
/ 9 o/n6

Center for Turbulence Research - / 387Annual Research Briefs 1993 - _"

N94
Tensoral for post-processing

users and simulation authors

By Eliot Dresselhaus

The CTR post-processing effort aims to make turbulence simulations and data

more readily and usefully available to the research and industrial communities. The

TensorM language -- which provides the foundation for this effort -- is introduced

here in the form of a user's guide. The Tensoral user's guide is presented in two

main sections. Section 1 acts as a general introduction and guides database users

who wish to post-process simulation databases. Section 2 gives a brief description of

how database authors and other advanced users can make simulation codes and/or

the databases they generate available to the user community via Tensoral database
backends.

The two-part structure of this document conforms to the two-level design struc-

ture of the Tensoral language. TensorM has been designed to be a general computer

language for performing tensor calculus and statistics on numerical data. Ten-

sored's generality allows it to be used for stand-alone native coding of high-level

post-processing tasks (as described in section 1 of this guide). At the same time,

TensorM's specialization to a minute task (namely, to numerical tensor calculus

and statistics) allows it to be easily embedded into applications written partly in

TensorM and partly in other computer languages (here, C and VectorM). Embed-

ded TensorM -- aimed at advanced users for more general coding (e.g. of efficient

simulations, for interfacing with pre-existing software, for visualization, etc.) -- is

described in section 2 of this guide.

1. Tensoral user's guide

Overview

The post-processing problem entails computing quantities derived from given

base quantities such as a velocity vector field _7(i,t), a scalar field _(£,t), or a

vorticity field _7(i, t). (Which base quantities are present will vary from database

to database.) Derived quantities are typically those commonly arising in theories of

fluid mechanics, turbulence, and in practical problems; all of these quantities involve

performing calculus and statistics on numerically represented tensor quantities.

A Tensoral post-processor canonically starts with one or more given fields (e.g.

zT(i',t)) and computes one or more derived quantities and outputs the results of

these computations in some form. For example, given a velocity field one may wish

to calculate pressure, strain, vorticity, strain times vorticity, mean and mean square
velocity, skin friction, etc.

TensorM presents users with two main abstractions: tensors and operators, which

we presently introduce. All quantities in Tensoral (whether base or derived) are

388 Eliot Dresselhaus

represented as tensors. TensoraJ tensors correspond loosely to mathematical ten-

sor fields. This correspondence is loose in that TensoraJ tensors are not defined

by how they transform under coordinate change. Instead, TensorM tensors are

"computational" tensors: that is, they are indexed numerical arrays (for example,

a_ij (x,y,z)) -- with one set of tensor indices (ij) and one set of coordinate in-

dices (xyz). TensorM tensors have rank and dimension which respectively define

the number and range of tensor indices; a_ij is a rank 2 tensor and indices i and

j take integral values from 1 to d, the dimension of a. Coordinate indices describe

which coordinates (if any) a tensor depends on. Normally, coordinate indices are

transparent to post-processing users -- operations on tensors always apply to the

entire array. Adding two tensors, for example, adds array values at corresponding

spatial points and for corresponding tensor indices. Explicit coordinate values are

also available via projection (introduced below).
TensorM tensors are modified and combined with operators. Standard TensorM

operators include tensor assignment (--), algebraic operations (addition, subtraction,

multiplication, division, exponentiation), differentiation, integration, averaging, and

projection. Such operators axe built into Tensoral syntax and are hence "standard."

Tensor rank and coordinate dependencies are appropriately updated when variables

are assigned, algebraically combined, differentiated, averaged, or indices contracted

(dot product). Thus, performing a derivative increases rank by one, averaging

removes coordinate dependencies, etc.

User defined operators can be provided at will by database authors. Useful ex-

amples of such operators include reading and writing databases, output of tensors

for visualization or graphing, etc. TensorM provides an extremely flexible mecha-

nism for such operators to be added by database authors. However, a_-ailable user

defined operators must be documented by a database author for users to be able to

effectively use them.
It should be mentioned here that TensorM tensors and operators are abstract

notions. How an abstract tensor is represented numerically (e.g. as an array in

memory, across processors in a multi-computer, split between memory and disk,

etc.) and how operators operate (e.g. derivatives as finite differences or as multipli-

cation in wave space, etc.) is completely determined by a database backend. Such

backends (described in section 2 of this guide) are provided by simulation authors

and give all of the information necessary to convert TensorM post-processors into

an executable computer program to perform the intended computation and output

the result.

Mathematical syntax

Mathematical notation in TensorM is a super-set of Vectoral notation and as with

Vectoral aims to present a syntax as close as possible to standard mathematical

notation. Thus, given tensors a and b, a*b, a-b, a.b, a.b, a/b, a'b and lal

represent point-wise addition, subtraction, cross product, dot product, division,

exponentiation and absolute value (for scalars), respectively. Juxtaposition a b can

also be used for outer (tensor) product (but only if a and b are within parenthesis or

are not within parentheses but are on the same input line). Floating point constants

Tensoral user and authors guide 389

(which are tensors of rank 0 with no coordinate dependencies) are entered as in

Vectoral: as sequences of base ten digits and optional decimal point, followed with

an optional e or g for exponent and optional i or I for the imaginary unit (v/Z]).
Any balanced parenthesis ((), _) or []) may be used for grouping mathematical
expressions.

Tensor notation

In addition Tensoral supports tensor notation as follows. Tensor indices are in-

troduced by the underscore character _ and followed by arbitrary mixtures of single

digits or single letter coordinate directions (for indices with explicit values - e.g.

a_12 = a_xy), or single letters which are not coordinates (for dummy indices - e.g.
a_ij). No spaces are allowed before or after indices or the leading _. Indices whether
explicit or dummy must be single letters or digits. One should think of Tensoral in-

dexed expressions as atomic variable references which -- as in most other computer
languages -- contain no white space.

Any tensor index which is not a number or a coordinate direction (as defined

in a particular simulation backend) is assumed to be a dummy index. Dummy

indices label how tensor indices are to be combined in an expression -- for example,
distinguishing the statements a..ij = b_j c_i and a_ij = b_i c_j. Dummy indices

are also often used in conjunction with the summation convention: namely, that
repeated dummy indices in a product are summed over. Use of the summation

convention in indexed products is controlled by whether * or . or juxtaposition is
used for multiplication. Products involving pure juxtaposition imply the summation
convention; otherwise, summation is not implied. TensorM provides the standard

symbols 6ii (totallysymmetric) and eij_(totallyanti-symmetric)as delta and

epsilon. Here are some illustrativeexamples oftensorindex notation:

cat - epsilon_ijk a_i b_j crossproduct ofrank i a,b.

c = a_£ b_i dot product of rank 1 a,b.

c_ik ,,a_ij b_jk matrix multiplicationofrank 2 a,b.

Tensor expressionsneed not have explicitindices.Ifindicesare missing TensorM

deduces the tensorrank (eitherfrom the tensorassignedto the given expression

or zeroifthereisno such tensor)and insertsdummy indicesin missingslotsfrom

leftto right.Summation over repeated dummy indicesisimplied for index-free

expressions,independentof which form ofmultiplicationisused. Also,for index-

freeexpressionsthe multiplicationoperators* and . generate dummy indicesfor

crossand dot products,respectively.Using index freenotation,the above examples
are coded as follows:

c ,, a * b cross product.

c ,, a . b dot product.

c - a b matrix multiplication.

Coordinate indezing: projection

Indexing (also referred to as projection) is also supported for spatial coordinates,

but with a different notation than for tensor indexing. A tensor u depending on

390 Eliot Dresselhaus

coordinates xyz can be evaluated at particular x, y or z values for z = 17 planes

as u(17,y,z), for x = 17, z = 19 pencils as u(17,y,19), or at a single point

x = y = z = 0 as u(0,0,0). All coordinate names in TensorM are single characters,

whose definition, semantics, and values are determined by database backends.

Tensored coordinates are not required to be the native coordinates of a simulation.

A database author can provide various coordinate systems for a single simulation

as appropriate and physically meaningful. Typical coordinates for Rogallo's wave

space isotropic turbulence simulation would include, for example:

x y z standard Cartesian coordinates,

X Y Z Cartesian wave space,

r the radial coordinate r 2 = x 2 + y2 + z 2,

k the wave vector magnitude k 2 = X 2 + y2 + Z 2.

Tensoral operators

Mathematical functions (e.g. sine, cosine, log, exponential), differentiation, la-

place and curl operator inversion, among others) all appear in Tensoral as operators.

Operators in TensorM act from the left and apply to a given number of tensors or

tensor expressions on the right. Operator arguments are flanked by parentheses (one

of (), {} or []) and separated by commas as in standard mathematical notation.

(Additional operator notation is provided at statement level and will be discussed

below.) If an operator takes a single operand (for example, square root), these

parenthesis may be omitted so long as the argument is a tensor. Thus, sqrt z is

permissible in place of sqrt (z).

Operators are either built into Tensoral or are defined by database authors' back-
ends. Since they must be specially defined by backends or are built into TensorM,

operators can be recognized as syntactically differentiated from tensors, making it

possible to differentiate tensor projection (e.g. a(0,0,0) for tensor a) from operator

notation (e.g. f(0,0,0) for operator f).

The standard mathematical functions in TensorM are as in VectorM and are listed

in the following table:

conj Z

exp x, log x, logl0 x

sqrt x

sin x, cos x, tan X

arcsin x, arccos x

arctan x

Complex conjugate

Exponential, log, log base 10.

Square root

Trigonometric functions.

Trigonometric inverse functions.

Like tensors, operators can also have rank and be indexed (like any other tensor).

In particular, differentiation (dill or grad), integration (int), averaging (ave),

minimum (rain), and maximum (max) are all indexed operators in TensorM.

Differentiation has rank one and can be explicitly indexed (e.g. diff_y u_x for

Ovux) or can be index free:

w = grad * u encodes the curl of u;

divu = grad . u encodes its divergence.

Tensoral user and authors guide 391

In addition, a special indexed shorthand is available for derivatives: any dummy

indices following a comma are taken as derivatives. Thus, u_i, j is shorthand for

diff_j u_i, and v,ii generates a Laplacian V2v.
The remainder of the indexed operators listed above are special in that they do not

have fixed rank. Consider ave as a typical example, ave_x performs an average over
the x coordinate direction (as defined by the database backend); ave_xy performs

averaging over both x and y coordinate directions. The remainder of the average-like

operators (int, rain, ,*ax) behave in a similar fashion: operator indices determine
which coordinates are to be integrated and minimized or maximized over.

Tensoral statements

There are only two forms of statement in Tensora/: assignments and statement-

level operator expressions. Assignments can use multiple left-hand sides as long as

they are tensors and multiple assignments may be performed in parallel as in Vec-
torM with the & character joining the multiple assignments. In parallel assignment,

right hand sides of all &-linked assignments are evaluated before any assignments

are performed, so that the statement a " b S: b ffi a, for example, swaps tensors a

and b.
Statement-level operator expressions may optionally use a special operator syn-

tax, different from standard functional notation (e.g. f(a,b,c)). At statement-

level operator expressions may be written without parenthesis. If all arguments are
tensors (either indexed or index-free) an operator expression maybe written with-
out commas. In either case, the final argument is terminated by a newline, which

replaces the closing parenthesis of functional notation. The following are valid ex-

amples of statement-level operators f and g: g a+b, a-b and f a b. (Of course,
both of these examples must be terminated with a new line.)

Example and usage

Here we illustrate what has just been presented and give a complete example of

how TensorM can be used to perform a simple post-processing task. Suppose --
for the sake of example -- one wants to study vorticity generation in an evolving

incompressible boundary layer (evolving along the x direction). A simple question
to ask would be "what does the plane-averaged vortex stretching term look like as

a function of x?" Suppose further that one desires to measure this stretching in an

exponential sense, i.e. to calculate d/dt log(t3 2) = 07.S07/0J2, and average it along

yz directions. One would code the following TensorM program into a file test on

the computer disk:

S_ij = 1/2 (u_i,j + u_j,i)
w_k = I/2 epsilon_ijk (u_i,j - u_j,i)

print ave_yz (w S w [w w)

To execute the Tensoral program test on simulation restart file runl, one would

execute a command (for example, to a Unix shell program) tl test runl and the
entire x direction of mean exponential vorticity production should be output on the

computer console. (Details, of course have been omitted here: in particular, runl
must be associated with some author-contributed TensorM database backend.)

392 Eliot Dresselhaus

2. Tensoral author's guide

This author's guide seeks to introduce simulation and database authors to how the

Tensoral compiler operates and to how database backends interact with and control

this operation. Thus, we give here a general introduction to the inner workings of
the Tensoral compiler and follow it with a brief description of the tools with which
backends are coded.

Overview

The Tensoral system compiles high-level tensor expressions and statements --

either in the form of a native post-processor (as described in the above user's guide)

or as embedded within a lower-level host computer language -- into host language

code which numerically realizes these tensor operations. The lower-level language

program output by a TensorM compilation is itself compiled by another (e.g. C
or Vectoral) compiler into an executable computer program. Tensoral has been

designed to be easily adapted to generate any sufficiently powerful host language.
Thus, the prototype system currently under development has separate versions for
C and Vectored as host languages.

By compiling tensor operations into a host language, TensorM can be simulta-

neously general and efficient. Also, this design allows for Tensoral to be flexibly

embedded within non-tensor specific host language code. In this way Tensoral

specializes in numerical tensor computations and leaves other language features

(input/output, file handling, graphics calls, etc.) to the host language.

The process of converting TensorM into host code is mediated by the Tensored

compiler and is controlled by database backends. The Tensoral compiler presents
backends with several constructs for describing exactly how abstract TensorM ten-

sots and the operators which combine them are realized in host code. In particular,

the compiler presents database authors with mechanisms for host-coding both tensor

and coordinate indices, for host-coding operators and how they combine tensors in

mathematically meaningful ways, and for host-coding loops to iterate over tensors'
coordinates.

The backend constructs for looping, operators, and tensor indexing are given using

a parenthesized Lisp-like notation: Tensoral employs the Scheme dialect of Lisp for
both its internal coding and as an extension language. Host code is specified within

Scheme in the form of a simple template language. Templates are fragments of host

code which can refer to other templates or arbitrary Scheme code, can have other

templates substituted in them, and can be split and subsequently inserted onto the

loops which iterate over tensor's dependent coordinates. The details and syntax

for templates, as well as for the backend looping, indexing, and operator constructs

just mentioned, will be touched upon in the following and detailed elsewhere.

How Tensoral works

How then is a Tensora/program compiled into host language code? Tensors in

Tensora/must somehow correspond to numeric arrays. Hence, operations involving
tensors must correspond to host code which iterates numerical operations over the

Tensoral user and author8 guide 393

elements of these arrays. The first step in generating host code must then involve

specifying how TensorM tensors and expressions are to be iterated over.

The Tensoral compiler represents this iteration with a scaffolding of nested host

language loops -- for loops in C or VectorM; do loops in Fortran. Looping con-

structs axe defined by simulation authors' backends with the loop function and are

meant to be flexible and general so as to support various data management strate-

gies such as splitting data into one dimensional pencils, two dimensional planes,

groups of planes, or splitting data across processors of a multi-computer (such as

the Intel Hypercube or Paragon systems).

The ordering and nesting of these loops is dynamic and under the control of

either the database backend or the Tensoral program (or both). Loop nests are

determined and changed either implicitly through the TensorM operators present in

an expression (the typical case for native TensorM post-processors) or explicitly in

TensorM code (the typical case for embedded TensorM).

Once the loop scaffolding has been erected, host code templates for tensor op-

erations and expressions can be built around and inside it. TensorM statements

are first parsed by the compiler into Scheme code. Parsing involves mapping Ten-

sorM operator notation (for example, f(a,b,c) and a = b.c) to corresponding

Scheme function calls ((f a b c) and (= a (* b c))) for appropriately defined

or re-defined Scheme functions (f, =, and *). This Scheme code, which only involves

function calls and tensor references, is then recursively evaluated by the Scheme in-

terpreter. The results of evaluating TensorM operators at each recursion level are a

template representing the operator applied to its operands in host code and a repre-

sentation of which coordinates this expression depends on. Both of these evaluation

results come in the form of Scheme strings.

When tensors are encountered while evaluating TensorM expressions, special tem-

plates are used to generate host code for them. These special templates are given by

backends and completely implement how tensor and coordinate indexing behaves.

Coordinate dependency information, built into to how tensors are internally repre-

sented by the Tensoral compiler, determines how this indexing is to be performed.

Tensor indexing templates are generally the most complex in a database backend

since they almost completely implement how tensors are represented numerically.

Template and coordinate dependency information are returned as results of this

evaluation.

The evaluation of Tensoral operator expressions also involves generating both a

template and corresponding coordinate dependency information. Operator evalua-

tion begins by recursively evaluating the operator's operands giving the operands

templates and coordinate dependencies. All TensorM operators have templates as-

sociated with them. These templates are either built into TensorM or are given

by database backends via the operator command. In either case, these opera-

tor templates specify where and how operand templates are to be placed within

them. In this way, expression templates are formed. All Tensoral operators also

have coordinate dependency information which specify how they combine the coor-

dinate dependencies of their operands. Thus, evaluation results in a template and

394 Eliot Dresselhaun

coordinate dependencies.

After expression and tensor operands have been substituted, host code is gener-
ated from templates by "cut and paste." Substituted templates -- whether eval-

uated from statement level or nested within an expression -- are split (the "cut"

operation) at points specified in the template and the pieces of the split template

("sub-templates") are inserted (the "paste" operation) onto the loop nest according

to the nesting levels specified along with these split points. The sub-template after
the final split point of a template (or the entire template if no split point is present)

is taken as the va/ue of the template. Template values represent host code for the

value of a template. For nested expressions, template values are inserted into the

expression which recursively contains them (e.g. the * template value in (= a (*

b c))); template values at the statement-level (e.g. ffivalue in (-- a (* b c))) are
inserted into the loop nest according to the statement-level coordinate dependency

information generated in the evaluation process.
Once all tensor expressions have been evaluated and all templates generated and

split, the loop nest contains only host language strings and Scheme code. Any

Scheme code on the loop nest needs to be further evaluated and will, presumably,

generate more templates and/or Scheme code. The evaluation process just outlined

is repeated until no more Scheme code remains on the loop nest and the entire loop

nest may be output as host code. Initially host and Scheme code exist on a single
loop nest; however, as further Scheme code is evaluated, further structure may be
added under the direction of this the Scheme code. One of the most important uses

of Scheme code within templates is to structure loop nests as appropriate to a given

computation.

3. Current status and future direction

At present a prototype of a pre-TensorM language -- a lower-level language than

Tensoral as described here -- has been completed and is operational. This language

generates Vectoral post-processors given pre-TensorM code and includes many of the

backend concepts described here. However, this pre-Tensoral language is missing

many of the features and even some of the general concepts described in this doc-
ument. The full Tensoral language described here is currently under development

and will hopefully be completed in a matter of months.
As for the future, I hope to have a prototype TensorM system functional for

the next CTR summer program. Use of Tensoral in a summer program should

provide significant experience towards how to use Tensoral effectively and how to

refine its design to increase its utility. For the near future, my goal is to have

Rogallo's isotropic turbulence simulation and database post-processing coded purely
in Tensoral.

