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ABSTRACT

This paper investigates a problem on the steady-state, conduction-convection

heat transfer process in cylindrical porous heat exchangers. The governing partial

differential equations for the system are obtained using the energy conservation law.

Solution of these equations and the concept of enthalpy lead to a new approach to

prove a theorem that the sum of inverse squares of all the positive roots of the zero

order Bessel function of the first kind equals to one-forth. As a corollary, it is shown

that the sum of one over pth power (p > 2) of the roots converges to some constant.

NOMENCLATURE

PRKCliDiI'_G PAGE BLA;'_K NOT FR.MED

W specific mass flow rate , Kg/m2.s

Cp specific heat of fluid at constant pressure , J/Kg.°C

h convective heat transfer coefficient , W/m2.°C

R radius of cylindrical board, m

r radial coordinate, m

z axial coordinate , m

T, solid temperature, °C

T,o solid temperature at circumference , °C

7'/ fluid temperature , °C

Ts0 inlet fluid temperature, °C

A WCpR/A_ , dimensionless parameter

B i3hR/WCp , dimensionless parameter

t (T, - T/o)/(Tso - T]o), dimensionless temperature of solid media
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T

X

Y

( T 1 - Tfo ) / (T,o - Tfo ) , dimensionless temperature of fluid

z/R, dimensionless axial coordinate

r/R, dimensionless radial coordinate

Greek Letters

specific area of heat transfer , m2/m 3 : -: ....

7 _,/_ , ratio of the axial and radial thermal conductivity

Az axial thermal conductivity of solid, W/m.°C

AT radial thermal conductivity of solid, W/m.°C

INTRODUCTION

z 2z : -:

Porous heat exchangers play a significant role in many engineering appli-

cations, such as cryogenics, thermal storage systems, and chemical reactors. Such

systems lead to a set of Partial Differential Equations (PDEs) with a strong coupling

between equations for the solid and the fluid phases. Analytical schemes to solve

a general class of problems in this area include the method of separation of vari-

ables (refs. 1 and 2), Pdemarm method (ref. 3), orthogonal collocation techniques

(ref. 4) and collocation-perturbation scheme for packed beds (ref. 5). Siegwarth

and Radebough (ref. 6) present a numerical technique to solve the above problems

with variable physical properties. Lin, Guo, and Wang (ref. 7) present a com-

bined orthogonal collocation-perturbation method to solve the temperature field in

a cylindrical porous heat exchanger.

In this paper, the physical problem presented in (Ref. 7) is reconsidered.

Using the approach of separation of variables, the PDEs associated with the prob-

lem are reduced to two Boundary Value Problems (BVPs) of Ordinary Differential

Equations (ODEs). Solution of the resulting BVPs leads to a new method to prove

a theorem regarding roots of the zero-order Bessel function of the first kind. As

a corollary, it is shown that the sum of one over pth power (p > 2) of the roots

converges to some constant.

The theory of Bessel functions and related functions is well established and

the main results are summarized in textbooks and mathematical manuals (refs. 8

=
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to 10). The properties of Bessel functions concerning operations of differentiation

and integration with respect to their order have also been studied by Apelblat and

Kravitsky (ref. 11). However, little is known about the convergence and summation

of series for roots of Bessel functions due to no explicit expressions for the roots

except for 4-1/2 order Bessel functions. Although in 1874 Rayleigh derived a gen-

eral form of the theorem discussed here by applying an Euler's formula (ref. 8),

his approach is suitable for even power series only. Furthermore, he did not study

the convergence of such series for a general case. Therefore, research is needed to

further understand the properties of Bessel functions. The new method to prove the

theorem stated above is based on the mathematical model of a cylindrical porous

heat exchanger. A brief description of this model is presented next.

MATHEMATICAL MODELING

The model considered here is a semi-infinite cylindrical porous heat ex-

changer as shown in (fig. 1). Let r and z be the radial and the axial coordinates,

and R be the radius of the cylinder. A fluid flows through the porous media in axial

direction from left to right. The inlet temperature of the fluid is Tf0 which can be

higher or lower than the board circumference temperature T,o. Let W, Cv, and h

be the specific mass flow rate, the specific heat of fluid at constant pressure, and

the convective heat transfer coefficient respectively.

Porous materials used in such applications exhibit anisotropic behavior. It

is assumed that the thermal conductivity of the solid is symmetric about the axis

of the cylinder. Let _ be the specific area of heat transfer , kz and kr be the axial

and the radial thermal conductivities of the solid, and 7 be the ratio of ks and kr.

In the derivation to follow, we assume that: 1) the physical properties and

convective heat transfer coefficient between porous substance and fluid are con-

stants, 2) the dimensions of the porosity and solid particles are very small com-

pared to the overall dimension o{the Heat exchanger, and therefore, the porous

material can be treated as continuous media, 3) the fluid thermal conductivities

are negligible compared to the solid thermal conductivities, and 4) the inner wall

temperature is kept constant, and there are no thermal resistances between wall
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and porous media or fluid. Finally, for simplicity, it is considered that T,0 > Tfo.

However, the formulation presented here equally holds for T,0 < T/o.

The differential equations of the system may be obtained by applying the

energy conservation law to a micro unit volume (ref. 7). Nondimensional forms of

these equations and the boundary conditions are given as follows:

Solid Phase :

c92t 10t c92t _ A cgT
- (i)

Fluid Phase : .....

0T
c9---_= B(t - T) (2)

=

Boundary Conditions :

t=l, y----1 (3a)
T = 0, x - 0 (3b)

t = 1, z _ +co (3c)

where t(= (T,- Tso)l(T,o-Ts0)) and T(= (T s -Tso)l(T,o-T/0)) are dimensionless

temperatures of the solid and the fluid, x(-- z/R) and y(- r/R) are dimension-

less radial and axial coordinates, and A(= WCpRIk,) and B(= _hRIWCp) are

dimensionless parameters. Here T, and T! are the solid and the fluid temperature

distributions. It should be noted that an additional boundary condition is required

to completely define the problem. However, it is not needed here and therefore it

is not considered.

Equations (1) to (3) can be used to find the temperature distributions of the

solid and the fluid phases. It will be shown that these equations can also be used

to prove the following theorem:

Theorem: Let c_,_denote the nth positive root of the zero-order Bessel function

of the first kind, then

Corollary: For p > 2, series

depends on p.

+_ 1 1

4 (4)
r_=l

Z+=_ _ converges to a constant C(p) which
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Proof." In order to pro_e the above theorem, we begin by eliminating T from Eqs.

(1) and (2). This leads to

Let

_(02t l& 02t. _ 02_ l& 02t_
Ox Oy 2 + y'_y + 7-Oz'iz2)= AB - B(._y 2 + y-_y + 7_-._.z2) (5)

t= I-XY

where X and Y are functions of z and y respectively. Using Eqs.

and the method of separation of variables, we obtain the following two equivalent

boundary value problems of ordinary differential equation:

(6)

(3) and (5)

and

y" + !y'_ AY- 0 (7a)

y

Y = o, u = 1 (7b)

[Y[< oo, u = 0 (?c)

f 7X'+TBX"+(A-AB)X'+ ABX=O (8a)

t X = 0, z ---* +oo (8b)

where a prime(') on X (Y) represents the derivative with respect to z (y), and

A is a separation constant. Equation (7c) suggests that Y is bounded at its center.

Equation (7) can be brought to standard Bessel equation form by a simple linear

transformation. This is a general Sturm - Liouville eigenvalue problem (ref. 14).

It has nontrivial solutions only when A,_ = -a_(a, _ 0). Using the properties of

Bessel functions, the solution of Eq. (7) for any o_,, may be written as

Y,, = c,,Jo(oe,_y) (9)

where Jo(z) is the zero order BesseI function of the first kind, a,, is the nth positive

root of Jo(Z), and c,_ is an undetermined constant.

Let the trial solution of Eq. (8) be given as

X : ale _x (10)
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Substitution of Eq. (10) into Eq. (8) leads to the following characteristic equation,

7# 3 + 7B# 2 - (o_ + AB)/9 - c_B = 0 (11)

Equation (11) is cubic in _. The discrim!nant A-of thisequatlo n !s::given as

A = -4-_{4_(B27- a_) 2 + 18AB2a_7 + AB3(AB + 2_)+

4AB(A2B 2 + 3a_ + 3a_AB)} (12)

Equation (12) suggests that A < 0. Thus, using the theory of cubic equations, it

follows that all roots of Eq. (ll) are real (ref. 12). Let these roots be given as _,,z,

]3_2, and $_a. From Eq. (11), it follows that

#nl .4- #n2 "4- _n3 = -B < 0 (13)

and

#.i" #.3 = > 0 (14)

Equation (13) suggests that atleast one of the roots is negative and Eq. (14) indi-

cates that negative roots appear in pair. Thus, it is concluded that Eq. (I1) has

two negative roots and one positive root for each a_. From physical consideration

(or Eq. (8b)), the positive root is disregarded. The general solution for X may now

be written as
2

X,_ : 7_ anie
i=1

Substituting Eqs. (9) and (15) into Eq. (6), we get

(15)

¢o 2

n=l i:1

(16)

where a,,i = c,_a'_,i. From Eqs. (1), (2) and (16), we obtain

1 oo 2

T = 1 - A-"B" _" Jo(any)" _., a,,,e _''::" (oL_ - 7#_, + AB)
n:l i:i

(17)

Differentiation of Eq. (17) with respect to z yields,

(18)
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Using Eq. (17), the inlet condition (Eq. (3b)), and the property of orthogonality

of Jo(vL,_y) in the interval [0, 1], we derive

2AB

a,, • J,(a,,) (19)

where Jl(z) is a Bessel function Of the first kind of order one.

ENTHALPY RELATIONS

Some enthaipy relations help prove the above theorem. Let H(z) and H(z +

dx) be quantities of enthalpy c_'ied by the fluid across the axial planes at z and

z + dx respectively (Figure 1). Expression for H(x) is given as

H(x) = WCp. _on{rdr • fo2_ d6. IT10 + T(T,o - T/0)]} (20)

A closed form expression for H(x) can be obtained by substituting Eq. (17) into

Eq. (20), and integrating the resulting equation. Expanding H(z +dx) in a Taylor's

series, and neglecting the second and the higher order terms, we obtain

dH(x) = H(=+ dx) - H(=) = OH(x)
Ox • dx (21)

where dH(z) is the enthalpy variation of the fluid passing through the control

volume between z and z + dz (Figure 1). The total change in enthalpy of the fluid

is obtained by ir_tegrating Eq. (21) over the length of the heat exchanger. Thus,

• dz (22)

Using Eqs. (lS), (20), and (22), we obtain

2,._WC_(Tso- T_o) _ J,(o_.)AH +_
= AB -" z....,{_. _ a,_,(o_ - 7Z_, + AB)} (23)

n=, C_n i=1

AH +°° can also be evaluated directly by subtracting the enthalpy of the fluid at

the inlet (- H(0)) from that at the outlet (= H(c_)). Expressions for H(0) and

H(c_) are given as

H(O) = WC_,_rR _ • T1o

and

ar(_) = wc_,_R_. Ts0
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Hence_

AH+== wcp,_m . (Too-T<o) ' (24)

Comparing Eqs. (23) and (24), we obtain

• _Jl(_-).{ a.,(_ - _, + AB)} = 1 (25)
n=l (T. "

Finally, substituting Eq. (19) into Eq. (25) and simplifying, we obtain

+oo 1 1

This proves the theorem. Since function J0(y) is symmetrical, it follows that

+_ __1 = 1 (26)

In order to prove the corollary, observe that all positive roots of Jo(x) are greater

than 1 (ref. 8). This implies that forp >_ 2

1 1

Equations (4) and (27) suggest that the series

c.@) =
V=I _i

(27)

increases monotonically and it is bounded. Thus, by monotone convergence theo-

rem (ref. 13), it follows that the series C,(p) (n _ oo) is convergent.

CONCLUSION

A mathematical m0del for a steady-State c0nduction-convection heat transfer

processes in a cylindrical porous heat exchanger has been investigated. It has been

shown that the equations resulting in this model may be used to prove a theorem

and a corollary regarding roots of the zero-order Bessel function of the first kind.

= Research :reported in this paper provides an alternate appr0acfi toprove a

theorem in this area. The advantages of this physical approach _are tl/at it-enriches

physical understanding of a theorem, and that we may avoid difficulties emerging

from rigid mathematical arguments.

E
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Figure 1. Porous heat exchanger model

498


