
AUTO
INT

NG A HUMAN FACTORS EVALUATION OF GRAPHIC
CES FOR NASA APPLICATIONS: AN UPDATE ON CH

J i an ping Ji ang Elizabeth D. Murphy
Sidney C. Bailin

CTA INCORPORATED, Rockville, MD

Walter F. Truszkowski
NASA-Goddard Space Flight Center, Greenbelt, MD

ABSTRACT

Capturing human factors knowledge about the de-
sign of graphical user interfaces (GUIs) and apply-
ing this knowledge on-line are the primary objec-
tives of the Computer-Human Interaction Models
(CHIMES) project. The current CHIMES pro-
totype is designed to check a GUI’s compliance
with industry-standard guidelines, general human
factors guidelines, and human factors recommen-
dations on color usage. Following the evaluation,
CHIMES presents human factors feedback and ad-
vice to the GUI designer. The paper describes the
approach to modeling human factors guidelines;
the system architecture; a new method developed
to convert quantitative RGB primaries into quali-
tative color representations; and the potential for
integrating CHIMES with user interface manage-
ment systems (UIMS). Both the conceptual ap-
proach and its implementation are discussed. This
paper updates the presentation on CHIMES at the
first International Symposium on Ground Data
Systems for Spacecraft Control[l].

Key Words: GUI, human factors guidelines, GUI
design style guidelines, knowledge representation,
color.

1. INTRODUCTION

design, as well as reduced programming through
automatic code generation[101 I A1 though build-
ing a user interface requires less effort than ever
before, many poor designs can still be found be-
cause they violate human factors design principles
or industry-standard guidelines, such as the spe-
cific requirements specified in the OSF/Motif Style
Gzlide[S]. Improving poor UI designs requires hu-
man factors expertise and style-guidelines knowl-
edge, which are, however, expensive and not
readily available during design and development.
Automated human-factors-guidelines and style-
guidefines compliance checking are promising ap-
proaches to the problem[8].

Under the direction of NASA-Goddard Space
Flight Center, a series of research and prototyping
cycles has produced the current fourth-generation
CHIMES methodology and toolset[7]. A previous
paper describes the original CHIMES methodol-
ogy and early prototypes[l]. The current GUI-
evaluation prototype includes a styIe-compliance-
checking tool, i.e. an automated critic that checks
a design against style rules implemented in the
tool’s knowledge base. This prototype includes ca-
pabilities to evaluate conformance to human fac-
tors guidelines and recommendations on color us-
age. The tool provides feedback within the con-
text of identified instances of non-compliance and
advises the GUI designer on how to modify the
design.

In the sections that follow, we describe the im-
plementation approach used in the current pro-
totype, the architecture, the implementation of
compliance-checking rules, and plans for future
research. Color representation in the knowledge
base is also described.

An effective user interface (UI) is key to the suc-
cess of any complex, automated system, such
as a ground control center for spacecraft oper-
ations. Many efforts have been made to assist
user-interface designers in building usable visual
displays. User-interface prototyping tools provide
direct interaction between the designer and the

*This work was performedat the NASA-Goddard Space
Flight Center (Code 522.3) under Contract Number NAS5-
30680, with the support of NASA Headquarters (Code 0).

ENTATION APPROACH

Human factors guidelines cover many aspects of
a GUI design, from color selection to screen lay-
out. Style guidelines provide more specific require-
ments. For instance, the OSF/Motif Style Guide
requires a menubar to be placed at the top left of
a screen. Because so many factors are involved, a
GUI design's non-compliance with human factors
guidelines or style guidelines can take many forms.
In most cases, the problems of non-compliance
are independent. Sometimes, however, they are
inter-connected. For example, using smaller fonts
may cause poorer legibility of colored symbols.
Thus, checking non-compliance problems in GUI
designs demands consideration of many factors
and diverse responses from a compliance-checking
program. This requires an effective implementa-
tion approach to support the complex control of
switching between blocks of code.

The conventional programming approach, used by
systems written in C or FORTRAN, fails to pro-
vide adequate support, because the code in such a
system is executed following a predetermined se-
quence, and a programmer is required to develop
the control structure, which is very complex in the
case of non-compliance checking. A more appro-
priate approach is a rule-based system using for-
ward chaining, because its control mechanism au-
tomatically executes the right blocks of code based
on input data.

A rulebased system has three components: a data
memory, a production memory, and an inference
engine[3]. Data memory stores the input data and
the current state of knowledge during the prob-
lem solving process. Production memory stores
the rules which constitute the program. The in-
ference engine executes appropriate rules based on
the configuration of data memory. A rule has two
parts, a conditional part and an action part. The
conditional part describes the data memory con-
figuration for which the rule is appropriate, and
the action part gives the instruction for changing
the data memory. During code execution, rules
that are satisfied by the current content of data
memory are collected; one of the collected rules
is then selected based on some selection strategy;
finally, the selected rule is executed.

When forward chaining is used in rule-based sys-
tems, rules are executed whose conditional parts
are satisfied by the current content of data mem-
ory. The rules executed are determined by in-

put data because the content of data memory is a
transformatin of input data. This frees program-
mers from writing complex control code, thus pro-
viding better support for system development.

By using forward chaining, a compliance checker
can represent GUI designs as facts in the data
memory and can model compliance-checking ex-
pertise in the form of rules which match non-
compliant patterns. When a GUI design violates
the guidelines, the facts in the data memory will
reflect the violation, which will match a condition
of the compliance-checking rules. This leads the
inference engine to execute the appropriate pro-
gram code.

3. CHIMES ARCHITECTURE

The current CHIMES prototype architecture, il-
lustrated in Figure l , uses a rule-based-system-
with-forward-chaining approach to checking a
GUYS compliance with human factors guidelines
and style guidelines. There are five modules: de-
sign acquisition module, compliance-check con-
troller, knowledge base, advice generator, and user
interface.

The purpose of the design acquisition module is
to acquire GUI design information. I t transforms
a design into input data for CHIMES to evaluate.
This module consists of two submodules, the auto-
matic design capture submodule and the manual
design capture submodule. The automatic design
capture submodule acquires GUI design informa-
tion by reading a design description file, such as
a TAE' resource file. The manual design capture
submodule supplements the automatic design cap-
ture submodule by capturing additional design in-
formation, through queries to the GUI designer.

The primary function of the compliance-check con-
troller is to initiate a CHIMES evaluation of an
acquired design. It takes the design informa-
tion from the design acquisition module, initializes
the knowledge base, converts the information into
facts, asserts the facts into the knowledge base,
activates compliance checking rules, and initiates
the evaluation.

The knowledge base is a key component of the
CHIMES prototype system. It contains the rules

'TAE is a trademark of the National Aeronautics and
Space Administration. The Transportable Applications
Environment (TAE) Plus is a user interface development
and management environment[lO].

686

687

that model compliance-checking expertise and the
facts that represent the user-interface design be-
ing evaluated. Upon receiving the evaluation in-
struction from the compliance-check controller,
the knowledge base performs the compliance check
and calls the advice generator to generate appli-
cable advice.

The advice generator presents the results of com-
pliance checking to the GUI designer. I t prepares
advice based on the results of compliance check-
ing. The advice is then displayed in the CHIMES
user interface, with an indication of the display
element that triggered the advice. This provides
advice in the context of the problem.

The user interface allows the GUI designer to initi-
ate compliance checking. It also serves to present
the compliance checking results to the GUI de-
signer. For ease of use, all user interactions in the
prototype system occur via mouse positioning and
clicking.

The knowledge base is implemented by using
CLIPS2[4], which supports development of a rule-
based system with forward chaining. The user in-
terface is developed by using TAE Plus with X
Window System3 and OSF/MotiP. The design ac-
quisition module, the compliance check controller
and the advice generator are written in C and
C++.

Interaction of Modules. Compliance checking be-
gins with the design-acquisition module, which
currently acquires a user-interface representation
from a TAE resource file and transforms it into
input data for the CHIMES evaluation. Once the
GUI representation has been captured, it is sent
to the compliance-check controller, which issues
requests for compliance checks to the CHIMES
knowledge base. If violations of the guidelines are
found, advice is generated on how to improve the
design.

4. IMPLEMENTATION OF RULES

Checking a GUI design’s compliance with human
factors guidelines and style guidelines is performed

2CLIPS (C Language Integrated Production System)
is a trademark of the National Aeronautics and Space
Administration.
3X Window System is a trademarkof the Massachusetts

Institute of Technology.
40SF/Motif is a trademark of the Open Software

Foundation.

in the knowledge base, where a design is rep-
resented as facts in the data memory, and the
compliance-check expertise as rules in the pro-
duction memory. This section discusses the im-
plementation of compliance-check expertise in the
knowledge base.

CHIMES’ compliance-checking rules are devel-
oped by modeling non-compliance patterns. These
patterns take various forms, such as geographic vi-
olations; for instance, placing a menubar at the
bottom of the screen violates the OSF/Motif style
guidelines. Overuse of design elements, for in-
stance, using five fonts in a screen or color mis-
matchings, for instance, choosing black for the
background color and red for the foreground color,
can yield poor legibility or visual discomfort[ll].

The non-compliance patterns are described in the
conditional parts of the rules, which catch the vi-
olations. For example, a rule examining menubar
position h a s the following form:

(defrule check-menubar-locatzon
(goal-is check-menubar-location)
(i t e m (name ?name) (type menubar))
(loc (n a m e ?name) (x ?x&:(# 0 ?x))
(Y ? Y W # 0 ?Y))) *
(advice “According t o O S F / M o t i f Style
Gu ide , the menubar should be placed at the
t o p left of t h e win.dow.”))

The conditional part of this rule defines three con-
ditions for the rule to be executed: 1) the knowl-
edge base is checking menubar location; 2) there
is a menubar item in the data memory; and 3) the
menubar is not located a t the upper left corner
of the screen. The action part of the rule specifies
which piece of advice should be generated if a non-
compliant menubar is found. This rule catches any
violation of standard menubar placement, which
may have the following form in the data memory:

(i t e m (n a m e m b) (type menubar))
(loc (n a m e ma) (x 170) (y 10))

While many of the violation patterns can be repre-
sented in the knowledge base directly, color is an
exception, because the form of color representa-
tion used for electronic display is not appropriate
for evaluation by rule-based systems.

Color is produced on an electronic display by ad-
ditive mixture of three primary colors, red, green

688

and blue. Each primary color is associated with
a number to indicate its intensity. For instance,
yellow is represented in OSF/ otif as (255, 255,
0), indicating that yellow is the mixture of red and
green.

A prominent problem that prevents use of this
representation in rule-based systems is the size of
the color space, which makes developing rules a
formidable task. For example, a color space with
each primary color ranging from 0 to 255 consists
of more than sixteen million colors. It would re-
quire more than sixty trillion rules to cover all the
possible color combinations.

To reduce the size of color space, a linguistic color
model, the color-naming system (CNS)[2], is used
in CHIMES. The CNS model consists of about
three hundred color names. Each name contains
information on hue, saturation, and lightness. An
example of a CNS name is “very light vivid yel-
low,” where the saturation modifier vivid, and the
lightness modifier, very light, supply more infor-
mation on the hue yellow.

To use CNS color names in the knowledge base,
color representation conversion is needed, because
most computer systems use red-green-blue pri-
mary colors to represent color. The conversion
involves three color models, the red-green-blue
(RGB) model[5], the hue-saturation-value (HSV)
model[ll] and the CNS model. First, a color
is translated into the representation of the RGB
model, which uses red-green-blue primary colors
but with the intensity range between 0 to 1. Sec-
ond, a color’s RGB representation is translated
into the HSV representation using a transforma-
tion formula[l2]. By using the HSV representa-
tion, a color’s hue is specified in terms of degree
on a color ring; saturation and value, or “light-
ness” which indicates color intensity, are described
within the range from 0 to 1. At last, the HSV rep-
resentation is mapped into a CNS color name by
using a mapping matrix. For example, A yellow,
represented as (255, 255,O) in OSF/Motif, can be
translated into the RGB representation (1, 1 , 0).
Then, the RGB representation can be translated
into an HSV representation (60, 1, l) , which sub-
sequently can be mapped into a CNS name, v e y
light vivid yellow, because the 60th degree hue is
mapped to yellow on the color ring, and the high
lightness and saturation map to the modifiers, ve y
light and vivid.

When checking a GUI design’s compliance with

human factors guidelines on general color usage,
color representation conversion is done by the
compliance-check controller. I t translates all the
colors in the design into CNS representation, and
stores them in the data memory, where they may
trigger compliance-checking rules.

5. FUTURE RESEARCH PLANS

Automated compliance checking is a promising ap-
proach to developing a utility in UIMS, such as
NASA’s TAE Plus. Such a utility can help a
GUI designer build more usable user interfaces. It
can extract information from the system resources;
evaluate the design against guidelines; and pro-
vide advice to the GUI designer on how to im-
prove the design. The GUI designer can then use
user-interface building capabilities in the UIMS to
correct design flaws and produce a better user in-
terface design. The current CHIMES prototype
is our first step towards developing such a utility.
Future plans include expanding the compliance-
checking capability, developing a generic input in-
terface, and creating a style guidelines description
language.

The scope of a compliance-checking capability is
key to its success. Currently, the CHIMES com-
pliance check is limited to one screen and to the
“look,” i.e. the visual aspect, of a GUT design.
We are going to expand the CHIMES compliance-
checking capability so that it can evaluate a de-
sign with multiple screens. To lay the foundation
for achieving this objective, we plan to develop
heuristics on consistency of layout, labeling, and
color usage. We also plan to develop heuristics on
evaluating the “feel,” i.e. the behavioral aspect,
of a GUI design, which requires recording a GUI’s
behavior during execution time.

We plan to expand the CHIMES design-input ca-
pability. Currently, CHIMES extracts design data
from a TAE resource file. A n interface to a stan-
dard user interface description language, such as
UIL[6], will make CHIMES capable of evaluating
GUI designs developed in other UIMS environ-
ments.

A style guidelines description language is needed
when developing a utility to evaluate GUI designs
against various style guidelines. The idea of evalu-
ating GUIs against various guidelines is supported
by an existing CHIMES feature, that the designer
can change the CHIMES compliance-checking be-
havior by changing its rules in the knowledge base

689

without needing to re-compile. With an ade-
quate guidelines description language and a trans-
lator that translates guidelines into compliance-
checking rules, a compliance-checking utility will
be able to check a design’s compliance with style
guidelines such as those developed for OSF/Motif,
Open Look, or other customized toolkits.

Bahder, S. A. Murphy, E. D. Sheppard,
S. B. & Truszkowski, W. (1990). Develop-
ing a user-interface-evaluation tool for space-
station-era applications. Proceedings of the
International Symposium on Ground Data
Systems for Spacecraft Control (ESA SP-308,
pp. 583-587). Paris: European Space Agency.

Berk, T., Brownston, L., & Kaufman, A.
(1982). A new color-namingsystem for graph-
ics languages. IEEE Computer Graphics and
Applications, 2, 37-42, 44.

Brownston, L., Farrell. R., Kant. E., & Mar-
tin N. (1985). Programming expert systems in
OPS5. New York: Addison-Wesley.

CLIPS Referen,ce Manual (Version 5.0),
(1991). Houston, TX: Software Technology
Branch, Lyndon B. Johnson Space Center.

Foley, J . , van Dam, A., Feiner, S., Hughes,
J . (1990). Computer Graphics. New York:
Addison- Wesley.

Heller, D. (1991). Motif programming man-
ual. Sebastopol, CA: O’Reilly & Associates,
Inc.

Jiang, J . , Murphy, E. D., & Bailin, S. C.
(1992). Comprehensive CHIMES report (Pre-
pared for NASA-Goddard Space Flight Cen-
ter, Code 522.3). Rockville, MD: CTA IN-
CORPORATED.

Jiang, 9. Murphy, E. D. Bailin, S. C. &
Truszkowski, W. [In press). Prototyping a
knowledge-based compliance checker for user-
interface evaluation in Motif development en-
vironments. Proceedings of the Second Annual
World Conference On Motif Application De-
velopment and Use.

Open Software Foundation,
(1991). OSF/Motif style guide (Revision 1.1).
Englewood Cliffs, NJ: Prentice-Hall.

[lo] Szczur, MI. R. (1992). NASA’s TAE Plus: A
GUI development tool and application envi-
ronment. The X Resource, 2, 56-77.

Ill] Thorell, L. G., & Smith, W. J . (1990). Using
computer color effeclzvely. Englewood Cliffs,
NJ: Prentice-Hall.

[12] Travis, D. (1991). Effective color displays:
Theory and practice. New York: Academic
Press.

690

