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ABSTRACT

We consider the Helmholtz equation with a discontinuous complex parameter and

inhomogeneous Dirichlet boundary conditions in a rectangular domain. A variant of the direct

method of cyclic reduction is employed to facilitate the design of improved multigrid components,

resulting in the method of CR-MG. We demonstrate the improved convergence properties of this

method.

1 INTRODUCTION

Microwave heating of foods has revolutionised the food processing industry. Effective and

efficient microwave heating depends very much on a detailed knowledge and understanding of the

dielectric properties of the food to be processed. This need has given rise to extensive research into

the dielectric properties of materials; see, for example, Tinga and Nelson [1].

Microwave heating can be compared to heating by alternating current. The electric field of

alternating current changes direction approximately 100 times each second, whereas the microwave

field changes direction approximately 5 billion times each second. The heating effect is

accomplished by energy transfer to dipoles, most commonly water. Most foods contain between 50

and 90 percent water. By attempting to follow the very rapidly changing microwave electric field,

the molecular vibrations of the dipoles are strengthened, thus increasing the temperature of the

water and hence the food.

The scalar potential ¢ associated with the microwave field satisfies the wave equation

02¢
v2¢ - cv-3_ = 0,

which is derived from Maxwell's equations of electromagnetics. The parameter c describes the

permittivity of the medium and the parameter # the permeability. However, the radiation field in

a microwave oven varies harmonically in time, and so we look for a solution of equation (1) in the

form

¢(x, t) = u(x),

(:)
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Figure 1: A two-dimensional model of a microwave oven.

where u is a time-independent scalar potential function and w is the frequency of the microwave

radiation. By substituting this expression into equation (1), we see that u satisfies the Helmholtz

equation

_72u + 6u = O,

where $ := e#w _. In general, e and/z are complex numbers, with real parts related to a material's

ability to store electrical and magneticenergy respectively, and imaginary parts related to a

material's ability to dissipate electrical and magnetic energy respectively. However, the

permeability of biological materials is close to that of free space, i.e./z _/to = 4_r × 10 -7 Hm -1.

Hence, since most domestic microwave ovens operate at a frequency of 2450 MHz, we can calculate

5 for any given permittivity e.

The oven is represented schematically (in two dimensions) by the rectangular domain depicted
x

in Fig. 1. Region 1 corresponds to free space and so c - ¢0 -- _ × 10 -9 Fm -1 and 5 is a real

constant in the-region. R_glon 2 corresponds to the heated material and so 5 is a complex constant

in this region. Energy is fed into the system by a magnetron via the waveguide. Hence, in this

paper, we consider the solution of the Helmholtz equation with a discontinuous complex parameter

and inhomogeneous Dirichlet boundary conditions in a rectangular domain.
= " - _ == _-:7 2_ 7=_: : : ' -_ .L':7 i:£T:T7 7 _ -

We close this section with a plan of the paper. In section 2 we describe the mathematical

problem and discuss the sm0?thing_:ebiilticsof two muitigrid smoothers. In section 3 we describe

the technique of approximate cyclic reduction and show how this can be used to ciesign improved

multigrid components. Numerical results are presented in section 4 and some concluding remarks

are __made in section 5.

2 MATHEMATICAL PROBLEM

Consider the complex two-dimensional Dirichlet boundary value problem

V2u+Su=O in fl=_lt2ft2 (2a)
s.t. u=g on 0f_,

with data

5 = _" 51 in subdomain fla

[ 52 in subdomain f_2 '

where _ta and _t2 are rectangular subdomains of f'/(as in Fig. 1).
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Operator Definitions

Beforeattempting to solvethis problemby the multigrid method, weneedto carefully consider
the definitions of the dlscretisation, restriction and prolongation operators. In [2], De Zeeuw
considersthe solution of generallinear secondorder elliptic partial differential equationsover
similar domains. He notes that the rate of convergenceof standard multigrid methodsoften
deteriorateswhen the coefficientsin the differential equation are discontinuous;he proposes
matrix-dependentgrid transfer operatorsto overcomethesedifficulties. However,in our case,the
discontinuity occursonly in the coefficientof u (viz. 6), and not of Vu. Hence we proceed in the

following way to define operator 7_ = 7_(_) in the domain f_, where 7_ can be taken to represent the

discretisation, restriction or prolongation operator. Firstly, if 6 takes value 6i in subdomain fli

(i = 1, 2), then we set the value of 6 on the interior boundary between f_l and f'/2 to

1 (61 + 62). Secondly, T' is defined piecewise by63 :=

{ _E:_(61) in fll
= in (3)

_(_3) on Otis

In practice, this definition of 7v, for discontinuous 6, does not seem to impair the convergence of

the multigrld algorithm for relevant value§ of 6.

Equivalent System of Real Equations

Consider the discrete analogue of problem (2). Suppose _ = a + ifl E C and g E IR. Using a

central difference discretisation on a mesh of n × n intervals, the matrix of the discrete system

Au = f is represented in stencil notation by

1]1 p 1 ,

i

(4)

where A E C('_-1)2x C (n-1)2, h := i and p := 6h 2 - 4 = (ah 2 - 4) + i/3h 2. Hence, while most linear
n

systems which arise in practice have real coefficient matrices, the discretisation of this problem

yields a complex linear system. Further applications which give rise to complex linear systems
include discretisations of the time-dependent SchrSdlnger equation, inverse scattering problems and

underwater acoustics. .........

A popular approach for solving complex linear systems is to solve the equivalent real linear

systems for the real and imaginary parts of u. However, the following remarks, due to Freund [3],

cast doubt on this approach. Suppose that A is a general complex m x m matrix. By taking real

and imaginary parts, we can rewrite the complex system as the real linear 2m x 2m system

Bfi= ImA -TCeA -Zmu = Zmf "
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It can then be shown that B has eigenspectrum

a(B) = {)_ EeIA 2 E a(.AA)},

which means that a(B) is symmetric with respect to the real and imaginary axes and hence the

eigenva!ues always embrace the origin. Now if A is complex symmetric (as is the case with (4)),

then ]_ is a real symmetric matrix with real elgenvalues Symmetrlcal]yd_stributed about the origin,

i.e. B is symmetric indefinite. Therefore the equivalent real system is often harder to solve than the

original complex one.

=_ -- :: 2

Smoothing Analysis

Multigrid smoothing methods are usually basic iterative methods, the properties of which are

well understood. As the name suggests, the function of a multigrid smoothing method is to reduce

the rough (high frequency) components of the error as efficiently as possible. This is basically a

local task and so the smoothing efficiency of a method can be analysed by local Fourier mode

analysis [4], neglecting interactions with boundaries. The smooth (low frequency) error components

are:reduced on the coarser grids. There_is a==na_ural distinction between high and low frequencies

depending on the type of grid coarsening chosen. Essentially, the low frequencies are those which

are visible on the coarser grids. In principle, smoothing methods need not be convergent (see [5],

chpt 7), although in practice most are.

Consider the discrete analogue of problem (1), Au = f, defined on a mesh of n x n intervals.

Basic iterative methods are based on a matrix splitting A = M - N and are defined by

Mu (_+1) = Nu (m) + f.

The algebraic error arising from the iterative solution of this system of equations is defined by

e (m) := u (m) - u and satisfies the equation Me (m+O = Ne (m). Denoting the stencils of M and N
(re+a) (m)

by [M] and [N] respectively, this equation can be rewritten in stencil form as [M] ejk = [N] e._k .

Now if we define e (re+a) := A e (m) and note that the algebraic error can be represented as a
combination of local Fourier modes

= , , , n , -7+l<p,q<7},

then by substituting this into the stencil representation of the error recurrence we define the error

amplification factor

[N] dU0+k )
A(0, ¢) :=

The error amplification factor is the factor by which the amplitude of the (0, ¢) Fourier mode is

multiplied as a result of a single smoothing iteration. Now in the case of standard grid coarsening,

the sets of smooth and rough frequencies are defined by

o,:=o n (-i, i)

@, := 0\0 .
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Figure 2: Fourier smoothing factors pD for PGS and KACZ.

Hence the Fourier smoothing factor, which is the worst factor by which all high frequency error

components are reduced per iteration, is defined by

p:= max I (0, ¢)1.
(e,¢)eor

Note however that this definition of the smoothing factor is only valid for boundary conditions of

harmonic type. The influence of Dirichlet boundary conditions can be taken into account

heuristically (see [6] and [7], for example) in the following way. The error at the boundary is

always zero and so we define a new set of rough frequencies as

E)D := @r N {(0, ¢) C O: 0 7_ 0 and/or ¢ # 0}.

The corresponding Fourier smoothing factor is defined by

pD:= max IA(0,¢)1.
(0, ¢)_op

This is a mesh-dependent definition. A mesh-independent definition, introduced by Brandt [4], is

obtained by replacing the discrete set @ with a continuous analogue, but this is more difficult to

compute numerically and gives less realistic results in cases where the type of boundary condition

has much influence.

There are many possibilities for the choice of smoothing method (see [7], for example), but for

brevity we consider only two, point GautLSeidel iteration (PGS) and Kaczmarz iteration (KACZ).

The latter of these two methods, dating back to 1937 [8], is considered here because, when applied

to the complex linear system Au = f, the method converges for all distributions a(A) of eigenvalues

of A. The reason for this is that solving the system Au = f using KACZ is equivalent to solving the

system AAHv = f with u = AHv (i.e. postconditioning) using PGS, and the matrix AA n is

Hermitian positive definite, thus guaranteeing convergence. Applying the smoothing analysis to

stencil (4), the error amplification factors for PGS and KACZ are

)_PGS "--
e i° + e i¢

P + e -iO + e-i¢ '
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(d ° + d¢)(e ;° + d ¢ + p + _) + 2d(-°+¢)
•_KACZ _-

4 + g + (e -;e + e-;¢)(e -;° + e-i_ + p + _) + 2c;(°-¢) '

for some p = (c_h 2 4) + i;_h 2 and (0, ¢) 6 0. Fig. 2 displays contour plots of pDcs and ;3-- PKACZ

plotted as functions of ah 2 and/gh 2. For fixed values of h and c_--T6__, as/9 --Irn 6 increases,

pDcs increases and PKAczD decreases. Hence we might expect the multigrid convergence rate to

improve slowly with a KACZ smoother and deteriorate more rapidly with a PGS smoother as/3

increases. This is borne out in practice. Finally, as a rule of thumb, a good smoothing method has

1 In this sense, neither of the two methods considered here is a gooda smoothing factor pD < _"

smoothing method for problem (2).

3 CYCLIC REDUCTION AND MULTIGRID

Cyclic reduction (CR) is a direct method of solution for tridiagonal and block-tridiagonal

systems of linear algebraic equations [9], [i0]: For tridiagonal systems which represen t :

approximations to 1-D second order ordinary differential equations, CR is as efficient as multigrld

(MG). For problems in higher dimensions CR becomes too computationally expensive due to fill-in

within the blocks, ttowever, the design of 54(3 methods in higher dimensions can be facilitated by

drawing comparisons between MG and CR (sec Shaw [11]).

Approximate Cyclic Reduction

Consider the system of equations Lu = f. If v is an approximation to the true solution u, then

we define the error vector as e := u - v and the residual vector as r := f - Lv = Le. Then

assuming that the error vector e is sufficiently smooth (a condition normally guaranteed by a few

applications of a smoother in a MG algorithm), the fill-in can be minimised by making accurate

Taylor expansion approximations of the outlying errors. This method is known as approximate

cyclic reduction (ACR) [12].

Now consider a two-grid method applied to a two-dimensional Toeplitz system. Suppose the two

grids have mesh sizes h and H = 2h and the fine grid matrix has stencil

Lh-: bab ,

b

where a and b are scalars. Given an initial approximation v to u, we want to solve the equation

Lhe = r for e to obtain an improved approximation v + e. The method of ACR approaches this

problem as follows.

Eliminate the outlying errors in the Stencil using neighbouring equations to give

2b 2 0 2b 2

b2 0 4b 2 - a 2 0 b2 •

2b_ :2 2b2

Lh ""
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This first step of CR has destroyed the band structure of the original five-point operator. Further

steps of CR would introduce more fill-in, resulting in a relatively inefficient process. Instead,

assuming the errors are sufficiently smooth, approximate the errors at the NW, NE, SW and SE

positions (in compass point notation) using accurate Taylor series expansions. This defines the

ACR-modified coarse grid matrix, which has stencil

2b 2

0

LH ,',_a 2b 2 0 8b2 -a _ 0 2b2 ,

0

2b:

where a is an arbitrary scaling parameter. From the above information, the definition of restriction

from the fine grid to the coarse grid can also be gleaned. The ACR-modified restriction operator

has stencil

~ b b . (5)
b

For theoretical considerations it is very convenient to choose restriction and prolongation operators

which satisfy the relation PHh = R H*, where R H* is the adjolnt operator of R H with respect to a

suitably defined scalar product. However, the adjoint of the five-point restriction operator (5) is not

a reasonable prolongation (see [13], p. 78). Alternative definitions of the prolongation operator are

discussed in the following subsection.

ACR and the Helmholtz Equation

Consider a two-grid method, with mesh sizes h and H = 2h, applied to the fine grid Helmholtz

differential operator £hU := V2u + 6u. Using a central difference discretisation on a mesh of n × n

intervals, the fine grid matrix has stencil

111]Lh'_7_ 1 p 1
1

h 2

1 andp:=6h 2 4. Hencea=_ andb= 1 Now if we choosea= then thewhere h := n- - D" T,
ACR-modified coarse grid matrix and restriction operator have stencils

1

0

1 0 4-_p 2 0 1
0

1

1]1-p 1 .
1
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Therefore the analogouscoarsegrid Helmholtz differential operator is definedas
£.HU := V2U + 5(1 -- --57-)u,SH2'i.e. ACR suggests solving the Helmholtz equation with a different value

of 5 on the coarse grid in order to stabilise the MG process. For positive real values of 5 for which

Lh is indefinite, this corresponds to solving the Helmholtz equation with a smaller value of 5 on the

coarse grid, thus reducing the indefiniteness of LH. There are various ways to define the

prolongation operator. Possibilities include seven-point and nine-point prolongation [14]. However,

a more effective definition of the prolongation operator for this interface problem is

1 4 -4p 4 ]

-4p 3p 2 -4p] ,pHh "_ 2P_ 4 --4p 4

which is derived from the tensor product of the one-dimensional ACR-modified prolongation

operator. To extend these ideas to an m-grid process, where hi is the mesh size of grid f_i and

hi+l = 2hl, we proceed as follows.

Define 51 := 5 and 5k := 5k_1(1 6k lh2_) := 5k-1 ck (2 < k < m) and pk := 5kh_ - 4. Then the

differential operator on grid f_k is defined as

f-.ku V2u + 8kU,

for 1 < k < m, provided a = _. Therefore, the ACR-modified definitions of the matrix of the

discrete system on grid f_k and the restriction and prolongation operators have stencils

111]Lk "_ h----_k 1 Pk 1 ,
1

[1]R_+I __1 1 -Pk 1 ,
8 1

11 4 -4pk 4]
-4pk 3p_ -4pk

P_+' "" 2p_ 4 --4pk 4

respectively. We call this ACR-modified multlgrid process CR-MG. Note that the CR-MG

restriction operator is similar to the operator naturally suggested by the principle of total reduction

(see [15] and [16], for example). Further, for Lap-i_ce_s:equation (i.e. 5 = 0), pk = -4and ° the :

CR-MG restriction operator corresponds to half weighting.

4 NUMERICAL RESULTS
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Consider the complex two-dimensional Dirichlet boundary value problem

V2u+Su=0 in fl=121Uf12 : unit square

s.t. u=g on 0f_,



with data

3 5
5 = 30+10i in f_2:_ <x,Y<

1 in fh : ft\_2 '

sin(4y - _3)_. 3 s
2 on x=0,_<y<_

g = 0 elsewhere on 0f_

For convenience, we consider a domain gt consisting of two concentric squares. The value of 6 in _-12

is a typical value calculated from the data in [1]. In the following experiment we assess the

efficiency of the CR-MG algorithm, as described in the preceding section, and compare it with

standard MG using full weighting restriction and nine-point prolongation.

The problem is discretised piecewise according to (3) and (4), using central differences on a

65 × 65 grid. A four-grid method is employed, with standard grid coarsening. This ensures good

resolution of the inner subdomain f12 on the coarsest grid. The multigrid schedule used is the

V-cycle with two pre-smoothing and two post-smoothing iterations, and LU decomposition with

partial pivoting is used to solve the defect equation exactly on the coarsest grid. The initial

estimate is taken to be the zero vector and convergence is measured by loglo [[rl]2, where r is the

residual vector and [1"[12is the usual Euclidean norm.

With convergence set to a tolerance of

log o I1 '112< -9,

the convergence times of MG and CR-MG with PGS and KACZ smoothers were measured and the

results are displayed in Table 1. All convergence times were measured in seconds on a Sun SPARC

Table 1: CPU Convergence Times

time (s)]1 PGS I KACZ

MG 22.8 191.6

CR-MG 18.5 155.9

workstation. We immediately notice that both MG and CR-MG converge much more rapidly with

a PGS smoother than with a KACZ smoother. This is not unexpected, considering the smoothing

properties of these two iterative methods. Further, KACZ is a more computationally intensive

smoother than PGS, having a 13-point stencil as compared to the 5-point stencil of PGS.

However, most importantly, we find that with both smoothers the rate of convergence of

CR-MG is significantly faster than that of MG. In fact, with both smoothers CR-MG provides a

19 percent saving in CPU time over MG. This is a significant saving, especially for larger problems.

The rates of convergence of MG and CR-MG with a PGS smoother are compared graphically in

Fig. 3. Both plots are approximately straight lines, a consequence of the grid-independent

convergence of the multigrid method.
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Figure 3: Convergence of MG and CR-MG with a PGS smoother.

2 5 2

5 CONCLUDING REMARKS : :

In this paper, attention has been focussed on improving the design of the standard multigrid

method with respect to a particular problem, namely the complex-valued microwave oven problem.

By drawing a comparison with the direct method of cyclic reduction, improved discretisation,

restriction and prolongation operators have been designed, resulting in savings of up to 19 percent

in CPU time used.

Only two smoothing methods have been considered here, point Gaug-Seidel and Kaczmarz.

However, there are many more robust smoothers, such as alternating damped Jacobi, alternating

symmetric line Gaui3-Seidel and incomplete LU decompositio n. These methods, and many more,

have been summarised and analysed in detail in [7]. Improvements in the convergence properties of

the modified multigrid method (CR-MG) will almost certainly be realised by using such smoothers.

Finally, attention in this paper has been restricted to the microwave oven problem, although the

ideas presented here can be extended to other problems. For example, in [11], these ideas were

applied to the convection-diffusion equation and it was shown that approximate cyclic reduction

can be used to define the ideal quantity of coarse grid artificial viscosity and the direction in which

it lies, _ = :
: , .
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