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AIIs'rRACT
A computer code, designated UMPIRE, is

currently under development to solve the Euler

equations in two dimensions with non-equilibrium

chemistry. UMPIRE employs an explicit

MacCormaek algorithm with dissipation introduced

via Roe's flux-difference split upwind method.

The code also has the capability to employ a

point-implicit methodology for flows where

stiffness is introduced through the chemical source

term. A technique consisting of diagonal sweeps

across the computational domain from each corner

is presented, which is used to reduce storage and

execution requirements. Results depicting one-

dimensional shock tube flow for both calorically

perfect gas and thermally perfect, dissociating

Nitrogen are presented to verify current

capabilities of the program. Also, computational

results from a chemical reactor vessel with no

fluid dynamic effects are presented to cheek the

chemistry capability and to verify the point-

implicit strategy.

INTRODUCTION

The role of Computational Fluid Dynamics

(CFD) for engineering applications has become

widespread in various disciplines within

technology. This growth can be attributed to the

development of advanced solution algorithms and

computer architectures. One area of recent

particular interest is the application of CFD codes

with non-equilibrium chemistry to high-

performance propulsion systems such as ramjets

and seramjets, t'2 The use of CFD in such

situations is especially appealing due to the

challenges associated with obtaining experimental

data. CFD can provide substantial information

regarding the physics of flows associated with

these systems that may be either impractical or

impossible to obtain from ground or flight-based

experiments.

The Euler equations which govern inviscid

fluid dynamics provide a good initial point for the

development of computational methods. They

describe significant features in the physics of fluid

dynamics, but are easier to work with than the full

Navier-Stokes equations. In the past, the standard

method for solving the Euler equations numerically
was to use central differences to evaluate the

spatial derivatives with second-order accuracy.

This approach produces good results everywhere

except in the vicinity of discontinuities such as

shock waves, slip lines, or contact discontinuities.

Near these features, central differencing generates

spurious oscillations, resulting in corrupted, non-

physical solutions. Numerical dissipation is

usually introduced through artificial viscosity, but

this method requires repeated "knob-turning" to

determine satisfactory amounts of dissipation

necessary for different applications.

Recently, upwind schemes have become

popular in dealing with flows possessing

discontinuities. Upwind schemes exhibit the

ability to reduce spurious oscillations by

incorporating physical characteristics of the flow

into the discretization process. They are naturally

dissipative, and thus the "knob-turning" required

by central differencing schemes is unnecessary.

One of the standard upwind-type schemes is the

flux-difference split method of Roe. Formulated

first for a calorically-perfect gas, 3 it has been

modified for both equilibrium and non-equilibrium

chemically-reacting gases. 4,s'_ Roe's flux-

difference split method utilizes exact solutions to

a series of local, approximate Riemann problems

at computational cell interfaces. Roe's method in

its basic form results in a spatially first-order
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accuratescheme,since the state of the fluid is
assumedconstantacrossthe entire cell. It can be

extended to second.order accuracy through a array

of techniques that use either variable extrapolation v

or flux extrapolationJ "9 In general, however, by

They may be written in compact vector form for
Cartesian coordinates as

aO + aZ + aF

raising the accuracy to second_rder, some :::
oscillations will be produced. _° _is dlffieuhlycan _edependentvector Q, the inviscid flux vectors

usually be overcome through the application of

flux limiters in the algorithm to smooth

oscillations without additional smearing of any
discontinuities, u

As part of an effort to acquire the

capability to model high-speed, reacting flows, a

computer code was developed to solve/he Euler

equations including non-equilibrium chemistry.

The code, designated UMPIRE (for Upwind

MacCormack Point-Implicit) uses a scheme

similar to the one presented by White, et.al, u This

method is based on the explicit, predictor-conv..ctor

MacCormack scheme with upwind dissipation

terms introduced through Roe's flux-difference

split method and extended to second-order

accuracy using the Szema-Chakravarthy method 8

and a minmod flux limiter. The point-implicit

method presented by Bussing and Murman 13 for

dealing with a stiff chemical source term is also

utilized to speed convergence for steady-state
applications. The motivation behind UMPIRE is

to create a code that can accurately and efficiently

model inviscid flows with non.equilibrium

chemistry for a wide variety of different
conditions, and to have the code to serve as a basis

for future development of more advanced codes to

solve the Parabolized or Full Navier-Stokes

equations. Also, the educational benefits and

practical experience obtained in developing such a

code from the ground up cannot be overlooked.

E and F, and the chemical source term H are

Fpfl]
pt'=l

Q= Pf_l E=
PUl

 ,rl

H I I I
'a_Nl F =

ol
0oJ

given by

pf2u

pf.u
pu2+p

u (Puvo÷p)

pf v
pf2v

pfNv
pvu

p v 2 +p
v(_o+p)

, (2)

where p is the density, f, is the mass fraction of

specie i, &_ is the production rate of specie i, p is

the pressure, u and v are the x- and y-components

of the velocity, respectively, and % is the total

energy per unit volume. In order to close the _et

of equations, additional relationships are required.

For a mixture consisting of independent, thermally

perfect gases in thermodynamic equilibrium, the

equations for pressure, specie enthalpy, and total

energy may be defined as

N

p ,, pRT E f_
.I[=i

(3)

GOVERNING EQU.AT!ONS

Fluid Dynamics Model

The governing fluid dynamic equations

currently utilized in the UMPIRE code are the

two-dimensi0nal, time-dependent, compressible

Euler equations in chemical non-equilibrium.

T

fh i = (Ah:)i ÷ c;,i(_)dz (4)
T,

54O



N

where _ is the universal gas constant, (z_dat)ir' is

the formation enthalpy of specie i at reference

temperature T,, T is the temperature, and cp,i is the

specific heat at constant pressure of specie i. The

final equation necessary to complete the system is

given by

N

f_ = z. (6)
i-i

Equations 1 and 2 are best suited for

solving on an orthogonal grid with constant

spacing. Since the Cartesian x-y coordinate

system does not provide such a grid for most

physical applications, Equations 1 and 2 were

transformed into a general computational _-r !

coordinate system possessing the above qualities.

Carrying out this transformation and manipulating

the restilting equations into conservation-law form

yields 14

- _az ÷ OF . 0 (7)
+ a-[

where the transformed vectors are given by

Ip . .r,.1

ov]

S= :l-
j N

Ol
OI
oj

m

F= 1
J

Pf_U
pf2u

p
P uU÷_x;

p vV÷ _yp

U(eo+p)

Pf2V

pf v
puV+q_

p v V+ 11yp
V(eo+p)

(s)

In Equation 8, J represents the Jacobian of the

transformation, _,,, _j_, rl,,, and fly are the
transformation metrics, and U and V are defined as

u= _xu*_yv v- n_u*qyv. (9)

Equations 7 and 8 are the equations that are

actually differenced and solved by the UMPIRE

code. For the remainder of this paper, the bar

over the transformed vectors will be dropped and

it will be assumed that they are being used unless

otherwise noted.

Thermodynamic Model

The thermodynamic model utilized by

UMPIRE consists of a fourth-order polynomial for

the specific heat at constant pressure,

C_.i = Ai+BiT÷CiT2+DiT_+EiT 4 . (I0)

The coefficients &, B_, C,, D_, and Ei are found for

each specie of interest using a least-squares curve-

fitting routine and thermodynamic data up to 6000

K as given in the JANAF tables Is.

A thermodynamic quantity required for the

calculation of the chemical equilibrium constant is

the Gibbs free energy per mole of specie i at one

atmosphere pressure. From its definition, the

Gibbs free energy may be found from

B_ 2 C_
gi_'I = A_ (T-TInT) --_ T ---_ T 3

_ Di 4 Ei

I--2T - -_ T 5-F i*Gi T

(Ii)
l

where the coefficients F= and G_ are functions of

T,, (Aht)i r', _, B_, C=, D_, E_, and the specie entropy

at T,. All of this information may be easily

obtained for the species from the JANAF tables.

Chemistry Model

To obtain the specie production rates

required in the calculation of chemical source
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vector, it was assumedthat the reaction method
employed consists of .1" chemical reactions

involving N species, and that the j,h reaction may

be written in the generic form

N N

vi.j X_t _ v l.j X_. (12)

In the above equation, v_j is the stoichiometric
coefficient for the i'h species in the j,h chemical

reaction, where i = 1, 2,..., N, and j = 1, 2,..., J.

The source term for specie i is found by summing

its production rate over all reactions. If the

forward and backward rate expressions are defined
as

, ,, ( pc./'",
°"J " k":II..,t, )

,, ( 0eCi',o,.:-k .jlq

(13)

then the source term becomes

J

cb #_" # : t b (14)t = M_ ,,vi..#-v_..#) [oi,.#-oi..#]

The forward rate constant Of reaction j, 1%, is

calculated using the Arrhenius model equation

kt,J ,,A:TN#exD(-_T ) (15)

where Aj, Nj, and E i are empirically determined
constants for each reaction. The backwards

reaction rate and equilibrium constants are

k_.j* _ (:t6)
k_z, .#

k,q.j = (tol,m,)an exp(A_._) (17)
_T JIT

where

N / (ze)
,aGJ''_ - _. (v_'.: - vi.:) g_;'_

and

An = _ (v//_.: - v_.:) . (i9)

NUMERICAL METHODS

Roe's Flux-Difference Split Method

The upwinding present in .the UMPIRE

code is introduced through Roe's flux-difference

split method. Fo_ _ion_-di_ensi0nal"s|tuation in

Cartesian coordinates, the approximate Riemann

problem

a__o+ [Aq a_.q.0 (20)
at ax

with the initial conditions given by

O(x,O) = Or, for x_O

D(x,O) = f2_ for x>O

(21)

is solved at each cell interface to yield a new

distribution of the dependant variables across a

computational cell. The matrix [A'] is a special

form of the flux Jacobian matrix, OE/OQ, that is

assumed to be a constant function of QR and Qt.

over a computational cell and must satisfy certain

properties as shown by Roe 3. For the non-

reacting, calorically perfect gas case, these

properties are satisfied by the "Roe-averaging" of

the flow variables, given for a general flow

variable q as

For the non.equilibrium reacting gas case, this

averaging process becomes more involved due to

the added complexities of the system of equations.
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Grossmanand Cinnella_ presentedRoe-averaged
expressionsfor a reacting gas that satisfy the
conditionsprescribedby Roeexactly,andtheseare
the relationshipsusedby UMPIRE.

In Roe's flux-difference split method, the
first-order numericalflux at the cell interfacesin
the_-direction may bedefinedby_6

E_'..},j = E:L,j * de,t,,_, j

= E_.I, j - de_._,j

(23)

where

(24)

In Equation 23, S_ is the matrix whose columns

consist of the right eigenvectors of 8E/SQ, S_"l is

the inverse of S_, A±_ is a matrix consisting either

of the positive or negative eigenvalues of 8E/dQ

on its diagonal, and the " represents evaluation at

the Roe-averaged state. The first-order numerical

flux for the interface at i-tA,j is defined similarly
as

E___.j = E:___..:I * de___,j

= E._,j - de_..},j

(25)

where

(26)

For two-dimensional calculations, one-

dimensional flux-difference splitting may be

applied in each direction independently, and the

results then combined. This method is fairly
straight-forward, but does have some limitations

when waves oblique to the computational grid are
present. ¢_7 The flrst..order numerical fluxes in the

rl-direction at the interfaces i,j±_4 are given by

equations similar to Equations 23 through 26.

Upwind MacCormack Method

The numerical algorithm used by UMPIRE

is the MacCormack predictor-corrector scheme

with flux-difference split, upwind dissipation terms

as presented by White, et.al, t2 The derivation of

the upwind MacCormack scheme begins with the

spatially and temporally second-order accurate
form of the modified Euler method for the Euler

equations

÷ / ÷HLj

(27)

where "_+1 = p and x = n for the predictor step,

and r+l = c and "r = p for the corrector step. The

change in Q for the entire time step from n to n+l

is then given by

wi.j -_ . ' (28)

The numerical fluxes at the cell interfaces (± ½)

are calculated by Roe's flux-difference split

method as represented in Equations 23 through 26.

Since there are two expressions that yield the

numerical flux at each interface, the expression

_÷_ - E_._._ may be written in four different ways.

The two ways that are of interest here are

E___,j = E:t.:,j-de_o_ . -

(Ez.j -de___.j) (29)

= A_E_,: - (de_._ .-de__ ! :)
•_,.7 _,

and
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" V_EL j + (de_o_,j-dei._.j)

(30)

Similar equations may also be written for Fi,i+_ -

F,j._. Inserting these expressions into Equation 27
yields the MaeCormack predictor-corrector scheme
with upwind terms to provide dissipation. For

example, if forward differences are inserted into

the predictor step while backwards differences are

inserted into the corrector step, the resulting

equation is

,b n

AQf, j - -A : [AeE_j- ( de_,._,:l-dei_.{,. _) +

a,F,.j- (aC,.;._-aei ;__), _; jl

Qi,je= -a _ [V_Ei,j+ (de;._ _-de___,j) ÷.-{,J ._

(31)

In the UMPIRE code, the forward and backward

differences for the predictor and corrector steps are

cycled according to Table 114 to prevent build-up
of directional bias. This method is stable for a

CFL number < 1, as is the standard MacCormack

scheme when applied to the Euler equations.

Second Order Terms

Thus far, the upwind MacCormack scheme
as presented is only first-order accurate in space
because the state of the fluid is assumed to be

constant across a computational cell. There are

several methods available for extending the spatial

accuracy of the upwind MacCormack Scheme, but

UMPIRE currently uses the Szema-Chakravarthy
method s, based on the work of Lawerance, et.al. 19

First, in the _-direction, intermediate
variables (x are defined as

=_,_._,j - (sf _)_.__.j(_._-0___,_)

• _._._,_ - (s_-*) _.__,_(0_._,j-_.,,_)

(32)

Then, these vectors are limited relative to each

other using a minmod flux limiter function in

order to reduce spurious oscillations. The resulting

equations are given by

..1,_ _,_

A_,_._,_

A_._._,j

(33)

where the minmod function of two values x and y
is defined as

mm- sgn (x) max [0,min{Ixl,ysgn (x)}]

(34)

and

13- (3 - _)
(I - _) (35)

is known as the accuracy parameter, and was

assumed equal to -1 throughout this study,

corresponding to a fully-upwind method} 9
The intermediate vectors are then

multiplied by the eigenvalues and eigenvectors to

obtain the limited upwind fluxes

=
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÷

. (3(5)

Finally, the total second-order contribution to the

numerical flux is defined by

- +dee_._,j 4 - . , •

- -

(37)

Similar second-order terms may be found for the

i-_,j interface as well as for the interfaces in the

rl-direetion.

The second.order upwind MacCormack

scheme is obtained by adding Equation 37 and its

counterparts at i-tA,j and i,j__.tA evaluated at time

level n_.to their corresponding first-order numerical

fluxes defined by Equations 23 through 26 in the

corrector step onlT. *zt6 For example, to raise

Equation 31 to second-order spatial accuracy, the

predictor step would remain unchanged while the

cot'rector step would become

Q_,j = -At; [VtE_,a+ (de _.a-de __.j)

* (deef..,j-deef..__. :, _)-7 .7

• _

+(aee2j. -aee; j_ )

(38)

Point-Implicit Treatment of Source Vector

When dealing with numerical solutions of

chemically reacting systems, the problem of

stiffness often arises. Stiffness in a chemically

reacting system is a result of the widely varying
characteristic time scales between the chemical and

the fluid dynamic processes being modelled. If

left untreated, stiff problems require prohibitively

long solution times, due to the fact that the

solution must be advanced at its smallest time step

to remain stable. A popular method for treating
the chemical source term is to evaluate it

implicitly, which introduces the chemical source

Jacobian as a premultiplying matrix to the left-

hand side of the predictor and corrector equations.

Continuing with the forward predictor, backwards

corrector example in both coordinate directions,

Equation 38 becomes

n p

I ,- A _1 a/,q;']A,.,cl )J

= RHS Eq. 38

= RHS Eq. 38

(39)

Thus, at each grid point, an N+3 system of

equations must be solved. Bussing and Murman 1_

have shown that by evaluating the source term

implicitly, the disparity between the characteristic

times is removed, thus allowing each process to

advance towards the steady-state at its own rate.

Point-implicit capability has been included in the

UMPIRE code for use in steady-state problems
which contain stiff chemical source terms.

Coding of Uowind MacCormack Method

The coding of the upwind MacCormack

method was given much consideration while

constructing UMPIRE. A technique where the

computational domain is swept diagonally in

varying directions was felt to be the most efficient

application of the upwind MacCormack method.

By examining Equation 44 and its counterparts, it

can be seen that AQ_,_t, and AQ_._° each rely on
information from two of the four surrounding grid
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points and all four of the surrounding cell

interfaces. The two grid points providing

information depend upon whether forward or

backward differencesarecurrentlybeingemployed

for each of the coordinate directions. For

example, in the predictor step 0f Equation _0,

which wili be referred to as an FF step since the

finite differences in both directions are forward,

the grid points i+l,j and i,j+l are used in the

calculation. By inspecting Figure 1, a mod¢i 6 x

6 grid in computational space, it can be seen that,

for an FF step, a diagonal line of grid points ('Line

A) relies on the information found along the next

diagonal line of grid points to the upper right

(Line B) and the two surrounding diagohai lines of

cell interfaces (Lines F and G). Similarly, for a

BB step, Line A relies on the information from

Line C and Lines F and G, for a FB step, Line D

and Lines FI and L and for a BF step, Line E and

Lines H and I. Thus, for any combination of

differences, only four lines of data need be stored,

two for the fluxes at the grid points, and two for

the numerical fluxes at the cell interfaces. This

reduces storage requirements when compared with

calculating and storing data for each grid point and

interface in the domain, and it reduces execution

time when compared to calculating data at each

node and interface as needed and discarding,

¢speciaIIy when considering the computational

effortnecessary to calculatethe interfacefluxes.

There are some additionalcoding requirementsas

well as an increase in code complexity with this

method, but itwas feltthatthesewere insignificant

when compared to the disadvantages associated

with either of the other methods. Also, this

method should improve vectorization ability when

the code is ported to vector machines such as the
Cray Y.M_P,

For each predictor or corrector Step, the

code firstdetermines the category of the current

step;FF, F'B,or BF, BB (seeTable i). With this

information, an initialstarting grid point is

defined; lower left for FF, upper right for BB,

upper left for FB, and lower right for BF. The

code then sweeps towards the corner of the

computationaldomain oppositetoitsstartingpoint,

steppingone diagonalata time. The same linesof

code are used for allof the categories,with the

only differencebeing the value of a few integer

variablesto make the distinctionbetween sweep

directions.Only thedataforthecurrentgridpoint

and interfacediagonal and for the previous grid

point and interfacediagonal are stored in the

computer's memory. If the step is a predictor

step, then the second.order terms fxom Equation 37

are calculatedand stored for the entire domain,

while if the step is a eorrector step, the previously
calculated second-order terms are added to the

interface flux as indicated Equation 38. Care must

be taken when calculatingand adding thesecond-

order flux terms using this method to insure that

allof the signs are correctwhen performing both

forward and backward sweeps.

RESULTS

Three test cases that were solved using the

UMPIRE code are presented here; a shock tube

containing calorically perfe_,'x gas, a well-stirred

chemical reactor with dissociating Nitrogen, and a

shock tube containing dissociating Nitrogen.

Shock Tu_ (Calorically Perfect G_)

Shown in Figure 2 are the density profiles

obtained by UMPIRE for a shock tube with

calorically perfect gas. This example was run until

the time was equal to 5 x 10 ") seconds, with y =

1.4., a CFL number of 0.5, a pressure ratio of 2:1,

and a temperature ratio of 1:1. There were I01

grid points taken along the length of the tube, and,

even though the problem is es._ntially one-

dimensional, 5 grid points were taken along the
width of the tube to test the code's basic structure

in two dimensions. Figure 2 was generated by

running UMPIRE in four different modes; no

upwinding (MacCormack scheme with no added

dissipation), first.order upwinding, second-order

upwinding with no flux Ilmiters, and second-order

upwinding with minmod flux limiters. A modest
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2:1 pressure ratio was selected here to contrast the

results from the standard MaeCormack scheme

with no dissipation to those from the MacCormack

scheme with upwind dissipation, since at higher

pressure ratios, the former produces such wild

oscillations that negative pressures and

temperatures develop. The effect of the upwind

dissipation on the oscillations present in the

standard MacCormaek scheme can be easily seen.

Also, the second-order scheme appears to resolve

the shock and contact discontinuity better that the

first-order scheme. In this ease, the difference

between the limited and unlimited second-order

scheme are minimal because of the low pressure

ratio, which causes only minor oscillations to be

produced by the unlimited scheme. Other pressure
and temperature ratios were examined for the case

of a shock tube with calorically perfect gas, and

they yielded results that similarly matched those

obtained exactly from one-dimensional gas-
dynamics z°.

Chemical Reactor (Dissociating Nitrogen)

The second case presented here is the

chemical reactor containing dissociating Nitrogen.
In this model reactor, it is assumed that there are

no fluid dynamic effects present, and that the only

change in the system is caused by the presence of

chemical reactions. This ease was investigated to

cheek the ability of the code to handle a simple

reaction mechanism decoupled from the fluid

dynamics, and to examine some of the features of

the point-implicit method.

The reactor was assumed to be a square

box, and a simple 5 x 5 grid was used. An initial

temperature and pressure were selected, and values

for the mass fractions of N 2 and N were chosen so

as to not correspond with the equilibrium
conditions. For the ease shown here, these values

were taken to be 4000 K, 10 MPa, .9, and .1,

respectively. UMPIRE was then used to march the

solution forward in time to a steady-state,

equilibrium condition, using both the point-implicit

and non-point-implicit methods and a variety of

CFL numbers. The reaction used to drive this

system and its Arrhenius coefficients are shown in

Table 221. The results are shown in Figure 3,

which are graphs of the length of time and the

number of steps required to reduce the norm of the

residual vector to 10 s. When the point implicit

method is not used, it can be seen that the length

of time required to reach the equilibrium point is

about the same no matter what CFL number is

used. This represents the physical time required

for the dissociation reaction of Nitrogen to

equilibrate. However, the results for the point-

implicit method show no such constant time is
found for different CFL numbers. The time in the

point-implicit method is no longer a physical time,

but a "psuedotime ''1_ used to advance towards the

steady-state. The point-implicit method was found

to converge to an equilibrium value for CFL

numbers as high as 0.9, while for the non-point-

implicit method, CFL numbers under 0.01 were

required for stability. This example demonstrates

the potential of the point-implicit method for

solving equations where the chemical and fluid

dynamic time scales vary widely. The point-

implicit method has allowed the reaction to be

separated from its physical time scale and instead

be associated with a psuedotime scale, which will
be of the same order as the fluid time scale. It

should also be noted that, for the initial conditions

presented earlier, the code converged to practically

the same equilibrium point no matter what CFL

number or whether the point-implicit or the non-

point-implicit was used. For the given initial

conditions, this equilibrium point is given by T =

6067.8 K, p = 1,426,811 Pa, fN2 - 0.965355, and

fN = 0.034644.

Shock Tube (Dissociating Nitrogen)

Once some confidence was established for

the chemistry capabilities of UMPIRE for the

simple Nitrogen dissociation reaction, it was

applied to the shock tube case. In this case, a

pressure ratio of 8:1 was used (10 MPa : 1.25

MPa), with a temperature ratio of 1:1 (T = 4000
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K). Again, thegrid was 101x 5 and a CFL of 0.5

was used. The code was marched up to 1 x 104

seconds, and the second-order, limited, upwind

MacCormack method was used to solve the

equations. The profile of the mass fractions for

the two species of Nitrogen are shown in Figure 4.

At 4000 K, molecular Nitrogen is just starting to

dissociate, and thus we do not see-mue-h _at0mic

Nitrogen present. As the shock wave propagates

to the right into the lower pressuregas, the mass

fraction of the molecular Nitrogen drops while the

mass fraction of atomic Nitrogen rises. The non-

equilibrium effects are clearly seen in the

overshoots and undershoots present in the mass

fractions immediately following the shock.

Downstream of the shock, the chemical

composition is given the chance to equilibrate, and

returns to its equilibrium composition.
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Cycle Predictor Corrector

Direction _ rl _ 1'1
1 F F B B

2 F B B F

3 B F F B

4 B B F F

Table 1 - Cycling of MacCormack Scheme

F -> forward difference, B-> backward difference

549



,_ ,ix /\
/ \ / \ / \

/
\ / I_ \\z" "-_, A" A_"v./ B ,,z "y.F,(, ..

\ / \ • \ /
?: ,,,

/ \
/ \

I C /'_..._\ D "

", /-,, / \ /",, ,"
_"4 x \ /

./ . \ g /"
"r"\\ A "_e.e /".\., D //" C. /',c%% / __A //

\ / x / \ / _ /

N

Figure 1 - Diagonal Sweeping of Computational Domain

14

N2+N 2',-,'2N+N= A 4.8x1014 "

E = 9.3951929x10'

N2 + N ,,-,. 2N + N A = 4.1x1019

N = -1.5

E = 9.3951929x10 s

Table 2 - Reaction Mechanism for Dissociating N2

Iq, in units of m3/(kmol • s)
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