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1. Motivation and objectives

Study of turbulent flows in rotating reference frames has long been an area of
considerable scientific and engineering interest. Because of its importance, the sub-

ject of turbulence in rotating reference frames has motivated over the years a large
number of theoretical, experimental, and computational studies (e.g., Greenspan

1968, Bardina et al. 1985, Jacquin et al. 1990, Mansour et al. 1991). The bulk of
these previous works has served to demonstrate that the effect of system rotation

on turbulence is subtle and remains exceedingly difficult to predict.

A rotating flow of particular interest in many studies, including the present work,
is examination of the effect of solid-body rotation on an initially isotropic turbulent

flow. One of the principal reasons for the interest in this flow is that it represents the
most basic turbulent flow whose structure is altered by system rotation but without

the complicating effects introduced by mean strains or flow inhomogeneities. The

assumption of statistical homogeneity considerably simplifies analysis and compu-
tation.

For an initially isotropic turbulence, it is well known that system rotation inhibits
the non-linear cascade of energy from large to small scales. This effect is manifest in

a reduction of the turbulence dissipation rate and associated decrease in the decay
rate of turbulence kinetic energy (e.g., see Traugott 1958, Veeravalli 1991, Mansour

et al. 1992). An issue considerably less resolved, however, is the development of

a two-dimensional state in rotating homogeneous turbulence. Both computations

and experiments have noted an increase in integral length scales along the rotation

axis relative to those in non-rotating turbulence (Bardina et al. 1985, Jacquin et
al. 1990). Increase in the integral length scales has been thought to be a prelude

to a Taylor-Proudman reorganization to two-dimensional turbulence. However, it

has also been shown using direct numerical simulation (DNS) of rotating isotropic

turbulence (Speziale et al. 1987, Mansour et al. 1992) that in the limit of very rapid

rotation, turbulence remains isotropic and three-dimensional. In fact, Mansour et

al. (1992) showed that the evolution of rapidly rotating turbulence was accurately

predicted using rapid distortion theory (RDT). Furthermore, Mansour et al. also
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showed that the RDT solution violates a necessary condition for occurrence of a

Taylor-Proudman reorganization.
It is worth noting that as is typically the case with DNS, the computations

performed by Speziale et al. (1987) and Mansour et al. (1991,1992) were performed

at low Reynolds numbers. In rotating turbulence at low Reynolds number, the
effects of viscous decay progressively reduce the Rossby number and drive the flow to
the RDT limit. Thus, other mechanisms for obtaining two-dimensional turbulence,

e.g., through non-linear interactions which occur on a turbulence time scale, are

precluded using DNS, and evolution of a two-dimensional state, therefore, requires

significantly higher Reynolds numbers than can be attained using DNS.
An issue closely connected to development of two-dimensional turbulence in rotat-

ing flows is the existence of asymptotic self-similar states. The issue of self-similarity
is a topic central to studies of turbulent flows (e.g., see Chasnov 1993). A similar-

ity state is characterized by the predictability of future flow statistics from current
values by a simple rescaling of the statistics; the rescaling is typically based on
a dimensional invariant of the flow. Knowledge of the existence of an asymptotic

similarity state allows a prediction of the ultimate statistical evolution of the flow
without detailed knowledge of the complex, and not well understood, non-linear

transfer processes.

Large-eddy simulation (LES) is ideally suited for examination of the long-time
evolution of rotating turbulence since it circumvents the Reynolds number restric-
tion of DNS. The drawback is, of course, that it requires use of a model to parame-

terize subgrid-scale stresses. However, large-scale statistics are relatively insensitive
to the exact form of the model, and alternative approaches, i.e., laboratory experi-

ments or direct simulations, are simply not feasible for examination of the long-time

evolution of rotating flows.

The principal objective of the present study has thus been to examine the asymp-
totic state of solid-body rotation applied to an initially isotropic, high Reynolds

number turbulent flow. Of particular interest has been to determine (1) the degree of

two-dimensionalization and (2) the existence of asymptotic self-similar states in ho-

mogeneous rotating turbulence. As shown in §2, development of a two-dimensional
state is very pronounced; much more so than observed in previous studies using
DNS. It is also shown that long-time evolution of quantities such as turbulence ki-

netic energy and integral length scales are accurately predicted using simple scaling

arguments.

2. Accomplishments

2.1 Simulation overview

In the present study, the filtered Navier-Stokes equations for an incompressible
fluid were solved in a rotating reference frame:

V u=O (1)

0u 1-{-U'VU=-- _--, -- r-_.nVp.t.b, ev2U_z.×U.
P

(2)
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In (1) and (2), u is the velocity vector, p and p the fluid pressure and density,

respectively, and fl is the rotation vector. For purposes of discussion, the rotation

vector is considered to act along the z or "vertical" axis, fl = (0, 0, f/). An eddy

viscosity hypothesis was used to parameterize the subgrid-scale stresses. In this

work, the spectral eddy viscosity of ChoUet & Lesieur (1981) was modified for
rotating turbulence

v, = veof(a) (3)

where re0 is the "baseline" viscosity and f(a) a function accounting for the reduction
of v, by system rotation. The baseline viscosity, v,0, from Chollet & Lesieur, is

Veo(klkm,t)= [O.145+5.01exp (_3.k3k,,)] [E(k,,,[km t) ] 1/2 (4)

where krn is the maximum wavenumber magnitude of the simulation and E(k, t)
is the spherically integrated three-dimensional Fourier transform of the co-variance

½(ui(x,t)ui(x + r,t)) ((.) denotes an ensemble or volume average). The reduction

in v_ is expressed using f(a)

2 [(1 + _ _ 1] (5)
f(a) = 3a 2

where
8f_2

3E(km)k_

(Cambon, private communication).
The initial energy spectrum of the simulations was of the form

(6)

S(k,O) = _C',_-_p g exp -ls g (7)

where s is equal to 2 or 4, C_ is given by

S½(S+l)

C, = _/-
i)V_

(8)

and kv is the wavenumber at which the initial energy spectrum is maximum. In

this study, simulations with s = 2 and s = 4 were performed, corresponding to the
initial energy spectra with a low wavenumber form proportional to either k 2 or k 4.

Because the principal interest of this work was examination of the long-time evo-

lution of rotating turbulence, it was necessary to use as large a value of kp as possible

in order that flow evolution not be adversely affected by the periodic boundary con-

ditions used in the simulations; adverse affects occurring when the integral length

scales of the flow become comparable to the box size. Another important con-

sideration in these simulations was the aspect ratio of the computational domain.
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Because of the rapid growth of turbulence length scales along the direction of the

rotation axis, it was necessary to use a computational box which was longer along

the rotation axis than in the other directions. Preliminary calculations of rotating

turbulence on cubic domains had shown an adverse affect of periodicity because

of the rapid integral scale growth along the rotation axis. Numerical experiments

showed that it was necessary to use to a computational box which was four times

larger along the rotation axis than in the directions orthogonal to the rotation vec-

tor. Four times as many collocation points were used in the vertical direction in

order to avoid any effects of grid anisotropy at the smallest resolved scales.

Simulations were performed using resolutions of 96 x 96 x 384 and 128 x 128 x 512

collocation points. The governing equations (1) and (2) were solved using the

pseudo-spectral method developed by Rogallo (1981). The statistical evolution of

the flow using either resolution was essentially the same, and, therefore, only the

results from the higher resolution computation are reported in this brief. The

maximum physical wavenumber of the 128 x 128 x 512 computations was 95 (for a

computational domain having total volume of 87ra). The initial root-mean-square

velocity fluctuation u0 in (7) was equal to unity and kp = 75. Following Chasnov

(1993), the initial energy spectrum was set to zero for wavenumbers greater than

93 to allow the subgrid-scale eddy viscosity to build up from zero values. For each

spectrum type, i.e., low wavenumber part proportional to k 2 or k 4, simulations were

performed with ft = 0, 0.5, and 1.0.

_.2 Results

The instantaneous power-law exponent (i.e., the logarithmic time derivative) of

the mean-square velocity fluctuation, (u2), is shown in Figure 1 for each rotation

rate and spectrum type used in the simulations. The time axis in Figure 1 and

following figures has been made dimensionless using the eddy turnover time in the
initial field

r(o) = Lu(O)l(u ) (9)

where Lu(t) is the velocity integral scale defined at time t as

L,(t) = 7r fo k-'S(k,t)dk
2 f_¢ E(k,t)dk (10)

In isotropic turbulence, L_ is two-thirds the usual longitudinal integral scale mea-

sured in experiments (see also Chasnov 1993). Throughout this work, "k 2 spectrum"

refers to an initial energy spectrum E(k) with low wavenumber part proportional

to k s while ,%4 spectrum" refers to an initial E(k) with low wavenumbers propor-

tional to k 4. For both spectrum types, the characteristic effect of system rotation

in reducing the decay rate of (u S) is evident in Figure 1. Furthermore, it is also

clear from the Figure that the value of the decay exponent for non-zero rotation

rates at long times is independent of _, depending only on the form of the initial

energy spectrum.

It is possible to predict the exponents in Figure 1 if one assumes that the asymp-

totic scaling of (u S) is dependent on the form of E(k) at low wavenumbers and
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FIGURE 1. Time development of the power law exponent of (u 2) in rotating
turbulence, e-----_, f/ = 0, k 2 spectrum; .... , Q = 0.5, k _ spectrum; ........ ,

Q = 1.0, k 2 spectrum; -----, f_ = 0, k 4 spectrum; -----, f_ = 0.5, k 4 spectrum;
, f/= 1.0, k 4 spectrum.

independent of viscosity. For high Reynolds number turbulence, this is a reasonable

assumption since tile direct effect of viscosity occurs at much larger wavenumber
magnitudes than those scales which contain most of the energy. Thus, it is possible

to derive expressions for the asymptotic scaling of (u _) using an expansion of the
energy spectra near k = 0:

E(k) = 27rk2(Ao + A2]c 2 +...) (11)

where A0, A2, ... axe the Taylor series coefficients of the expansion. As shown

by Batchelor & Proudman (1956), assuming that the velocity correlation tensor
(ui(x)uj(x + r)) is analytic at k = 0 results in A0 = 0 and a time-dependent value

of A2. On the other hand, Saffman (1967) showed that it is also physically possible

to create an isotropic turbulence with a non-zero value of A0, which is also invariant

in time. As also shown by Chasnov (1993) the asymptotic scalings of (u 2) for these
two cases are

(u 2) _ A_o/st -6/5 (k 2 spectrum) (12)

and

(u 2) c_ A_/Tt -1°/7 (k 4 spectrum). (13)

It may be observed from Figure 1 that the agreement between the LES results and

(12) and (13) is excellent for both spectrum types. An analysis similar to that

leading to (12) and (13) may also be performed for flows having non-zero rotation

rates. For non-zero ft, the asymptotic scalings of (u 2) are predicted to be

(u 2) cx A_/St-3/_fl3/5 (k 2 spectrum) (14)
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and

(u 2) o( A]/Tt-5/Tfl 5/7 (k 4 spectrum). (15)

For the k 2 spectrum, the value of the decay exponent from the rotating flows in

the asymptotic region, approximately -0.64, is in very good agreement with (14).

Similar agreement between the predicted value of the decay exponent, -5/7, and the
measured values for the k 4 spectrum is also observed.

Evolution of the integral length scales are shown in Figures 2a and 2b. The

vertical integral scale is defined as

1/- (u2) y, z)u (x, z + r))dr (16)

while the horizontal integral scale is given by

Lh- (u2)1 f (ui(x)ui(X27rr+ r)) dr. (17)

Figure 2 clearly shows the significantly greater growth in time of the vertical integral
scales relative to their horizontal counterparts in rotating turbulence. Also shown

in the Figure is the velocity integral scale, Lu, for f/= 0. It is evident from Figure 2
that the horizontal integral scales in the simulations with non-zero f_ are essentially

independent of rotation rate and evolve similarly to the length scale from the non-

rotating case.
The results in Figure 2 may be used to deduce a posteriori the asymptotic scaling

laws of the integral scales. For the k s spectrum, dimensional arguments and the

LES results in Figure 2a give the following dependence of the length scales on the

invariant A0, t, and f_

La o_ A_lSt 215 (k 2 spectrum), (18)

i.e., no dependence of Lh on fL The appropriate scaling of the vertical length scales

for the k s spectrum is

L_ o( Alo/_tff/5 (k 2 spectrum) (19)

since the long-time growth of Lo is observed from the LES results to be directly

proportional to time. Similarly, dimensional arguments together with the results in

Figure 2b can be used to deduce the length scale dependence on A2, t, and ft for

the k4 spectrum:

Lh o¢ A1217t2/r (k 4 spectrum), (20)

similar to the non-rotating case. For the vertical length scales

Lv o_ A_17t_ 517 (k 4 spectrum). (21)
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Time development of the integral length scales in rotating turbulence.
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As was the case for the simulations possessing a k 2 spectrum, long-time evolution

of Lv in the simulations having a k 4 spectrum was also observed to be directly

proportional to time.

As shown in Figures 2a and 2b, the evolution of the flow in the direction along

the vertical axis is strongly enhanced relative to the horizontal directions. Rapid

growth of the vertical length scales provides an indication of evolution towards a

two-dimensional state. This can be more clearly seen through examination of the

energy spectrum as a function of spatial wavenumber k as well as the cosine of the

polar angle in wave space (schematically illustrated in Figure 3).

Shown in Figure 4a is the energy spectrum as a function of both k and cos 0 from a

simulation with f_ = 0 and possessing an initial spectrum with low wavenumber part
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FIGURE 3. Wavenumber space showing rotation vector and polar angle 0. For

simulations of rotating turbulence, the pole is defined as 0 = 0 (cos0 = 1); the

equator as 0 = rr/2 (cos0 = 0). Energy and transfer spectra are considered to be
functions of both k and cos 0.

proportional to k 4. It may be observed from the Figure that, as expected, the energy

is essentially equi-partitioned with respect to cos 0. Plotted in Figure 4b is the

energy spectrum from a simulation with _ = 1 (and k 4 spectrum). It is clear there

is a marked concentration of energy in the equatorial plane, 0 = _r/2; the Figure

provides very strong evidence of the development of two-dimensional turbulence.

This result is also in sharp contrast to the previous examinations of E(k, cos 0) by

Mansour et al. (1992) using direct numerical simulation. Mansour et al. found only

a slight tendency for a concentration of energy near the equator. Because of viscous

dissipation in their simulations, it was not possible for Mansour et al. to integrate the

flow fields for long enough times in order to observe development of two-dimensional

turbulence. It is important to emphasize that development of a two-dimensional

state as demonstrated by Figure 4b cannot be captured by DNS because of viscous

decay. LES circumvents this restriction and permits long enough integrations such

that the non-linear interactions responsible for two-dimensionalization can occur.

Further evidence of the profound effect of rotation is contained in Figures 5a

and 5b. Figure 5a is the transfer function, T(k, cosO), from a simulation with

k 2 spectrum and f_ = 0. The Figure shows the expected behavior, i.e., negative

transfer at low wavenumbers and positive transfer at higher wavenumbers. It is also

reasonably clear from Figure 5a that, as was the case with the energy spectrum, the

transfer term is independent of 0. The transfer term from the simulation with a k 2

spectrum and fl = 1.0 is shown in Figure 5b. As is clear from the Figure, rotation

has substantially altered the transfer spectrum. For values of cos 0 near 1 (the pole

in k-space), the energy transfer is small for the low wavenumbers and zero at the

higher wavenumbers. For cos 0 near 0 (the equator in k-space), the transfer term

is actually l_ositive at low wavenumbers, indicating a transfer of energy into these
modes.
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FIGURE 4. Energy spectrum as a function of wavenumber k and cosine of the polar

angle O; spectrum obtained from LES with k 4 spectrum. (a) ft = 0 at t/r(O) = 427,
(b) f_= 1.0 _t t/r(O) = 575.

Time development of the two- and three-dimensional components of the kinetic

energy are shown in Figures 6a and 6b for both spectrum types and each rotation

rate. The two-dimensional component of the energy is obtained from Fourier modes

in the plane ks = 0 while the three-dimensional component is from Fourier modes

with ks _ 0. The behavior is similar in both Figures and corroborates many of
the aspects of the flows observed in the previous Figures. As expected, it may be

observed that the decay of the energy is reduced with increasing rotation rates.
More importantly, the Figures also show that for non-zero fl the two-dimensional

energy actually increases at later times in the flow evolution, consistent with Figure

5b showing a transfer of energy into the low wavenumber modes in the equatorial
plane.

Figures 7a and 7b show the temporal evolution of the diagonal components of

the anisotropy tensor of the Reynolds stress

b,_ = {uiui)
<uS)

for each spectrum type and _ = 0 and 1.0.

6ij
(22)

It is interesting to note that, while
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FIGURE 5. Transfer spectrum as a function of wavenumber k and cosine of

the polar angle 0; spectrum obtained from LES with k 2 spectrum. (a) f_ = 0 at

t/r(O) = 725, (b) ft = 1.0 at t/r(O) = 552.

the flow is becoming two-dimensional under the influence of system rotation, the

distribution of kinetic energy amongst the three components shows little departure
from isotropie values. As shown in the Figures, the vertical fluctuations are slightly

enhanced by rotation relative to the fluctuations in the horizontal plane. The de-

velopment of the diagonal components of the anisotropy tensor of the vorticity

{wi_j) 6ij (23)
vie= (w2) 3

is shown in Figure 8. In contrast to the Reynolds stress anisotropy, this Figure
shows an enhancement of vertical vorticity relative to the horizontal components.

It is worthwhile to point out that recent work by Bartello et al. (1993) showed

a much stronger departure from isotropy of the component energies in rotating
turbulence. Bartello et al. used cubic domains to examine the long-time evolution

of the flow and consequently the evolution of the component energies was adversely

impacted. Based on their findings, Bartello et al. concluded that the long-time
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state of homogeneous rotating turbulence was two-dimensional and two-component.

However, it is clear from Figures 7 and 8 that the asymptotic state of homogeneous
rotating turbulence is two-dimensional but three-component.

3. Future plans

LES results presented in this work demonstrated the existence of asymptotically

self-similar states in rotating homogeneous turbulence. Additional investigations
are planned to further corroborate this finding, e.g., examining the collapse of the

spatial spectra under the appropriate scalings. Related to this issue are the par-

ticular scalings found in the present work. For example, the scaling laws for (u 2)
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in rotating turbulence (Equations 14 and 15) can be obtained using the transport

equation for (u 2) together with dimensional analysis. The scaling laws for the

length scales, however, (Equations 18-21) rely on only dimensional analysis and a

posteriori examination of LES results. Development of a more rigorous approach

for predicting the length scale evolution observed in the present work would be

desirable.

This study also showed the utility of large-eddy simulation. As shown in this

work, development of an asymptotic state which is two-dimensional (but three-

component) is very significant, much more so than in previous examinations of

rotating turbulence using DNS. Given the encouraging results obtained to date, a
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FIGURE 8. Evolution of vorticity anisotropy tensor. (a) k 2 spectrum, (b) k 4
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likely extension of this work will be use of the LES database for developing a high

Reynolds number extension of the k-_ model for rotating flows.
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