemperature,theBEM

solutionmatricesneedtobe developedateachtimeintervalusingtemperaturescomputed ateach
sourcepointinthesurfaceand volume integrands.

Th_ same recl_.,gularbox geometry and boundary conditionswere used totestthe
accuracy o the three-dimensional, unsteady BElVt algorithm with temperature-dependent material

properties. The reference thermal conductivity was ),o = 1.0 kcal m -1 s"1 K -1 and it varied

linearlywithtemperatureas_.ffi;k<_+C T. The temperaturevariationsintimeata singleaxial

locationwere collectedforvariousdegreesofnonlinearitygivenby theparameterC. These results

sho.wn_ _,gure..8.and compare wellwithpublishedcomputationalresultsinvolvingfinite
elementsttanaxa,_,sg:utaand Togoh 1987].TotalCPU timefor25 timestepswiththe
temperature-dependentphysicalpropertieswas approximately300 secondson an IBM 3090.

CONCLUSIONS

A fullythree-dimensionalunsteadyheatconductionanalysiscode has been successfully
devfllo_., and rested against known analytical solutions. The code is computationally efficient
ana rename and can be used on arbitrary configurations. A modification involving temperature-
dependent thermal diffusivity was also incorporated and shown to produce good results.
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Figure 1. Geometry of a cylinderfortheverificationof thethree-dimensional,

unsteadyBI_ formulation.
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Figure 2 ;. Comparison of temperatures between the unsteady BEM solution
and the analytic solution using constant time elements.
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Figure 3. Comparison of temperatures between the unsteady BEM solution
and the analytic solution using a2rcfined grid and constant time
elements.
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Figure .4, Comparison of temperatures between the unsteady BEM solution
and the analytic solution using a refined grid and linear time
elements.
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1__u'¢ 5- Relative error in temperature between the unsteady BEM solution
and the analytic solution using a refined grid and l_near time
elements.
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Figure.6- Comparison of mmperamres bctw=n theunst=adv BE,M solutionof a

rectangular box and theanaJvt/csolution.usinglin_u"dine interpolation
and accum_ quadran.u'e inte_n'ation.
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Figure 7 • Error in temperatm-ebetweenthe unsteadyBEM solution of a
rectangular box and the analytic solution.
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Results of the unsteady BEM algorithm with temperature-dependent

material properties. The figme shows temperatures versus time at the
z = 0.2 m axial location for various range_ of nonlinearity.
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