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SUMMARY

The advantages inherent in tile Boundary Element ,Method (BEM) for potential flows are

exploited to solve viscous flow prol_lems. The trick is the iul ro(lucl ion of a so-called Dual Re-

ciprocal technique in which the convective terms are represented by a global function whose

unknown coefficients are delermined 1)y collocal ion. The apl)roach, which is necessarily it-

erative, converts the governing partial differential equations (I'DEs) into integral equations

via the distribution of fictitious sources or dil)o[es of unknown strength on the boundary.

These iutegral equations consist of two parts. The first is a boundary integral term, whose

kernel is the unknown strength of the fictitious sources aud the fuudamental solution of a

convection-free flow problem. -I'he second part is a _iomain integral te_'m whose kernel is the

convective portion of the governing PDEs. The domaiu integl'atiou can be transformed to

the boundary by using the Dual Reciprocal (DR) concept. The resulting formulation is a

pure boundary integral computational process.

INTRODUCTION

The major advantage tlw BEM al)l)roach enjoys over other t,,chniques is the confinement

of the computation to the l)(mn¢lary. The resuh is 1he rethwtion iu the effective dimension "

of the problem. The e|fici¢,ncv with which linear problems in continua can 1)e solved using

BEM has received COllsiderable meution in the li1_'ral urn' during the past decade. Apart from

the reduced dimensionalilv aml the need for no special domain discretization, other derived

advantages include:

1. the ability to halldh, infinitely large (Iomain._:

2. a much reduced coefficient matrix:

3. the ease with which siugularities are handled:

4. the restriction of llw (lis('retizalion errors t()tile boundary, so that the solution is as

good as the descril)t ion of the boundary geomet rv:

5. the rol)ustness wheu COml)lex geometries are involve(l:

6. the ability to find solutions a l)osteriori at desired points, m)t at nodes predetermined

1)y the domain (liscrel izal ion:
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7. tile great latitude in solving transient probh'nls by a) using lhe appropriate time depen-

dent hmdamental solut ion in tile fonmdat iou: b) a pl,lying the technique in a transform

domain (e.g.. Laplace or Fourier): or c) using a time marching procedure.

Efforts at applying boundary integral techniques to nonlinear problems are quite recent. For

over a decade tim main focus was largely on litmar problems such as potential flows (see

e.g.. Brebbia et al.. [1.)_4]. Liggett £ Liu [1981]). BE3I t'ornmlatious for nonlinear (e.g.,

Lafe et al.. [1981]: Lafe £ ('ahan [1990]) or those in heterogeneous continua (e.g.. Cheng

[1984]: La& et al.. [1987-1992] have relied heavily on iterative methods which still require

some domain integration. The Dual Reciprocal techl|ique creates a major path for exploiting

the advantages of BE3I to solve nonlinear prol)lems such as convective flows. No domain

integration is involved when the Dual Reciprocal approach is followed.

The original credit for Dual Reciprocal BE3! COiiC_'I;{ goes to .Vardini £ Brebbia [1982]

who first suggested an innovative approach for tral|sl}irming domain integraIs to tile bound-

ary. However, until recently, prior investigations (see r..q.. Brebbia [1991]; Partridge et al.,

[1992]) did not make use of a complete Set ot_gloimi ftmctions. A series Of local radial func-

tions were utilized. This made convergence difficult or impossible for a class of nonlinear

problems. This author and his co-workers (see ('heng _! rd.. [199:i]) have recently derived a

set of complete coordinate funcl ions which have l)oeu tested on a fanlily of strongly nonlinear

PDEs. Excellent results have been obtained with the COml)lete set. This work opens the

door to the application of BE._I Io a wide spect rum of con_l)lex flow prol)lems.

In this papeL we l)rtment the full formulation of the l)ual Reciprocal Boundary Element

Method (DRBEM). for incoml)ressible convective flows.

GOVERNING EQUATIONS

Let the flow region is represt'ntecl by 9. and the Imundary is F. File pertinent flow equations
are:

• ('ontinuitv Equation

V.v=0 (1)

• ('onservation of Moment um

_)v ! i
0"-7 +(v'V)v=- Vl,+-V'r+g

p /9
(2)

where v is the velocity, p is pressure, g is tho _raxitalional accolevator vector, r is the

viscous stress tensor. I[" 1_ is viscosity, th¢'t_ [or a Newtonial| fluid, r is expressible in
the form:

r = pVv

Dimensionless Equations

Let L = characteristic length scale, i: = mean velocity, and q is tlw elevation of tile point

(x). We can define the following dimensionless variables:

x. = x/I. (3)
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v. = v/_ (4)

i,. = (v+ r_,l)/(S) (5)
t. = _UL (6)

With these, tile above conservalion statements can I)e made dimensionless:

V.v. = 0 (7)

t)v.t)t--"[+ (v.. V)v. = -Vp. + V2v. (8)

where

R, = p'fL/tl = Reynolds Numl.)er (9)

The governing equations call l)e rearranged and writ tell in tile pseudo-Poissou form:

V'"(I,(x.. t.l = F(x.. t.) (10)

where

and

_ _ v. X'elocity
p. Pre.,csure (11)t

IL [/)v./t)/. + (v. • X-)v. + _1,.] Xelocity Equation
F = (12)

-V. [(v. g')v] Pressure Equation

The pressure equation is obt aiu(,d by introducillg the c(mt inuity equation into tile divergence

of the momentum equation. Note that in the velocity equation. 4) an(I F are vectors with

two (for 2-D and axi-synltlletric problems) or t lifo(' (for 3-D prol)lenls) COml)onents. We will

now drop the • prefix in I},, dimensionh,ss variables, for ('onvenieuce.

For most flow problems th(" Imun(tary conditions will generally consist of three types:

- • Diriehlet Boundary (I'.)

¢=¢,,

• Neumann Boundary (I'_)

Q=--=@,
/)n

where ?)¢b//)n = X-qb. n. and n is the tu,it w'ctor normal to the boundary.

• Mixed (r._l)

C(O. V'(I,. x.t) = 0

where ( is some sl)ecilicd fuu('tion. A free-surface will I)o an example of the third. In most
iterative schemes it is usual to recast tile 3Iixrd I,outldarv condition in the form of either

the Dirichlet or the X('tmtanl_ types.
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BOUNDARY INTEGRAL EQUATIONS

We will use equation (10) as tile representative PDE ill developing the integral equations.

If fictitious sources of strength u' are distributed around F. equation (10) can be converted

into the integral expression (see .lasu'on ,(: S vmn) [1!)77]):

q>(x) = fr w(x')g(x, x')dx'+ .fn F(x')g(x. x")dx" (13)

where g is the free-space Greeu's function which must satisfy:

V2g(x.x ') = ,6(x.x') (14)

where (5 is the Dirac delta fimction applied at a point x' and Mt at x. The closed form

solution to equation (l-l) is ( (;re_'_d_el_g [1971]):

Inr/2r: in two-,linlensions
g(x. x') - (15)

l/(4r, r) in Ihree-(limensions

in which r = Ix -x' I. The last term in equation t t3) rel)resents a donlain integral. To

convert this into all integration on the boundary we intro(luce t]w D,M Reciprocal concept

(Chenget al.. [1993]).

DUAL RECIPROCAL TECHNIQUE

Consider nr points on l" and in ft.. We introd,lce a family of coordinate functions M./(x)

(j = 1.2...-nT) such that:

F(x)
j= I

where .:t are coefficients to I),, determined i)v ,'olI,,,'ation.

Mj(x). there exists an asso('iale, I function tPs(x) slwll thai:

(16)

V(e assume for each function.

V_2q.i(x) = 3/,{x) (17)

It can be shown (('hetJ_ & Ouazm' [19!13]) t}ml 5,ra two- dimensional problem for which

.lid = r'"g" tile function ip, is given by:

m < I_

(is)

where the square brackets in lhe Ul)per limit of tile sum,lation denote the integer part of

the argument. Sohttious for other possible families of coordinate ftuictions are 1)resented in
Table 1.

=--
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Table 1

£ Dim.

V 2 2D cos(n.r) cos(m!/)

V 2 Axi Ix'0(,,') cos(/,':)

V 2 3D cos(,.r) cos(my)cos(k:)

V 2 2D el, x+,,._,_

V_ Axi Ko(.,')c _';

V 2 3D e I''+'''_+_'l

V 2 - A2 2D cos(n.r) cos(m!/)

V2 _ ,\2 ,\xi ho(.r) cos(t'z)

V" - A2 :ID cos(,.r) cos(,,!/) cos(kz)

V2 _ .\2 2D e v''+'''_'_

_"2 _ ,\2

lpj

...=2h_
(,,2 +ra a )

- M

-._[_
(n2+m2+k 2 )

M2_._

(a2+m 2 )

Ma__.

(na+k 2 }

(.2+m_+k2)

-Mj

(n2+m2--.\ 2)

(.-,+#2_ \_ }

(. 2 + ,.-_ +k2 _ \ a)

%
( ,d + m 2 _.\2 }

( tj2+_.2_ \2 )

.%
(t_2+m2+_'2--.\ 2)

in which K0 is the zerot h or(ler modified Bessel t'unction of the first kind. When equations

(16) and (17) are used in (10). and we distribute the fictitious sources on F we can obtain

the 'pure" boundary inlegral equation:

n r

<b(x) = .£ u'(x')g(x.x') dx' + _ _./_./(x) (19)
j=l

An expression for the gradienl of _. which is required in equation (12) can be obtained from

equation (19) as:

-/r a TV'_(x) = .'(x')V'o(x. x') _Ix' + _ .3jV%(x) (-'20)
j=l
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The normal derivative 0¢/0o = V'¢. n is given by:

0¢ , Og O_j (x)"_'n (x> fr x') dx'+ _ 3_ (21)= .'(x)_(x.
jml

Assuming 3j (j = 1.2.,-nT) are known, the only unknown in equations (19) and/or (21)

isthe source strength distributionw oilr. Tile trickis to start wilh a trialdistributionof

F(x) and to obtain the coefficients,3i(j = 1.2-.. nr) I)3'collocationusing equation (16).

When applied to allnT selected l)ointsthe resultof the collocation is the matrix equation:

nT

E -_:.,3, = F, i = 1.2.. . . .r (22)
j--t

where Mij = M./(xi) and F, = F(x,). The matrix svsteln {22) is also expressible in the form:

M3 = F (23)

which can be inverted to give:

;3 = i-tF (24)

Once ,3 has been determined, equations (19) attd/or (21) are then combined with the

prescribed boundary conditions and solved for w Oll l". A better estimate of F is then

obtained by using equations {19) and (20) in (12). The solution process continues until a

specified convergence criterion is satisfied.

DISCRETIZATION

We subdivide the I)ouudary into i_, elements. [:'l .\,(x} (k = 1.2.-..o_) represent the

boundary shape fimctious describing the distril)ulion of wou F. [ly selecting each of the nb

boundary points as successive origins of integral ion. equat ions (l!)) attd (21) can be assembled
into the system:

t) b

Y_."i_.,'_. = hi. i = 1.2..... ,t_ (2.5)
k=l

where

= I ./r, .V_.(x')e(x'. x, ) dx' x; E F,Oik
./r, .V_.(x')i')g/i'),,(x'.xi),Ix' x, • VQ (26)

f n r .o¢/o,,<x_)- Z',£, _jo¢,,/o,, x, _ ro (27)

Therefore, we have m, eqltations to determine u'a. (k = 1. "2.... I_h). Symbolically equation
(2,5) can be written in the ahet'na! ire tbrm:

aw = b (28)

which can be inverted to give:

w = a-lb (29)

The whole process boilsdown to the iterativesolution of equations (24) and (29). with

repeated updating of F using (12). At each time level/,the iterativesteps are:

I. Start with a trialF (i._..Fi values for t6= 1.2....or).
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'2. Obtain/3 from equation (24).

3. Obtain w using equation (29).

4. Use discretized forms of equations (19) aud (20) to compute _. _'_ at all nT points.

This provides a better estinlate for F.

5. Go back to Step "2 if convergence conditiou is still unsatisfied.

Note that the matrix inversions in equations (21) and (29) need only be performed once,

for fixed boundary problems. The vectors w and /are the quantities whose values change

during the iterative process. Once convergence is reached, equations (19) aud (20) can be

ased routinely to obtain _ = (v.. p.) or ihe gradient at any point (x) of interest.

Treatment of Time Derivatives

We now need to address the treatment of the local acceleration term Ov/Ot as occurs when

equation (11) is written for the velocity. We discuss two efficient approaches for handling

this term. The first is based on the useof a linle- dependent fundamental solution. The

second utilizes a simple lime-marching procedure.
Time-dependent Fundamental Solution

Equation (l 1), written for the velocity (i.e.. _ = v). can l)e re-arranged into the alternative
form

£_(x.t) = F(x.l) (30)

where

= v,(.) _ /¢ /)('__2
Ot

F = R, [(v.V)v+ V/,]

The boundary integral e(lual ion in t his case is

¢b(x. t ) = ._' .ft tr( x'. t' )g( x.

a T

t.x'.t') ,/x' _lt'+ __, _iq,;(x.t)

where the functions g and qJ, u,l._t respectively sati.,,fy the lbllowing PI)Es

(31)

Z.:q(x.l.x'.t') = ,,(x.t.x'.t')

£g'(x.t) = .ll.,(x.t)

(32)

(33)

The closed-form solution for (32) is (see Gree_d)erg [1.971])

g(x.t.x'.t') = {

exp,f n.,,_
It--f) I_ .l(t--t') j

¢"_'.H(t-,') eXl) ( R-,"2 "1,
(t-t') "_12 4(t-t') J7

in two-dimensions

in three-dimensions

(34)
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where H is tile Heaviside function.

The extra computational effort required here is the time itltegration, re('), at each time

level. However. this al)pl"oach has the major advantage that no difference approximation is

introduced in the evaluation of the time derivative, and the exact time-dependent funda-

mental solution is utilized in the integral equation.

Time-marching Procedure

In this approacli we assume the time derivative can be approxiwmted by the difference equa-

tion
(_V V -- Vo

Ot __kt

where v0 is the velocity at a previous time level. The velocity equation (30) is still valid but

the differential operator £ and for6ng function F now ])ecome

= v2(.)-.-_,(.)£

]F = R,-_-_-+(vo.V)v0+V/,

The boundary integral equation in this case is

aT

,t,(x. t) = fr ,.(x'. t')g(x, x") ,Ix' + _ 3_%(x. t)
i=t

(35)

where the functions g and _.; must respectively satisfy

£g(x.x') = _.(x.x') (36)

£_(x.t) = .lI_(x.t) (37)

It is easily shown that

in two-dimeusions

in t hree-dimellsions

(38)

The tinm-marching approach has the obvious advantage of not requiring all explicit time

integration, as in the ill'st method. Fnrthormoro. for fixed boundary problenas, the free-

space function g need not be cah'ulaled at each time level. "l'hc iterative scheme can now be

replaced by the time-nmrching precis. However. the presence of ...kt and R, in the argument

of the Green's fimction creates the ueed for ext reme caution in the uumerical evaluation of

g. As the time step is reduced Io improve accuracy, or as the flow moves away from the

laminar regime, the numerical value of g reduces very rapidly.
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CONCLUSIONS

New concepts in boundary element modeling provide excellent approaches for soMng con-

vective transport problems. A formal determination of the advantages inherent in the new

DRBEM formulation call easily be accomplished. Iu general, we expect optimum nr (=total

number of collocation points selected to evaluate coefficients 3) to be of the same order as

the number, nb, of boundary elements. Therefore. the largest matrix size in BEM will be of

order nb x nb = n_. By comparison, the domain techniques, because of tile need to discretize

2 o_. The advantagethe entire region, will produce a global matrix size of order _ x n,; =

in terms of storage requirements is obvious. Moreover. the much reduced size of the global

matriz¢ has a more pronounced advantage in total ('P[" lime.

For example, in a 2-D flow prol)lem discretized with 100 boundary elements, the matrix

size using the domain methods (if no special consideration is given to matrix bandedness)

will be 104 larger than that of BEXL Even with the sparseness of the global matrix taken into

account in the domain methods, a boundar.v element apl)roach still enjoys a size advantage

proportional to the l)andwiehh of the matrix. The computational advaatagb in 3-D is more

significant because of the much increased tmmber of meslws in the donmin techniques.

These computational advanlages are key to effective modeling of convective flows. The

compactness of BEM matrices allows for a greater freedom to experiment, even on computers

of average memory: DR BE3I provides an excelh'nt plat form for optimizing system geometry.
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