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1. Motivation, objectives, and approach

The motivation for this work is the fact that in turbulent flows where compress-

ibility effects are important, they are often poorly understood. A few examples

of such flows are those associated with astrophysical phenomena and those found

in combustion chambers, supersonic diffusers and nozzles, and over high-speed air-

foils. For this project, we are primarily interested in compressibility effects near

solid surfaces. Our main objective is an improved understanding of the fundamen-

tals of compressible wall-bounded turbulence, which can in turn be used to cast

light upon modeling concepts such as the Morkovin hypothesis and the Van Driest

transformation (Bradshaw 1977).

To this end, we have performed a direct numer;cal simulation (DNS) study of

supersonic turbulent flow in a plane channel with constant-temperature walls. All

of the relevant spatial and temporal scales are resolved so that no subgrid scale

or turbulence model is necessary. The channel geometry was chosen so that finite

Mach number effects can be isolated by comparing the present results to well-

established incompressible channel data (Kim, Moin & Moser 1987). Here the

fluid is assumed to be an ideal gas with constant specific heats, constant Prandtl

number, and power-law temperature-dependent viscosity. Isothermal-wall boundary

conditions are imposed so that a statistically stationary state may be obtained.

The flow is driven by a uniform (in space) body force (rather than a mean pressure

gradient) to preserve streamwise homogeneity, with the body force defined so that
the total mass flux is constant.

The variables are nondimensionalized by the wall temperature, the channel half-

width, the bulk-averaged ("mixed-mean") density, and the bulk velocity, such that

,-ft: , f t?2 -tidy = 1 and -i - -fi-Sdy = 1, where the channel walls are at y +1. All vari-

ables axe henceforth assumed to be dimensionless, with p representing the density,

u = ul the streamwise velocity, (x, y, z) = (xl, x2, x3) respectively the streamwise,

wall-normal, and spanwise coordinates, and an overbar defines an average over time

and streamwise and spanwise directions. The nondimensional governing equations
are:

O p _Pxj cOuj
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"--_ + uJDxj - 7M 2 cOxi 7M2pOxi + Re p ¢9xj

OT OTN- + uj-- = -(-y - 1)T + 7(7- 1)M_ni Ou,
Ox j Re p Ox j Re Pr p Oxj

(1)

(2)

+ S, (3)



314 G. N. Coleman

where [ Oui Ouj 2_ cgul'_ OT
viJ = " \ axj + Oxi -_bij-_x_ ) and qJ = -#-_xj"

The pressure is normalized by the bulk density and bulk velocity, so the ideal gas

law is p = pT/TM 2. The body force term q)i is nonzero only for i = 1. The purpose
of S, the source/sink term in (3), is explained below. Equations (1) - (3) are to be
solved numerically subject to the isothermal, no-slip boundary conditions,

T=I and u=0 at y=+l. (4)

We therefore have as relevant nondimensional parameters (i) a Mach number,

M, based on the bulk velocity and wall sound speed; (ii) a Reynolds number, Re,
based on the bulk density, bulk velocity, channel halfwidth, and wall viscosity; (iii)

the Prandtl number, Pr; (iv) the ratio of specific heats, 3'; and (v) the viscosity

exponent, n, where the dynamic viscosity p (x T n. These 5 parameters are used
to define the various DNS runs. But besides choosing appropriate values for the

"physical" parameters, we will also artificially introduce another - to allow us to
differentiate between mean and fluctuation compressibility effects.

The Mach number appears in the energy equation (3) in the term that represents

the irreversible loss of kinetic energy into heat. Following Buell (1991), we interpret

(in our simulations) the actual Mach number M in (2) and the "dissipation Mach
number" Md in (3) as separate parameters. By setting Md to values different from

M in the DNS, we produce an effective heat source/sink $ in (3) which is given by

s = (il - M2) 1)r,j Ou,p Ox i"
(5)

Consequently, we can consider cases with different mean temperature profiles (and
thus different mean property variations) at the same M. Results from these "un-

physical" M # Md DNS runs can, therefore, be used to determine the relative im-

portance of turbulent-fluctuation and variable-property influences at a given Mach

nunlber.

Three DNS cases will be discussed, with the Mach number ranging from M = 1.5

to 3. All the runs share the same Prandtl number, specific heat ratio, and viscosity

exponent (Pr = 0.7, 3' = 1.4 and n = 0.7), while the Reynolds number (for reasons

given below) is either 3000 or 4880. A summary of the parameters is listed in
table 1. Cases denoted by a single letter (A and B) in table 1 represent "physical"

simulations for which Md = M. For the Md # M run, Case AX, M = 1.5 and

Md = 0. Since the temperature fields in both the physical and unphysical runs

depend almost exclusively on kid (Coleman et al. 1993), this parameter combination

will produce the behavior of the "extra" source/sink S, eq. (5), that is necessary
to isolate mean and fluctuation effects. With Md = 0, S is such that the mean

temperature and density are constant across the channel, as we shall see below.
The DNS results were generated using the code developed by Buell to study

compressible Couette flow. During the computations, the body force _i is adjusted
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Table 1. DNS physical parameters.

Case M Md Re Pr 7 p

A 1.5 1.5 3000 0.7 1.4 T °'T

B 3 3 4880 0.7 1.4 T °'7

AX 1.5 0 3000 0.7 1.4 T °'7

315

Table 2. DNS numerical parameters.

nx ny nz nxc nyc nzc Lx L,

110 90 60 144 119 80 4r 4r/3

so that the total mass flux through the channel remains constant. (Once the flow

reaches a statistically stationary state the variations of _, with time are small). The

code utilizes a Fourier-Legendre spectral discretization along with a hybrid implicit-

explicit third-order time-advance algorithm designed to maximize the range of Mach

numbers that may be considered (Buell 1991). The numerical parameters used by

all three runs are given in table 2, where Lx and Lz are the streamwise and spanwise

domain sizes, and (nx, ny, nz) and (nzc, nyc, nzc) are respectively the number of

expansion coefficients and collocation (quadrature) points in the streamwise, wall-

normal, and spanwise directions. The runs were made on the CCF and NAS Cray
YMP and C-90 computers at NASA Ames Research Center.

2. Results

An indication of the numerical fidelity of the DNS is provided by the streamwise

and spanwise one-dimensionai spectra from the channel centerline and near the

walls, shown in figure 1. They are typical of those found from all three DNS runs in

their rapid fall-off at high wavenumber, which implies that the x- and z-resolution

is adequate. The "Legendre spectra" (not shown) also verify that the wall-normal

resolution is sufficient. The high wavenumber streamwise and spanwise spectra

of the velocity at both the channel centerline (figure l(a,b)) and near the wall

(figure l(c,d)) are similar to those found in the incompressible channel (see figure

3 of Kim et al. 1987). In the present simulations, we find that the density and

temperature spectra are closely related to each other and that their magnitudes are

much larger near the walls than they are at the centerline. The streamwise and

spanwise correlations in figure 2 are also roughly equivalent to the incompressible

results (cf. figure 2 of Kim et al. 1987) except for two characteristics: the large

spanwise coherence of the density and temperature at the centerline (figure 2b),

and the greater streamwise coherence of the p, u, and T fields near the wall (figure
2c).



316

-2

10

1o

10

1()5¸

16'

l() 7'

lOa

G. N. Coleman

...... (a)

........ __ ,\

,\
Centerline: y=O

-9 ...... ,

10 ......
lOo lo _

G

-7

1o_

4

lo_!

16"_

-9

.:..:.::--.p:, (b)

x, "._

"_'._ _ '_

Centerline: y=O _'_

lO_

kz

t_

-2

10

11_3

-4

lli 7'

4

1o

10

"-_d)

.....
...... °°.°'° "..°_

-2

10

lO

1()_

-6.

lO

lO_

4.

lO

-9

_Ooo

Near-wall: 1--1y[=0.037

10° 10_ 10_

kx G

FIGURE 1. One-dimensional spectra for Case A: --, p; .... , u; ........ , v; -----

w;--.--, T. (a) & (c) Streamwise; (b) & (d) spanwise.



Direct simulation of isothermal-wall 8uperJonic channel flow 317

1,0

-0.5
0

i

', (a)
t

%%%

Centerline: y=O

X

1.0

0.5"

0.0

-0.5

Centerline: lt=O

8

1.0

0.5"

°°1
05

0

(c)

Ne&r--wal]: 1-[y[=0.037 /

2 4 6

1°0

0.5"1

I
I

o.o-I

I

I

-0.5 I
0

(d)

Near-wMl: 1--1Y1=0.037
i

i 2'
z

FIGURE 2. Two-point correlations for Case A: symbols as in figure 1. (a) & (c)
Streamwise; (b) & (d) spanwise.

g_
.o

0
_9

1.0

0.5_

0.0

-0.5
0

Centerline: _----0

FIGURE 3. Two-point density correlations for Case A at channel centerline:
full field; .... , with acoustic eigenfunctions removed.



318 G. N. Coleman

We first discuss the spanwise coherence at the centerline, which is thought to be

due to acoustic resonance. Evidence for this is provided first by the fact that

the coherence is not present in the velocity, and most significantly by the re-

sults in figure 3, which contrast the spanwise density correlation from an instan-

taneous field (one which contributed to the figure 2b curve) with that obtmned

by eliminating the contribution from several "acoustic eigenfunctions." This is

done by projecting the DNS fields on eigenfunctions of the linear inviscid isen-

tropic problem for a given base flow. The acoustic density and velocity fluc-

tuations are respectively assumed to satisfy pa(x,t) = _k P(k,Y) ei(k'x-wt) and

u_(x,t) = 2__,kUi(k,y)e i(k'x-'t). At a given wavenumber k = (kx,k,), the lin-

earized, isentropic Euler equations in Fourier space in terms of the "acoustic eigen-
= " k t Y))t canfunctions" qt(k, y) (p( , y), _(k, y), 9"(k, y), t_'k, ,,T then be written as

£(q) = wq, where

/ k,_ + k=p_ - i(_)y + k,p_ \

J/_(q) = / kxuv- ia_(?/_),, ' (6)

t kzuw + kz"_p

with a equal to the sound speed and _ = 0 at y = +1.

The projection of the full DNS field onto the acoustic subspace is performed by

computing the inner product j'+: qvns" q_dy of the DNS field with eigenfunctions

q* of the adjoint problem to (6), £*(q*) = wq*, such that f.+l i £(q)" q*dy =

f+_: q. £*(q*)dy. The adjoint operator is

-^ a_^ i 2^ _[Gup. + GTu. + _(a v.)_ + k: _ _.

/ _.. k=_. + k=_. J (7)E*(q*) = / kxuv, + i_(_,)y - i(d-a/dy)_, '

where _, = 0 at y = +1.
When the base flow is uniform (no y variation), the eigenfunctions from (6)

are irrotational, and the eigenvalues w from (6) and (7) give phase speeds c, =

Real(w)lkz that satisfy

_-c_ = _al(e_/2k=) _ + t]", (s)

where _ is the wall-normal wave number (equivalent to the number of times I_

and I_1 change sign between -1 < y < +1). Here we use the Case A mean profiles

shown in figure 4 as the base flow and numerically compute solutions to (6) and (7),

which leads to "acoustic" (isentropic) eigenfunctions that do not satisfy the above

phase relation and, in fact, have nonzero vorticity near the walls. Near the channel

centerline, however, the eigenfunctions have a more typically acoustic behavior in

that their ratio of dilation to enstrophy is very large and in that a given £ mode (now



Direct niraulation of inotherraal-wall nupernonic channel flow

I;_

o
-1 -o._ -0.00 _ 0 OJm 0.150 0.715

Y

319

FIGURE 4.

aD

FIGURE 5.

Mean profiles for Case A: _, 3; .... , _; ........ , T.

" ! • i • i • ! • ! • i - i •

3K}O0

8000

1000

................:::::::::::::::::::::::::::::::::::::::::...............
.......:;".................. :::::.........

/'/*" ",,,-.,..
tl

/- %

0 • I • I • I • I i I , I , I ,

- -.0.75 -0.60 _ 0 0._ 0.00 0.755 1

Y

Local Reynolds number profiles: .... , Case A; ........ , Case B.

defined as the number of sign changes) consists of an upstream- and downstream-

propagating pair t with positive and negative phase speeds relative to the centerline

velocity, ue - cx. The dashed curve in figure 3 represents the density field after the

isentropic modes qt that are recognized as acoustic in the range g = [0,..., 4] have

been projected and removed, for kxL_/27r = [0,..., +4] (using conjugate symmetry

to account for k_ < 0) and kzLz/2_r = [-4,..., +4]. Only the eigenfunctions with

(a) very large dilation-to-enstrophy ratio near the centerline, (b) an equal number

of sign changes for [_ and for [_[, and (c) no more than two modes at each g -

one with positive and one with negative relative phase speed - were chosen from

the full inviscid isentropic function space to be included in the projection. The

second criterion is overly conservative: it is useful when automating the selection

? Although some _?modes appear to have only a single downstream-propagating component.
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FIGURE 6. Near-wall two-point correlations for Case B: symbols as in figure 1.

(a) Streamwise; (b) spanwise.

process, but excludes a few modes (because of low amplitude "wiggles" in I_[) that

are thought to be acoustic rather than vortical. For this reason, and perhaps also

because of physical differences between the uniform and variable mean cases that

produce at certain e no non-vortical modes moving upstream with respect to the
centerline velocity, the projection at some k did not include two modes for every _ in

the 0 to 4 range. Nevertheless, the magnitude of the reduction in figure 3 suggests
that there are significant acoustic disturbances within the simulation results. The

correlation at z .._ 2 would presumably be reduced still further if more k: = 0

modes were used in the projection. Note that because the computations assume
that the channel walls are perfectly rigid (and use periodic boundary conditions),

any acoustic signals present in the DNS are not necessarily expected to be identical
to those found in a laboratory wind tunnel since in the simulations there is no

mechanism for the acoustic energy to radiate away.

The other difference, mentioned above, between the two-point correlations for the

present and incompressible DNS is in the larger near-wall streamwise correlations
found in figure 2c; this indicates that the near-wall streaks, which are characteristic
of wall-bounded turbulent flows (Robinson 1991), are more coherent in Case A

than in the incompressible channel results. At first glance, it might appear that the
streak modification is a low Reynolds number effect (so that the effective streamwise

domain size in wall units is smaller) since the Reynolds number based on mean

centerline velocity is higher in the incompressible DNS than that found here. The

variation of the local Reynolds number across the channel is shown by the dashed

curve in figure 5, and the centerline value (2770) is seen to be slightly less than the

3300 quoted for the incompressible channel data (Kim et al. 1987). But because the
isothermal boundary conditions lead to a flow with a maximum mean temperature
near the centerline and maximum density at the walls (figure 4), the mean kinematic

viscosity _/_ (where _ = T") is maximum at y = 0. Therefore, the local Reynolds
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number in the present DNS is apt to be larger near the walls than for when v =

constant. This suggests that the enhanced near-wall coherence in figure 2c is solely

a compressibility effect, a fact that is reinforced by the Case B results. In order

to obtain a local Reynolds number profile Re-_6/-fi (where 8 = 1) at M = 3
(Case B) that remains comparable to that for Case A, the bulk Reynolds number

was increased from 3000 to 4880. As the Case B profile (dotted curve) in figure 5

shows, the Reynolds number is in fact at any y slightly larger than that for Case

A (dashed), which implies that the further increase shown in figure 6a (over that

seen in figure 2c) of the near-wall streamwise correlation for Case B is not a viscous
effect.

It therefore appears that the extra coherence is due to compressibility, although

its precise source is at this point uncertain. One possibility is near-wall viscosity
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fluctuations (Tritton 1961; Bradshaw & Ferriss 1971); another is small-scale acous-

tic fluctuations that are "channeled" along the cold, low-speed streaks, which act as

an acoustic "wave-guide." Fairly large turbulent Mach numbers and r.m.s, density

fluctuations are found in both flows, especially near the walls (figures 7 & 8), which

might be evidence of significant dilational effects. However, the dilational field as-

sociated with the near-wall fluctuations is not so important as to directly increase

the turbulent kinetic energy dissipation rate to any great degree. This can be seen

from figure 9, which gives the ratio of the mean-square dilatation fluctuations to
those of the mean-square vorticity: the ratio of dilatationai-to-solenoidal homoge-

neous kinetic energy dissipation (Zeman 1990; Blaisdell, Mansour & Reynolds 1993;
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Speziale & Sarkar 1991; Lele 1994). While the ratio increases by an order of magni-
tude as M increases from 1.5 to 3, it never becomes significantly larger than 10 -s.

On the other hand, the pressure-dilation correlation is found to be larger than 50%
of the solenoidal dissipation for both Mach numbers. Figure 10 shows that near

the walls the dilatational field creates a strong sink of turbulent kinetic energy as

kinetic energy is transferred to the pressure fluctuations (Blaisdell et al. 1993; Lele

1994), while toward the centerline, the pressure-dilatation acts as a smaller - but
still important - source of kinetic energy. In the future, we hope to understand the

link between the large negative IYu[, i and the observed wall-streak modification.

With such large dilational effects present, one might surmise that this flow is

not governed by Morkovin's hypothesis (Favre 1992), which states that relation-
ships between statistical properties of turbulence are unaffected by compressibility

if the r.m.s, density fluctuations are small (of order 1/10) compared to the abso-

lute density (Bradshaw & Ferriss 1971; Bradshaw 1977; Spinaet al. 1994). But

the density fluctuations for both Mach numbers are within the allowed range of

O(1/10) (Figure 8), and for at lease one important statistical ratio, the mixing
length (-u-_v')l/2/(d_/dy), Morkovin's hypothesis is found to work fairly well. Fig-
ure 11 demonstrates that this quantity is reasonably independent of Mach number.

With the invariance of the mixing length established, the so-called Van Driest
transformation for the mean velocity immediately follows. That is, the density-

weighted mean velocity

+ (9)

(where _ is the mean density at the wall and the + superscript denotes wall units),
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is expected to satisfy the incompressible log law,

u____vD= 1 lny + + C, (10)

with t¢ and C similar to their incompressible values, x _ 0.4, and C ,_ 5.2 (Bradshaw

1977; Huang, Bradshaw & Coakley 1993; Huang & Coleman 1993). The mean

velocity in both wall units and the Van Driest form is plotted in figure 12 (using for

the latter a mixing length formulation for the mean temperature to write 3+0 as a

function of u-+, the surface heat flux and the mean surface temperature (Bradshaw

1977)). The agreement of the curves in figure 12b, especially their slopes, tends to

reinforce the validity of the Van Driest transformation (cf. Huang & Coleman 1993)
and, by extension, the Morkovin hypothesis.

Not all statistical ratios are found to be independent of Mach number, however,

as the Reynolds-stress correlation coefficients in figure 13 show. The near-wall max-

imum of lUlVll/UrmsVrms increases from less then 0.5 for the incompressible channel

to over 0.6 for M = 3. (Note that for M = 0, this correlation coefficient does

not vary appreciably with Reynolds number (Kim et al. 1987), which points to

compressibility and not viscous effects as the source of the differences in figure 13.)
It thus appears that the isothermal-wall channel contains some "non-Morkovin"

phenomena. However, it would not at this point be appropriate to firmly state that

the results in figure 13 represent a formal contradiction to the Morkovin hypothesis

since the hypothesis does not (regardless of the density fluctuation level) claim to

account for the influence of spatial gradients of the mean properties (Bradshaw

1977), which are apt to be important for this flow. Evidence of just how important

can be found in the results from Case AX, for which Md = 0 so that the mean density

and temperature are constant (figure 14). The near-wall streamwise correlations for

Case AX are given in figure 15. No indication of the enhanced streak coherence

found for Cases A and B is observed (of. figures 2(c) & 6(a)). Therefore, wall-

normal gradients of the mean properties are required for the streak modification to
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occur. The mean gradients are also necessary for the near-wall fluctuation effects

(which are presumably related to the streak coherence) to be present, as isshown

by the Case AX pressure-dilatationprofilein figure16 (solidcurve).Compared to

the Md = 1.5 and 3 results,when the mean properties are uniform, p'u_,i ismuch

lessimportant and represents a near-wall source rather than sink of kineticenergy.
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3. Future plans

An immediate task is to attempt to resolve the open questions regarding the extra

streak coherence induced by the compressibility. Namely:

A) How do the dilatation fluctuations inferred by the large pressure-dilatation cor-
relations influence the vortical field and hence the streak structure?

B) In what sense is the enhanced streak coherence related to the increased u'v'
correlation coefficient?

C) How do the variable-mean properties couple with near-wall dilatational fluctua-
tions?

Recommended long-term efforts include comparing the present results to those

computed for the adiabatic-wall channel (which to develop a statistical equilibrium

will require either one wall to be isothermal or for the flow to contain a distributed

heat sink). It should also be of interest to compare channel results to compress-

ible boundary layer turbulence and thus ascertain the importance of the acoustic

disturbances that are trapped between the channel walls but free to radiate away

in a boundary layer. New numerical schemes, possibly using a fully implicit time-

advance algorithm, should be developed to allow study of turbulent compressible

flows in the hypersonic regime.
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