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1. Motivation and objectives

The ability to model turbulence near solid walls and other types of boundaries

is important in predicting complex engineering flows. Most turbulence modeling

has concentrated either on flows which are nearly homogeneous or isotropic, or on

turbulent boundary layers. Boundary layer models usually rely very heavily on the

presence of mean shear and the production of turbulence due to that mean shear.

Most other turbulence models are based on the assumption of quasi-homogeneity.

However, there are many situations of engineering interest which do not involve large

shear rates and which are not quasi-homogeneous or isotropic. Shear-free turbulent

boundary layers are the prototypical example of such flows, with practical situations

being separation and reattachment, bluff body flow, high free-stream turbulence,

and free surface flows. Although these situations are not as common as the variants

of the flat plate turbulent boundary layer, they tend to be critical factors in complex
engineering situations.

The models developed in this work are intended to extend classical quasi-homo-

geneous models into regions of large inhomogeneity. These models do not rely on the

presence of mean shear or production, but are still applicable when those additional

effects are included. Although the focus will be on shear-free boundary layers as

tests for these models, results for standard shearing boundary layers will also be
shown.

Eddy viscosity models and k-e type models are fundamentally incapable of repre-

senting shear-free boundary layers. They assume that there exists a proportionality

between the turbulent stresses and the mean shear. This clearly can not be the

case in a shear-free flow. The next level of turbulence modeling, Reynolds stress

transport equation models, are the simplest type of model capable of capturing the
shear-free or nearly shear-free situation.

The models developed in this work are based on our studies of the near wall behav-

ior of turbulence in shear-free boundary layers (Perot & Moin, 1993). These studies

of shear-free turbulent boundary layers have provided a physical understanding of

the wall/turbulence interaction, and it is the goal of this paper to tra_lslate this

physical understanding into improved near wall turbulence models. The inclusion

of more physics into the models presented herein allows us to obtain better agree-

ment with direct numerical simulation (DNS) data without resorting to additional

model constants, ad hoc damping functions, or imposed near wall behaviors.



42 J. B. Perot _ P. Moin

2. Dissipation model

_. 1 Introduction

In the following section, some advances in near wall dissipation modeling are

presented. What is described is not so much a new model, but a technique for

extending classical (quasi-homogeneous) dissipation models into the near wall re-

gion. Unlike previous techniques which were ultimately ad hoe in nature, this model
for the near wall dissipation is based on a simple mathematical decomposition and

physical observations of the behavior of near wall turbulence.
The physical inspiration for the dissipation model is found in figure 1. This

figure is from simulations of a shear-free solid wall (Perot & Moin, 1993). In these
simulations, a solid wall (no-slip boundary conditions) is suddenly inserted into

isotropic, homogeneous decaying turbulence. The wall interacts with the turbulence,

creating a boundary layer in the turbulent statistics which grows into the turbulence

as time progresses. The figure shows two planes parallel to the solid wall plotted
with contours of the instantaneous tangential velocity. The top plane is far from

the wall, and the min/max values of tile contours correspond to rms intensities

that are very close to their free-stream value. The bottom plane is much closer to
the wall and has much smaller min/max levels (and rn_ intensities). The crucial

observation from these figures is that the structure of the turbulence in the two

planes is very similar (i.e., the location of the contours), while the magnitude or
scale of the turbulent fluctuations (measured either by the min/max of the contours

or by the rm8 intensities) differs by an order of magnitude from one plane to the
other. The distance over which the turbulent intensities are damped by the wall is

much smaller than the distance over which the eddy structure (as measured by the

eye) changes appreciably. This implies that in very near wall turbulence, there is

a separation of scales, with the turbulent intensities changing much more rapidly
than variations in the actual eddy structure. These observations should also apply

in the near wall region of standard flat plate boundary layers. Whether they apply

in even more complicated situations is not important since this is the inspiration,
not the foundation, for the dissipation tensor model.

The decomposition of turbulence into a turbulent intensity component and a
turbulent structure component can be accomplished mathematically in the following

way.
ui = Q,p_p. (1)

Here, ui is the fluctuating velocity, Q,p is a generalized turbulent intensity, and

6p is the velocity structure. This operation can also be thought of as a mapping
or a transformation which scales the fluctuating velocity component, so that the

resultant statistical quantity, _p, is a nearly homogeneous quantity. Several appro-

priate choices for Qip which accomplish this goal will be discussed in Section 9.3.
However, at this point it is sufficient to observe that equation (1) is a nmthematical

decomposition, which is well defined as long as Qip is an invertible matrix.

The turbulent intensity, Qip, has an overbar to indicate that it is considered to be
a statistical average of turbulence quantities and a kuown quantity. Mathematically,
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the definition of Qip is arbitrary, but physically, it is important to choose a definition

for Oip which reflects its intended function as a measure of the turbulent intensity.

Different definitions for Qip produce models of varying complexity and accuracy. In

the context of this work, two definitions for Qip will be considered. One definition
is based on the turbulent kinetic energy and the other definition is based on the

Reynolds stress tensor. Better definitions for Qip tend to produce better models at

the price of increased complexity.

Having chosen a definition for the turbulent intensity, the properties of the veloc-

ity structure can then be derived from equation 1. The velocity structure (unlike the
turbulent intensity tensor) retains the random spatial and temporal fluctuations of

the original velocity field. The velocity structure can, in a sense, be thought of as a

normalized fluctuating velocity scaled by the generalized turbulent intensity tensor.
The result of this normalization by the turbulent intensity is that the velocity struc-

ture becomes a homogeneous, or at least a quasi-homogeneous, turbulence quantity.
It now becomes possible to think of the decomposition (equation 1) as a splitting

of turbulence into "homogeneous" factor (velocity structure) and "inhomogeneous"

factor (turbulent intensity).
An analogy with Reynolds decomposition into mean and fluctuating velocities

can be made. However, in this case, the decomposition is multiphcative rather than

additive, and rather than subtracting off the mean to get to fluctuating velocity, we

are dividing by some turbulent intensity to get the velocity structure. The unknown

turbulent quantity of interest (the velocity structure) now has zero mean and unity

(or nearly unity) variance.

2._ Mathematical details

The result of substituting this mathematical decomposition (equation 1) into the

definition for the homogeneous dissipation tensor,

el.i = 2uui,---puj,p, (2)

is

eij _ --

2--_ - Qi,,,.p (_) Qj,,,p + Q,n(fi,,,,pfin.p)Qi,

1
+ _ (-Qim,p(fim.an),pQjn +-Qim(fmfin),pQ.in,p) (3)

1
+ -

where the tensor Wmnp = (fimfin,p -- fim,pfi.) is antisymmetric in m and 7*.

This expression for the dissipation tensor splits the dissipation into three funda-

mental parts: the dissipation due to spatial variations in the turbulent intensity

(first term on the right hand side), the dissipation due to spatial variations in the
turbulent structure (second term on the right hand side), and coupling terms rep-

resenting the interaction of the first two dissipation terms with each other (last two

terms on the right hand side).
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The contribution to the dissipation due to variations in the turbulent intensity

(first term on the right hand side) dominates in regions of large inhomogeneity

where the turbulent intensity changes rapidly. This "inhomogeneity term" depends

only on the turbulent intensity tensor and the Reynolds stress tensor (by definition,
- ----1 ----1

fimfin = QraiRijQjn where Rij = uiuj ). The generalized turbulent intensity, -Qij,

is assumed to be well defined in terms of other quantities available in the closure,

so the irdaomogeneity term does not need to be modeled. Because equation 3 is

an exact expression, the in_homogeneity term can also be thought of as an "exact

term". In regions where the in_homogeneity term dominates (such as near walls),

equation 3 will give exact results for the dissipation.

The second term on the right hand side of equation 3 involves a statistical quan-

tity which will be called the structure dissipation tensor. This quantity is much

easier to model than the dissipation tensor itself because the velocity structure is,

in fact,quasi-homogeneous. Therefore, models based on the assumption of quasi-

homogeneity (i.e. most classical dissipation tensor models) can be expected to work

very well for this quantity.

The two coupling_terms can be thought of as redistribution terms. Depending

on the definition of Qij, they either are identically zero or their trace is zero. The

separation of scales between variations in the turbulent structure (with length scales

on the order of the large eddy length scale) and variations in the turbulent intensity

(with much smaller length scales on the order of Vcv"/) suggests that the coupling
terms should be relatively small; typically, processes which occur at different scales

tend to have little interaction. The exact nature of these terms will be further

investigated when specific expressions for Qij are examined.

_.8 Dissipation model

There are a number of choices that can be made for the generalized turbulent

intensity tensor, Qij. A simple choice is an isotropic scale tensor proportional to the

square root of the turbulent kinetic energy, -Qij = kl/26ij, where k is the turbulent

kinetic energy. The resulting expression for the dissipation then becomes

21.1 (kl/2)'p(kl/2)'P + -_ (k),p + k_i,pfij,p (4)

,p

This equation is attractive because of its simplicity. The only term requiring mod-

eling is the velocity structure dissipation, _ij = 2vfii,pfij,p. The inhomogeneity term

and redistribution term (the first and second terms on the right hand side) are

well defined, and in the sense described previously, they are "exact". Despite its

attractiveness, this model suffers from some basic flaws. In particular, it is only

weakly realizable; the kinetic energy is guaranteed to remain positive when using
this model, but the Reynolds stress tensor itself may become indefinite.

A more attractive dissipation model can be obtained by using a slightly more

complicated choice for the velocity scale tensor given by Qim Ore) = Rij. This makes

Qij the square root of the Reynolds stress tensor. Because Rij is positive definite,

this square root is well defined (up to a plus or nlinus sign on each eigenvalue, which
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can be arbitrarily chosen). Note that Qi) has the same eigenvectors as R,j with

eigenvalues that are the square root of the eigenvalues of R O. QO is, therefore, a

symmetric tensor like Ri.i. This definition is a natural generalization of the definition
used to derive equation 4. The sign of the square root is not important in the model

because all terms involving the generalized intensity appear in pairs, canceling out

any dependence on the sign. Note that with this definition fiifij =/_ij, indicating
that the velocity structure is very close to a homogeneous isotropic quantity.

With this enhanced choice for the turbulent intensity tensor, the expression for

the dissipation takes the form

.,, = +-O,m*mn-O.j
+ -

(5)

where emn = 2Vfii,pfij,p is again the velocity structure dissipation tensor.
The first two terms of equation 5 are the now familiar inhomogeneous and ho-

mogeneous dissipation terms. The third term of equation 5 acts as a redistribution
term and is particularly interesting. It is zero if the Reynolds stress tensor is either

isotropic or homogeneous. In fact, it is zero if Qim,p = sQim where s is a scalar

quantity. This turns out to be the case in spatially decaying turbulence if there is
no return to isotropy in the sense of Lumley (1978). So in some sense, this term

can also be thought of as a return to isotropy term.

Further insight into the redistribution term can be gained by evaluating the

Reynolds stresses in their principal coordinates. Then QO is a diagonal tensor

with Qa_ = R1/_ (here and throughout the text, no summation is implied for

Greek indices). In this arrangement, the redistribution term only contributes to

the off-diagonal components of the dissipation tensor; hence, it is a coupling or
redistribution term. It is partly responsible for enabling the dissipation tensor to

have principal axes that differ from those of the Reynolds stress tensor. This is

a useful property of the model, but one which is burdensome because the tensor
Wm,t introduces nine new unknowns for which no model (even quasi-homogeneous)

now exists. In what follows, the terms involving Wm,k will be neglected. In the

tests that have been performed, this simplification does not appear to affect the

performance of the model significantly and, therefore, appears to be warranted.

2.4 Mathematical constraints

It can be shown that every component of this model has the correct leading (and

often higher order) terms in a Taylor series expansion about a no-slip wall. This
non-trivial result holds irrespective of the model for the structure dissipation as long

as the structure dissipation approaches a constant near the wall. It is a result of the

fact that inhomogeneity dominates in the near wall region, and the inhomogeneous

term of equation 5 is exact.

It is important that models have the correct asymptotic behavior as they approach

tile wall (Launder & Reynolds, 1983). For instance, at a solid wall the transverse

components of the dissipation (ell and e33) must exactly balance the corresponding
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diffusion components, or turbulence will spuriously be created by the wall. Some

dissipation models (see Lai & So, 1990) have the asymptotic behavior for a no-slip

wall imposed upon them. These models will probably fail when presented with any

other type of boundary such as a free surface, a transpiring wall, etc. This is not

the case for the current model, which does not impose asymptotic behavior, but

which obtains correct asymptotic behavior (in numerous flow situations) by virtue
of the "exact" inhomogeneous term.

This model also satisfies certain mathematical constraints. By its construction,

the model is Galilean and tensorally invariant. It can be seen from equation 5 (with

W,,,nt = 0) that if the structure dissipation tensor is positive definite, then the

dissipation tensor can also be guaranteed to be positive definite. Strict realizability

(Schumann, 1977) in the low Reynolds number limit can be shown by analyzing

the viscous terms. In principal coordinates, the sum of the viscous diffusion term,
Dij = vRij,kk, and dissipation term becomes

-ea,_ + De, c, = 2vR112R I/2 -- R,_,_,_,--_ -_,pp (6)

Therefore, when the Reynolds number is low, the following expression can be writ-
/D1/2_ _ nl/2_

ten, _t,_ ),t = v(2,,_,, ),ram - -_2R_. This indicates that the turbulent intensities

diffuse and decay exponentially in time, which, along with equation 6, guarantees
that the Reynolds stress tensor can not become indefinite as time advances.

_. 5 Result_

Two classical models for the homogeneous dissipation tensor assume that dis-

sipation is isotropic, (eIj = 2_e_ij), or that the dissipation is proportional to the

Reynolds stress tensor (Rotta, 1951), (e_ = _R,j). Figures 2a and 2b show com-

parisons of these two models with the direct numerical simulation (DNS) data of

Perot & Moin (1993) for flow near a shear-free solid wall. It is evident that the

isotropic assumption works well far from the wall and the "low Reynolds number"

Rotta model works well close to the wall. An improved near wall dissipation model

can, therefore, be constructed using a combination of these two classical models. A

number of mixed models of this type exist, each differing in the choice of parameter
which is used to blend the two models.

To demonstrate the possible improvement, a mixed model is also presented in

figures 2a and 2b. The parameter A = 1 ---_(amnanm -- ampapna,,,,,) (Tselepidakis,

1991), where aij = Rij/k-2/3_ij is the non-dimensional Reynolds stress anisotropy

tensor, is used to blend the two models. A is 1 in isotropic turbulence and zero in

the two component limit that occurs at a wall. The mixed model is then written as

2 e

eiM Ase6i j + (1= - A)-kRiJ (7)

An expression very similar to the mixed model will also be used to model the

structure dissipation tensor in the inhomogeneity-capturing model,

eij= _ A 5ij+(1-A) (8)



48 3. B. Perot gJ P. Moin

0.002-

0.000 .... (a)
0 2 4 6 8 10

FIGURE 2.

dissipation, (b) Normal dissipation.

Rotta model; .... , mixed model;

0.006"

0.004 i

0.002-

0.000 (b)
0 2 4 6 8 10

Y

Dissipation near a shear-free solid wall. (ReT = 54), (a) Tangential
•, DN$ data; ........ , Isotropic model; -----

, inhomogeneity model.



Near-wall turbulence modelin 9 49

0.0018

°'.

0.00121_

0.000_"

O.O00O ! t i t

0 2 4 6 8 10 (a)

g

0.0018

0.0012- _

0,0006-

,0000 i i i

0 2 4 6 8 10 (b)

Y

FIGURE 3. Dissipation near a free surface. (ReT = 54), (a) Tangential

dissipation, (b) Normal dissipation. * , DNS data; .... , mixed model; _ ,
inhomogeneity model.



50 J. B. Perot 8J P. Moin

.27

.18- "

.09-

=--==-=-==- (a)
i i i

0.0 0.2 0.4 0.6 0.8 1.0

.O9

.06-

.03

(b)
0
0.0 0.2 0.4 0.6 0.8 1.0

FIGURE 4. Dissipation in turbulent channel flow. (a) Streamwise dissipation, (b)

Spanwise dissipation. • , DNS data of Mansour, Kim, & Moin (1988); .... ,

mixed model; -- , inhomogeneity model.



Near-wall turbulence modeling 51

.027

u/_

.018

.012-

.006-

/'%•

/ •

t
t

l

!
i

0 (d)

0.0 0.2 0.4 0.6 0.8 1.0

q

\

"%
| .,

I I I I

u16

FIGURE 4. (Cont.) Dissipation in turbulent channel flow. (c) Normal dissipation,

(d) Shear stress dissipation. . , DNS data of Mansour, Kim, & Moin (1988);

, mixed model; _ , inhomogeneity model.



52 J. B. Perot _ P. Moin

where _ is (in analogy with the dissipation) one half of the trace of the structure

dissipation tensor. Equation 5 with equation 8 and _Viik = 0 gives the full inhomo-

geneity capturing model for the dissipation tensor,

2 R, i 1)Ri,,,Rmj )e ,_ = 2 v-O _,,_,p -Oi ,,_,p + _ -_A ---_- + ( A - _ •
(9)

Note that in the mixed model e must be specified. In the inhomogeneity model,

must be specified. In the tests of the models, these quantities will be supplied from

the direct numerical simulation (DNS) data, but in an actual modeling situation,

they would have to be derived in some other manner (usually from a dissipation

transport equation). The quantity _ is probably easier to arrive at (since it is much

smoother than e). In addition, _ has less effect on the overall model performance

because the terms involving g are small near the wall. The inhomogeneity model is

also shown in figures 2a and 2b. It falls almost exactly on the DNS data.

Both the mixed model and the inhomogeneity model work well for the case of a

shear-free solid wall. A better test of the two models' ability to handle inhomogene-

ity is presented in figures 3a and 3b where DNS data, the mixed model, and the

inhomogeneity model are shown for the case of turbulerce next to a free surface.

The mixed model gives an incorrect value at the surface for the tangential dissipa-

tion and completely inappropriate behavior for the normal dissipation component.

The inhomogeneity model, on the other hand, closely follows the DNS data and

gives particularly good far field and near surface behaviors.

The final test of the model is presented in figures 4a-d. This shows the case of

fully developed channel flow. The data is from Mansour, Kim _z Moin (1988). Both
models work well for the streamwise component of the dissipation. The inhomo-

geneity model captures the function value and the slope exactly at the wall. The

spanwise components of the models behave very similarly, with the inhomogene-

ity model showing an improvement in the slope at the wall. However, the mixed

model severely overestimates the normal dissipation and does not have the correct

qualitative behavior for e12.

2.6 Summary

A new modeling technique for extending classical dissipation models into regions

of large inhomogeneity has been developed. It is based on a hypothesis of separation
of scales and derived from a simple mathematical decomposition. This decomposi-

tion uses the the square root of the Reynolds stress tensor as a generalized turbulent

intensity to transform (or map) the fluctuating velocity into a quasi-homogeneous

quantity (the velocity structure). The resulting inhomogeneity model, derived from

this decomposition, satisfies all known mathematical constraints and is relatively

simple to implement. It has been shown that the model gives superior results in
both wall and surface bounded flows. The formalism developed here has also been

applied to modeling of the scalar dissipation and heat flux dissipation (Malan, 1993)

with equally impressive results.
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3. Pressure-strain model

3.1 Introduction

The pressure-strain term is an inter-component energy redistribution term; it

causes no net change in the total kinetic energy. Experiments on homogeneous

turbulence (Lumley & Newman, 1977) show that this redistribution by the pressure-

strain (at least by the nonlinear (slow) part of the pressure-strain) tends to result

in a return to isotropy. The logical assumption from this observation is that the

pressure-strain term is driven by the non-dimensional anisotropy in the Reynolds

stresses, a 0 = Rij/k - 2/360, which by construction is a trace free tensor, like the

pressure-strain.

Almost all models for the pressure-strain are based on the assumption that the

pressure-strain must be a function of the anisotropy tensor. The models of Rotta

(1951), Shih & Lumley (1985), and Speziale, Sarkar and Gatski (1991), are examples

of models of this type. Some of these models are very complicated, but none produce

truly convincing results. In fact, Reynolds (1988) has shown that any pressure-

strain model based on this assumption is incapable of capturing the effects of rapid

rotation. Any model of this type is also incapable of predicting a flow where the

boundary condition on the tangential velocity changes suddenly, such as the sudden

insertion of a permeable wall (Perot & Moin, 1993) or the sudden change from a

solid wall to a free surface boundary condition. In those situations, the pressure-

strain term changes instantaneously, whereas the Reynolds stress and anisotropy
tensors take some time to evolve.

Furthermore, return to isotropy cannot be the driving mechanism for the pressure-

strain term near a free surface or a solid wall. In such cases, the tangential stresses

are larger than the normal stresses, and yet there is still a transport of energy to

the tangential stresses. In many near wall flows, the pressure-strain term actually

enhances anisotropy. In the face of all this evidence, it seems clear that the very

assumptions upon which pressure-strain modeling are based need to be reevaluated.

3._ Modeling

The physical model for turbulent flow proposed in Perot & Moin (1994a) is a

useful guide to pressure-strain modeling. In that model, it is assumed that in any

turbulent flow there are opposing events. These events will tend to balance each

other (resulting in zero net transfer of energy) unless one of the events is weaker

than the other. In the near wall case, antisplats (blobs of fluid moving away from

the boundary) are weaker due to the fact that tangential energy is removed by

dissipation near the wall. This limits the antisplat's ability to convert tangential

energy into normal energy. In homogeneous turbulence, the situation is somewhat

different: if one component of the turbulence is less energetic than the others then

it will not be able to deliver energy to the other components as effectively. This will

result in a net transfer of energy into the less energetic component and a return to

isotropy.

In the near wall case, dissipation and diffusion control intercomponent energy
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transfer by determining the imbalance between splats and antisplats. In homoge-

neous turbulence, Reynolds stresses anisotropy controls energy transfer. To trans-

late these ideas into a model, it is instructive to look at the evolution equation for

the non-dimensional anisotropy. In unsheared homogeneous turbulence, the exact

equation for the non-dimensional anisotropy tensor is

Ilij e rij eij) (10)

2
where ris = Rij - _k_ij and eij = eij q- 5e_ij are the dimensional anisotropy of

the Reynolds stress and dissipation tensors, IIis is the pressure-strain tensor, and

aij = Ris/k- 2/3_iS is the nondimensional Reynolds stress anisotropy tensor. Note

that typically the dissipation is more isotropic than the Reynolds stresses (due to

quasi-isotropy in the smallest scales of motion), so the second term on the right

hand side of the equation tends to increase anisotropy. For return to isotropy to

occur, the pressure-strain must be large enough to drive the overall right hand side

negative. A reasonable model for the pressure-strain is, therefore, that the pressure

strain is proportional to the right hand side,

n;s= -c.(-_,s + _r_s) (11)

where C_ > 1 will guarantee return to isotropy in homogeneous turbulence.

This model has the attractive property that it behaves appropriately as a func-

tion of Reynolds number. At very high Reynolds numbers, dissipation becomes

isotropic, and the standard return to isotropy model (of Rotta) is recovered. At low

= ' . (Rotta, 1951) becomes increas-Reynolds numbers, the approximation eiS _R,s

ingly accurate, so eis = _rij at low Reynolds numbers, and the model approaches

zero in the low Reynolds number limit. Therefore, at low Reynolds numbers there

is no return to isotropy, a property which was proposed by Lumley (1978) and

observed in simulations performed by Hallback & Johansson (1992).

To use this model in inhomogeneous flows, it must be generalized. Instead of

--eis, the quantity -eis + dis will be used; dis = t/rij,mm is the anisotropy in the
viscous diffusion term, which is zero in homogeneous turbulence. In addition, the

inverse time scale __, is not correct near a wall. It is replaced by A_. where A is

the flatness parameter described earlier in the section on dissipation modeling. A

is 1 in isotropic turbulence and 0 at a wall. This accounts for the fact that in the

two component limit near a wall, classical return to isotropy is not expected. Tile

model for the pressure-strain then becomes

l"lis = -CTr(-eij + vriS,mm + A_.rij) (12)

As the next section will show, this model gives reasonable behavior ill shear-free

boundary layers. Since the development given here is essentially for the nonlinear

(slow) pressure-strain, these shear-free flows are appropriate situations in which to
test the model.
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3.3 Results

In the following test cases, there is only one independent pressure-strain term

since I"I11 = -21"I22 = I-I33, and all off-diagonal terms are zero. Figure 5a shows the

performance of the model (equation 12) and the Rotta model (II,j = -Clea O) in a

shear-free wall flow at a Reynolds number of 134 (Perot & Moin, 1993). The direct

numerical simulation (DNS) data is for the time t/To = 1.0, where To is the large

eddy turnover time measured at the moment of boundary insertion. As previously

mentioned, any model based on Reynolds stress anisotropy will have fundamentally

incorrect behavior at the wall, so the more complicated variants of Rotta's model
were not examined.

It can be seen that the present model, which includes the dissipation anisotropy,

gives very good agreement with the DNS data. Figure 5b shows predictions for the

same flow at a later time, t/To = 4.5. The agreement of equation 12 (C,_ = 1.5)

with DNS data remains very good. The Rotta model not only has the wrong shape

and has asymptotic behavior near the wall, but actually predicts the wrong sign of

energy transfer near the wall.

The case of a free surface (Perot & Moin, 1993) is shown in figure 6a. The

Reynolds number is 134, and the time is t/To = 1.0. Again, the current model

(with C,r = 0.5) shows good agreement with the data. Figure 6b shows the same.

simulation at a later time, t/To = 4.5, and the model continues to be accurate.

Because the pressure-strain term is smaller in the free surface case, the statistical

and numerical noise is more apparent than in the shear-free solid walt case.

From these two cases and the case of homogeneous turbulence where C,_ is typi-

cally taken in the range 1.5- 1.8, it appears that the coefficient C,_ is not universally

constant. This is not entirely surprising. It is reasonable that the two terms in the

anisotropy equation (equation 10) might be proportional, but overly optimistic to

expect that the constant of proportionality is fixed. In fact, Lumley (1987) has

shown that the constant could be a function of the turbulent Reynolds number. As

mentioned previously, we believe this model explicitly accounts for those Reynolds

number effects, but the possibility for dependence on additional parameters still
exists.

3.4 Summary

The pressure-strain model presented in this section was based on the anisotropy

evolution equation for unsheared homogeneous turbulence, with generalizations to

include the effects of inhomogeneity and two componentality near a wall. Al-

though adjustment of the Rotta coefficient was required, this algebraic model for the

pressure-strain produces surprisingly good results in the two test cases studied. Like

the model for the dissipation, it is possible to think of this pressure-strain model

as a combination of two terms, a near wall term (proportional to the anisotropy

of the viscous terms) and a quasi-homogeneous far field term (proportional to the

Reynolds stress anisotropy). This model breaks with tradition by not only using

the Reynolds stress anisotropy in the model. Ttlis is a siiut)le , yet vital step.
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4. Turbulent transport model

4.1 Introduction

There is a high degree of similarity between the role of the triple correlations in

the Reynolds stress equations and the role of the Reynolds stresses in the mean mo-

mentum equations. Both enhance transport, both become increasingly important

as the Reynolds number increases, and both lead to fuller profiles in the respective

statistical variables. For higher Reynolds number flows, where the gradients near

the wall are very steep, it is particularly important to model the turbulent transport

term accurately.

The modeling history of triple correlations is rather sparse. Most often, com-

pletely different physical effects such as viscous diffusion and pressure trausport

are lumped with turbulent transport. Such lumping is probably an unwise practice
and will not be considered further in this section; it supposes that entirely different

physical phenomena can be modeled collectively. Daly & Harlow (1970) used a

gradient diffusion hypothesis for the triple correlations and proposed

T,jk = C,-k Rk_R,j,t (13)
e

where a value of Cs = .22 was suggested by Launder & Morse (1979). Hanjalic

&: Launder (1972) noted that this model did not have the proper symmetry in its

indices. They suggested

Tijt = ctk (RtlRij,t + RjtRik,t + RitRtj,t) (14)

with Ct = .11. This more complicated expression can be derived from a simpli-

fication and modeling of the exact evolution equations for the triple correlations.

More complicated expressions for the triple correlations also exist (Lumley 1984),

but are not considered here since preliminary tests showed little difference with the

Hanjalic &: Launder model.

_.2 Modeling

Gradient transport models of the type mentioned above give only moderate to

poor agreement in shear-free boundary layers. The problem with these models is not
endemic to shear-free flows; Mansour, Kim & Moin (1988) witnessed equally poor

performance in the case of fully developed channel flow. The clue to better modeling

of the triple correlations is contained in the very first sentence of the introductory

paragraph. The triple correlations should be modeled by using generalizations of

low-order Reynolds stress models.

The simplest model for the Reynolds stress uses the eddy viscosity hypothesis.

The eddy viscosity hypothesis works surprisingly well in a number of different riows.

We might hope that an eddy viscosity hypothesis for tile triple correlations might

work as well, or perhaps even better, since higher order statistics tend to be nmre
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uniform. The standard Hanjalic & Launder model (equation 14) can, in fact, be
written in an eddy viscosity formulation,

T T
Tijk = Ct(u_Rij,t + vs_Rik,i + uilRkj,t ) (15)

where vT = k-gRij. The Hanjalic & Launder model is not usually viewed in this fash-

ion; typically, it is justified as a severe simplification of the modeled triple correlatioa

evolution equation. However, when viewed as an eddy viscosity model, there seems

to be little justification for this choice of eddy viscosity. Instead, it is proposed that

the eddy viscosity be a velocity scale times a length scale, as originally proposed

by Prandtl in 1926. The previous section on dissipation modeling indicated that

the generalized square root of the Reynolds stress tensor is an appropriate tensor

velocity scale. So the following eddy viscosity is proposed, uT = -QijLM, where

QikQtj = Rij and LM is a mixing length.

The wealth of literature on mixing length theory, originally developed for Rey-

nolds stress modeling, can now be adopted at this higher level for tile triple corre-

lations. In this work, the mixing length will be assumed to be proportional to the
kSl_large eddy length scale, Lo¢ = -"7- o_, except close to walls or surfaces, in which

case the mixing length is proportional to the distance from the wall. This choice

of a mixing length, essentially due to Von Karman (1931), is simplistic. In compli-

cated geometries, the distance to the wall is ill defined. It is not the goal of this

section to evaluate mixing length models in detail, but to evaluate the modeling of
the triple correlations and the turbulent transport term. It will be shown that this

new method for defining the eddy viscosity improves turbulent transport models

and is a promising direction to be moving in terms of triple correlation modeling.

The full eddy viscosity model for the turbulent transport terms then becomes

Tok = CuLM(-QkIRij,I + -QjtRik,t + Qi/Rkj,/) (16)

where the constant C,, has been adjusted to a _-alue of .18 and the mixing length is
given by LM = (L -1 + y-a)-1, which gives a smooth transition between the near
wall and far field limits.

4.3 Results

Figures 7a and 7b show comparisons of the models with direct numerical sim-

ulation (DNS) data from Perot &: Moin (1994b). Figure 7a shows the tangential

turbulent transport term for the case of a shear-free wall at a Reynolds number of

134 and time t/To = 1.0. Figure 7b shows the normal turbulent transport term un-

der identical conditions. The triple correlations take longer to converge than double

correlations so there is some noise in the data, particularly far from the wall where

turbulence length scales are largest. There is also some noise in the models from
numerical differentiation.

The Daly & Harlow model captures the nornml coml)onent well but overestimates

the magnitude and position of the peak in the tangential component (it is, of course,

also tensorally incorrect). The Hanjalic & Launder model captures the tangential
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component better, but at the expense of overestimating the normal component.

The eddy viscosity model gives better overall results than either of the previous
two models. Similar results are shown for the shear-free wall case at a later time

(t/To = 3.0) in figures 8a and 8b. The conclusions remain the same.

The case of a free surface at a Reynolds number of 134 and time t/To = 1.0 is

shown in figures 9a and 9b. In this case, both the Daly & Harlow and the Haaljalic

& Launder models overestimate the turbulent transport terms. The Daly & Harlow

model is worse for the tangential component, and the Hanjalic & Launder model

is worse for the normal component. Again, the eddy viscosity model gives better

overall agreement with the DNS data. The eddy viscosity model tends to decay

too quickly as one moves away from the wall, but this could easily be remedied by

letting the O(y) behavior in the mixing length persist farther into the flow.

It should also be mentioned that the eddy viscosity model has the right asymp-

totic behavior at the wall, whereas the standard models do not. Considering the

simplicity of the eddy viscosity model and its relationship with an already well

understood branch of turbulence modeling, and considering the fact that the eddy

viscosity model gives similar or improved performance for these shear-free flows, it

seems reasonable to recommend this approach in the future for triple correlation

modeling.

4.4 Summary

One of the most obvious physical effects of turbulent flows is their increased

ability to mix and transport flow quantities; eddy viscosity mimics this physical

process. In this section, the Hanjalic & Launder model for turbulent transport

was rewritten in an eddy viscosity fornmlation. An improved model for the triple

correlations was developed, and good agreement with DNS data was achieved. Even

better agreement with the DNS data could be achieved with improved and expanded

definitions of the mixing length.

5. Conclusions

Near wall models for terms in the Reynolds stress evolution equations have been

developed. These improved models perform well in the cases studies. The improve-

ment shown by the models is based upon the inclusion of more physics into the

modeling procedure. None of the models require additional constants over their

quasi-homogeneous counterparts, and no ad hoc functions or a priori limiting be-

haviors have been imposed on the models.

Three fundamentally new concepts have been proposed in the context of this

paper. The idea of decomposing the fluctuating velocity using a multiplicative de-

composition into an intensity and a structure term led to an enhanced dissipation

model. In terms of pressure-strain modeling, we have shown the efficacy of using the

dissipation and diffusion anisotropy in conjunction with Reynolds stress anisotropy.

Finally, we have suggested that the concept of eddy viscosity is useful at any mod-

eling level when used to represent the effects of higher order correlations (ill this

case, triple correlations).
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