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Dynamic localization and second-order

subgrid-scale models in large
eddy simulations of channel flow

By W. Cabot

1. Motivation & objectives

The dynamic subgrid-scaie (SGS) model (Germane et al., 1991; Lilly, 1992) has

been applied successfully in the large eddy simulation (LES) of flows with relatively

simple geometry and physics, e.g., in homogeneous flow (Moin, et al., 1991) and in

channel flow (Germane et al., 1991; Cabot & Moin, 1993). In these flows a global

dynamic coefficient is determined from averages over one or more homogeneous

directions, which generally gives well behaved results (i.e., positive eddy viscosities,

or, at least, positive net eddy plus molecular viscosities). But for arbitrary, complex

geometries, no global homogeneity may exist, precluding this averaging procedure.

The dynamic localization (DL) model of Ghosal, Lund & Moin (1993) addresses this

problem by fitting local dynamic coefficients with a global minimization procedure.

However, this model, like all local dynamic SGS models, results in persistent points

or regions of negative eddy viscosity that become numerically unstable. Ghosal et

al. (1993) have proposed to alleviate this problem either (1) by constraining the

dynamic coefficient (and eddy viscosity) to be non-negative or (2) by limiting the

time that a point can have negative eddy viscosity by evolving an auxiliary equation

for the residual SGS kinetic energy k. When k is forced to zero by a persistently

negative eddy viscosity, the eddy viscosity also vanishes. Both of these procedures

with the DL model were found in homogeneous flow to give stable numerics and to

give results in good agreement to those using global averaging and to experiments
(Ghosal et al., 1993; Ghosal, this volume). The objective here is to test the DL

model in a wall-bounded channel flow for numerical stability and accuracy of results.

Algebraic stress models (el. Gatski & Speziale, 1993) suggest that the model for

the residual SGS Reynolds stress and scalar flux should generally have terms com-

prising most of the unique products of the resolved strain (S) and rotation (R)

tensors with S and the resolved scalar gradient. The standard dynamic SGS model

uses a simple (Smagorinsky) base model for the residual Reynolds stress, which is

made proportional to S, and down-gradient base models for residual scalar fluxes;

these correspond to the lowest, "first-order" terms in algebraic stress models. Tem-

poral scaling terms in these base models are formed from the magnitude of tim

resolved strain rate. While this is appropriate for simple shear flows, it may not

be appropriate for more complicated flows (relevant to geophysical and astrophys-

ical probleIas) that include any combination of shear, rotation, buoyancy, etc. OIl

the other hand, the coefficient in the dynamic SGS model readily adjusts itself to

different flow conditions and may adequately take account of these effects without

the need for more complicated base models. Cabot (1993) has begun to test the
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dynamic SGS model in buoyant flows (Rayleigh-B6nard and internally heated con-

vection) with and without buoyancy terms explicitly included in the scaling terms

of the base model; no great differences were found in LES results for the different

base model scalings. The second objective in this work is to test base models with

additional, "second-order" terms (e.g., S 2 and RS for the residual Reynolds stress).

These terms have been found to improve large-scale flow predictions by k-e models

in the presence of rotation and shear (Gatski & Speziale, 1993). Second-order base
models will be tested here in the LES of channel flow with and without solid-body

rotation and compared with results from the standard first-order base models to

determine if there are significant differences or improvements in results that would

warrant the added complexity of the second-order base models.

2. Accomplishments

2.i Dynamic localization subgrid-scale models in channel Flow

2.1.1 The constrained model

The dynamic localization (DL) model was implemented in a pseudospectral chan-

nel flow code (cf. Kim, Moin & Moser, 1987). The procedure was tested using a

Smagorinsky base model for the trace-free (*) part of the residual SGS Reynolds

stress at the resolved scale (denoted by - ),

(la)

and at a coarser test scale (denoted by ^),

A A

T_ -(u-_.uj- uiuj)* _-2Pt_ij = -2CZx21SISo, (lb)

where the local coefficient C(x) is constrained to be _> 0 to ensure numerical stability

(model "DL+"). The strain rate tensor Sij - (ui,j + uj,i)/2, and its magnitude

IS I =_ (2SijS 0)1/2; A, _ are the effective filter widths of the resolved and test fields,

defined as some average of the grid spacings in each direction. The coefficient C

is solved by the iterative global minimization procedure described by Ghosal et al.

(1993). By using the coefficient field from the previous time step, only two or three

iterations were needed per time step to converge the minimization to acceptable

accuracy (< 1% error in the L 1 norm); most of the computational expense of the

procedure results from the many additional filtering operations that are needed.

Also, because the code is pseudospectral, terms involving the spatially varying

eddy viscosity must be computed explicitly, unlike the terms with uniform molecular

viscosity, which are computed implicitly. For a plane in the channel, the locally

computed dynamic coefficient has extrema about 10 times the plane average. Even

in low Reynolds number simulations, this causes the time step to be limited to
several times lower than the limit from the convective CFL number.

A low Reynolds number simulation (with friction Reynolds number Rer = u_6/v

= 180, where b is the channel half-width and the friction velocity ur = It'dU/dyl 1/2
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at the walls for mean streamwise velocity U and wall-normal direction y) was per-
formed for a channel with streamwise, wall-normal, and spanwise dimensions of

4_r × 2 × 47r/3 (in units of 6) on a 32 × 65 × 32 grid. Filtering and dynamic minimiza-

tion was performed only in homogeneous horizontal planes. A localized real-space

("tophat") filter was used that employed a trapezoidal integration over adjacent

points. The effective ratio of test to resolved field filter width _/A was taken to

be 2 in these simulations, although T. Lund (private communication) later showed

that the correct (unidirectional) filter width ratio should be _/6 for trapezoidal in-

tegration (but 2 for integration with Simpson's rule). The issue of how one properly
combines the unidirectional filter width ratios into the effective filter width ratios

for non-uniform grids (e.g., Scotti, Menevean & Lilly, 1993) or for two-dimensional
filtering is still not settled.

As found in simulations of homogeneous flow, constraining the dynamic coefficient

to be non-negative, while stabilizing the numerics, causes the mean eddy viscosity
(vt) from the DL+ model to be about twice that found from the same base model

(Eq. [1]) with plane averaging (model "DAI"). (In the interior, (vt) is found to be

about half the molecular viscosity v in the DA1 model.) However, the final large-

scale statistics (mean streamwise velocity U, and resolved Reynolds stress (-_)
and velocity fluctuation intensities U;rms) are almost indistinguishable between the

two cases (see Fig. 1) and are in good agreement with the well resolved direct

numerical simulation (DNS) of Kim et al. (1987) computed on a 128 × 129 × 128

grid. The insensitivity in this flow to the SGS model is also a consequence of the

small contribution to the total (uv) by the residual SGS component (about 20% very
near the wall to < 10% in the interior). But note in Figure 1 that a "coarse DNS"

(computed at the LES resolution with no SGS model) gives quite poor results for U,

which is seen to be about 15% lower than in the well resolved DNS, and equally poor
results for resolved turbulence intensities and Reynolds stress are obtained when

compared with filtered DNS results. Note that, in general, when vt is increased in
plane-averaged models, U increases and Urms decreases.

2.1.2 Auziliary one-equation models

Retaining negative local values of the dynamic coefficient C requires that their
persistence be limited by use of an auxiliary equation for the residual SGS kinetic

energy k =_ rii/2. When persistent negative eddy viscosities use up all the local
SGS kinetic energy, one wants the eddy viscosity to turn off. The base model for

the residual SGS Reynolds stress is now given in terms of k as

T_j '_ --2ut'Sij = -2C_xkl/2Sij ,

- =-2C£i0/2 ,j,
where K =_ Tii/2. The governing equations for the k and K are

(2a)

(2b)

k,t + (k_i),i = --Si.ir_ - di,i - _ + vk,ii ,

K , + (K_i),i = -_ijTi* _ - Di,, - E + vK, ii ,

(3a)

(3b)
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FIGURE 1. (a) Mean streamwise velocity as a function of distrnce from the wall y,,

(in wall units: U + = Ulu,., y+ = ywuT/u), and (b) resolved rms velocity intensities

and Reynolds stress for ( -- ) DNS (Kim et al., 1987), ( .... ) LES with the

DA1 model, ( ----- ) coarse DNS, ,and ( ........ ) LES with the DL+ model. Tile

DNS data are filtered in (b). The first three curves are nearly indistinguishable

except for arms in (b).
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where the residual SGS dissipations,

= u(u_,iui, _ - ui,jui,j) "" C, k3/2/A, (4a)

E =

and the residual SGS diffusive fluxes,

(4b)

di = -(p + ujuj/2)u i q- (_ q- uj-uj/2 q- 5k/3)ffi q- _jv_i ,_ CdAkl/2k,i , (5a)

A

A

Di = -(p + ujuj/2)u i + (_ + ujuj/2 + 5K/3)ui + ujT_i __ Cd_K'/2K, i , (5b)

are modeled by analogy with standard k-¢ models for large scales. In general, the

DL procedure is used to determine the local values of C, Cd, and Ce by globally

minimizing the residuals of the computable quantities £ij - Tij - r'ij, D, -di, and

E - _" with their model expressions in equations (3-5) above. In this formulation,

the pressure field ff must be computed and saved at each time step.

An alternative formulation is given by Ghosal et al. (1993), who write from equa-
tions (3) and (5)

A A

( DJ - _),.i = [(£ii,t + uj£ii,i - v£ii,jj )/2 + _ijTi_ - -SijT_.] + ( I','u i - k_ i ),j . (6)

The non-diffusive terms in the square brackets are incorporated in the expression

for E - _', asld only the last, remaining terms are used for Dj - _.. In this formu-

lation, the terms in (6) with £ii = 2(K - k) must be computed and saved at each
time step. Note that the dynamic coefficients from either formulation are Galilean

invariant. At this time it is not known how this rearrangement of terms affects the

model coefficients in channel flow applications. However, S. Ghosal (private com-

munication) has pointed out that the formulation of the residual dissipation used

here, unlike that of Ghosal et al. (1993), has the unphysical property of vanishing

in the high Reynolds number limit (u _ 0).

A low Reynolds number LES (with the same setup and parameters as described in

the previous subsection) was initiated using this ("DLk") model. All terms in (3a),

except the molecular viscosity term, are integrated explicitly in the numerical code.

For real space filters, k and _ are positive semi-definite by definition. In the DL

procedure, Ce is therefore constrained to be non-negative. For points where diffusion

occasionally causes k to become negative, an artificial source term is substituted

for the right-hand side of (3a) to drive the point to zero at the next time step,

and the eddy viscosity is taken to be zero. Although there is no direct constraint

on the sign of Cd, in most cases it is also constrained to be non-negative in order
to ensure the realizability of k. However, its unconstrained interior values were

found to be almost 50% negative with no preferred sign in thc mean, so that the

mean constrained diffusive eddy viscosity (CdAkl/2) ,.. 20v is probably greatly

overestimated. Near the wall, the unconstrained values of Cd are finite, but small,
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FIGURE 2. Near-wall behavior of the mean dynamic dissipation coefficient for the

k-equation in channel flow using ( _ ) A_ and ( .... ) A as the effective filter
width. Also the mean residual SGS dissipation rate, (_) = (C_kS/2/A_), and (k).

and almost entirely positive. It will be interesting to compare the results using

Ghosal et al.'s (1993) alternative expression for Cd.

At first, the filter width ratios _]A for equations (2), (4), and (5) were assumed
to be all the same. It was found, however, that constrained Ce from the DLk model

became largely (90%) zero near centerline in the flow, giving very small values

of (_) there. An alternative definition for effective filter width was tried for C_

(by analogy with wavenumbers) as the harmonic mean of the unidirectional filter

widths, A[ 2 = _"_i A_-2; this causes the effective filter width ratio _xe/Ae to be

nearly unity (due to the small grid spacing in the wall-normal direction, for which

no explicit filtering occurs) instead of 2. This results in very few zero points and
a mean value of C, that varies smoothly throughout the channel. A comparison of

C_/A and C,/A, is shown in Figure 2. In both cases, C_/A(_) approaches the wall

as nearly y_3, where yw is the normal distance from the wall. This nearly balances
the approximate (but slightly sub-)yZw behavior of k 3/2 near the wall so that (_/
rises relatively slowly near the wall. Note that the near-y2w behavior of k found at

the wall is not guaranteed by the differential equations, which only require that k

vanish linearly at the walls.

The extremely rapid rise of C,/A_ at the wall leads to severe time step con-
straints since the dissipation term is integrated explicitly and the CFL number

(Cekl/a/Ae)max_t goes as y_ near the wall. Tile time step tit must be reduced by
more than 100 times that used for the standard DA1 model. This makes the use
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of the DLk model prohibitively expensive unless one can perform the integration

of the e-term in (3a) implicitly. This can be accomplished with a finite-difference

channel code, which is presently being developed.

In fact, statistics have not been generated for this LES due to its great compu-

tational expense. However, instantaneous large-scale statistics look quite good (see

Fig. 3) for this model. The mean eddy viscosity was found to be about twice that

from the plane-averaged dynamic SGS model. Nevertheless, its prediction of the

near-wall streamwise velocity fluctuation intensity (Fig. 3b) appears to be some-

what better than from the plane-averaged SGS model. The value of the residual

SGS kinetic energy k can be compared with that computed from the residual of a

well resolved DNS field (Kim et al., 1987) when filtered to the LES scale. This is

shown in Figure 4, where it is seen that k from the DLk model is generally about

twice the actual value in the interior, but dips inappropriately near the wall below

DNS values. Note, however, that neither is the SGS model expected to give an ac-

curate prediction of k, nor should the incompressible LES be particularly sensitive

to the exact value of k, since it acts only as a scaling term in the eddy viscosity.

Another version of the one-equation DL model has been considered in which

q = (Tii) 1/2 = (2k) 1/2 is used in the auxiliary equation. This ("DLq") model was

originally proposed by Cabot (1993) to ensure the exact k cx y_ behavior near the

wall. (It has been found, meanwhile, that this behavior is approximated reasonably

well using the DLk model.) Equation (3a) governing k becomes

q[q,t "4- (q-ffi),i] -----2c/kq(SI2 - q[(cdAq + u)q,i],i + (ca/kq + u)(q,iq, i) -- e, (7)

where factors of 21/2 have been absorbed in the new dynamic coefficients, c and

ca. One cannot divide through by q in (7) because of the term u(q,iq,i). However,

the combination ¢' = ¢ - u(q,iq,i) vanishes as y_ at the wall, so that ¢'/q vanished

linearly there and can be modeled by ceq2/Ac. Dividing (7) through by q now gives

q,t + (q-ffi),i = 2c/klSI 2 - [(cdAq + u)q,,],i + cdA(q,iq,i) -- c_q2/Ae. (8)

While this equation is good in exhibiting no extreme near-wall behavior in any of its

terms and guaranteeing the right wall behavior of k, it also presents some problems,

mathematically and in implementation. When q ---, 0+, the first term on the right-

hand side of (8) can remain finite (positive or negative) whereas it vanishes in (3a).
This mathematical point still needs to be resolved.

Determining the coefficient ce from e' = _ - u(q,iq,,) with the DL procedure has

proved unsuccessful because _ (depending on ui) and the term in q (an independent

variable) do not precisely balance near the wall, causing c_/Ae ---* y_,3 again, instead

of y_l. A suitable proxy to _ for computing ce with both the right wall and interior

behavior has not been found. A low Reynolds number LES was performed with

completely ad hoc models of cdA = max(0.032Aa, 0.4u/u_) and c_/A_ = 0.4/Ad,
where Adl = A -1 + 0.4Yw 1. The choice of numerical coefficients can be chosen

to give fair agreement with k = q2/2 computed from the DNS; in Figure 4, it is

seen that this particular guess gave values of k about half those from DNS. The
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FIGURE 3. (a) Mean streamwise velocity as a function of distance from the wall

(in wall units), and (b) resolved rms velocity intensities and Reynolds stress for

( -- ) DNS (Kim et al., 1987), ( .... ) LES with the DA1 model, ( ----- ) LES
with the DLk model (from an instantaneous field), and ( ........ ) LES with the (ad

hoc) DLq model. The DNS data are filtered in (b).
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energy computed from ( -- ) DNS, and predicted by ( ....

and ( ----- ) the ad hoc DLq model.

The ratio of mean residual SGS kinetic energy to mean resolved kinetic

) the DLk model

inappropriate dip near the wall also generally occurs for q as it did for k from the

DLk model. The simulation was found to be numerically stable and to give about

as good agreement with the DNS results as with other SGS models (see Fig. 3).

The mean eddy viscosity is found to be slightly lower than from the DLk model,

about 80% larger than from the plane-averaged DA1 model.

2.2 Second-order dynamic subgrid-scale models in channel flow

In LES of channel flow with the plane-averaged dynamic SGS model, a second-

order base model ("DA2") has been used instead of equation (1) (model "DAI"),
having the form

rij _ -2CIA21SISij + 202/_ 2 [ aikSk# + AjkSti -- 2S,jTr(g3)/Tr(g2)], (9)

and for the residual SGS flux hi for a passive scalar 0,

hi = 0_,- 0_, __-C01A21SI0,,+ 2Co=A2[A,kO,k--_.,(V0-S.V0)/(V0.V_)], (10)

The tensor Aij is defined

Aij = Sit + aaRij, Rij - (ui,# - uj,i)/2- 2Ota2eijt, (11)

where f_k is the system rotation. The lattermost terms in the square brackets in

(9) and (10) are included to make the second terms in the model orthogonal to the



138 Cabot

first and hence dissipation-free. In practice, the trace is also generally subtracted

from (9). This general form is suggested by lowest-order solutions of algebraic stress
models (cf. Gatski & Speziale, 1993). The prescribed constants, al and a2, depend
on one's favorite model coefficients; e.g., for the second-order model derived by

Gatski & Speziale, al _ 1-3 and a2 ,_ 1-2 for commonly used k-e model constants.

This type of large-scale Reynolds stress model has been shown to perform well in
flows with rapid solid-body rotation and shear (Speziale, Sarkar & Gatski, 1991).

In initial tests, the more general second-order model was used for (9), in which

strain-strain terms (S 2) and rotation-strain terms (RS) are kept separate in the

dynamic procedure,

nj -_-2CIA21SISq + 2C2A2(R_kSki - S_kRkj)

+ 2C3 A 2[2S,kSkj- 2S_jTr(S3)/Tr(s2)].
(12)

It is found that 6'3 predicted by the dynamic procedure in channel flow (with _2k =

0) is typically about half C2 and comparable to C1 (see Fig. 5a), suggesting that

the RS term may be more important than the S2 term. Meneveau, Lund & Moin

(1992) and Lund & Novikov (1993) also found that, of all the unique products of
S and R (including S by itself), the RS term was the most highly correlated with

rij computed from DNS channel flow fields. Another interesting note is that these
second-order base models for rij in either (9) or (12) with the trace retained and

for hi in (10) give the correct (no-slip, fixed scalar) near-wall behavior for all of
their components (since C1 A2, C01A2 cx y_ but C2,aA 2, Co2A 2 o¢ y_), which was

not the case using only the first terms. The trace of either (9) or (12) also returns
the model for the residual SGS kinetic energy used by Moin et al. (1991) for LES

of compressible flow.
The simultaneous solution of three coefficients in (12) is much more expensive

than the two in (9) because many more filtering operations need to be performed, so

it was decided to use (9) and (10) in the actual LES of low Reynolds number channel

flow (with the same setup and parameters described in the previous subsection).
The constants al and a2 were simply taken as unity (even though al -_ 2 is suggested

by Fig. 5a). The values of the coefficients returned by the dynamic procedure are

shown in Figure 5b: in the interior of the channel we see that C2 _ 2C1 aald that
Co2 _ Cox _ C2 for Pr = 0.71. Large-scale statistics from the LES of channel

flow using the DA2 model are compared in Figure 6 with those from LES using
the DA1 model and from DNS. The mean eddy viscosity from the DA2 model

((C, A21 I) ) is found to be nearly the same as that from the DA1 model (about
half that of molecular in the interior). And there is not a great deal of difference
between the LES results using first- or second-order SGS base models, except that

the agreement of resolved Urms (and thus the resolved kinetic energy) with that
from the DNS is somewhat better for the second-order base model, while the mean

streamwise velocity is slightly lower like the results using the DLq model (cf. Fig. 3).

The DA2 model was then tested in LES of channel flow rotating about its spanwise

axis, which stabilizes the upper wall and destabilizes the lower wall (cf. review by
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Mean dynamic coefficients in channel flow for the second-order base

model (a) in Eq. (12), and (b) in Eqs. (9) and (10).

Moin & Jimen_z, 1993). Again, the standard low Reynolds number case was used

(corresponding to a mass-flux Reynolds number Rein =- 2Um6/_' =- f6__ Udy/v _,

5,400) and for a higher Reynolds number (Rein _ 12, 000) in a 3_ × 2 × rr box (in

units of 6). The rotation rates in mass-flux units were Rom - 2f_/U,-, _ 0.21. A
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FIGURE 6. (a) Mean streamwise velocity as a function of distance from tile wall

(in wall units), and (b) resolved rms velocity intensities and Reynolds stress for

( -- ) DNS (Kim et al., 1987), and for LES with ( .... ) the DA1 model and

( ----- ) the DA2 model. The DNS data are filtered in (b).
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Case SGS model _/A Re,,, Rom ur,/ur uru/ur

1 1st order (DA1) 2 5,443 0.217 1.19 0.76

2 2nd order (DA2) 2 5,432 0.218 1.19 0.76

3 1st order (DA1) 2 12,150 0.202 1.16 0.81

4 2nd order (DA2) 2 12,035 0.204 1.15 0.82

5 2nd order (DA2) v/6 11,685 0.210 1.14 0.83

TABLE 1. LES of rotating channel flow for different SGS base models: Url and
2 2

Ur_ are the friction speeds at the upper and lower walls, and u r = (Url + u_2)/2.

better resolved LES at the higher Rein was performed in a 41r × 2 × _r box on a

48 × 65 × 32 grid. This LES also used the correct effective filter width ratio of _/6 for

physical space filtering with integration by trapezoidal rule, instead of the value of

2 used in the rest of LES reported here. It did not give appreciably different results.

The parameters and resulting asymmetry of the friction speeds measured at the two

walls are summarized in Table 1. The results agree quite well with LES results of

Squires & Piomelli (1994), who used the standard DA1 model. The asymmetry in

the friction speeds induced by the rotation is seen to be almost independent of Rein,

although the overall asymmetry in the mean streamwise velocity profiles (Fig. 7a)

is a little more pronounced. There is again virtually no differences in large-scale

statistics using the DA1 as opposed to the DA2 models. About the only noticeable

difference is in the shape of the mean residual SGS Reynolds stress (rl_) (Fig. 7b):

for the DA2 models it is larger in the interior of the flow and less concentrated at

the lower, rotationally unstable wall than for the DA1 models. However, (rl_) is

still an order of magnitude less than the resolved Reynolds stress here, which is in

part why the large-scale flow is rather insensitive to these differences.

3. Future plans

The dynamic localization model will be implemented in a finite-difference channel

code. Terms in the auxiliary governing equation for the residual SGS kinetic energy

that are large in near-wall region will be integrated implicitly with much larger

time steps than possible with the explicit integration required in the pseudospectral

code. This will allow us to generate steady-state statistics in channel flow LES and

perform more extensive tests for this local dynamic SGS model.

Second-order base models for the plane-averaged dynamic SGS model will be

tested in the LES of uniformly and differentially rotating thermal convection includ-

ing additional buoyancy terms as suggested by algebraic stress models (cf. Schu-

mann, 1991), and the results will be compared with previous DNS results (Cabot

et al., 1990; Cabot & Pollack, 1992) and those from LES performed with the first-

order (Smagorinsky) base model. We will again attempt to determined whether the

added complexity and computational expense of higher-order, more sophisticated

base models is needed in more physically complicated flows or, as it appears so far,

that the self-adjusting nature of the dynamic procedure allows one to obtain the

same result with simple, relatively inexpensive base models.
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FIGURE 7. The asymmetric vertical distribution of (a) mean streanlwise velocity

and (b) mean residual SGS Reynolds stress in the LES of rotating channel flow with
Re,,, _ 5,400 and 12,000 and using the DA1 model ( --, case 1; --.--, case 3)

and, hardly distinguishable in (a), tile DA2 model ( .... , case 2; ........ , case 4)

(see Table 1).
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