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Preface

In theory the sound a vehicle emits can be used to detect, track and identify the
vehicle. In fact, in the case of underwater acoustics the navies of the world have used

passive sonar techniques as a primary means of gathering target information. In
principle, the sound airborne vehicles emit can also be used for these purposes and,
in fact, artillery ranging has been used in one form or another for many years.
Acoustic propagation in air differs from that in water in a few major ways. The sound
propagation speed in air is much slower than in water while the vehicle speeds are
much greater in air than in water. Therefore, vehicle Mach numbers are much greater
in air than in water. Additionally, the time constants under which propagation
conditions can radically change are generally much shorter in air than in water. The
potentially rapid changes in propagation conditions in air make acoustic system
performance estimation difficult, particularly within any practical confidence bounds•

As in underwater applications, in air the major thrust of research is in developing
validated propagation models. The Joint Acoustic Propagation Experiment (JAPE),
performed under the auspices of the NATO AC/243, Panel 3, Research Study Group
11 (RSG 11) on Automatic Pattern Recognition in Battlefield Surveillance with
Mechanical Waves, was conducted to obtain a comprehensive set of acoustic
propagation data to validate outdoor, long range propagation models. Of primary
importance in the performance of this experiment was the extensive characterization

of the atmosphere, including turbulence measurements during the tests. The quality
and quantity of the meteorological data collected make this experiment unique.

The JAPE-91 workshop was held in Hampton, Virginia, USA on April 28, 1993. The
purpose of the meeting was to exchange information and results from the experiment•
The hosts would like to express their appreciation to the participants for attending and
for sharing their knowledge and expertise.
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Professor of Physics
The University of Mississippi
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Research Engineer
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ABSTRACT

The Joint Acoustic Propagation Experiment, performed under the auspices of NATO and the
Acoustics Working Group, was conducted at White Sands Missile Range, New Mexico, USA,
during the period 11-28 July !991. JAPE consisted of 220 trials using various acoustic sources
including speakers, propane cannon, various types of military vehicles, helicopters, a 155mm
howitzer, and static high explosives. Of primary importance to the performance of these tests was
the intensive characterization of the atmosphere before and during the trials. Because of the wide
range of interests on the part of the participants, JAPE was organized in such a manner to provide a
broad cross section of test configurations. These included short and long range propagation from
fixed and moving vehicles, terrain masking, and vehicle detection. A number of independent trials
were also performed by individual participating agencies using the assets available during JAPE.
These tests, while not documented in this report, provided substantial and important data to those
groups. Perhaps the most significant feature of JAPE is the establishment of a permanent data base
which can be used by not only the participants but by others interested in acoustics.

A follow-on test was performed by NASA Langley Research Center during the period 19-29
August 1991 at the same location. These trials consisted of 59 overflights of supersonic aircraft in
order to establish the relationship between atmospheric turbulence and the received sonic boom
energy at the surface.

1.0 EXECUTIVE SUMMARY

1.1 The NATO Research Study Group 11 (RSG 11) on Automatic Pattern Recognition in
Battlefield Surveillance with Mechanical Waves

The RSG 11 on Automatic Pattern Recognition in Battlefield Surveillance with Mechanical
Waves as an dement of NATO AC/243, Panel 3, was established for the purpose of conducting
cooperative research on the exploitation of mechanical waves (i.e. waves propagating by transfer
of energy from particle to particle) for detecting, locating and identifying friendly and enemy men
and machines on the battlefield or other areas of related military activity. Mechanical waves
provide the opportunity for development of sensor systems capable of meeting this critical concern.
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1.2 Tasking of Working Group Terms of Reference

JAPE was proposed to meet one of the objectives as stated in RSG-11 Terms of Reference,
Objective 1T3(a) exchange data and references, develop field experiment designs, organize
cooperative field programs, and develop theoretical models that will enable

(i) Improved understanding and utilization of acoustic-to-seismic coupling of seismic
sensing devices and systems,

(ii) Creation of new algorithms and systems for exploitation of the acoustic and seismic
phenomenon in battlefield scenarios,

(iii) Production of site objective acoustic and seismic processing algorithms capable of
dealing with a wide range of terrain and meteorological conditions including cold, temperate and
tropical environments.

Working within the guidelines of RSG-11 objectives, the member nations successfully
organized and conducted the Acoustic Measurement Initiatives (AMI) field tests. AMI I was held
at Schweinfurt, Germany, July 1987, and AMI II at Druex, France, September 1988. The test
experiments have been analyzed and the results reported at RSG-11 meeting and detailed reports
published and dislributed by NATO. Shortfalls in AMI I and AMI II field tests were the limited
amount of meteorological coverage available for evaluating various acoustic propagation codes and
better defined acoustic seismic coupling measurements. These shortfalls prompted the organization
of a new field test named Joint Acoustic Propagation Experiment, or JAPE, to be conducted at White
Sands Missile Range, New Mexico, USA. Because of the excellent capability of the test range to
provide an isolated location, and the capability of the U.S. Army Atmospheric Sciences Laboratory
(now the Army Research Laboratory) to provide extensive meteorological measurements, the
previous deficiencies could be corrected.

1.3 The JAPE test objectives were:

a. To evaluate the performance of existing sound propagation models under different
atmospheric conditions,

b. To expand the database for which atmospheric boundary conditions are either poorly
modeled or not modeled at all,

c. Acquire limited target signature data accompanied by carefully documented
meteorological and terrain conditions.

1.4 Participants in JAPE are as follows:

a. U.S. Army Engineer Waterways Experiment Station

b. U.S. Army Laboratory Command, S3TO (now Army Research Laboratory)
c. U.S. Army Atmospheric Sciences Laboratory (now Army Research Laboratory)
d. University of Mississippi
e. MIT Lincoln Laboratory
f. Physical Science Laboratory, New Mexico State University
g. Krupp-Atlas-Elektronik GmbH, Germany

h. Los Alamos National Laboratory
i. U.S. Army Harry Diamond Laboratory, SLCTO (now Army Research Laboratory)
j. French-German Institute of Research

2



k. NASA LangleyResearchCenter
1. IIT ResearchInstitute
m. PennsylvaniaStateUniversity
n. NationalResearchCouncil,Canada
o. DefenceResearchEstablishmentValcartier,Canada
p. Universityof TexasatE1Paso
q. DanishResearchEstablishment
r. LockheedCorporation
s. Wyle Laboratories
t. TheBioneficsCorporation

1.5. Summaryof results

Perhapsthemostsignificantaccomplishmentof theJAPEtestsis theestablishmentof a
comprehensiveandaccessibledatabasewith avarietyof acousticsourcesandatmospheric
conditions.What someparticipantsreferredto asthe"commonexperiment",whichwasthe
propagationportionof thetest,will serveasasolid foundationonwhichto develop,analyze,and
modifyacousticmodels.Of coursetheotherpartsof JAPE,whichincludedmilitary vehicle
signatures,terrainmasking,individualparticipant'ssidetests,andthesonicboomtrials,provide
datawhich is importantto thoseindividualagencies.Thefeatureof JAPEwhichsetsit asidefrom
previousfield testsis thecomprehensivesetof meteorologicaldatacollectedduringthetrials. This
setof datawill permittheacousticscientistto carefullystudytheinfluenceof theatmosphereon
observedacousticinformation.

2.0 BACKGROUND

It is critical to the development of military acoustic sensors to achieve a systematic
capability for evaluation of concepts and constraints on application. This systematic capability
relies on the use of acoustic propagation models and the application of measured data where
validated models are not available. Presently, there are a number of prediction techniques for
projecting acoustic amplitudes as a function of source-to-sensor range for atmospheric models
having relatively strong constraints on homogeneity or coordinate symmetries, such as layered
homogeneous velocity propagation profiles. Models predicting the effects of terrain obstructions
on sound propagation are also under development, and work has been conducted to predict the
propagation effects of a turbulent atmosphere. However, these techniques are not well developed
and supporting data for documenting the degree of variation in amplitude and phase of the received
signatures are very limited.

A number of acoustic propagation tests have been conducted previously. The degree of
meteorological and ground surface characterization within the boundary layer (i.e. from the ground
surface to 1 km) has generally been inadequate for careful comparison of model performances,
particularly when confronted with the specific signal characteristics and propagation distances
associated with military targets.

Recent concepts for acoustic detection, location, and ranging are limited by the amplitude

characteristics of the propagation wavefronts, but may be more limited in their achievable
performance by temporal variations in the shapes of successive wave fronts or distortions from
spherical or cylindrical spatial distributions. Detection distances tend to be greater than predicted in
upward refracting atmospheres because of non-homogeneous atmospheric conditions. Super
resolution processing is likely to be limited in its ability to achieve theoretical precision because
actual data do not follow the statistical distribution assumptions. Contributors to less-than-
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theoreticalperformancesincludebiasesof measureddistributionsof phaseoramplitudeawayfrom
Gaussiandistributions,apparentfrequencyvariationdueto temporalalterationof propagation
paths,andreductionof spatialor temporalcoherence.Frequency-sensitivevariationsin phase-
dependentpropagationmayalsoconstrainconceptsfor separatingsignaturesfrom thesamesource
from othersignaturesin amultipleenvironment.

3.0 JAPE PROJECT SUMMARY

The Joint Acoustic Propagation Experiment (JAPE) was conducted at White Sands Missile
Range (WSMR), New Mexico, during the period 11 -28 July 1991 and 19-29 August 1991. The
host was the U.S. Army Atmospheric Sciences Laboratory (ASL). The experimental objectives
were:

a. To evaluate the performance of existing sound propagation models under different

atmospheric conditions
b. To expand the database for which atmospheric and boundary conditions are either

poorly modeled or not modeled at all
c. To acquire limited target signature data accompanied by carefidly documented

meteorological and terrain conditions
d. To perform seismic, magnetic, acoustic, and optical measurements according to the

specific objectives of the various participants

e. To study the effects of the atmosphere on sonic boom propagation

To meet the objectives of the test the experiment was separated into four categories:

LonedshQrt range propagation trials. These were conducted to collect data, to evaluate

existing propagation models, and to predict transmission losses in different atmospheric
conditions. Critical model input parameters and sound pressure levels from both fixed and moving
sources were measured. The short range measurements focused on turbulence characterization.

Terrain masking tests. During these tests the effects of non-horizontal boundaries on

sound propagation were measured with the source both in front of and behind an isolated hill.

Military vehicle signatures. Signatures included ground vehicles and helicopters. They
were acquired with emphasis on careful atmospheric characterization. Receiver arrays were
configured for source detection using beam forming algorithms.

Sgnic Boom Propagation Test. The Sonic Boom Propagation Test, a field experiment
designed and funded by the Applied Acoustic Branch, NASA langley Research Center, Hampton,
VA, was conducted at White Sands Missile Range (WSMR), NM, during the period 19-29 August

1991. The objective of the test was to study the influence of turbulence, scattering, and refraction
due to wind and temperature gradients on the propagation of sonic booms, particularly the
statistical variability of the received signals at ground level. The tests consisted of flying the test
aircraft, including T-38, F-15, F-111, and SR-71, over a ground-based microphone array at
altitudes of 30,000 feet above ground level (AGL). In the case of the SR-71, flight altitudes were
over 70,000 feet AGL.

4.0 TEST SITE

4



4.1 Generalfeatures.

Theexperimentwasconductedin theextremesoutheasterncornerof WhiteSandsMissile
Range,NM, ata locationknownastheDustyInfraredTest(DIRT) Site. Thenorthernportionof
theFortBlissmilitaryreservationknownasmaneuverareaB7 neartheOrograndeRangeCamp
wasalsoused.Figurei showstherelativelocationof thetestareasandtheorographicfeaturesin
thevicinity. TheJafillaMountainsareapproximatelythreekilometerseastof theDIRT Siterising
approximately300metersabovethesurroundingplain. A smallhill thatwasdesignated
InstrumentHill, approximatelythreekilometerssouthof theDIRT SiteneartheOrograndeRange
Camp,wasusedfor theterrainmaskingexperiment.TheDIRT Site,wheremostof thetrialswere
conducted,providedagentlyslopingterrainconsistingof sandysoilcoveredwith typical semi-arid
vegetationsuchasmesquiteandgreasewood.Althoughthesurroundingmesquite-covered
sandhillswere 1.5to 2.5metershigh,theDIRT Sitein yearspasthadbeenleveledalongapath
approximately200meterswideby 2000meterslong. Smallervegetationgrewonly to
approximatelyonemeterinheightin thisarea.

4.2 Sitecharacterization

a. Terrain: TheDIRT siteis in adesertalluvialvaUeyknownastheTularosaBasin. It is
boundedat3-5krn distanceon theeastbytheJarillaMountainsand50km to thewestby the
OrganandSanAndresMountains.Surfacetopographyisrelativelyflat with ageneralslopefrom
eastto west. Thesurfaceelevationatthesitevariesby lessthan2 m with someminor variationsof
5m.

b. Surfacesoil: ThesoilattheDIRT sitewasdeterminedto beaSM (silty sand)by the
Unified SoilClassificationSystem.It alsooccasionallyhadtracesof gravel. Thesoilporositywas
between40and48percent.Soil strengthwasanaverageof 4 to 9percentnearthesurfaceand12
to 25percentbelow25cm.

c. How resistivity: These measurements were made at five locations between the two
towers near the sensor line. The average flow resistivity of the site ranged between 960 and 1220
rayl/cm.

d. Site vegetation: Plants identified at the DIRT site are typical of those common to deserts
in the western United States. They included Larrea tridentata (creosote bush), Ambrosia dumosa
(white bur sage), Salvia dorfii (desert sage), Atriplex conferfifolia (shadescale), Ceratoides lanata
(winter fat), Cercidium microphyllum (foothill yellow palo verde), Fouquieria splendens (ocotillo),
Olneya tesota (desert ironwood), and Sarcobatus vermiculatus (greasewood).

e. Seismic refraction: A seismic refraction survey was conducted to characterize
subsurface layering and seismic propagation conditions relevant to detection, analysis, and
modeling of ground targets. The survey revealed a first layer that had a thickness of approximately
0.5 m, a p-wave (compression) velocity ranging from 177-204 m/s, and an s-wave (shear) velocity
of approximately 110 m/s. The second layer thickness varied from 0.9-1.2 m from north to south,
the p-wave velocity from 381-418 m/s, and the s-wave velocity was 233 rn/s. The third layer
thickness was approximately 2.1 m, the p-wave velocity varied from 549-594 m/s, and the s-wave
velocity was 312 rn/s. Because of the length of the geophone line the depth of the fourth layer and
the s-wave velocity were not discemable, but the p-wave velocity varied from 680-738 m/s.

5.0 TRIALS

The following types of trials were performed: short range propagation, long range

5
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Figure 1. This map shows the location and orientation of the DIRT Site in the extreme southeast
corner of White Sands Missile Range, New Mexico. The Jarilla Mountains are east of the site and
rise 300 meters above the surrounding terrain. The Instrument Hill was used for the terrain
masking experiment. Nike Avenue to the south and WSMR route 252 to the east were the main
roads near the site. Traffic caused occasional interference with the tests.



propagation(moving),longrangepropagation(fixed), terrainmasking,vehicledetection,
individualparticipanttrials(undocumented),andacategorycalledOther trials. Table 1 lists the
JAPE trial types by day, and each is described below.

Table 1.
DATE

11 July
13 July

14 July
16 July

16 July
17 July
18 July
20 July
21 July
22 July
23 July
25 July
27 July
28 July

Summary chart of trials by date, type of trial, and time interval.
'I'RIAL TYPE START TIME END TIME

Short range propagation
Long range propagation (moving)
Short range propagation
Long range orooagation (moving)
Penn State turbulence test

Long range propagation (fixed)
Short range propagation
Vehicle detection
Vehicle detection

MDT MDT

Other (Blackhawk)
Terrain masking
Terrain masking

2130 2309:20
1748:05 2326
1817:20 2350
0401:15 0512:38

1122
0504
0452
2332

1221
1222

1218:30
2400

0000 0659:30
Vehicle detection 0910 1549:30
Vehicle detection 0913 1131:45

0920:15 1710:06
1602:30

0901
1959

1209:30

5.1 Propagation tests.

The propagation tests were designed to provide a common experiment on which the

relationship between atmospheric turbulence and acoustic-to-seismic coupling could be determined.
The core instrumentation for these trials included speakers located at the top and base of the north
and south towers (W1 and W2), propane cannons at the same locations, and an array of
microphones and seismic sensors deployed between the two towers. See figure 2. Paragraph 6.2
describes the acoustic sensor configuration for the propagation trials.

a. Short Range Propagation

These Irials were conducted from the 30 meter meteorological towers located at the south
and center areas of the DIRT Site. The towers, designated W1 and W2, were 1000 meters apart.
Speakers and propane cannons were placed near the top and at the base of each tower. The typical
trial sequence was as follows:

• Top speaker at the north tower
• Top speaker south tower
• Top propane cannon north tower
• Top propane cannon south tower
• Base speaker north tower
• Base speaker south tower
• Base cannon north tower
• Base cannon south tower

The speaker sequence, which took approximately 16 minutes to complete, transmitted
frequencies at 25, 50, 100, 200, 300, 400, 500, 650, 850, 1000, 2000, and 3000 Hertz in

sequence, followed by a mixture of 80, 200, and 500 Hertz tones. Each propane cannon was fired
eleven times. The first f'u'ing was typically lower in intensity than the subsequent shots, and was
usually not coincident with the trial start time. The Pennsylvania State University also ran a special
short range test for a turbulence experiment.

7
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Figure 2. This drawing shows the orientation of the DIRT Site and the major instrumentation
areas. The center and east roads were used for vehicle and long range fixed propagation tests,
while the short range experiments were conducted from the north and south towers.
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b. Long Range Propagation (Moving)

These trials consisted of a UH-1 helicopter flying a pattem from 20 kilometers north of the
DIRT Site to 10 kilometers south. Flight altitudes were from 100 to 180 meters above ground level
(AGL). Altitudes were increased after dark for safety reasons. Position data were collected by on-
board Global Positioning System equipment and ground-based radar track.

c. Long Range Propagation (Fixed)

Several types of acoustic sources were used for these trials and included speakers, propane
cannon, 155mm howitzer, and high explosive charges. All trials were conducted on the EAST
road, which ran parallel to range road 252 and just east of the DIRT Site in a northerly direction.
Range markers were placed at one kilometer intervals beginning near the south end of the DIRT
Site, thus the one kilometer location was just east of W2, the north meteorological tower. The
speakers and a propane cannon were mounted on a stake bed truck and moved from position to
position on the east road. Speakers and the propane cannon were 1.7 meters above ground level
and the speakers were separated by 1.15 meters. These sources were pointed in a southerly
direction. The M198 155mm howitzer was positioned near the 8 kilometer range mark. It fined
inert rounds at one minute intervals at an azimuth of 343 degrees (the muzzle pointed away from

the DIRT Site) and a quadrant elevation of 15 degrees. The propellant was the M119A2Z7 red bag

charge which weighed 22.5 pounds (10.2 kg). High explosive charges of C-4 were detonated
during daylight hours only. Charge sizes of 1.25 and 5 pounds were used and were placed one
meter above ground level. Several misfires were encountered thus causing uncertainty in the actual
detonation times for trial 051304. Detonations were scheduled to be at 30 second intervals.

5.2 Terrain Masking

Two types of sources were used during the terrain masking: a UH-1 helicopter and C-4
high explosives. All trials were performed in and around Instrument Hill just south of the
Orogrande Range Camp and northwest of Elephant Mountain in Fort Bliss maneuver area B7. See
figures 3a and 3b. Most of the instrumentation used to measure the acoustic energy and the
meteorological instrumentation were deployed from the top of the hill toward the north. The
locations for the C-4 detonations were surveyed and designated TM HE-l, approximately 200
meters south of the southern base of the hill; TM HE-2, 100 meters south of the base; TM HE-3,
50 meters from the base; and TM HE-4, located at the southern base of the hill. These locations

were also used as overflight positions for the helicopter patterns. When the helicopter was
instructed to fly at nap-of-earth (NOE) over the 200 meter ground location, it went over TM HE-1.
NOE for this exercise was selected by the pilot for safety considerations at 12 meters above ground
level. However, on the east-west patterns the pilot had to climb to avoid high voltage power lines
which ran between the hill and Elephant Mountain. The flight profiles are listed in trial summary
remarks.

5.3 Vehicle Detection

Several types of military vehicles were used for the vehicle detection tests including an M1
tank, M60 tank, M114 armored personnel carrier, M35 cargo truck, and M561 Gamma Goat. The
truck and Goat were used in individual participant trials which are not documented in this report.
Trials were initiated on the CENTER road which ran through the middle of the DIRT Site. They
started at a location approximately one kilometer south of the command post (CP) and ended
approximately two kilometers north of the CP. Calibrations were performed with the tracked
vehicles at six separate locations along the road and in two dkections, north and south. At these

stopping points the vehicles ran at idle and a high RPM for one minute each. At the Canadian
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calibrationpoint theM60andAPCwerealternatelystoppedandstartedfor severalminutes.The
APCdid nothaveatachometer,soaccurateRPMwasnotmeasured.Thevehicleswerealso
operatedon theCENTERroad,bothnorthandsouthat speedsof 20milesperhourandat
alternatingspeedsof between15and20milesperhour.

Only theM 1andM60 tanksweretestedontheEASTroadatrangesfrom onekilometer
southof theCPto sixkilometersnorth. Bothvehiclestraveledat speedsof 20milesperhour
althoughtherewereseveraldeepgullieswhich caused the tanks to reduce speed temporarily. On
one trial the M1 was asked to shut down and restart at the six kilometer range.

5.4 Individual Participant Trials

Participants including Los Alamos National Laboratory and Defence Research

Establishment Valcartier, Canada, performed individual tests with the military vehicles. These
tests were independent of other trials and are not documented in this report.

5.5 Other Trials

A Blackhawk helicopter from Fort Rucker, Alabama was used to fly numerous patterns to
satisfy the various requirements of participants in this experiment. The pattems are not
documented in this report.

5.6 Sonic boom trials

A total of 59 trials were conducted during the test period including flights of two SR-71,
six F-111, twenty-one F-15, and thirty T-38 aircraft. One overflight was considered as one trial.
Figure 4 shows the approximate flight path at 30000 feet altitude for all aircraft except the SR-71
which flew a north-to-south and east-to-west pattern at 65000 feet. Table 2 shows the type and
number of trials as a function of time period.

TABLE

are Mountain Daylight Time and are a woximate.
AIRCRAFT 0600-1000 " " 1000-1400

SR-71

F-111 2
F-15 7 8
T-38 12 11

2. Supersonic trials grouped by type of aircraft and time of day. Times

1400-1600
2
4
6
7

6.0 INSTRUMENTATION

6.1 Meteorological

The acoustic meteorological test bed consisted of two 32 meter walkup towers that were
instrumented at five levels (2-, 4-, 8-, 16-, and 32 m) with various meteorological sensors. The

towers were placed at one kilometer separation on an azimuth of about 345 degrees. The north
tower measured temperature, winds, humidity, pressure, and solar radiation. The south tower
contained sonic anemometers and hot wire anemometers. Additional measurements were made

using a 924 MHz wind profiler, a radio acoustic sounding system (RASS), upper air radiosonde,

11
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tethersonde, SODAR wind profiler, and numerous surface weather stations in and around the test

area. The following list contains the meteorological equipment deployed during JAPE:

1. Upper air, surface to 5000m (north area release)
2. Hot film, south tower, four levels (south area)
3. Sonic anemometer, south tower W1 (south area), five levels; north tower W2

(center area), three levels

4. Thermistor, south tower W1 (south area), five levels
5. PAMS tower W4, three levels (north area)
6. TACS tower, 10m, two levels, five locations around DIRT Site (W5 approx, lkm west

of center area; W6 approx, lkm east of center area; W7 approx. 8km north of center
area; W8 at top of Instrument Hill; W9 at base of Instrument Hill)

7. TACS tower W3, 30m, five levels (center area)

8. Microwave temperature profiler (center area), 14 data levels between 30m and 10668m
9. RASS virtual temperature, 12 levels up to approximately 133m (north area)

10. Wind profiler (north area), data to 5000m
11. AO SODAR (north area) and PA2 SODAR (base of Instrument Hill), winds up to 750m
12. Tethersonde, surface to <600m (north and south areas)

6.2 Acoustic instrumentation for propagation trials

The acoustic sensor configuration for the propagation trials consisted of two source
microphones, two vertical arrays, one longitudinal array, one transverse array, and one direction
finding array as shown in figure 5. A vertical array of microphones was placed on each of the two
32 meter towers. Microphones were placed at 0, 1, 2, 4, 8, 16, and 32 meters on each of the two
towers. The eleven microphones that made up the longitudinal array were placed on the ground
100 meters apart along a line between the two towers. The transverse array was placed
perpendicular to the longitudinal array midway between the two towers. Microphones in the
transverse array were placed both on the ground and 1 meter above the ground at 1, 3, 7, and 15
meters east of the center microphone pair and 31 meters west of the center pair. The direction
finding array consisted of eight elements: one in the center surrounded by seven evenly spaced on a
circle with a 1.85 meter radius. This array was located about 50 meters west of the midway point
between the two towers. Source microphones were positioned approximately 2 meters in front of
the source. The seismic sensor array consisted of two horizontal geophones placed at the
intersection of the longitudinal and transverse acoustic arrays and three vertical geophones spaced
0.75 meters apart placed along the longitudinal axis.

6.3 Acoustic instrumentation for sonic boom trials

The primary acoustic array employed in the sonic boom propagation experiment was a 16
element, ground based, linear array as shown in figure 6. It consisted of Boom Event
Analyzer/Recorder (BEAR) microphone systems specifically designed to measure sonic booms.
The BEAR systems were deployed in a linear array with at least a 200 foot distance between them.
The BEAR systems each consisted of a microphone, digitizer, microprocessor, and storage
medium, and were used with ground plates and wind screens. Additional microphones were
installed by the Army Research Laboratory and Physical Science Laboratory.

7.0 TECHNICAL REPORTS

The following is a partial list of technical reports written as a result of the JAPE tests.

1. Henry E. Bass, Patrice Boulanger, Robert Olsen, and Prasan Chintawongvanich, Sonic
Boom Propagation Test Low Level Turbulence Report, University of Mississippi, Army
Research Laboratory, and Physical Science Laboratory.
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2. H.E. Bass,R. Raspet,S. Hausman,D. Schein,G. Daigle, Analysis of Non-line-of-
sight Data Collected at JAPE - 91, University of Mississippi, Northrop Corp, NRC
Canada.

3. Henry E. Bass and Carl Frederickson, JAPE-1 Data Analysis, University of Mississippi.

4. Gunnar R. Becker, Efforts of Atlas Eiektronik GmbH at the Joint Acoustic

Propagation Experiment, Atlas Elektronik GmbH, Germany.

5. Gunnar R. Becker, The Masking of Sound by a Hillside, Atlas Elektronik GmbH,
Germany.

6. Gunnar R. Becker, Terrain Masking Experiment: High Explosive Tests, Atlas
Elektronik GmbH, Germany.

7. Jacques Bedard, DREV Field Measurements during JAPE, Defence Research
Establishment, Quebec, Canada, presented to the 24th meeting of NATO AC/243, Panel 3,
RSG. 11, Los Angeles, CA, November 1991.

8. Richard K. Brienzo, Joint Acoustic Propagation Experiment, MIT Lincoln Laboratory.

9. Thelma Chenault, Rene' Klein, Ascencion Acosta, Jr., Digital Signal Processing
Techniques used to Reduce Acoustics Data from the JAPE Test, Atmospheric Sciences
Laboratory, White Sands Missile Range, NM.

10. Thelma Chenault, Rene' Klein, John Fox, Don Foiani, JAPE Positioning Data,
Atmospheric Sciences Laboratory, White Sands Missile Range, NM.

11. Prasan Chintawongvanich and Robert Olsen, Measurements of Temperature and
Velocity Structure Parameters from Sonic Anemometers, Physical Science Laboratory,
New Mexico State University, and U.S. Army Atmospheric Sciences Laboratory.

12. Ron Frankel, Data Collection and Signal Processing Techniques, Army Research
Laboratory, Adelphi, MD, 21 November 1991.

13. David Havelock, NRC/CA Participant's Report Joint Acoustic Propagation
Experiment, National Research Council, Canada.

14. D.I. Havelock, M.R. Stinson, G.A. Daigle, Observations of Signal Coherence in
Space Time and Frequency, RSG-11 Meeting, 26-29 Oct 1992, Quebec City, National
Research Council, Ottawa, Canada.

15. Fred Homuth, Jerome Chen, and Ed VanEe_khout, Fiber Optics - A New Method for
Measuring Stress Changes, Los Alamos National Laboratory, Los Alamos, NM.

16. Marjorie Klugerman and Henry E. Bass, Measurements Needed for Impedance
Calculations, Acoustics Laboratory, University of Mississippi.

17. P. Naz and G. Parmentier, Joint Acoustic Propagation Experiment, ISL, France.

18. P. Naz, JAPE 91: First Result of the Terrain Masking Experiment, ISL/APS,
France.
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19. P. Naz, G. Parmentier,Joint Acoustic Propagation Experiment, Phase 1 Results
of Long Range/Short Range Propagation Experiment, ISL, France.

20. R. J. Okrasinski, Intercomparison of Remote and Balloon-Borne Sensors, Physical
Science Laboratory, New Mexico State University.

21. William L. Willshire Jr., The Effect of Turbulence on the Propagation of Sonic

Booms, NASA Langley Research Center.

8.0 DATA BASE

All data and reports produced from the JAPE tests are catalogued and archived in a central
repository. For more information contact the following individual:

liT Research Institute
A'ITN. Jim Robertson
4140 Linden Ave., Suite 201

Dayton, Ohio 45432
USA
Phone: 513-252-9969 -
FAX:513-252-6831
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LONG/SHORT RANGE PROPAGATION
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SOUTH TOWER

39

2f
19

27 26 25

Om
tm

1, 3m

Fm

1.0 s_tel _ove

the ground

23i_

31 reelers 3 8m

4 4m

LGWI_R SOURCEs
S 2m

PSL

10 9 8 (I lm

tim

100 reeler 7

Figure 5. Acoustic sensor layout _howing sensor positions and identification numbers.

16



SODAR VAN •

BEAR 1 •

BEAR 2 •

BEAR 3 •

BEAR 4 •

BEAR 5 •

BEAR 6•

BEAR 7•

BEAR 8•

DIRT SITE

SUPERSONIC ARRAY

........_=/PSL 200M N

ANALOG MICS_....== BEAR 9

BEAR 10= • NL TWR

BEAR 11•

PSL CENTER= VANS

BEAR 12= • ==

• PSi. MICS
PSL MIC W • •

BEAR 13 N TWR

• PBL MIC E

N 7OO M

700 M

BEAR 14

• PSL 200M S

• BEAR 15

• BEAR 16

Figure 6. Locations of the microphone arrays deployed by NASA Langley and the Atmospheric
Sciences/Physical Science Laboratories.

17





N94-2,:209
SOME RESULTS GAINED FROM JAPE - AN OVERVIEW *t

Gunnar R. Becker

ATLAS ELEKTRONIK GmbH

Bremen, FRG

SUMMARY

During JAPE a variety of sound propagation experiments have been conducted, including long range

measurements and investigations of the masking of sound by natural barriers. An overview of the mea-

surements is given below. A comparison between measured SPL's and theoretical estimates is presented.

INTRODUCTION

The influence of meteorological conditions on outdoor sound propagation is of major interest, because

the detectability of acoustic sources depends on the characteristics of the transmission channel. Since

ATLAS ELEKTRONIK has limited access to met instrumentation, the JAPE offered a unique chance to

conduct meteorological and acoustical measurements at one time.

Sensor Layout

ATLAS ELEKTRONIK operated a linear acoustic array during the experiments. During the first

series of the measurements this array was located beyond the northern met-tower, heading in a south-to-

north-direction. The sensor spacing was 100 m and eight microphones (type: Sennheiser MKH-I10)
were in use.

The mike close to the met-tower was collocated to the northernmost mike of the MIT sensor layout.

Thus it was possible to link our results to those of the other teams having sensors displaced along the

baseline of the sensor layout.

During the vehicle test additional geophones (type: Geospace GSC-300-3D, Sensor SM 6) and mikes
were located close to the track.

The Terrain Masking trials finished the JAPE. For this purpose the sensors were deployed across the

Elephant Hill, which was located south of the Dirt Site. Figure 1 is showing the sensor geometry as

used during the trials.

* This work was funded by the German MOD, Rii T III 4.
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SELECTED RESULTS

Ambient Noise

Measurements of the ambient noise took place at least once a day. Figure 2 presents a spectral analy-

sis of such a measurement. The variation of the spectral content of the background noise is shown over

a period of two minutes. The frequency band displayed is ranging from DC to 200 Hz.

In order to enhance spectral lines the broadband contribution has been removed. The effect of this

procedure can be seen from the comparison of both upper graphs. They are showing an averaged spec-

trum before (top) and after the normalization (below) has been applied.

In the spectrogram a set of stable spectral lines can be seen. They are generated by the mechanical

noise of transformers, air conditioners, etc. In addition there are sources with varying frequency content.

Mostly these kinds of signals could be identified as noise coming from passing vehicles.

Short Range Measurements

During the short range tests measurements including pure sinusoidal tones emitted by a loudspeaker

and pulses from a propane cannon were conducted. Figure 3 shows the averaged lapse of the SPL vs

range at three different frequencies, i.e. 80 Hz, 200 Hz and 500 Hz. These three frequencies were emit-

ted simultaneously. The loudspeaker was mounted on top of the southern met tower (approx. 30 m

AGL, 1000 m apart) and the integration time was 15 seconds.

At 80 Hz no major changes in the SPL can be seen within the presented range interval. Both other

frequencies show a slight decrease at first, but beyond 1600 m even the energy at 500 Hz increases

again. The met conditions showed a light upward refraction during these trials. The total velocity gra-

dient close to the ground ( z < 100 m) was about 0.28/sec. From this the shadow zone can be estimated

to begin about 920 m off the source.

A spectral analysis of this measurement is presented in Figure 4. The frequency band shows ranges
from 400 Hz to 600 Hz. The 500 Hz tone is the dominating spectral line in this band. The other nar-

rowband contributions are due to nonlinearities of the loudspeaker.

The graph to the left is showing the total energy (left line) and the broadband energy (right line) in

the given frequency band. The difference corresponds to the narrowband contributions. Since the 500

Hz line is by far the strongest line, it can be concluded that the variations in the difference is caused by
fluctuations of this line. Indeed these variations are very strong though there have been only light winds

(-- 3 m/s). The relative SPL varies between 24 dB and 48 dB and the strongest change occurred about

40 seconds after the measurement started: the relative SPL dropped about 20 dB within six seconds.
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Long RangeMeasurements

A numberof helicopterflights havebeenconductedstartingabout20 km northof the test site,ap-
proachingwith constantspeedandaltitude.Sincethereweregoodpropagationconditionsthe helicopter
could bedetectedovera largedistance.This canbe seenin Figure5, which is showingthe first minute
after startingthe run.The bladepassingfrequenciescanbe detectedafter about 15seconds.Figure6
showstheanalysiswhile the helicopterwascloseto the CPA.

This trial hasbeenchosento comparethe measuredSPLasa functionof rangewith thetheory. In a
first stepthe soundpressurepowerdensityat two discretefrequencies,i.e. 50 Hz and 200 Hz, andin
the frequencybandbetween25 Hz to 225Hz hasbeenevaluated.The result is shownin Figure7. All
threelevelsbehavein a similar way. In Figure8 the measuredlevel at 50 Hz is comparedwith three
theoreticalestimates.The dotted linesrepresentgeometricalspreadingplus absorptiononly. The full line
showstheestimatedlevel accordingto theCERL-FFP-modei.All theoreticalresultshavebeenfitted
with the measurementat a distanceof 10km. It canbe seenfrom Figure8 that the result obtainedwith
the CERL-FFP-algorithmfits bestwith themeasurement.Especiallyat closerrangesthere is a good
correlation,whereasthe modelseemsto predicthigher levelsat largerrangesthanreally havebeen
measured.

TerrainMasking

The aim of thesemeasurementswas the investigationof the maskingof soundby a naturalbarrier.
For this purposeATLAS deployedits microphonesacrossa hillside asshownin Figure !.

Both helicoptersandhigh explosiveswere usedduring thesetrials. In the following only results
obtainedfrom helicoptermeasurementswill bepresented.The insertionlossof the barrierhasbeen
derivedby calculatingthespectraldifferencebetweenthe microphonein the shadowandthe oneon top
of the hill. This onewasusedasa freefield reference(labelledCH-3 in Figure 1). Figure9 is showing
the resultof sucha measurement.The helicopterwashovering200 m southof the hill at an altitudeof
65 ft abovegroundlevel (AGL). Sincethe heightof thehill wasapproximately100ft, the helicopter
wasmaskedat all microphonepositionsbeyondthe hill (CH-7 to CH-12).

Two microphoneoutputshavebeenanalyzed,i.e. CH-9 at the northerntoeof thehill and CH-12at
the endof the sensorlayout.The analysishasbeenrestrictedto the harmonicsof thebladepassing
frequencies.Beyond175Hz the S/N was too poor to obtainreliableresults.Both channelsshowa very
similar lapseof the relativeSPL.The calculatedlapsefollows a simplerelation: insertionloss IL [dbl
- 0.1 * f [Hz]. At helicopteraltitudeof 330 ft AGL thereare line-of-sight(LOS) conditionsbetween
the helicopterandthe microphoneat locationCH-12.The microphoneat the toeof the hill, however,is
still maskedby thehill. The result of the analysisis shownin Figure 10.The lapseof the IL for the
microphonelocatedat CH-9 is very similar to thepreviousresults.The signalreceivedat CH-12 seems
to bealmostunaffectedby the barrier,aswould beexpectedunderLOS conditions.
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SUMMARY

In this papera shortoverviewof theresultsobtainedfrom the JAPE is given.The mostimportant
resultsgainedup to now are:

Evenunderalmostgoodmet conditionsstrongchangesof the SPL canoccur.At 500 Hz variationsof
20 dB andmorehavebeenmeasuredovera transmissiondistanceof 1000m.

The level of the soundemittedby anapproachinghelicopterhasbeenanalyzedat rangesstartingat
20 km. Theseresultswerecomparedwith theoreticalestimatesandit wasfound that theCERL-FFPfits
reasonablywell with the measurements.

From the Terrain Maskingexperimentit turnedout thatwithin the investigatedfi'equencyrangethe
insertion loss in decibelsis almostlinear relatedto frequency,i.e. IL [dB) - - 0.1 • f [Hzl.
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JAPE: FIXED SOURCE TRIALS
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INTERCOMPARISONOF REMOTEAND BALLOON-BORNE
SENSORSOPERATEDAT JAPE-91

RichardJ. OkrasinskiandGregJ.Cook
Physical Science Laboratory

New Mexico State University

Las Cruces, NM

Robert O. Olsen

U.S. Army Research Laboratory
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SUM2VIARY

In recent years, there has been an increased availability of different types of remote sensors

for measuring atmospheric parameters. With the introduction of remote sensors into field operation,

questions arise as to their accuracy and precision. An attempt was made to address this issue by

analyzing and intercomparing sets of wind and temperature data obtained during the Joint Acoustic

Propagation Experiment (JAPE-91) conducted at White Sands Missile Range, New Mexico, in July

and August, 1991. The remote sensing systems that were deployed included a 924 MHz wind

profiler, two Doppler acoustic sodars, and a Radio Acoustic Sounding System (RASS). In situ

measurements of wind, temperature, and humidity were also obtained from radiosondes. Individual

system characteristics and the results of intercomparing the derived wind and temperature data from
each of the systems are presented.

INTRODUCTION

The Joint Acoustic Propagation Experiment (JAPE-91) was conducted at White Sands Missile

Range in south central New Mexico during July 11 - 28 and August 19 - 29, 1991. Two Doppler

sodars, a 924 MHz wind profiler, and a Radio Acoustic Sounding System (RASS) were deployed

by the U.S. Army Research Laboratory to collect boundary-layer wind and temperature data in

support of the experiment. Upper-air wind, temperature, and humidity data were also collected by
periodically released rawinsondes.

This information was later analyzed to evaluate the capabilities of the four remote sensors.

Wind data from the UHF profiler and temperature data collected by the RASS were statistically

compared with concurrent rawinsonde measurements. Similarly, simultaneous measurements from

the two sodars were compared with each other and with concurrent wind profiler data. The percent
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of time that dataweresuccessfullymeasuredat eachsamplingheightwasalsocalculatedto determine
the functional vertical rangeof eachsensor.

INSTRUMENT DESCRIPTION

Both sodars, manufactured by REMTECH, Inc., transmit one vertical and two tilted acoustic

beams. Changes in the acoustic refractive index caused by temperature fluctuations scatter some of

the transmitted energy back to the antennas. Doppler shit, s in these backscattered signals are used

to derive the wind velocities along the three beam paths from which horizontal wind speeds and

directions are then computed. The sodars are used to measure winds between 50 and 750 m above

the surface.

The older A0 model uses a trailer-mounted array of three acoustic antennas, two of which are

tilted 18° from the vertical, and the newer PA2 uses a single phased array antenna with three

electronically steered beams, two of which are directed 30 ° from the vertical and 90 ° from each

other. Frequency coded transmissions are propagated at frequencies centered at 1600 Hz with an

acoustic power of 60 W by the A0 and at 2100 Hz with an acoustic power of 140 W by the PA2.

The wind profiler transmits three 924 MHz beams, one vertical and two tilted 15 ° from

vertical, from three antennas. Doppler shifts in the backscattered signals are used to derive the

wind velocities along the beam paths. One-hour-averaged horizontal wind data are computed from

the radial velocities using a random sample consensus technique. The maximum measurement

height is a function of the intensity of the backscattering and the vertical resolution of the wind

data, but is usually between 2 and 4 km. Peak pulse power is 500 W.

The vertical radar antenna is also used to track 2000 Hz acoustic beams transmitted by the

conjunctive R.ASS. Doppler shifts in the backscattered energy determine the speed of the acoustic

signal, which is proportional to the virtual temperature of the medium. Maximum measurement

height is about 1 km. Both the wind profiler and the R.ASS were developed by the NOAA Wave

Propagation Laboratory.

Different radiosonde systems were deployed for the July and August phases of JAPE. In July,

a system manufactured by Atmospheric Instrument Research, Inc. (AIR) was used, which consists

of a 1680 MHz sonde tracked by an automatic radio theodolite using a phase array antenna.

Height, temperature, humidity, and baUoon-to-ground azimuth and elevation angles were recorded

for every 4 - 5 seconds of flight. In August, an Oniega Navaid system, using equipment

manufactured by Vaisala Oy, was substituted to collect data at greater heights. Vaisala RS-80

radiosondes tracked by a Vaisala Digicora ground station provided measurements for every 10

seconds of flight.
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DATA COLLECTION

JAPE-91wasconductedin the extremesoutheastcomerof White SandsMissile Rangein
southcentralNew Mexico. This is an arid region situated in a broad basin between two mountain

ranges. The nearest significant feature is the 300-m high Jarilla Mountains approximately 4 km to
the east. The test area slopes from an elevation of 1275 to 1254 m above sea level from south to
north.

The A0 sodar, the wind profiler and RASS, and the radiosonde station were located at the

same site. The PA2 sodar was situated approximately 4.5 km south, next to a 40-m hill. Other

than the hill, there were no significant terrain features in the vicinity of the two locations.

Fifteen-minute-averaged wind data were collected by the PA2 sodar during July 21 - 29 every

50 m from 50 to 750 m. Concurrent A0 winds were measured every 50 m from 50 to 750 m from

2045 on July 20 to 1515 on July 27 MDT, and from 50 to 600 m the rest of the time. Both sodars

were operated more than 90% of the time between midnight July 21 and 0930 on July 29 MDT.

Only the A0 was operated in August.

Two sets of one-hour-averaged UHF wind profiler data were collected. Winds with a vertical

resolution of 101 m were measured at 25 levels between 167 and 2601 m, and 203-m resolution

winds were measured at 24 levels between 246 and 4911 m. The profiler was turned off during

several testing periods to avoid interfering with other instrumentation. A total of 84 hours of data

were collected in July.

Five-minute-averaged virtual temperatures were collected hourly by the RASS between 127

and 1283 m above the ground at 12 equally spaced heights. Forty-five hours of data were collected

in July and 144 hours were collected in August.

Thirty-three AIR radiosondes were flown during July and tracked to 5 km above the surface.

Seven Vaisala sondes, tracked to 15 - 20 km, were released during August.

DATA COMPARISONS

UHF Wind Profiler

In most cases, the wind profiler does not successfully collect data at all of its programmed

altitudes. The strength of the returned signal is a function of the intensity of the turbulent

scattering in the region being probed and is often too weak to be interpreted. Lower resolution

winds are measured with greater success, because longer pulse lengths and more energy are

transmitted. The profiler height range, therefore, is dependent on both the state of the atmosphere

and the resolution of the measurement. The percent of time that one-hour wind profiler measurements

were successfully collected in July was computed for each interrogation height and plotted in
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Figure 1. Considerablymorelow-resolutiondatawereobtained. At 2 kin, for example,101-m
and 203-mresolutionwinds werecollectedabout55% and90% of the time, respectively.

To investigatetheaccuracyof thesemeasurements,low-resolution(203-m)wind profiler data
collectedin July were statisticallycomparedwith datafrom 20 rawinsondesoundingsthat were
launchedwithin 30 minutesof oneof theprofiler interrogationtimes• The rawinsondewindswere
calculatedfor 200-mlayersand interpolatedto theprofiler heights,so thatboth datasetshad
approximatelythe samevertical scale. There is still a ratherlarge temporaldifference,however,
becausethe profiler windswere averagedover onehour andthe rawinsondewindswere computed
for approximately40 secondsof flight. In addition, theballoondrifts away from the siteas it
rises. Nevertheless,the agreementbetweentherawinsondesandprofiler was fairly good,as
shownin Figure 2, wherethe rms wind speedandvectorwind differencesareplottedversus
height. The latter were calculatedby taking the squareroot of the sumof themeansquare
differencesin the east-westand north-southcomponentwindsandare, therefore,a functionof the
differencesin both wind speedanddirection. Most of therms vectordifferenceswere closeto
2.5 m s1. This is not muchlarger thanthe 1.5 - 2.0 m s-1vectordifferencesthat were found
betweenthe sameradiosondesystemanda referencehigh-precisionradarduring a radiosonde
intercomparisonexperiment(ref. 1). Thesestatisticsalsocomparefavorablywith theresultsof
anotherstudy(ref. 2) in which the standarddeviationof the differencesin the east-westandnorth-
southwind velocitiesmeasuredby a wind profiler andrawinsondeswerefound to beabout2.5 m s4.
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Sodars

Becausethe strengthof the backscatteredsodarsignal is largelya functionof the intensityand
scaleof the temperaturefluctuationsin the regionbeingprobed,thesodarheight rangesvary
greatlywith atmosphericconditions. Using 15-minute-averagedwind datacollectedby theA0 and
PA2 sodarsbetweenJuly 21 - 29, thesuccessrateof datacollectionwascomputedasa function of
altitudeand is shownin Figure3. The PA2, asexpected,hada greaterrange. At 600 m, for
example,the A0 andPA2 sodarsobtaineda measurementapproximately40% and 85% of thetime,
respectively.

Usingthis samedataset,the comparabilityof thetwo sensorswasstudiedby calculating
statisticsof the differencesbetweentheir simultaneousmeasurements.The numberof concurrent
datapointsrangedfrom 616 at 100m to 300 at 600 m. The rms wind speedandvector wind
differences,plotted in Figure4, werecloseto 2 and 3 m st, respectively,at all altitudes. Means
andstandarddeviationsof thedifferencesin wind speedanddirection,shownin Figure5, were
alsocalculatedfor comparisonwith theresultsof an earlieranalysisof 20-minute-averagedwind
datacollectedby two collocatedA0 sodars(ref. 3). The meandifferencesfoundin that studyare
comparablein magnitudeto the JAPEstatistics,but their wind speedanddirectionstandard
deviationsof 1.1-1.4m s1 and 22 - 32°, respectively,aresomewhatsmaller. The poorerJAPE
statisticsmaybepartially dueto the 4.5 km separationof the two sodars.
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Figure 3. Percent of time horizontal wind data

were successfully collected by the A0 (solid
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A similar comparison of concurrent sodar and wind profiler measurements was also conducted.

The sodar data were first averaged over one-hour periods and vertically interpolated to the profiler

heights. Statistics of the differences between simultaneous one-hour sodar and profiler data were

then calculated using only those periods when data were available from all three sensors. The rms

wind speed and vector wind differences are shown in Table I. The A0 sodar, which was at the

same site as the wind profiler, was found to be in beret agreement with the profiler than the more

distant PA2.

Radio Acoustic Sounding System (RASS)

The height range of the RASS, which consists "of a sodar and a radar, also varies with

atmospheric conditions. The data collection success rate, calculated with measurements from both

the July and August phases of JAPE, is shown in Figure 6. Almost no data were obtained above

652 m. Measurements up to this level wore statistically compared with virtual temperatures

computed from 22 radiosonde soundings, which were released within 30 minutes of one of the

RASS interrogation times. Means, standard deviations, and root-mean-squares of the differences

are printed in Table II. The rms differences of .7 - .9 °C are comparable with those found in an

earlier study (ref. 4).
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Table I. Sodar-UHF Profiler Rms Differences

ALT WIND SPEED VECTOR WIND

A0-UHF PA2-UHF A0-UHF PA2-UHF

(m) (m s l) (m s l)

NPTS

268

369

471

1.5 2.0 1.9 2.5

1.5 2.0 1.9 2.5

1.4 1.9 1.7 2.5

25

15

13

1500 t

"_ 1000

LIJ

i-.-
_ 500
<

0

0
I I 1 I I I r I I

20 40 60 80

DATA
IO0

Figure 6. Percent of time temperature data were successfully collected by the RASS.
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TableII. RASS-RadiosondeDifferences in Virtual Temperature

ALT MEAN SDEV RMS NPTS

(m) (°C)

233 .0 .7 .7 20

338 .3 .7 .8 22

442 .6 .7 .9 21

548 .5 .6 .8 17

652 .4 .7 .8 12

CONCLUSIONS

Statistical agreement between the radiosonde data and the wind profiler and RASS meas-

urements collected at JAPE was comparable with the results of other similar studies. The rms

temperature and vector wind differences between concurrent measurements were approximately

.8 °C and 2.5 m s"_, respectively. Standard deviations of the differences in the sodar wind speeds

and directions, however, were somewhat greater than those that were found between two collocated

sodars in a previous study. This may be partially due to the 4.5 km separation of the two sensors.

The sodar rms vector wind differences were about 3 m s _.

Data were successfully collected at least 50% of the time at all heights below 600 m by the

A0 sodar, below 652 m by the RASS, and below 2.3 and 4.3 km by the UHF wind profiler at

101-m and 203-m vertical resolutions, respectively. More than 85% of the PA2 data were collected

at all altitudes up to 600 m.
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SUMMARY

Acoustic propagation over medium to long ranges in the atmosphere is subject to many complex,

interacting effects. Of particular interest at this point is modeling low frequency (less than 500

Hz) propagation for the purpose of predicting ranges and bearing accuracies at which acoustic

sources can be detected. A simple means of estimating how much of the received signal power

propagated directly from the source to the receiver, and how much was received by turbulent

scattering was developed. The correlations between the propagation mechanism and detection

thresholds, beamformer bearing estimation accuracies, and beamformer processing gain of passive

acoustic signal detection systems were explored.
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Figure 1: Upwards refraction and scattering effects on a sensor in an acoustic shadow zone.
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Figure 2: Received signals were attenuated by as much as 20 dB and bearing accuracies decreased

by as much as 5 times when the sensor was in a shadow zone.

INTRODUCTION

Refraction and scattering together are the limiting factors in acoustic detection systems under

adverse (upwards refracting) conditions, since most of the received sound is scattered (see Figure

1). Analysis of the 300 Hz tones from the short range ground to ground propagation tests at JAPE

showed the sound scattered into a shadow zone was 10 to 20 dB lower in amplitude than sound

which propagated directly. Bearing accuracies were reduced by as much as a factor of 5, signal

detection thresholds were raised by as much as 7 dB to achieve the same probability of detection

and probability of false alarm, and loss of sensor to sensor signal coherence caused as much as 2.5

dB of loss of beamforming gain when the sensor moved into a shadow zone. Figure 2 shows the

effect of a shadow zone on the received signal power and bearing estimation accuracy.
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IS RECEIVED POWER COHERENT OR SCATTERED?

When scattering is significant, the received signal can be modeled in the frequency domain as

S = a + b, where a is a constant and represents the coherent, unscattered portion of the received

signal, and b is the scattered component, which has had its phase randomized, b is complex

normally distributed, with zero mean and variance er_. Under these conditions, the measured

signal will have a Ricean distributed amplitude, or a non-central-Chi-squared distributed power.

McBride, et al [1] concluded that acoustic signals received by a sensor in a shadow zone are suitably

modeled as having a Ricean distributed amplitude, where the standard deviation of the received

amplitude divided by the mean is 0.52 if the signal is received entirely by scattering (in which

case it is Rayleigh distributed), and the ratio decreases with an increasing directly propagating

component. Alternately, we can model this as having a received power which has a non-central

Chi-squared distribution, and the non-centrality factor A = 2a2/_ increases with increasing direct

propagation. A is the amount by which the mean of the received power is increased beyond that

of a central chi-squared distributed (completely scattered) signal.

The expected value of the measured power is

[2+ A]z(P) = T (1)

and the variance of the measured power is

a_[2+A][l+ A ]_' = T _ (2)

We expect to observe a central Chi-squared (2 degrees of freedom) distribution for a totally

scattered signal. If we chose to use the variance divided by the mean squared of the received

signal as the metric of scattered°hess, then, for a completely scattered signal, the metric, r, will be
1:

_r_ 4 + 4A

r- E2(p ) - (2 + A) 2 (3)

Note that, as the direct component of the received signal increases, the non-centrality factor,

;_, increases, and r approaches 0. As the scattered component increases, A approaches 0 and r

approaches 1.

We can now solve for the scattered and direct components of the received signals:

rE(P)
(4)
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Pc = E(p) - (5)
where /5s is the scattered component of the power, fie is the directly propagating component,

and E(P) is the average received power. The percent of the received power which is scattered is

lOOr/(1 + VIi'- r).

Verification with JAPE data

A suitable subset of the MIT Lincoln Laboratory's JAPE data set was identified for verification

purposes. The selected tests were the ones which contained samples of ground to ground propa-

gation of a 300 Hz sinusoid over a 500 meter distance. 300 Hz was selected because it is in the

middle of the frequency range of interest, and is high enough in frequency to have a good SNR, but

no_ so high that anti-aliasing filter concerns need to be addressed. A total of 10 such tests were

identified, consisting of 5 pairs of tests in which North to South and South to North propagation

was tested in rapid succession. More information about the JAPE tests can be found in [2].

Based on Equations 4 and 5 the direct and refracted component of the received power was estimated

for each test. The results are shown in Table 1. By using the percent scattered power from

the table, an upward/downward refraction condition decision was made, and compared to the

decision made based on ray-trace plots. In 6 out of 10 cases, the decision was the same as

obtained by examining ray-trace plots. The ray-trace plots were generated based on meteorological

measurements. In the remaining 4 cases, the decision made based on Equations 4 and 5 better

suited the received power levels than the decision made based on the ray trace plots. When looking

at the revised refraction condition estimates, we note that, for all downward refracting cases, the

received power was 3 dB or more. For upwards refracting conditions, the received power was 2 dB

or less. This clean separation of received power levels into different classes was not obtained with

decisions made based on the ray-trace plots, and gives us confidence in our separation criteria.

Figure 3 plots the portion of the signal which is received by direct propagation and by scattering

vs. percent scattered power, and is consistent with theory. Note that the received scattered

power levels are fairly constant, regardless of refraction conditions, but that the coherent portion

of the received signal decreases dramatically as upwards refraction begins to dominate. The

scattered component of the received power is negligible under downwards refracting conditions.

Some possible explanations for the poor correlation between the raytrace plots and &e measured

acoustic data include:

• The raytraces are up to an hour different in time than the tests.

• The raytraces are apparently intended for looking at propagation over a 10-20 km range, not

a 500 meter range.

44



• With only the raytraces,weare forced to makean upwards/downwardsrefracting decision,
instead of percent upwardsand percent downwards.

• Vertical sampling of the meteorologicaldata near the ground may not have beenadequate
to accurately model conditions [3].

Table 1: Percentof ReceivedPowerwhich wasRefracted

Test

T005102
T006102
T025102
T026102
T033102
T034102
T060102
T061102
T068102
T069102
Notes:

Percent
Scattered

Power
61
28
3

13
21
3

i00
i

77
0

Scattered
Power

(dB)
-0.3
-0.6
-3.4
-1.5
-3.7
-5.8
-0.4
-4.4
-2.6
-7.7

Coherent
Power

(dB)
-2.2
3.4

11.5
6.8
2.1
9.9

-4.9
14.2
-7.9
19.3

Total
Power

(riB)
1.90
4.8

11.7
7.4
3.1

10.0
-0.7
14.3
-1.5
19.3

Refraction

Condition

(Note 3)

Up

Down

Down

Down

Down

Refraction

Condition

(Note 4)

Down

Down

Up

Down

Up
Down

Up
Down

Up

Down

Down

Up

Down

Up

Up

1. For test T060102, the percent scattered power was calculated at 114%,

which was attributed to statistical variation, and rounded down to 100%.

2. Powers are measured in dB in a 0.25 Hz band relative to an arbitrary
reference.

3. The refraction conditions in column 6 are derived by examining

the percent scattered power. 0-50 is Down, 50-100 is Up.

4. Refraction conditions in column 7 are based on raytrace plots.

5. Results are for 300 Hz tones only.

6. Percent Scattered Power is r/(1 + V/]- - r).

IMPACT OF REFRACTION CONDITION ON DETECTION THRESHOLD

If a high probability of detection (Pd = 0.90) is required coherent signals can be detected at

7 dB less signal-to-noise ratio (SNR) than incoherent, or scattered signals. Figure 4 shows the

probability of detection vs SNR curves for both types of signals. The non-fluctuating case is a

coherent signal, modeled as a sinusoid, and the fluctuating case is a Swerling I model [4]. The

false alarm rate for the points in Figure 4 is a constant P! = 10 -4.
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Figure 3: Scatter plot of coherent and scattered components of received power vs. percent scattered

power. Coherent component is plotted with circles, and scattered component is plotted with

X's. As expected, the directly propagating component increases as the percent scattered power

approaches zero, and vanishes as it approaches 1. The scattered power levels are fairly constant,

regardless of refraction conditions.

For low probabilities of detection, fluctuating signals are more detectable than non-fluctuating

signals, since the fluctuating signal occasionally has a high SNR and is detected. Since the crossover

point is about Pa = 0.27, this is not particularly useful.

IMPACT OF REFRACTION CONDITION ON BEARING ESTIMATION ACCURACY

Acoustic detection systems can be used as target tracking or cuing systems if they can provide a

sufficiently reliable bearing estimate to the target. Bearing estimates are affected by received SNR,

signal coherence, and propagation path effects. A sensor in a shadow zone, receiving primarily

scattered power, experiences a loss of received SNR compared to a directly propagated signal, a loss

of coherence associated with scattering, and an indirect propagation path. The combined effect

for the JAPE data was a degradation in bearing accuracy of up to a factor of 5 when compared

to a directly propagated signal. The loss of bearing accuracy may also result in a reduction in

the system's ability to determine that two signals originated from different sources, based on their

angle of arrival.

For a correlating beamformer,

= max ie -a(k(o)''d
o

(6)

where k(0) is the wave vector, and r'i is the location of the sensor relative to a reference point.
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Figure 4: Coherent signals can be detected at 7 dB less SNR than incoherent signals, for Pa = 0.9
and P/-- 10 -4

All sensors are assumed to have the same gain. If the received power level is the same for all

sensors (a valid assumption for small aperture arrays), and the array is circular, then the bearing
accuracy is

2 c2Ds

(70 = (N- X)(27rpf) 2 (7)

where c is the acoustic propagation speed, D_ is the average phase structure function for all sensors,

N is the number of sensors, p is the radius of the sensor array, and f is the signal frequency.

Daigle studied straight line propagation [5] (which we expect to be roughly descriptive of down-

wards refracting conditions), and determined that

(s)

where < #2 > is the fluctuation in the acoustic index of refraction, which is written as n = 1 + #,

k is the signal wave-number, R is the propagation path length, and L is correlation length. C_,

the acoustic index of refraction squared, is related to < #2 > by C_ [r 2/a =</_2 >, where r is the

sensor separation. C_ can be computed [6] from measurements taken at JAPE via

= -Tco+ 4-- o2 (9)
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where Cv is the speed of sound structure function, co is the average speed of sound, CT is the

temperature structure function, and To is the average temperature [7].

From the above equations, we can see that the bearing estimation error of an acoustic direction-

finding system is proportional to the phase structure function of the received signal, and inversely

proportional to its frequency. The phase structure function is proportional to the fluctuation in

the acoustic index of refraction.

McBride, et al. [1, 8] show that, in an upwards refracting environment, propagation can be

appropriately modeled by having upwards propagating signals scattered off of a finite number of

turbules which lie in their paths. The loss of the coherent portion of the received signal under

upwards refracting conditions is expected to cause bearing estimation accuracy to decrease when

compared to downwards refracting conditions.

These equations neglect an important factor relating to bearing estimation: if we examine a short

segment of data, during which time the refraction conditions did not change, then, at the same

time that turbulence is increasing the phase structure function, and degrading bearing estimation

accuracy, it is increasing the amount of energy which is scattered, and the amount of received

energy, which improves bearing accuracy. The relationship between received SNR and bearing

error is
C 2

2 (I0)
ao = (N- 1)(27rfp)2SNR

where SNR is the received signal-to-noise power ratio. The relative importance of phase pertur-

bation and signal-to-noise ratio varies depending on signal strength.

Verification against JAPE data

Using the data presented in Table 2 we can compare the average bearing accuracy during periods of

upwards refraction (4.3 ° ) to the average bearing accuracy during periods of downwards refraction

(2.2°). The expected degradation associated with upwards refraction is observed.

Figure 5 shows the relationship between C_, the total received power, and the phase structure

function, for a short period of time during upwards refracting conditions. Note all but one increase

in the phase structure function occurred at the exact same time as a dip in the received power

levels, but the relationship between C_ and the received power and phase structure function is

not so obvious. From this we conclude that, for this data segment, over short periods of time the

bearing estimation accuracy is dominated by changes in the received power levels, not by changes

in C_. Note that the C_ data was delayed 250 seconds to allow for the turbulence field to move
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Table 2: Comparisonof bearingestimation accuracyto other key parameters.

Test

T005102
T006102
T025102
T026102
T033102
T034102
T060102
T061102
T068102
T069102

Refraction Received
Acoustic Power

(dB)

2.45e-6 Up

2.45e-6 Down

6.61e-7 Down

1.13e-6 Down

8.20e-7 Down

4.43e-7 Down

1.24e-6 Up
1.30e-6 Down

2.17e-6 Up
2.88e-6 Down

Received

SNR

(dB)

1.9 41

4.8 42

11.7 51

7.4 47

3.1 40

10.0 50

-0.7 37

14.3 51

-1.5 35

19.3 55

Phase

Structure Function

(radians 2)

2.3e-1

1.6e-1

7.8e-3

1.1e-1

7.0e-2

1.5e-2

9.7e-2

5.3e-2

4.0e-1

1.2e-2

o"0

(degrees)

4.4

4.1

0.9

3.3

2.8

1.3

3.3

2.3

5.2

0.6

Notes:

1. C 2 measurements are 15 minute averages at 2 meter altitude.

2. Refraction is determined by computing the percent scattered power Eqs 3 through 5.

3. Powers are 30 second averages, in dB relative to an arbitrary pressure, for a 300 ttz tone.

from the meteorological measurement tower to the center of the propagation path. This delay,

which assumes that the turbulence field is frozen, may contribute to the poor correlation.

For the tests examined earlier, the received SNR was between 35 and 55 dB, which induces angular

errors of between 0.37 and 0.04 degrees, which was not significant compared to the measured errors.

For the data in figure 5, the received signal's average SNR was only 18 dB, which causes an average

bearing error of a# = 2.6 °. If we examine the received power vs. time curve from Figure 5, we note

that the power has drop-outs of 20 dB or more, making the received SNR during these times a

mere -2dB, resulting in an expected cr0 of 26 °, and a phase structure function of about 1.6 radians 2,

which is exactly what was observed. The received power on this trial was lower than on the other

trials that were explored, because a set of tones was played, instead of a single tone. Since the

other trials were single tones, the received SNR was higher, and the dropouts in received power

levels were less significant. Unfortunately, the other tests did not last long enough to look for a

short term correlation between phase structure function and C_2.

The results obtained from Figure 5 are significant to acoustic detector design, since average received

SNRs of 18 dB are well into the detectable range for such systems. The conclusion is that the

direct effect of atmospheric turbulence on the bearing accuracy of such systems can be neglected,

but the indirect effect, which causes drop-outs in received power levels, and results in a decrease

in angular accuracy, can not be neglected. Acoustic detectors should be designed to make bearing
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two strongest peaks in C 2 match two strong increases in received power.
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estimatesduring the peaksin the receivedpower levels,and shouldavoid usingthe data received
during the drop-outs.

Further tests to look for short-term correlation betweenC 2 and angular accuracy are needed. The

tests which are missing from the JAPE data consist of playing a single, loud tone over a 500 meter

propagation distance, for a long period of time (10 minutes or more). Meteorological data should

be collected at a point as close to the midpoint of the propagation path as possible, and for a time

covering about 10 minutes before and after the acoustic test.

IMPACT OF REFRACTION CONDITION ON BEAMFORMER PROCESSING GAIN

Beamforming gain is one of the most significant contributors to processing gain. Gain is achieved

by attenuating sound from all directions but one. This attenuation is also exploited for direction

finding. For perfectly correlated signals, beamforming gain is approximately

G = 101ogN (11)

where N is the number of sensors. This level of gain is achieved because target signals add

coherently, so that the output power is N 2 times the input power, while noise and interference

signals add incoherently, so that output power is N times the input power.

Coherence is used to measure how well signals are correlated. Coherence is defined as

It can be shown that

FO = < SiSj > (12)
<Si><Sj >

F(F, p) = e -D(r'p)/2 _ e -(Dx+vs)/2 (13)

where D(r, p) is the signal's structure function after propagating a distance r to two sensors which

are p apart, Dx is the amplitude structure function, and Ds is the phase structure function.

For a correlating beamformer, the loss of beamformer gain due to loss of coherence is

[Eij (14)
L = -10log [ N2

where N is the number of sensors, and I'ij is the coherence between sensors i and j. If we assume

that all Fij = F if i 7_ j and Pii = 1, then this reduces to

1 + (N- 1)rave (15)
L = -10log N
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Figure 6:
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An expected relationship between signal coherence and phase structure function was

Verification with JAPE data

Equation 13 describes the expected relationship between the phase structure function and the

coherence between the signal received on two sensors. The relationship is borne out by the data,

if Dx is neglected as Daigle suggests (Dx has been shown to be smaller than Ds in practice).

Figure 6 shows the relationship for upwards and downwards refracting cases, and for Equation 13.

The effect of coherence on beamformer gain has been stated in Equation 15. From Figure 6, we can

see that, for downwards refracting cases, the minimum measured coherence was 0.8, which results

in a loss of 0.84 dB of gain in an eight element, 1 meter radius correlating beamformer. While

small, this loss is measurable. For upwards refracting cases, the smallest measured coherence was

0.5, resulting in a loss of beamformer gain of 2.5 dB, which is significant.

SUGGESTIONS FOR FUTURE WORK

Additional data collection tests would allow a more thorough investigation of some interesting

phenomena:
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long duration (10 minutes or more), short range, single tone tests could be used to look
for the expectedshort-term correlation betweenmicro-met and acousticdata. Although we
lookedfor this correlation, the data set wasnot sufficient to makea definite decisionabout
whether or not this correlation existed.

time-of-arrival fluctuation tests for mediumand long rangepropagation of impulsive noises
would aid in designingand evaluating acousticranging systems.

tests to verify scattering model predictions, ie. bearing estimation error and frequency
correlation bandwidth, under upwards refracting conditions. Existing data can be used to
measurebearing estimation error, but there werenot many tests performedunder upwards
refracting conditions.
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ABSTRACT

Joint Acoustic Propagation Experiment Phase One (JAPE-1) short range
propagation data has been used to evaluate the performance of the Advanced Sound
Propagation in the Atmosphere (ASOPRAT) prediction code. The pure tone short range
data has been Fourier analyzed giving the propagated pressure levels as a function of
frequency. Meteorological profiles measured at the experimental site were used as input for
the acoustic prediction routine ASOPRAT. Predicted and measured propagation levels are
compared in decibels (dB) relative to one of the measurement positions for receivers on the
line passing between the two thirty meter towers. Agreement between predicted and
measured levels is very good. Source strength data has not been available so the
comparisons show good agreement as to the shape of the propagation loss curve not
necessarily the propagation levels.

INTRODUCTION

During JAPE-1, short range acoustic propagation data was gathered in which the
source was a speaker emitting a pure tone. The data was gathered by MIT Lincoln
Laboratory microphones located between the two source towers and in some cases by the
French-German Research Institute of Saint Louis (ISL) microphones located about the

South tower. The set up for the microphone data to be discussed is shown in Fig. 1. ISL
data exists for only one of the data sets used in this paper. Fourier analysis of the
measured time series is used to find the acoustic propagation levels for a particular
frequency.

Along with the acoustic data, meteorological data was also taken. Using the data,
sound-speed profiles can be calculated and used to predict the acoustic propagation levels.
This met-data was used in ASOPRAT to predict the propagation levels. The levels
predicted by ASOPRAT were then compared to the measured levels.

Analysis of four data sets will be included in this paper. Figure 2 shows the
effective sound speeds (Cef = c + w, c is the sound speed and w is the component of the
wind along the direction of propagation) for the four data sets. For data sets 001102 and

PI_CIkOIN_ P,_,_E BLAqIK NOT F_ME:D
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057102 the source height is 30m. For data sets 025102 and 061102 the source height is
2m. For each of the source heights there is one effective sound speed profile in Fig. 2 that
is upward refracting and one that is downward refracting. In choosing the data to be
discussed, the source height and effective sound speed profile were considered, not which
tower the source was located in. The propagation will be determined by the wind direction
and the sound speed profile. One disadvantage of using these four sets is that the measured
data does not cover the same range. For the two data sets with the source on the South
tower, 057102 and 061102, there are no measurements closer than 500m, while for data

set 025102 there is no data past 500m from the source.

DATA ANALYSIS

Figure (3a) shows one example of the pressure time series measured in the short
range experiments. Figure 3b shows the Fourier analyzed signal for this time series. The
MIT data was low pass filtered at 670Hz so there are no measured signals above 650Hz.

The data files containing the time series are very large. The analysis was done on a
workstation equipped with both 'C' and Fortran compilers. A sample size of 2048 points
was used as this represents about 1 second of data. An unwindowed FFT was performed
on the data and the power spectrum calculated. To arrive at the dB levels shown in Fig. 3b

the power spectrum of a 1/3 octave band was summed to get p2. The dB level is given by

dB = 10.0 logl0 (p2). (1)

Equation (1) represents the dB level at a particular frequency at one time. Figure 3b was
produced by displaying the dB levels of a single frequency for consecutive one second
samples.

The length of time each frequency signal was broadcast is readily apparent in Fig.
3b. It is also evident that the propagation level over that time changes. In order to arrive at
a level that can be compared to theory an average propagation level was found. Each of the
broadcast signals in Fig. 3b was summed and divided by the broadcast length providing an

average level over the broadcast. This is the level that will be used in the comparison to
theoretical predictions.

ASOPRAT

ASOPRAT is an outdoor acoustic propagation routine that has been developed by
the Physical Acoustics Research Group of the Department of Physics and Astronomy at the
University of Mississippi (PARGUM). A meteorological profile is read by the code which
is used to construct a sound speed profile and a wind speed profile along the direction of
propagation. The wind and sound speed profiles are used in raytracing calculations or in
Fast Field Program (FFP) calculations to predict the level of an acoustic signal.
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ASOPRAT employs either a raytrace or an FFP calculation when needed.

Raytracing is used first as it is much faster, especially when multiple frequencies are being
run. The ground is treated as an impedance surface. The Attenborough four parameter
impedance model is used to calculate the impedance. The raytrace function will attempt to
locate rays leaving the source that meet at the receiver. It only uses the four most intense

rays to calculate the propagation level, two direct rays and two one bounce rays, if they
exist. No multiple bounce rays are considered. The Fast Field Program is used if
raytracing cannot find any rays that reach the receiver (shadow zone) or when a focus
occurs at the receiver.

When raytracing fails a Fast Field Program (FFP) is used to complete the
prediction. The FFP calculation must be done separately for each frequency. The
calculations take longer than the raytrace calculation. As the calculation involves spatial
FFT's, finding the propagated level at a set of specific points is impractical. For the
purposes of the paper, however, the FFP can be run once using the maximum range and
the output of the calculation for each pesition out to the maximum range saved. This

calculation uses the effective sound speed and the impedance ground to get the prediction.

COMPARISON

Predicted acoustic propagation levels are shown along with the measured levels
from the JAPE-1 measurement in Figs. 4-7. The measured acoustic level will depend on
the source level of the signal. At this time we have no information on the source levels for
any data we have analyzed. In the figures, the level at one of the receivers has been used
as a reference level for all other points. In Fig. 4 the ISL microphone at 800m from the
North Tower was used as all of the measured data shown has a value there. In Fig. 5 the
microphone at 100m from the North Tower is used as the raytrace calculation and is not

valid for any of the microphones further away. Both Figs. 6 and 7 use the microphone at
500m as this is the closest microphone to the source on the South Tower.

Except for a few points, the predictions of ASOPRAT's raytrace and FFP
calculations are very close to the measured values. For the sources located at 2m above the

ground the raytrace calculation fails at a very short range. In these cases the FFP will be
the main means of prediction. With the source at a height of 30m raytrace worked well out
to 900m for the upward refracting 057102 and for all of the data for the downward
refracting 001102 data set.

The comparisons shown in Figs. 4-7 show very good agreement between the
measured and predicted propagation levels. There is very good agreement between the
shapes of the predicted propagation curves and the measured data for Figs. 5-7. In Fig. 4
there is quite a discrepancy between the shape of the theory and the data. This is the only
set of data with an appreciable cross-wind present. At this time ASOPRAT does not take
into account cross-winds.
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In comparing the actual measured and predicted propagation levels a common
reference point was needed. As was discussed earlier the reference point was arbitrarily
chosen to be one of the microphones. With this in mind the measured and predicted levels

again compare very well except for data set 001102. Note however that by using a
microphone that is a distance away from the source as a reference some of the effects of
turbulence may be canceled. For example if the reference point is a shadow zone the
underprediction of the sound level will not be seen due to normalization to the higher than
expected shadow level.

CONCLUSION

Comparison of the JAPE- 1 pure tone acoustic data to predictions from ASOPRAT
shows very good agreement. The shape of the calculated propagation loss curves agreed
very well with the data. As there is no source level data the comparisons use one of the
data points as a reference for the dB representation. This did allow for the easier
comparison of the shape of the propagation loss curve. However, the very good agreement
between the measured and predicted levels may be invalid. The worst agreement is seen in
the data set with the largest cross-wind.

For future work, the source levels will be needed to determine the proper reference
levels. It would be preferred to have the data collected by the WES group. This would

provide data spaced at 100m over a full kilometer regardless of the location of the source.
It might be useful to try and estimate the met-profile at the time each data set was acquired.
This may be done with a code provided by Dr. A. K.Blackadar at Pennsylvania State
University. This could provide met-profiles which better describe the propagating
medium.
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SUMMARY

Above-ground propagation modelling at the JAPE site requires a reasonably accurate model
for the acoustical properties of the ground. Various models for the JAPE site are offered based on

theoretical fits to short range data and to longer range data obtained with random noise and pure
tones respectively from a loudspeaker under approximately quiescent isothermal conditions.

INTRODUCTION AND THEORY

A common feature of propagation models that takes into account various meteorological
influences on sound propagating near to the ground is that they must also take account of the
acoustical properties of the ground. Where direct, impedance measurements are not available,
advantage must be taken of indirect methods. Short range propagation measurements have been
advocated often as one basis for indirect ground,characterization (refs. 1 and 2).

A short range measurement of the level difference spectrum between vertically-separated
microphones at 0.1 and 1 m height and 1.75 m from a source at height 0.45 m, has been made at
three positions (8, 24 and 27) on the JAPE site (ref. 3). Probe (buried) microphone
measurements have been made also at short range. However these latter data were not available at
the OU at the time of preparing this paper. Measurements that were made available to the OU

included data from loudspeaker sources broadcasting pure tones at position 5 (2 m height on North
tower), geophone receivers (channels 20 and 21 directly below microphones) and microphone
receivers at 0 m and 1 m above ground at a range of 100 m, 200 m, 300 m, 400 m and 500 m from

the source during meteorological conditions that indicated good mixing and the absence of any
significant sound speed gradients. In this report we concentrate on the received level difference

specuum between microphones corresponding to channels 14 and 15 at a range of 500 m from the
source.

The averaged level difference data at both short range (1.75 m) and longer range (500 m)
have been analysed by (a) computing level difference spectra with assumed impedance values, (b)
comparing computed spectra with measured ones and (c) proceeding until the best agreement was

* Work sponsored in part by the U.S. Army through its European Research Office.
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achieved. This process requires use of an impedance model to provide some constraint on the
frequency dependence of the impedance. Several such models have been considered in the
literature (ref. 4). Three of these models are considered here:

(1) Delany and Bazley semi-infinite

ZDB = 1 + 9.08 (1000 f/_e) -0.75 + il 1.9 (1000 f/_e) -0.73 (1)

where f is frequency (Hz) and _e is effective flow resistivity in inks rayls/m.

(2) Delany and Bazley hard-backed-layer of thickness d m

Z(d) = ZDB coth (-ikDBd) (2)

where

27ff [1 + 10.8 (1000f/cY) -0-7 + i10.3 (1000f/_) -0.59]kDB = --C-- (3)

(3) Two parameter non-hard backed layer (ref. 4)

Z = (_yp)-l/2 (ae/f)l/2 (1 + i) + ic/(27mfM) (4)

where y is the ratio of specific heats in air,

p is equilibrium air-density

(l e = 4Sp 2 cI/f_

o = flow resistivity

_2 = porosity
d = upper layer thickness

m = 2rff

sp represents a pore shape factor ratio which must be frequency dependent as

defined. However to be physically consistent in the low frequency limit, 4sp 2 = 1 (refs. 4
and 5). It should be noted that low frequency approximations have been used in the
derivation of the above model.

For the purposes of the present computations, various values have been substituted
for the constants resulting in

1/2
Z = 0.436 (1 + i) (Cre./f) + 20 g/f (5)

1
where _ - fld"

The level difference spectrum is computed from

LD = 201ogl Pt]Pbl (6)

where
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eikrl eikr2

PtorPb- rl + Q_2 (7)

Q = Rp + (1- Rp) F(w) (8)

cos 0 - 13 1

Rp- [3' 13-Zcos 0 +
(9)

F(w) = 1 + ixwe-W2erfc (-iw) (10)

1/2
w = (ikr2/2) (cos 0 + [3) (11)

rl and r2 are direct and specularly reflected path lengths to the receiver of interest and 0 is

the angle of incidence for specular reflection.

Finally it should be noted that both level difference spectra used in this paper
represent averages. The short range data represent averages in space and time. The data at
500 m represent averages in time. Three FFTs 0.75 s apart were taken from the time series
and the data used represent the averages. The error bars in Figure 1 indicate the deviations
between the three readings.

RESULTS

Figure 2 shows that although good fits to the data at short range may be obtained

with oe = 1 000 000 mks rayls/m in equation (1) or % = 300 000 inks rayls/m and

ot = 1000/m in equation (5), these values result in poor fits to the 500 m data. Figure 3

shows that Oe = 900 000 mks rayls/m and d = 0.005 m in equation (2), and

oc = 300 000 mks rayls/m, ot = 300/m in equation (5) give tolerable agreement with both

long and short range data. As was remarked in reference (3), we find that a five parameter
non-hard backed layer model with the measured value of flow resistivity
(1 100 000 mks rayls/m) gives reasonable agreement with the short range data but
relatively poor agreement with the data at 500 m.

It should be noted that, as was remarked in ref. 3, the first dip in the measured level

difference spectrum at short range is deeper than can be predicted with any impedance model
tried so far.

DISCUSSION

In principle JAPE should have presented the opportunity for testing the use of short
range level difference spectrum for ground characterization. Indeed combinations of
parameters for two different two-parameter impedance models have been found that enable
tolerable agreement with both short range and 500 m data. However closer inspection
reveals several shortcomings in the data available at short range. Figure 4 shows that the
chosen geometry results in predicted level difference spectra that are insensitive to wide
variations of the parameters in the impedance model. Figure 5 shows that lowering the
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height of the upper receiver, to make it the same as that of the source, would have increased
the sensitivity of the level difference spectrum predictions significantly. The calculations
outlined in Appendix A show that after various simplifying assumptions it is possible to
deduce an optimum geometry for short range ground characterization with a range of 1.75
m. The source and upper microphone heights should be between 0.19 m and 0.35 m.

Nevertheless it remains necessary to explain the fact that the first measured short
range level difference spectrum dip is deeper than can be explained by impedance models
alone. A possible explanation is the existence of a steep temperature gradient near to the
ground during the measurement. Another possibility is directionality of the loudspeaker
source.

CONCLUSIONS

Although short range level difference spectrum measurements have been used
successfully for ground characterization over several soil types (ref. 2), there are problems
with those obtained at the JAPE site. A major problem stems from the use of a short range
measurement geometry which produces spectra that are relatively insensitive to the ground
impedance in this case. In other locations, trial and error simulations of the sort shown in
Figures 4 and 5 have been used to identify an appropriate geometry. Further work is
reported here that enables a suitable choice of geometry without resort to such simulations
or a need for prior knowledge of the likely range of flow resistivity of the ground of
interest.
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APPENDIX A Determination of optimum geometry for short range ground
characterization

According to the Wcyl van de," Pol formula the excess attenuation due to ground effect

may be approximated by

EA = 20log 1+ Q(r,/r:)e.rp(ik(r, - r.,))[ (A. 1)

For source and receiver at equal heights,h, and separation, d, and Q replaced by Rp
(the plane wave reflection coefficient) the quantity in the modulus sign becomes

1 + JRoJsin (0) exp[i(2kh(sec(0) - tan(0))] (A.2).

This is minimum when

2khsec(0) (1 - sin(0)) + _ = rt (A.3)

Using the low frequency/high flow resistivity approximation of the foul" parameter

impedance model

Z = 0.436 (1 + i) _ (A.4)

it is possible to deduce that

' "_ 4 - "_

4cos-(0)+4B 0.,Icy)-

IRA =cos2(0)+28t47 c,,sm)+2B -ct/o) (A.5)

and that

_= tan-'[:B,4"(-(/ cr)cos(O)/(cose(O)-2B2(f / o))] (A.6).

Substitution of (A.6) in (A.3) then leads to an equation for the fiequency of the first

ground effect dip in terms of the flow resistivity and the geometry. An example of the

results of numerical solution of the resulting equation is shown in Figure 6.

Under the condition that (A.3) holds and defining

G = 1- JR,,lsin(0) (A.7)

it is necessary to find the value of 0 fo,- which dG/dcy is maximum.

Figures 7 and 8 show examples of plots of dG/d_ against 0 for two values of a.

If d = 1.75 m this shows that the upper receiver and source heights should be chosen

to give 0.19m < h < (L35m for greatest sensitivity to flow resistivity in the range

100 000 < _ < 1 000 000 Nsm -4. Figure 9 confirms that the level diffemrtce spectrum is

indeed very sensitive to variation in the ground parameters for h = 0.27 rn and d = 1.75 m.
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White Sands Data fitted by 2__param model
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Figure 1. Pure tone data from the level difference at vertically-separated microphones at 1.0
and 0 m height with loudspeaker source at a height of 2 m and a range of 500 m. Error
bars indicated range of data over several FFTs. A 2 parameter impedance model fit is

shown using <re = 300 000 inks rayls m -1 and ae = 10 m -1.
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INFLUENCE OF TERRAIN MASKING ON THE ACOUSTIC
PROPAGATION OF HELICOPTER NOISE _

P. Naz

French-German Research Institute of Saint-Louis (ISL)
68 301 Saint-louis, France

ABSTRACT

The acoustic propagation in the case of a noise source masked by a small element of
terrain has been investigated experimentally. These data have been measured during the
"terrain masking" experiment of the NATO JAPE 91 experimental campaign. The main
objective of that experiment was to study the acoustic detection of a helicopter masked by a
small hill. Microphones have been placed at different locations on the shadow zone of the
hill to study the effect of the terrain obstruction on sound propagation. The results
presented come from data measured by Atlas Elektronik and by ISL, and have been
processed together. The terrain obstruction causes an excess attenuation of the SPL (Sound
Pressure Level) for all the frequencies, but this attenuation is more effective for the high
frequencies than for the low frequencies. Results typical of diffraction phenomena have
been observed; the SPL is minimal at the foot of the hill and is relatively constant beyond it.

INTRODUCTION

Results of acoustic data measured during the NATO JAPE (Joint Acoustic Propagation
Experiment) campaign are presented in this paper. Approximately 15 teams have taken part
in this field trial hosted by the US Army White Sands Missile Range during the summer of
1991 (ref. 1).

The main objective of our experimental set-up is to study the physical phenomena
which occur when an acoustic wave propagates around a small hill (figure 1). It is
especially interesting to study the characteristics of the diffracted waves received by the
microphones. This experiment also has some operational interest to evaluate the capability
of the acoustic detection of helicopters for non line-of-sight configurations.

1This work has been done under a contract of "Direction des Recherches Etudes et Techniques", Paris (France).
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reflected waves

Figure 1. Trajectories of the acoustic waves

TEST SET-UP

For this experiment, the installation of the microphones and the recording of the
acoustic data have been carded out by the German team of AE (Atlas Elektronik) and by the
Franco-German team of ISL. The microphones are located along the profile of the hill on
the north-south axis (AE) and on a perpendicular axis following the foot of the hill (ISL)

(figure 2).

Flight N-_S _" _
_._ _ A/_E Instrumentation _ _ _N

<Y - o
J • ISL microphones

Figure 2. Experimental configuration

8O



HOVERING POINTS

In a first series of trials, the helicopter made hovering points at different heights on the
south side of the hill, the main part of the experimental set-up being situated on the opposite
side. As an illustration of the effect of terrain masking, two acoustic spectra are plotted: one
when the helicopter is masked and one when it is visible. On the first plot (figure 3), the
helicopter makes hovering points on a vertical line. On the second plot (figure 4), the
helicopter makes hovering points at the same altitudes as previously, but follows the prof'fle
of the hill (figure 4).In all these cases, the helicopter is well heard and the spectra have
roughly the same shape. When the helicopter is masked, the value of the sound pressure
level is lower. For the first harmonics of the main rotor frequency, the mask induces an
attenuation of the SPL of approximately 10 dB. The higher harmonics do not emerge very
well from the broad band noise. When the helicopter is close to the top of the hill, the
acoustic level is greater than when the helicopter is at the same altitude but at the vertical of
the base of the hill.
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Figure 3. Acoustic spectrum

81



V)

P0

p : main rotor
a : tail rotor

P

P2

P3

a o

P4

Ps Ps

I i I I i

(1)

a I

a2

I I I i l I l I I

100 200

frequency (Hz)

(2)

(1)

Figure 4. Acoustic spectrum

The evolution of the SPL shows a smooth and continuous variation for the main rotor

frequency (f_). For a higher frequency (f2), approximately 400 Hz, a great variation is

shown during the masked---_unmasked transition (figure 5).
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Figure 5. Influence of"the altitude of"the flight
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The evolution of the SPL along the profile of the hill shows a fast decrease on the
shadow side of the hill, and is relatively constant beyond it (figure 6). The maximum of the
attenuation (minimum value of the curve) is reached at the foot of the hill. These two

characteristics are typical of diffraction phenomena and are well known for the application
of noise reduction by screens. The difference of the SPL values for the first point of the
curve is explained by the helicopter-microphone distance which is quite different for the
two heights of flight. For a better understanding, the profile of the hill is schematically
plotted in the lower part of the graph.
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Figure 6. Influence of the altitude of the flight on the shadow zone (f= I 0.5 Hz)

The variations of the SPL along the profile for different discrete frequencies have all
the same shape (Figure 7). If we take as references the SPL values measured at the top of
the hill, the smallest frequency is less attenuated. As shown previously (figure 6), the SPL
is relatively constant beyond the foot of the hill; we find again this characteristic for all the
frequencies.
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Figure 7. Characteristics of the shadow zone: influence of the frequency (h=65 ft)
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TRANSLATION FLIGHTS

The development of the spectrum over time yields more information on translation
flights. The acoustic level represented in pseudo-colours, as a function of frequency and
time, allows the construction of an image with characteristics specific to the helicopter (line
structure, Doppler shift), and specific to the effect of terrain masking.

Two different helicopter paths have been investigated. During the east-west flight, the
helicopter path is partially behind the hill. The excess attenuation corresponds graphically to
the gap visible in the line structure beginning at the 4th harmonic (figure 8). The maximum
of this gap corresponds to the closest point of approach of the helicopter; it also
corresponds to the inflection point of the Doppler shift pattern.

During the NOE (Nap of the Earth) flights in the north-south direction, the effect of
the mask is not easily visible, because of the opposite effects which occur during this
experiment (figure 9). The attenuation induced by the mask is partially compensated by the
increase of the level of the noise source when the helicopter has to climb to avoid the hill.
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Figure 8. Evolution of the acoustic spectrum (east-west flight)
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CONCLUSION

The influence of a small element of terrain on the acoustic propagation of the helicopter
noise has been investigated experimentally. The characteristics of the shadow zone have
been quantified. The attenuation due to the hill is relatively low for the main rotor frequency
and its first harmonics. Consequently the helicopter is well heard, even on the shadow side
of a small hill.
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SUMMARY

The polar parabolic equation (POPE) method solves for the diffraction of sound by a curved surface

including a realistic sound speed profile. POPE is outlined briefly to describe diffraction which propagates the

field over a hill. Experimental data are compared with POPE predictions using the measured sound speed

profile and ground impedance. Two trial cases are considered for the comparisons: the helicopter located at

the base of the hill and far away from the base of the hill, respectively. The physical mechanisms for sound

propagation over a hill are examined with and of POPE calculations and experimental data. The shedding of

rays from the hillside gives an interference effect with a wave along the flat surface beyond the base of a hill.

INTRODUCTION

The parabolic equation method I (PE) is a useful tool for outdoor sound propagation over flat, open,

locally reacting ground surface with a realistic sound speed profile. The polar parabolic equation method is an

extension of the PE method to solve non-line of sight sound propagation outdoors. POPE 2 introduces new

coordinate systems into the PE to explain diffraction over a curved surface such as a hill. The coordinate

system in POPE consists of the distance along the ground surface and the height perpendicular to the ground at

any point. To introduce this coordinate system, the hill is segmented as shown in Fig. 1. The standard PE

marches the field in range along the flat surface. POPE marches the field along the flat and curved surfaces.

COMPARISONS TO DATA

In order to verify POPE, the Terrain Masking experimental data are compared with POPE using a

realistic sound speed profile. The Terrain Masking experiment was performed in the vicinity of Instrument

Hill at White Sands Missile Range, New Mexico, during the period 27-28 July 1991. To use POPE, a hill

shape is required which fits Instrument Hill as closely as possible. Figure 2 shows that the POPE hill and

Instrument Hill fit very closely. Two trial cases are selected for the comparisons: Trial 172405 and trial

204405. The reference microphone was mounted 3 m above the top of the hill.

'_(,a +'

87

s-'



Trial 172405

The helicopter was hovering 10 m high above the ground surface, 200 m away from the south base of

Instrument Hill. Figure 3 shows the comparison at 10 Hz and Fig. 4 shows the comparison at 21 Hz. They

show reasonable agreement with each other.

Trial 204405

The helicopter was hovering 17 m above the south base of Instrument Hill. Figure 5 shows the

comparison of the POPE prediction and data at 10 Hz. Figure 6 shows the comparison at 53 Hz.

The comparisons with experimental data indicate that POPE is a good tool for predicting non-line of

sight sound propagation outdoors where the source is located at the base of a hill or far away from a hill.

DISCUSSIONS AND CONCLUSIONS

Generally, the data and POPE show that the sound level along the masked side of the hill decreases

linearly and the sound level along the flat surface beyond the base of the hill stays approximately constant or

decreases slowly. At some frequencies along the fiat surface, the sound level fluctuates with distance. In the

following, consider two different sections of the hill: the hillside and the flat surface beyond the base of the

hill.

A creeping wave was introduced in the residue series solution 3 for propagation over a curved surface.

The creeping wave propagates over a curved surface within the shadow region corresponding to the hidden

side over the top of a convex curved surface. The ground impedance mode was introduced for a wave

propagating along the ground in the normal mode solution 4 in a downward refracting atmosphere which

corresponds to the concave surface along the hillside. Therefore, the creeping wave propagates and couples

into a ground impedance mode along the hidden side of a hill.

The shedding of rays from the creeping wave can reach the ground surface beyond the base of the hill,

but the ground impedance mode propagates parallel to the fiat surface. Therefore, the total field along this

surface is determined by the superposition of rays which have been shed from the creeping wave and a wave

along the ground beyond the base of the hill. If the shedding rays and the wave along the flat surface are in

phase, the field level is increased at around 100 m beyond the north base of the hill as shown in Figs. 3

through 6. The POPE calculation in Fig. 7 shows a deep interference minimum resulting from the shedding

rays and the wave along the surface at around 570 m.

We conclude that POPE predicts the helicopter noise propagation over a hill. Further, the POPE

calculations and experimental data explain the physical mechanisms for sound propagation over a hill.
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INTRODUCTION AND PURPOSE

The JAPE short range data provide a good opportunity for studying phase and amplitude
fluctuations of acoustic signals in the atmosphere over distances of several hundred meters. Several
factors contribute to the usefulness of these data: extensive meteorological measurements were made,
controlled sources were used, the data were recorded with a high dynamic range digital system that
preserved phase information and a significant number of measurement points were obtained allowing both
longitudinal and transverse studies. Further, Michigan Tech, in cooperation with the U.S. Army
TARDEC, has developed phase tracking algorithms for studying vehicle acoustic signals. These
techniques provide an excellent tool for analyzing the amplitude and phase fluctuations of the JAPE data.

The results of studies such as those reported here have application at several levels: the
mechanisms of signal amplitude and phase fluctuations in propagating acoustic signals are not well
understood nor are the mathematical models highly developed, acoustic arrays depend strongly on signal
coherence and signal amplitude stability in order to perform to their design specifications and active noise
control implementation in regions considerably removed from the primary and secondary sources depends
upon signal amplitude ,and phase stability.

Work reported here is preliminary in nature but it does indicate the utility of the phase tracking and
amplitude detection algorithms. The results obtained indicate that the phase fluctuations of the JAPE
continuous multiple tone data (simultaneous transmission of 80, 200 and 500 Hz) are in general agreement
with existing theories but the amplitude fluctuations are seen to be less well behaved and show less
consistency.

THE MEASUREMENT SITE AND DATA ANALYZED

Figure 1 is a sketch depicting the short range propagation experiment site. The separation distance
of the north and south towers is 1000 meters and the microphone array is located midway between them.
The data analyzed here were from trial 033102 at time 22:50 (MDT). The speaker was located at the base
of the north tower. Microphone spacing along the line was 100 meters while a variety of spacings were
used for the array as shown in the figure. The numbering scheme used in the figure does not correspond
with the channel numbers assigned during the experiment. Since some of the channels were not useful,

the microphone at the base of the North tower was overdriven; while other microphones did not provide
signals, the microphones were renumbered as indicated in the figure. Thus neither microphone 5 nor 6
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hasacorrespondingmicrophonein thetypicalarrangementfor apairof microphones,oneon theground
andonelocatedonemeterabovethat. Thisnumberingarrangementseenin thefigurefacilitateslaterplots.

Two secondsof rawdataareshownin Figure2 wherethebottomtraceis theacousticsignal
recordedat400m from thenorthtowerbaseandthetracesabovethatarefrom 300,200,and100m
respectively.Theverticalscaleof thetracesis uncalibratedbut it is thesamefor all traces.Wind noiseis
theprincipalfeatureof thetracesbut thereis clearlya signalpresent.Thethreesimultaneoustonesat 80,
200and500Hzpresentonehundredsixtycyclesoverthe2 secondtimespanof thefigureandare
evidencedby thedecreasingwidth of thesignaltracefrom thetopof thefigureto thebottom. Thetrace
correspondingto the300m distanceshowslittle effectsof windwhencomparedtotheotherthreetraces.
No reasonisknownfor this feature.Thewindsatthedirt sitewesttowerwereapproximately2 m/sand3
m/sat2 and 10m elevationsrespectively.Thedirectionwasapproximately220degrees.

TheFFT amplitudespectrafromthedatain Figure2 areshownin Figure3, wherethevertical
scaleis notcalibrated.Background noise and wind noise are clearly evident in this figure as are the three
simultaneous tones. In order to improve resolution of the tonal peaks the time series data record length
transformed was 2.5 seconds. A principal advantage to analyzing the simultaneous tone data instead of
data with single tones is that comparisons of the phase and amplitude fluctuations for a sequence of
separate tones depend on the stability of the meteorological conditions. However, analysis of
simultaneous tones does not require this. A trade off in this choice however is that the power in each
single transmitted tone can be determined by the total system power available while for multiple tones the
power in each tone is necessarily only a portion of the total system power available. Thus the signal to
noise for each tone is worse for the multiple tone measurement.

PHASE AND AMPLITUDE EXTRACTION

Each of the three tones was analyzed separately but with a common algorithm. First the data were
passed through an eight pole band pass filter with a 2.5 Hz bandwidth centered on the tone of interest.
The filter had a linear phase characteristic throughout the passband. After a real signal to analytic signal
conversion using an FIR Hilbert transformation, the signal amplitude was extracted. The next step in the
analysis was phase tracking the received tone. Figure 4 is a conceptual diagram of the amplitude and
phase extraction process.

Since the phase detector in the phase locked loop is sensitive to signal amplitude, the amplitude
information previously obtained was used to restore the signal to a constant amplitude prior to phase
tracking. The natural frequency of the phase lock loop was 0.75 Hz. In order to remove the signal
component at twice the VCO frequency which is present after the phase detector an adaptive notch filter
operating at twice the VCO instantaneous frequency was used. This filter is considerably above the
bandwidth of the signal of interest and it is expected to have no effect on the phase information from the
loop. It was possible to monitor the phase error of the tracking loop and to observe that phase lock was
easily maintained with only insignificant phase errors. The final step in the phase analysis was removal of
the difference frequency between the free running VCO and the frequency of the tone used in the
experiment. It was observed that the values 80, 200 and 500 Hz were nominal and that the actual
measurement frequencies were different from these values by a fraction of a Hz.

SPATIAL CHARACTERISTICS OF AMPLITUDE AND PHASE DATA

The theoretical development of the meteorological effects on propagating acoustic signals has roots
in the work of Karavainikov, Chernov and Tatarskii (refs 1,2,3). Daigle, Piercy and Embleton (ref 4)
reviewed the theory pertinent to line of sight propagation through atmospheric turbulence. McBride, Bass,
Raspet and Gilbert approached the problem of sound scattering in atmospheric turbulence by developing a

computer simulation of the effects of small scale turbulence (ref 5). The theory (ref 4) assumes
homogeneous and isotropic turbulence. Large atmospheric eddies are formed by instabilities in the
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boundarylayernearthegroundandadditionalinstabilityproducesprogressivelysmallereddiesuntil they
aredissipatedbyviscosity. After assumingaGaussianturbulencedistributiontheydevelopexpressions
for thelog-amplitudeandphasefluctuationsfor puretonespropagatedthroughaturbulentatmospherenear
theground.Only abrief overviewof theirpresentationis givenhereto definethequantitieswhichwe
presentin laterfigures.

Thelog-amplitude,Mi, n, for the i-th microphone at the n-th time sample is

M i n=in (Ai'-----n )
' Ai, o

(I)

where Ai, n represents amplitude.

The average amplitude, Ai.0, over N samples at a fixed distance, is

n"N
_1

Ai, o- _r* E Ai,n
tl=l

(2)

and mean square log-amplitude is given in Equation 3

n-N

M 2-1*_'M- 2
i,n -N _ l,n

n=l

(3)

The phase structure function calculation is shown in Equation 4 of reference 4. The second term takes
into account the mean phase difference of the measured data which may not be zero.

n=N n=N

_) 2=_n__ 1- (_ i,n-_ j,n ) 2_ (_n__ 1- (_ i,n--_ j,n ) ) 2 (4,

(I)i, n is the phase of the i-th microphone at the n-th sample.

Figure 5 shows sixteen seconds of the amplitude fluctuations for each of the three frequencies at
distances of 100, 200, 300 and 400 m. Figure 6 presents the corresponding phase fluctuations for these
frequencies and distances. The vertical scale on the amplitude plots is uncalibrated but it is the same for all
plots. The vertical scale on the phase plots is the same for all plots and it is in radians. With some effort it
is possible to clearly discern a pattern in the phase data: for all of the plots at a given frequency the least
phase fluctuations occur at 100 m and the fluctuations increase with increasing distance. Another
intriguing feature of the phase data for 80 and 200 Hz is the rather cyclic and regular nature of the
fluctuations. For example the five second interval between 1 and 6 seconds on the 200 Hz plot for a
distance of 400 m has regular fluctuations at a frequency of approximately 1.4 Hz. No explanation is
presented for this character.

Figure 7 shows the logarithm of the average signal amplitude at three frequencies vs distance from
the speaker. Also shown in the figure is a straight line with a slope of minus one which would be
expected for signals with principal attenuation due to geometrical spreading. There is sufficient agreement
between the trend of the data and the straight line that simple spreading is presumed to be the principal
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attenuationmechanismat 500Hz. However,thereis someinconsistencyin thedatafor 80and200Hz
wherethesignallossappearsto belessthanthatpredictedby geometricalspreading.

Figure8 showsmeansquarelog-amplitudeasafunctionof longitudinaldistancefrom thesource.
Theaveragingtimewas16seconds.Theplotgenerallyshowsincreasinglog-amplitudefluctuationswith
distance.Examinationof thevariationsof signalamplitudewith timeshownearlierin Figure5 suggests
that4 secondsis too shorta timefor calculatingtheaveragebehaviorandthat16secondsmaybemore
appropriate.

Figure9 showsthedependenceof meansquarephasefluctuationsasafunctionof longitudinal
distance.Thereis aclearincreaseinphasefluctuationswith longitudinaldistanceasispredictedby
equation(2) (ref 4) whichshowsalineardependenceuponlongitudinaldistance.Also,increasing
fluctuationswith frequencyareexpectedfrom thetheory(refs2,3).

All of thephasedifferencefluctuationsbetweenthemicrophonesareportrayedin figure 10. The
verticalaxisis meansquarephasefluctuationsandit is scaledin radians.Thetwohorizontalindexes
correspondtomicrophonenumberswhichwereindicatedin Figure1. Considerableinformationcanbe
discernedfrom thefigure. Theintersectionof microphone12with microphone11showsasmallvaluefor
phasedifference;microphone12is locateddirectlyabovemicrophone11atanelevationof i m. The
intersectionof microphone12with microphone10showsalargervaluefor phasedifference;both
microphonesareelevated1m andtheir horizontalseparationis 1m. Sincethe8-9andthe9-8phase
differencesarethesame,theredundantdataarenotshownin Figure10. A generalinterpretationof the
figure is thatthephasefluctuationsbetweenmicrophonestendtoincreasewith microphoneseparation
distance.This trendis not seenin thefirst fourmicrophonessincetheirseparationis 100m which is
considerablybeyondthephasecoherencepredictedbythetheory.

Figure 11showsthephasecoherenceof themicrophonesin thetransversearraylocatedat 500m.
It is aplot of themeansquarephasefluctuationsbetweenmicrophonesin thearrayasafunctionof the
logarithmof their separationdistance.Alsoshownin thefigureis a linewith aslopeof 5/3which is
predictedby theory(seeequation5). Thereis generalagreementbetweenthedataandthetheoryfor the
shorterdistances.

Z=const* (

5

f )Z*L*b-_ *C
2.17 *C

(5)

L
b
f

C

C

source-microphone distance
separation between two microphones
frequency
speed of sound
turbulence characteristic

Numerical analysis of the data in Figure 11 shows the 5/3 law is approximately valid for
separation distances Up to 3 m. However, the 5/3 law is less well adhered to for a signal frequency of
200 Hz (see Figure 12). Further increasing the signal frequency to 500 Hz shows even less adherence to
the 5/3 law relationship. This observation shows that the outer scale of turbulence can be calculated when
the range of validity of separation distance is estimated. We have not analyzed the meteorological data to
determine the apparent fluctuations in the atmospheric index of refraction but these too would be expected

to produce an outer scale on the order of a few meters. Consequently, at larger distances the phase
fluctuations are not expected to follow a 5/3 relation.
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DISCUSSION AND CONCLUSIONS

Given the rather large amount of unwanted noise present with each of the tones it is desirable to
restrict the analysis bandwidth to ensure the greatest signal to noise for the analysis. However, a
compromise is required in order to ensure that significant signal amplitude and phase fluctuations are
allowed to pass through the system. The 2.5 Hz filter was a choice made for these preliminary results.
Initial investigations indicated that this bandwidth is not too restrictive and that significant information is
available from the analysis algorithm described above. Additional studies will be required to determine if
there is a better choice for the analysis bandwidth. However, there is no hard threshold where the results
change from useless to useful and a certain amount of judgment is therefore required in selection of the
"proper" analysis bandwidth.

Another issue that is not addressed in the existing theory that requires additional study is
determining the amount of data that should be used to calculate the RMS amplitude and phase fluctuations.
It was seen earlier that the results from a 16 second average and from a 4 second average were quite
different. This should be expected if one considers the variations in the amplitude vs time and phase vs
time curves shown in Figures 5 and 6 respectively. The decision on the "proper" averaging time must be
made using judgment based upon the time variability of these curves as there is no theory to provide
adequate guidance on this issue.

The data analysis presented here is preliminary. It is necessary to examine additional data in order
to better characterize the temporal and spatial variations of the acoustic data. The meteorological data too
should be further examined so statistical parameters can be determined. Finally, an assesment of
fluctuating amplitude and phase effects on microphone array performance and on the behavior of the active
noise control (ACN) systems should be made.
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phase fluctuation versus time, freq=8OHz
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INTRODUCTION

Traditionally, long term measurements of atmospherically propagated sound signals

have consisted of time series of multiminute averages. Only recently have continuous

measurements with temporal resolution corresponding to turbulent time scales been

available. With modern digital data acquisition systems we now have the capability to

simultaneously record both acoustical and meteorological parameters with sufficient

temporal resolution to allow us to examine in detail relationships between fluctuating sound

and the meteorological variables, particularly wind and temperature, which locally

determine the acoustic refractive index.

The atmospheric acoustic propagation medium can be treated as a nonlinear

dynamical system, a kind of signal processor whose innards depend on thermodynamic

and turbulent processes in the atmosphere. The atmosphere is an inherently nonlinear

dynamical system. In fact one simple model of atmospheric convection, the Lorenz

system(I), may well be the most widely studied of all dynamical systems. In this paper we

report some results of our having applied methods used to characterize nonlinear dynamical

systems to study the characteristics of acoustical signals propagated through the

atmosphere. For example, we investigate whether or not it is possible to parameterize

signal fluctuations in terms of fractal dimensions. For time series one such parameter is the

limit capacity dimension. Nicolis and Nicolis were among the first to use the kind of

methods we have to study the properties of low dimension global attractors(2).

In this paper we show, for example, that the limit capacity dimensions for

atmospherically propagated acoustic signals are greater than those of either the wind speed

or the along (propagation) path wind component. Turbulence is the phenomenon which
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moststrongly controls fluctuations in the acoustic refractive index 1"1. Variations in acoustic

refractive index are a function of velocity, temperature and, to a lesser extent, humidity

fluctuations. Written in terms of the turbulent structure function parameters and neglecting

humidity, variations in 11 are

where ot and _ areconstants.Gamma isnot a constantbut rathera function,inparticular,

of the stability (heat flux).

Although the use of nonlinear dynamical methods is now rapidly growing, they are

not yet nearly so widely known as, e.g., linear Fourier methods(3). Thus we summarize

here the basic analysis method as well as the results of using it.

DIMENSIONAL ANALYSIS OF A TIME SERIES: SOME FUNDAMENTALS

When one is working out of doors it is virtuaUy impossible to measure all of the

potentially important environmental variables. Nevertheless it may be possible to

extract most of the information necessary to define signal variability by analyzing

appropriately combined acoustic and meteorological measurements.

Takens' theorem (4) defines the largest embedding dimension which is needed

to analyze a single time series and, thus, to obtain an accurate fractal dimension for the

system. The embedding dimension is the state space in which an object can be

visualized. For any system having a fractal dimension, e.g. the well known Lorenz

attractor, Takens' theorem states that a maximum embedding dimension of 2d+1 is

needed, where d is the fractal dimension rounded to the next higher integer. Thus an

embedding dimension of seven should define the Lorenz system, which has a fractal

dimension of 2.06. A system might be described in fewer dimensions, but Takens'

theorem sets an upper bound for the state space in which the attractor can be embedded.

In the analysis of a time series, if an embedding dimension is used which is less

than prescribed by Takens' theorem, the fractal dimension may not be saturated (i.e.,

reached its peak value). However, as schematically shown in figure 1, if an embedding

dimension of higher order is used, little, if any additional information will be gained(5).
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Practically it is important to work with the minimum required embedding dimension in

order to minimize computational costs.

Fractal

Dimension
n

...........SatulTation Level _

_'_- E.D.=2n+I

Embedding Dimension

Figure 1. Fractal dimension as a function of embedding dimension

Lagging

In order to extract all information contained within a single time series it is

necessary to reconstruct m single order equations. Let the single time series X=F(t) be

the set of points (Xl,X2,X 3 .... ) which are separated by a distance Ax. First we

approximate the first derivative of F(t) to be

X" - F( t ) _ F_+1 - F i (2)
dx Ax

Actually, there is redundant information in the first derivative, as F i is the original time

series. Therefore, an embedding dimension of two space is created when the original

time series is shifted by one time step (F i, Fi+l) T. For higher order systems this

process is continued until one has created a state space which is large enough so that the

attractor can be unfolded.

If the spacing between points in the approximation of the derivative is too small

then points will appear to be totally correlated and cannot be considered as independent

coordinates(6). Similarly, if the spacing is too great adjacent points will appear to be

unrelated (see figure 2).
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In practice, instead of using successive points in the time series to calculate the

derivatives, the time series is lagged by a certain number of points. Lagging consists of

setting X' = F'(t) equal to the i+/th sample ofF(t), (i.e. i, i+/, i+2l .... ), where l is

the size of the lag. Lagging the time series allows one to form a matrix as

E+L = / x,+,, x2+,, x3+,, = (3)

i÷21 \Xl+21, x2+21, x3+21,

where each column of the matrix defines a single point in (2d+1) phase space.
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Figure 2. Lorenz attractor with correlated and uncorrelated lags

To estimate an appropriate value of the'lag size, three methods are commonly

used(7), the autocorrelation time, mutual information, and visualization. For systems

having an unknown fractal dimension the autocorrelation method appears to be the

conservative approach. To determine the lag there are two possible ways of

interpreting a graph of the autocorrelation time scale as shown in figure 3. One is to

take the point halfway to the first zero crossing. A second approach is to determine the

halfway point to where the autocorrelation curve becomes parallel to the x-axis. If no
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zero crossing exists this is the only practical method. For the example shown the two

methods yield lag sizes of 52 and 35, respectively.

Another method for estimating a proper lag is called mutual information. In this

case one increases the lag size until no new information is gained and then defines that

point as being the appropriate lag size.

Autocorrelation

| * i : i i; i * ,

20 40 60 80 100 120 140 180 180 200

Lag Number

Figure 3. Autocorrelation of the Lorenz attractor

What is called visualization or visual reconstruction may also be used.

Visualization is often used in situations where one has some prior knowledge of the

system. This method consists of graphically reconstructing the attractor with various

lags. If the topology of the attractor is known, e.g., as in the case of the Lorenz

attractor, then the lag that appears closest to that for the real system is determined to be

the appropriate one.

Limit Capacity Dimension

The limit capacity is one of four commonly used fractal dimensions: capacity,

correlation, information, and Lyapunov. Determination of the limit capacity dimension is
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made as follows(8). If one lets N(e) represent the minimum number of m-dimensional

cubes of length e needed to enclose the time series, then as e decreases one expects N(e) to

increase.

N(e) oc e-aoo 
(4)

and therefore the capacity dimension is defined as:

dc,,p = lira log[ N(c)]

_0 log[ 1//1 (5)

The output of this limit capacity algorithm gives a lower bound to the dimension of the

attractor.

Detemaining the Dimension from Graph

Figure 4 shows the result of applying the limit capacity algorithm to the Lorenz

system. In this representation the bin numbers represent distances between points on the

attractor. To estimate the limit capacity dimension of a data series a "stable plateau" region

must be determined. Definition of the stable plateau may be subjective. Definition of

optimal methods for determining the dimension and hence uncertainties in it are still being

researched(9).
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ACOUSTICAL AND WIND SIGNALS STUDIED

We have applied the same methods as described above for the Lorenz system to

hour long recordings of constant frequency sound signals, and to wind speed and the along

path component of the wind. These measurements were made as part of the comprehensive

Joint Acoustic Propagation Experiment (JAPE) study. Acoustic receivers were located 1

Km from the sound source and spaced logarithmically on a tower to a height of 32 meters.

Three tones of 80, 200, and 500 Hz were transmitted. For this analysis the original 2048

samples per second were averaged to one quarter second. The corresponding wind time

series had one-tenth second resolution. So far dimensional calculations for only the 80 and

500 Hz tones have been completed.

Lags were determined by calculating the autocorrelation time for each time series.

Appropriate lags for the acoustic transmission loss (TL) signals varied between 12.5 and

187.5 seconds; lags for the wind signals ranged from 150 to 400 seconds. Wind speeds

were less than 6 meters per second during the recording period. Correlation times of the

TL signals measured at 0, 2, and 32 meters decreased both with height and frequency

(figure 5).
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Figure 5. Correlation times vs. height for acoustic signals
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Recallthatfor theLorenzattractoranembeddingdimensionof sevenwassufficient
to unfoldtheattractor.However,for ouracousticandwind signalsthedimensionof the

attractorwasunknown.Thusit wasnecessaryfor usto calculatethelimit capacityfor a

numberof differentembeddingdimensions(figure6). Thiswasdonerepeatedlyuntil it

appearedthatthedimensionalinformationhadsaturated.Figure6 showstheprogression
of thelimit capacitydimensionwith increasingembeddingdimensionsuntil saturationwas

reachedatroughlyanembeddingdimensionof 12.

limit Capoclty of 8,0 Hz TL sTgnal _ z-,2m
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Figure 6: Dimension of 80 Hz tone at 2 meters for various embedding dimensions

Results

Tables I and II, respectively, summarize the calculated limit capacity dimensions for

the acoustic signals, the wind speed and the along p_th component of the wind.
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Table I. Limit Capacity Dimension for Acoustic signals

Embedding

Dimension

Om

80 Hz

4.19

0m

500 Hz

2m

80 Hz

2m

500 Hz

4.77

32 m

80 Hz

4.53

32m

500 Hz

4.89

9 4.69 4.18 4.39 4.42 4.57

10 4.50 4.60 4.31 4.56 4.61 4.82

11 4.34 4.85 4.55 4.64 4.63 4.76

12 4.19 4.87 4.73 4.71 4.81 4.89

13 4.13 4.91 4.68 4.66 4.96 4.95

14 4.44 4.87 4.95

Table II. Limit Capacit

Embedding

Dimension

9

Dimension for Wind Speed and Alon$ Path Component Signals

2m

(U2+V2) 0.5

3.01

2m

Walnn g palll

3.47

2.97

32m

(U2+V2) 0.5

2.58

2.98

32m

Walano nalh
v.

2.33

10 3.12 3.43 2.33 2.07

11 3.05 3.4 2.21 *

12 3.07 3.35 * *

13 2.96 3.03 * *

14 * *

* higher embedding dimensions were not able to be used due to the limited data set and

high lag.

Graphical representation of the change in limit capacity dimension with height is

shown in figure 7.
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Figure 7. Limit Capacity of acoustic and wind signals

CONCLUSIONS

Low order limit capacity dimensions have been determined to exist for both the

acoustic and wind time series. These results confirm the existence of local attractors. The

acoustical multivariable dependent signals have higher order attractors than were found for

the independent meteorological input variables.

The limit capacity dimension of the acoustic signals appears to increase with height

and frequency. We believe that this is due to the role which large eddies (thermals) in the

convective boundary layer (CBL) play in controlEng intermittent space-time variations in

the acoustic refractive index. The properties of propagated sound are sufficiently sensitive

to those eddies so that tomographic methods may be used to indirectly measure their

properties(10).
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Weexpectthatwith furtherdimensionalanalysisit will bepossibleto definelow

orderdynamicalmodelsthatwill morepreciselydefinethevariabilityof acousticsignal

fluctuationsthancanbedonepresentlywith linearmethods.Furtherstudieswill require,

however,severalmultihourtimeseriesrecordedin bothstableandunstableboundarylayer
conditions.ThesinglehourtimeseriesrecordedduringJAPEis of insufficientlength.

Sincelargeeddiesappearto bethedominantsignalcontrollingmechanism,it wouldalsobe

helpful to havemeasurementsover transmissionpathsrangingfrom about2.5to 10km.
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ABSTRACT

Sonic anemometers are good instruments for measuring temperature and wind speed

fast enough to calculate the temperature and wind structure parameters used to calculate the

variance in the acoustic index of refraction. However, the turbulence parameters are

typically 15-minute averaged point measurements. There are several problems associated

with making point measurements and using them to represent a turbulence field. This paper

will examine some of the sonic anemometer data analyzed from the Joint Acoustic

Propagation Experiment (JAPE) conducted during July 1991 at DIRT Site located at White

Sands Missile Range, New Mexico.

INTRODUCTION

A sonic anemometer is an instrument used to measure the u, v, and w components of

the wind field and temperature with time. A sonic anemometer consists of a pair of acoustic

transmitters and receivers, spaced from 10 to 25 cm apart, that send and receive acoustic

pulses at the rate of several hundred times per second. The pulses are averaged to give a

data rate of 10 Hz. Sonics provide the wind component and temperature data required for

computing fluxes of heat, momentum, and moisture which define the state of the surface

layer by the eddy correlation method.

Sonics operate on the principle that the travel time between transmitter and receiver is

a function of the speed of sound plus the component of the wind speed in the direction of

propagation. A sample is composed of two pulses: one pulse traveling in one direction and

another pulse traveling in the opposite direction. If the two measured speed of sound

PI_IiI_'AtDiNG P_,GE Bt.ANKI NO] FILMer..'
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samples are subtracted, the difference will be twice the component of the wind speed along

the axis of the transmitter-receiver since the temperature is independent of the direction of

propagation. Two pairs of transmitter-receivers will provide the horizontal wind field and

three pairs will provide the three-dimensional wind field. The sum of the two measurements

will be proportional to the temperature since the wind speed component will be subtracted

out. Figures 1 and 2 show an example of the output from a sonic anemometer.

There were five sonic anemometers used in this analysis located on a 100 ft walk-up

tower at intervals of 2, 4, 8, 16, and 32 meters. They were located approximately 2

meters from the tower along an East-West axis. The graphs of the data use a notation of

Sonic 1, 2, 3, 4, and 5 which corresponds to the heights given previously. As a check to see

if the wind was blowing through the tower, a band of arrows is placed on the graph showing

wind speed and direction. The band of arrows indicates the solid angle of the tower as

"seen" by the sonic anemometers. All times shown, unless otherwise stated, are Greenwich

Mean Time.

CALCULATING TURBULENCE PARAMETERS

From turbulence theory, the structure parameter C_ in a locally isotropic field is

defined by 1

Ill 2/3
(i)

where [i' I is the spatial separation distance, X(t') is the measured quantity at each point, and

the angle brackets indicate performing an ensemble average. A sonic anemometer makes a

measurement at a single point instead of at two points separated by a distance r. The above

equation can be rewritten into a form usable for a single point sensor. Taylor's frozen

turbulence hypothesis 2 states that the spatial separation of the turbulence can be calculated

from the temporal separation (At) times the mean wind speed. This allows Eq. ( 1 ) to be

written as

= [x(t,)- x(t2)]
(U A t) 213

(2)

where x(t) is the fluctuating quantity sampled at two instances with a temporal separation At,

the overbar indicates a time average, and u is the mean wind speed. This equation allows
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for the temperature and wind structure parameters to be calculated from the sonic

anemometer data.

EXAMINATION OF RESULTS

The best place to begin is looking at a set of good turbulence data. Figure 3 shows a

comparison between 1-minute and 15-minute averages of the wind structure parameter with

time. The dashed line is the wind speed with time. The 1-minute averages show some

variability about the 15-minute averages in the wind structure parameter. Forty minutes into

• the comparison, there is an increase in the wind structure parameter which translates into an

increase in the mechanical turbulence. Figure 4 shows the wind speed and direction with

time for the same time interval. The wind is not blowing through the tower, so the increase

is not due to biasing from the tower and this trend is seen in each of the sensors along the

height of the tower. In this case, the 15-minute averages track the trends quite well.

The next case appears to be very similar to the previous case. Figure 5 shows a

comparison between 1-minute and 15-minute averages of the temperature structure parameter

at 2 meters. The dashed line in this case is the temperature with time. As in Figure 3, the

15-minute averages track well with the 1-minute averages. In the previous case, the increase

in the wind structure parameter appeared in each of the sensors; however, this does not hold

true for this case. Figure 6 shows the comparison between 1-minute and 15 minute averages

of the temperature structure parameter for the sensor located at 4 meters. In fact, the trend

does not appear in any of the other sensors• This means that the 2 meter sensor was

measuring a very localized phenomenon such as a person standing nearby or the heat from

another instrument. Whatever the disturbance was, it persisted for an hour. This shows that

one cannot just use the results from one sensor without examining the other sensors to

determine whether or not the sensor being used is giving an adequate representation of the

turbulence field.

Sometimes there is a more obvious source for the trend in the turbulence data.

Figure 7 shows the comparison between the 1-minute and 15-minute averages of the

temperature structure parameter at 2 meters. The trend is similar to the trend observed in

Fig. 5. However, the source of this trend is the turbulent wakes of the tower. Figure 8

shows the wind speed and direction with time at the sensor. About 40 minutes into the

measurement, the wind direction changes such that the tower is upwind from the sensor.

When this occurs, the tower interferes with the normal turbulence field by modifying the
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turbulence field. Therefore, the turbulence data cannot be used during the time the wind

flow is coming through the tower.

The last case is a problem which occurs with any point measurement. Figure 9 shows

the comparison between the 1-minute and 15-minute averages of the temperature structure

parameter at 2 meters. This figure shows a large degree of variability between the 1-minute

averages and the 15-minute averages. Looking at Fig. 10, the wind speed for most of the

time is below 1 m/s. A wind speed this low causes problems in using the point

measurements to represent the turbulence field. The turbulence field in this low of a wind

speed becomes very localized. When the wind speed is this low, the turbulence measurement

at one point will probably not correspond to a turbulence measurement at another point for

the same height since the turbulence field is mainly influenced by the local obstacles.

CONCLUSIONS

Sonic anemometers are very good for measuring wind speed, wind direction,

temperature, heat flux, momentum flux, temperature structure parameter, and wind structure

parameter at a fairly fast rate of 10 Hz. However, care must be used in examining the

analyzed data from the sensors. Wind blowing through the tower before reaching the sensor

will modify the turbulence field giving poor data for calculating the turbulence parameters.

This can go for personnel or animals walking by the sensor. A low wind speed of less than

1 m/s causes the turbulence field to be strongly affected by the local terrain giving poor

homogeneity to the turbulence field. Therefore, Taylor's frozen turbulence hypothesis can

breakdown.
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Figure 5. Plot of 1-minute and 15-minute averages of the temperature structure parameter

and 1-minute averaged temperature with time at 2 meters.
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Figure 7. Plot of 1-minute and 15-minute averages of the temperature structure parameter
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BEAMFORMING IN AN ACOUSTIC SHADOW

David Havelock

Michael Stinson i L_'" -_ "_j: )''

Gilles Daigle _.

N.R.C., Canada /J, /

Abstract

The sound field deep within an acoustic shadow region is less well understood than that outside the

shadow region. Signal levels are substantially lower within the shadow, but beamforming difficulties

arise for other reasons such as loss of spatial coherence. Based on analysis of JAPE-91 data, and other

data, three types of characteristic signals within acoustic shadow regions are identified. These signal

types may correspond to different, intermittent signal propagation conditions. Detection and

classification algorithms might take advantage of the signal characteristics. Frequency coherence is

also discussed. The extent of coherence across frequencies is shown to be limited, causing difficulties

for source classification based on harmonic amplitude relationships. Discussions emphasize

short-term characteristics on the order of one second. A video presentation on frequency coherence

shows the similarity, in the presence of atmospheric turbulence, between the received signal from a

stable set of harmonics generated by a loudspeaker and that received from a helicopter hovering
behind a hill.
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INTRODUCTION

For more than twenty years, personnel of the U.S.A.E. Waterways Experiment Station

(WES) have been performing research dealing with the application of sensors for detection of

military targets. The WES research has included the use of seismic, acoustic, magnetic, and

other sensors to detect, track, and classify military ground targets. Most of the WES research

has been oriented toward the employment of such sensors in a passive mode. Techniques for

passive detection are of particular interest in the Army because of the advantages over active

detection. Passive detection methods are not susceptible to interception, detection, jamming,

or location of the source by the threat. A decided advantage for using acoustic and seismic

sensors for detection in tactical situations is the non-line-of-sight capability; i.e., detection of

low flying helicopters at long distances without visual contact. This study was conducted to

analyze the passive acoustic ranging (PAR) concept (previously developed at WES') using a

more extensive data set from the Joint Acoustic Propagation Experiment (JAPE).

Background

The PAR concept exploits the repetitive nature of helicopter acoustic signatures to

compute the range and velocity of a passing helicopter. The PAR method analyzes the change

of the frequency of the signatures through time, known as the Doppler shift, and calculates

these parameters using the Doppler shift equations on the signals as the helicopter passes

through the closest point of approach (CPA). In the previously mentioned research, the basic

equations governing the extraction of range and velocity for the PAR concept were presented.

The PAR concept was used on one set of data for one helicopter at one site, and it produced

promising results.

Objective

The objective of this research was to investigate constraints on the PAR concept to

estimate the limitations of realistic operation under various environmental conditions, and to

determine if the PAR concept will apply to multiple helicopters.
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ANALYSIS OF PASSIVE ACOUSTIC RANGING (PAR)

In the previous WES investigation the equations governing the behavior of the Doppler

shift as a function of velocity and range were presented. The scenario of a helicopter passing an

acoustic sensor is shown in Figure 1. The time that the signal is received at the sensor, t, is equal

to the time that it is emitted ,to, plus the time of travel. If the emitting source travels with con-

stant velocity, v, through CPA (see figure 1) then t,, expressed as a function oft, is

to-t+= t-t o V/ J3:(t17-tv.)2 + (1-p2)p 2

1 - 132

where 13 is the velocity of the source divided by the speed of propagation of the signal in the

media and p is the CPA distance divided by the speed of propagation.

(1)

The general Doppler shift formula is

dt

f = fdt
17

which for the case under consideration, expressed in relevant kinematic parameters,

dt=_ (]-]3a)

dt r (1- p2)

where

is

(2)

p(t-t )
o : (3)

(132(t-t .) 2 + ( 1-132)p2

The Doppler shift is shown in figure 2 for various values of these parameters.

Inherent Errors

The basic method for the extraction of kinematic information from these time traces was

to transform the time trace into the frequency domain. The sources had stable characteristic

frequencies, which facilitated the extraction of the incoming and outgoing frequencies from these

data. The velocity and fundamental frequency of the source were then computed, and frequency

information as a function of time was obtained from transforms of selected windows of the time

trace. As done in the previous study, these data were then used to determine the range by fitting
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Figure 1. Diagram of source approaching a microphone.
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Figure 2. Plot of frequency vs time of a source with fundamental frequency of 17.2 Hz at a

range of 100 m for beta=0.05,0.1,0.2,and 0.3.
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the slope of the frequency versus time curve at CPA to the following:

__df= -i3 f (4)
df p

The key to this operation is the transformation from the time to the frequency domain because of

the spreading of the data points through the Doppler shift Since the slope of the curve is largest

at CPA, the spacing of the individual points is sparsest in that region (as can be seen in figure 3).

The accuracy of the slope calculation is dependent on the size of the time step of each window.

The usual approach used to produce a data set with frequency as a function of time from a

time trace is to extract sections of the time trace and perform a fast Fourier transform (FFT) on

each of these sections. The problem with the FFT method is that as the length, A t, of the sec-

tions gets smaller, the resolution, A f, of the frequency grows larger, since

Af= 1/At (5)

In addition, there is an error that is inherent to the range calculation associated with the

time step. Figure 4 contains graphs of range error as a function of time step for several values of

velocity and range. It can be seen from these graphs that there are cases where this error is at a

minimum when the time step is the smallest value. Large changes in the other kinematic

parameters affect the error to a lesser extent. Several methods were tested in an attempt to

overcome this basic problem.

Processing Methods

The two most successful processing methods were the cross spectral density (CSD)

method and the method of successive differences (SD).

Cross Spectral Density

The CSD method which was initially proposed for this purpose in the previous study

utilizes a phase analysis of the FFT of the signal to calculate the frequency of the signal. The

FFT's of successive intervals are compared by conjugation and multiplication. For a pure fre-

quency this method can give accurate results, but because of the nature of the FFT calculation,
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peaks which are spaced nearby in frequency will overlap and interfere in the phase domain. It

should be possible to obtain equations which will perform the CSD analysis for peaks containing

multiple components, but it is necessary to know beforehand how many components are present.

This may not be possible in a field application where any number of sources may pass the sensor.

The CSD method was tested on the simulated cases found in table 1. Error values (which

can be found in table 2) were within expected limits of the values that were predicted in the

graphs in figure 4. Further tests were performed using experimental data, and sources of this data

are listed in table 3. The true values of position as a function of time were used to calculate

velocity (actual values were obtained from radar telemetry). The predictions made by the CSD

method and error values from these calculations can be found in table 4. Note that the error

found in these tables is somewhat larger than predicted in figure 4. This is caused by the addition

of background noise into the peaks that were used to calculate the accurate frequency.

The CSD allowed an accurate determination of the frequency from a small portion of the

spectrum, but the deconvolution of multiple signals using this method had some limitations. The

presence of multiple signals in a single peak is not accounted for in the derivation of this method.

The condition of peaks that are overlapping or not fully resolved cause the phase information for

a particular peak to be corrupted, thus severely complicating the deconvolution of the peak.

Successive Differences

Another way of extracting the frequency and velocity is to first perform an FFT on the

entire sample of data (all the way through the approach and departure of the source). The results

of the FFTs are shown in figures 5-9. The maxima on the ends of the u-shaped features in these

figures are the frequency values of the source at the incoming and outgoing frequencies. It is

possible to derive an analytic expression for the u-shaped features in the ideal case.

The problem of extracting frequency as a function of time was addressed using the method

of successive differences. The frequency resolution limit from equation 5 was overcome by

computing the FFT of two intervals with sufficient length to produce the desired resolution. The

successive intervals for each FFT had starting points separated by the desired time step. The

differences between these two spectra were computed, and the remaining positive portion of the

difference contains the peak values of the frequencies that were added into the signal during that

time interval.
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Table1. Simulated helicopter acoustic data.

Name of Run

Hela.dat

Helb.dat

Helc.dat

Held.dat

Hele.dat

Helf.dat

Helg.dat

Helh.dat

Heli.dat

Helj.dat

Helk.dat

Hell.dat

Fundamental Frequency

16

16

Runs Generated

Length of Run

32

32

CPA

10

50

16 32 200

16 32 5OO

16 32 10

16 32 50

16 32 200

16 32 500

16 32 10

16 32 50

16 32 200

16 32 5OO

50

50

50

50

100

100

100

100

250

250

250

250
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Table 2.

Actual Calculated

Fundamental Fundamental

Results of CSD analysis on multiple simulated single source signals.

Frequency Frequency

16 16.002

16 16.004

16 16.017

16 16.047

16 15.998

16 16.000

16 16.020

16 16.094

16 16.003

16 16.013

16 16.001

16 16.003

100 100

100 100.008

100 100.101

100 100.289

100 100.002

100 100.007

100 100.125

100 100.566

Actual Calculated Actual Calculated

CPA CPA Speed Speed

% E_or _ L_ % E_or _

0.0125 10 19.87 98.7 50 49.99

0.025 50 60.57 21.1 50 49.91

0.10625 200 219.66 9.83 50 48.51

0.29375 500 399.52 20.1 50 41.87

0.0125 10 36.20 262 100 99.94

0 50 77.16 54.3 100 99.92

0.125 200 278.81 39.4 100 99.23

0.5875 500 634.80 26.9 100 95.09

0.01875 10 108.34 983.4 250 249.99

0.08125 50 124.01 149.0 250 249.93

0.00625 200 768.65 284.3 250 249.92

0.01875 500 108.34 78.3 250 249.09

0 10 0 100 50 49.99

0.008 50 59.41 18.82 50 49.9

0.101 200 219.79 9.895 50 48.4

0.289 500 401.97 19.606 50 41.97

0.002 10 34.32 243.2 100 99.99

0.007 50 81.75 63.5 100 99.96

0.125 200 275.08 37.54 100 99.23

0.566 500 649.11 29.822 100 95.54

%E_or

0.02

0.18

2.98

16.26

0.06

0.08

0.77

4.91

0.01

0.03

0.03

0.36

0.02

0.20

3.20

16.1

0.01

0.04

0.77

4.463
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Table 3. Experimental helicopter acoustic data.

From the JAPE, run indicates JAPE run number in WES database.

Case Run

Case A WSR147a

Case B WSR148a

Case C WSR149a

Case D WSR150a

Case E WSR 151 a

Case F WSR152a

Case G WSR156a

Case H WSR157a

Case

Table 4. Results of CSD analysis on experimental data.

Radar CSD Percent Error Radar CSD

Velocity Velocity Velocity Range Range

Percent Error

Range

A 51.4 56.7 10.3 51.0 41.0 19.6

B 52.0 56.4 8.4 105.4 54.0 48.8

C 54.2 56.3 4.0 105.2 42.0 60.1

D 73.8 71.7 2.8 108.7 99.0 8.9

E 70.9 69.4 2.1 98.2 54.0 45.0

F 75.0 75.2 0.3 109.3 62.0 43.3

G 47.1 57.1 21.1 206.4 141.0 31.7

H 44.8 49.6 10.7 320.5 187.0 41.7
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The method of successive differences exploits the fact that as the period in the sample to

be transformed is increased, the resolution of the result will also increase. This method

was adapted from a commonly accepted practice in nuclear spectroscopy. In determining the

half-life of short-lived isotopes in nuclear physics, it is a common practice to acquire a spectrum

and save it, then continue to acquire into that spectrum for some time. The difference between

the two spectra will contain the amount of decays that occurred for each peak during that time,

and a half-life calculation can easily be made. Similarly, the differences between two amplitude

normalized high resolution FFTs will represent the changes that occurred during the period

between the acquisition of the two time traces.

By first determining the incoming and outgoing frequencies, the stationary fundamental

frequency of the source was calculated. From this information the time trace was then searched at

a high resolution in order to determine the slope of the frequency versus time function as the

fundamental peak passes through the stationary value. This process was automated along with

peak search algorithms to identify peaks and extract frequency information from them. The

values of range, velocity, and frequency were the output of this code. Errors in output from this

method agree with what is expected from the theoretical limits,

Data processed with the CSD method was analyzed using this method. The results of the

simulated and experimental runs, mentioned previously in tables 1 and 3, are presented in tables 5

and 6.

Comparison of Methods

While both methods produced results which agree with the theoretical analysis of the error

in the ideal case, the SD method had an advantage over the CSD when there are multiple signals

in a peak. In addition to the multiple peak problem, the CSD displayed a loss of accuracy when

dealing with sections of time trace that had a duration of less than 0.25 second, but the SD has no

such limit. It can be seen from figure 4, (which is a plot of error as a function of time step) that

this 0.25 second limit gives an error as great as 15 percent for some cases. The disadvantage of

the SD method is the intensive calculations which must be performed. The SD algorithm, written

in the C programming language and executed on a 80486 class 33 MHz personal computer, took

approximately twice the time to process a section that would be required for it to run in a real

time mode, however this code was not optimized.
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Table5. Results of SD analysis on multiple simulated single source signals

Actual Calculated

Fundamental Fundamental Actual Calculated Actual Calculated

Frequency Frequency CPA CPA Speed Speed

_-_ _ f._ f_ %ErrQt _ _ % Error

16.00 16.03 0.19 50.00 49.75 0.50 10.00 22.00 120.00

16.00 16.03 0.16 50.00 47.88 4.25 50.00 40.00 20.00

16.00 16.02 0.12 50.00 40.90 18.21 200.00 99.00 50.50

16.00 16.19 1.19 50.00 25.68 48.65 500.00 64.00 87.20

16.00 15.98 0.10 100.00 100.02 0.02 10.00 48.00 380.00

16.00 16.02 0.12 100.00 98.79 1.21 50.00 68.00 36.00

16.00 16.16 1.00 100.00 93.88 6.12 200.00 117.00 41.50

16.00 16.26 1.60 100.00 79.83 20.17 500.00 194.00 61.20

16.00 15.99 0.05 250.00 250.03 0.01 10.00 122.00 1120.00

16.00 15.99 0.05 250.00 250.03 0.01 50.00 124.00 148.00

16.00 16.17 1.08 250.00 248.68 0.53 200.00 240.00 20.00

16.00 16.61 3.79 250.00 245.00 2.00 500.00 441.00 11.80

Case

Table 6. Results of SD analysis on experimental data.

Radar CSD Percent Error Radar CSD Percent Error

Velocity Velocity Velocity Range Range Range

A 51.4 55.8 8.5 51.0 45.8 10.2

B 52.0 53.8 3.4 105.4 69.7 33.9

C 54.2 52.4 3.2 105.2 72.6 31.0

D 73.8 72.9 1.2 108.7 99.0 8.9

E 70.9 71.1 0.3 98.2 78.3 20.3

F 75.0 74.8 0.3 109.3 92.4 15.5

G 47.1 52.1 10.5 206.4 141.0 31.7

H 44.8 47.8 6.7 320.5 243.5 24.0
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Both the CSD and SD methods were used with the equations from the previous study to

calculate range, speed, and frequency information for a single source with some limited success.

The problem of deconvoluting the signal was not solved at this time, but the key to developing a

system for obtaining range information from multiple sources is to identify the number of sources

present, and to track the signature peaks through their stationary frequencies.

Refinement of PAR through Artificial Neural Networks

The artificial neural network (ANN) is a computer algorithm that is modeled atter the

synapses and neurons in the brain. Recent research into the applications of this technique has

found great success in classification and prediction using non-linear data. Investigations have

been made using the ANN in a wide variety of fields and applications ( including classification of

military targets and medical diagnosis). The studies show that an ANN has the capability to learn

a non-linear pattern. Because of this fact a study was planned to evaluate the feasibility of using

an ANN to classify the source and possibly to determine the source type, quantity, velocity and

range.

Back Propagation Training of an ANN

An ANN is an interconnected array of neurons. The first level of neurons, called the input

layer, is connected to inner hidden layers of neurons by synapses. The last hidden layer of neu-

rons is also connected to the output layer by synapses. The neurons in the hidden layers are made

up of weight values which are established by training. The ANN is trained to recognize patterns

in the data by learning many examples. The standard method of training is by back propagation.

A transfer function for each neuron determines the value each neuron will output. Many possible

modifications can be made to optimize the internal parameters of an ANN.

ANN Training, Testing, and Development

An ANN application was designed for the helicopter scenario and it was trained to recog-

nize patterns in the data by learning many examples. The standard method of back propagation

was used for training in this case. The standard sigmoid transfer function, as well as an input,

output, and a single hidden layer of neurons, was chosen for the architecture of this network for
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this application. Since there were only single runs of Huey and Blackhawk helicopters (no mul-

tiple runs) in the JAPE, a method to synthesize signals from more than one source was developed.

A simulation code (further discussed in Appendix A) was also used to create signals from a third

source. Data from each source were used in training the ANN.

The first ANN was trained on three data sets (listed in table 7), which included a single

simulated source, a single helicopter (run WS 147 from the JAPE) and a dual source synthesized

from these two runs. A total of 350 one second time windows of the time traces were extracted

from these three data sets at random, and 50 of these were retained for testing of the ANN. An

FFT was performed on each of the 350 time windows, and the results were truncated to limit the

frequency content to a range of 5 to 85 Hz. These frequency values were used as the input layer

for the ANN. The ANN was then trained on the FFT of each of the 300 time windows until the

average error was minimized. After the training was complete, the 50 one second windows

retained for testing were fed into the ANN as inputs. The ANN was able to classify the source

accurately 100 percent of the time, as can be seen in table 8.

After this initial success nine data sets were prepared on single and combinations of

sources as shown in table 9. A total of 550 time windows were selected from these data sets, and

50 of these were again retained for testing. Another ANN was trained on the FFT of each of the

500 time windows to determine if the ANN could classify multiple helicopters. The ANN was

able to classify the sources accurately 90 percent of the time in any of the combinations, and the

results of the testing are presented in table 10. Selected FFT's from the test cases are presented in

figures 10 - 27.

DISCUSSION AND CONCLUSIONS

It is feasible to develop the PAR concept into an algorithm that can be part of an opera-

tional sensor system. However, the PAR has several limitations discovered in this study that must

be addressed before using such an algorithm. In the previous study the PAR concept was de-

scribed as operable on a single sensor, but the selection of the time step for developing the Dop-

pler shift curve is critical, depending on the speed of the source and the distance from the sensor.

Selection of the wrong time step could cause the curve to have only one or two points during the

Doppler shift, severely distorting the slope calculation. Because of this limitation, it would be

advisable to use the PAR concept on multiple sensors. An array is not required (i.e., to perform

beamforming), and the PAR algorithm can be used independently on each sensor (which can be
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separated by relatively large distances). The PAR concept can also be used on multiple sources,

but the Doppler shift curves for each of the sources present in the signal must be identified.

Because of the mode of determining the range and velocity used by the PAR, the portion of the

signals produced by each source must be used to produce separate Doppler shift curves for each

source. The conventional methods of signal processing tested herein were not sufficient to

produce the curves reliably for each source. Another limitation of the PAR concept is that the

source has to pass through CPA and into the far-field before the calculation can be completed

unless there is a priori knowledge of the stationary frequency of the source.

The use of an ANN to identify the sources and separate their signal contributions is

feasible. However, only a limited test of the ANN for this purpose was performed in this study.

It should be noted here that the 90 percent accuracy resulting from the ANN was probably not a

major problem for application to the PAR concept. The ANN was not optimized, and was only

trained with 500 examples. Training on additional samples would increase the accuracy of the

ANN. The accuracy of the ANN classification was also affected by the distance from the sensor,

because of degradation of the signal as it propagated through the atmosphere. The time windows

were selected for distances up to 1.5 km from CPA, and the Doppler shift occurs within a few

hundred meters of CPA. Therefore, the accuracy of the ANN classifier is higher in the area

required for the analysis for the PAR concept. The use of an ANN could also be used to improve

the response time of the PAR concept. Because of the capability of an ANN to identify the

source, the calculation could be performed within a very short time of the source passing CPA.

RECOMMENDATIONS

The PAR concept has definite utility in the acoustic detection field, but because of the

limitations discussed in this report, caution must be used in planning the deployment of a system

with a PAR algorithm. A PAR algorithm might be more useful to supplement other acoustic

detection algorithms (such as beamformers used in triangulation, etc.). The application of an ANN

to the PAR concept using multiple sensors appears to have the necessary processing capability to

overcome the limitations. The ability to classify and separate the sources in the measured signal

allows the PAR algorithm to determine the stationary frequency and calculate the range and

velocity of each source. These calculations can also be done as the source passes through CPA.

A sequence of ANNs could also possibly be used to perform several portions of the signal pro-

cessing required for the PAR concept. Further study of the PAR concept and the applicable ANN

processing is recommended.
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Table 7. Index of cases used in first ANN training.

Case A

Case B

Case C

Simulated Source with 16 Hz Fundamental

WSR147a4- Blackhawk Helicopter from JAPE Data Set

Superposition of Cases A and B
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Table 8. Results of ANN classification of first training case.

Case A Case B Case C

Predicted Actual Predicted Actual Predicted Actual

0.00 0.00 0.00 0.00 0.99 1.00

1.00 1.00 0.00 0.00 0.00 0.00

1.00 1.00 0.00 0.00 0.00 0.00

1.00 1.00 0.00 0.00 0.03 0.00

0.00 0.00 1.00 1.00 0.00 0.00
0.00 0.00 1.00 1.00 0.00 0.00

0.00 0.00 1.00 1.00 0.00 0.00
0.00 0.00 1.00 1.00 0.00 0.00

1.00 1.00 0.00 0.00 0.00 0.00

0.00 0.00 1.00 1.00 0.00 0.00

0.99 1.00 0.01 0.00 0.00 0.00

0.00 0.00 1.00 1.00 0.00 0.00
0.00 0.00 0.00 0.00 1.00 1.00

0.00 0.00 1.00 1.00 0.00 0.00

1.00 1.00 0.00 0.00 0.00 0.00

1.00 1.00 0.00 0.00 0.00 0.00

0.00 0.00 1.00 1.00 0.00 0.00
0.00 0.00 0.02 0.00 1.00 1.00

0.00 0.00 0.00 0.00 1.00 1.00

0.00 0.00 1.00 1.00 0.00 0.00

0.01 0.00 0.00 0.00 1.00 1.00

1.00 1.00 0.00 0.00 0.00 0.00

0.00 0.00 1.00 1.00 0.00 0.00
0.00 0.00 0.08 0.00 0.99 1.00

0.00 0.00 0.00 0.00 1.00 1.00

0.98 1.00 0.06 0.00 0.01 0.00
1.00 1.00 0.00 0.00 0.00 0.00

0.81 1.00 0.01 0.00 0.00 0.00

0.00 0.00 0.00 0.00 1.00 1.00

1.00 1.00 0.00 0.00 0.00 0.00

0.00 0.00 0.00 0.00 1.00 1.00

0.00 0.00 0.00 0.00 1.00 1.00

0.00 0.00 0.00 0.00 1.00 1.00

1.00 1.00 0.00 0.00 0.00 0.00

0.00 0.00 0.00 0.00 1.00 1.00

1.00 1.00 0.04 0.00 0.00 0.00

0.00 0.00 0.00 0.00 1.00 1.00

1.00 1.00 0.00 0.00 0.00 0.00

0.97 1.00 O.18 0.00 0.00 0.00

0.00 0.00 1.00 1.00 0.00 0.00
1.00 1.00 0.00 0.00 0.00 0.00

1.00 1.00 0.00 0.00 0.00 0.00

0.00 0.00 0.00 0.00 1.00 1.00

1.00 1.00 0.00 0.00 0.00 0.00
0.98 1.00 0.16 0.00 0.00 0.00

0.00 0.00 0.00 0.00 1.00 1.00

0.00 0.00 1.00 1.00 0.00 0.00

0.00 0.00 0.00 0.00 1.00 1.00

0.00 0.00 0.00 0.00 1.00 1.00
0.00 0.00 0.02 0.00 1.00 1.00

Results

Correct

Correct

Correct

Correct

Correct

Correct

Correct

Correct
Correct

Correct

Correct

Correct

Correct
Correct

Correct

Correct

Correct

Correct
Correct

Correct

Correct

Correct

Correct

Correct

Correct
Correct

Correct

Correct

Correct

Correct

Correct

Correct

Correct

Correct

Correct
Correct

Correct

Correct

Correct

Correct

Correct

Correct

Correct
Correct

Correct

Correct

Correct

Correct

Correct

Correct
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Table 9. Index of cases used in second ANN training.

CASE Description

Case A

Case B

Case C

Case D

Case E

Case F

Case G

Case H

Case I

Simulated Helicopter

Huey from Data Set WSMR010

Blackhawk from Data Set WS 147

Two Summed Case A

Two Summed Case A and Case B

Two Summed Case A and Case C

Two Summed Case B

Two Summed Case B and Case C

Two Summed Case C
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Table 10. Results of ANN classification of second training case.

Case Case Case Case Case Case Case Case Case

A B C D E F G H I

actual 0.00 0.00 1.00 0.00 0,00 0.00 0.00 0.00 0.00

predicted 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00

actual 0.00 1.00 0.00 0.00 0,00 0.00 0.00 0.00 0.00

predicted 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

actual 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.66

predicted 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00

actual 0.00 0.95 0.00 0.00 0.00 0.00 0.39 0.00 0.00

predicted 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

actual 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.01

predicted 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00

actual 0.00 0.92 0.00 0.00 0.00 0.00 0.04 0.02 0.00

predicted 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

actual 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.01

predicted 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00

actual 0.00 1.00 0.00 0.00 0.00 0.00 0.05 0.00 0.00

predicted 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

actual 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00

predicted 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00

actual 0.00 0.00 0.46 0.00 0.00 0.00 0.00 0.04 0.00

predicted 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00

actual 0.00 0.99 0.00 0.00 0.00 0.00 0.03 0.00 0.00

predicted 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

actual 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.01

predicted 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00

actual 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.99 0.01

predicted 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00

actual 0.00 0.28 0.00 0.00 0.00 0.00 0.93 0.00 0.00

predicted 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

actual 0.00 0.00 0.11 0.00 0.00 1.00 0.00 0.00 0.00

predicted 0.00 0.00 0.00 0.00 0.00 1.O0 0.00 0.00 0.00

actual 0.00 0.00 0.00 0.00 0.00 0.00 1.O0 0.00 0.00

predicted 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00

actual 0.00 0.00 0.00 0.00 0.00 0.08 0.00 0.00 0.97

predicted 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00

Results

Correct

Correct

Correct

Correct

Correct

Correct

Correct

Correct

Correct

Correct

Correct

Correct

Correct

Incorrect

Correct

Correct

Correct
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actual

predicted

actual

predicted

actual

predicted

actual

predicted

actual

predicted

actual

predicted

actual

predicted

actual

predicted

actual

predicted

actual

predicted

actual

predicted

actual

predicted

actual

predicted

actual

predicted

actual

predicted

actual

predicted

actual

predicted

Table 10. Results of ANN classification of second training case (continued)

Case Case Case Case Case Case Case Case Case Results

A B C D E F G H I

0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.01

0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00

0.00 0.00 0.31 0.00 0.66 0.00 0.00 0.00 0.00

0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00

0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.00 0.00 0.00 0.00 0.60 1.00 0.00 0.00 0.00

0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00

0.00 0.00 0.00 0.00 0.00 0.00 0.99 0.02 0.00

0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00

0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00

0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00

0.00 0.00 0.79 0.00 0.00 0.00 0.00 0.00 0.00

0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00

0.00 l.O0 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.01

0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00

0.00 0.01 1.00 0.00 0.00 0.00 0.00 0.00 0.00

0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00

0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00

0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00

0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.01 0.00

0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00

0.00 0.00 0.00 0.00 0.00 O. 13 0.00 0.00 0.98

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00

0.00 0.03 0.00 0.00 0.00 0.00 0.96 0.01 0.00

0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.05 0.67

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00

0.00 1.00 0.00 0.00 0.07 0.00 0.00 0.00 0.00

0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Corre_

Incorrect

Co_e_

Correct

Correct

Correct

Correct

Correct

Correct

Correct

Correct

Correct

Correct

Incorrect

Correct

Correct

Correct

159



Table 10. Results of ANN classification of second training case. (concluded)

actual

predicted

actual

predicted

actual

predicted

actual

predicted

actual

predicted

actual

predicted

actual

predicted

actual

predicted

actual

predicted

actual

predicted

actual

predicted

actual

predicted

actual

predicted

actual

predicted

actual

predicted

actual

predicted

Case Case Case Case Case Case Case Case Case Results

A B C D E F G H I

0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00

0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00

0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.01

0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00

0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.88 0.07

0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00

0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00

0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00

0.00 0.99 0.48 0.00 0.00 0.00 0.00 0.00 0.00

0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.09 0.64

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00

0.00 0.00 0.98 0.00 0.00 0.00 0.00 0.00 0.00

0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00

0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.99 0.01

0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.99 0.01

0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00

0.00 0.00 0.67 0.00 0.00 0.00 0.00 0.01 0.00

0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00

0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00

0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00

Correct

Correct

Corre_

Correct

Correct

Correct

Correct

Correct

Incorrect

Correct

Corre_

Correct

Correct

Correct

Incorrect

Correct
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APPENDIX A SIMULATED SOURCES

In order to eliminate noise and effects that were associated with signals measured at

field sites, and to provide any given case desired for testing, a computer code that would simulate

a moving source was programmed. The code, which was written in Visual Basic, allowed the

user to control the initial position, velocity, frequency, and phase of up to three sources, in addi-

tion to the positions of up to three microphones. The output of the these three microphones was

recorded into three files in an ASCII format. A sample input screen from this program can be

seen in figure A. 1.

Smpl. Rate Daratilx (s) Ompm File Name
2emlmaeat Mk. 1 Mk. $

x... I_ I
Y-_ i° I

Ve._ity 3 _teed at Somal

]_ae.2

I-_ I1° J
Io IIo I
to 1[o I
Veitcily i Velaeily 2

Peg I Pw 2 Pes $

Freq. ! Freq. 2 Freq. 3

P]tMe I PIt_e 2 Plmse 3

Amp.t ,_qP.1 ._,mr.!

330

-!122

;1 "_'/'_"

-649 33O

Figure A. 1. Sample of input screen from moving source simulation program.
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SUMMARY

This research demonstrates a neural network approach to the classification of acoustic

emissions of ground vehicles and helicopters. Data collected during the Joint Acoustic

Propagation Experiment conducted in July of 1991 at White Sands Missile Range, New Mexico

was used to train a classifier to distinguish between the spectrums of a UH-I, M60, M I and

M114. An output node was also included that would recognize background (i.e. no target) data.

Analysis revealed specific hidden nodes responding to the features input into the classifier. Initial

results using the neural network were encouraging with high correct identification rates

accompanied by high levels of confidence.

INTRODUCTION

The strong and definable acoustic emissions from ground vehicles, helicopters and aircraft

make systems employing acoustic sensing attractive. Sources such as engines, tracks, rotor

systems and propulsion systems generate emissions which acoustic sensors can use to determine

target line of bearing, range and identification. These sensors can provide passive detection at

relatively large distances without the line-of-sight restrictions radar systems impose.

The fidelity of an acoustic target classifier becomes crucial in applications such as

identification friend or foe (IFF), border monitoring and smart mines. It is vital that the

identification is correct with a high level of confidence. Traditional approaches to designing a

classifier consist of extracting a number of candidate features from a training set from which a

final feature set is selected for the logic design. The performance of the classifier depends upon

how closely the test or recall database resembles the training database. If the classifier does

poorly, the database could be extended to include more data; however, this could lead to a

situation where individual classes might not be separable. In general, traditional classifiers will

Work performed on contract at IIT Research Institute,
DLA900-86-C-0022

171



do well over testdatabaseswhich usetrainingdatabaseswhich encompassthe rangeof target
conditionsanticipated.

Unfortunately,databasesare rarelythis comprehensive.The signaturevariationsdue to
the environment,terrain, vehicle maintenance,and otherdynamic conditionsare difficult to
predict andimpossibleto fully characterize.

An exceptionalclassifiershouldbeflexible, robustandbeableto copewith varyinglevels
of noiseandstill correctlyidentify mosttargetsamples.It shouldbeableto dealwith acomplex
systemwhich maynotbe fully understood.Most importantly,it mustbeableto generalizefrom
a limited amountof training dataand maintaingoodperformanceon datawhich may contain
only somesimilarities to the trainingset.

The difficulty of the problemsuggeststhata neuralnetwork(NN) mayprovidea viable
solution.

NEURAL NETWORK OVERVIEW

ANN is a system which mimics the computational ability of biological systems. They

consist of large numbers of interconnected neurons (nodes). These neurons take data from

sensors or other neurons, perform simple operations on the data and pass it on to another neuron.

One of the most popular networks for applications is backpropagation(BP). BP is a multi-

layer feed forward NN. The meso-structure of a typical three layer feed forward NN is shown

in Figure 1. These layers are referred to as the input, hidden and output layers. The

interconnection between the ith input node and the hth hidden node is referred to as W_h, whereas

the interconnection between the hth hidden node and the jth output node is referred to as Whj.

A set of features is applied to the input node, then the NN processes this data calculating the

activation levels of the hidden and output nodes. The output of a neural network used for

classification may be referred to as the class activation level. The number of input features

determines the number of input nodes. The number of output nodes is determined by the number

of target classes. The number of hidden nodes, and if necessary, hidden layers, is generally

application specific.
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Figure 1. Meso-structure of a multi-layer feed forward NN

Figure 2 illustrates the processing that occurs at the neuron level in a NN. After summing

the input values multiplied by the interconnections plus the jth nodes threshold associated with

it, a transfer function is used to scale the neuron's responses to incoming signals. Many types

of transfer functions exist including threshold-logic, hard-limit, continuous-function and radial

basis. Two of the more common continuous transfer functions, the sigmoid and modified

sigmoid, are shown. A sample calculation of the jth activation level is also shown.

J_ NODE TRANSFER FUNCTION (F)

• DETERMINES HOW NEURON WILL SCALE

ITS RESPONSE TO INCOMING SIGNALS

Y

o..............-x
- 1/2

MODIFIED - 1 .-7

SIGMOID _ ""

SAMPLE CALCULATION

INPUTS

_-.3 .2 .1--]

WEIGHTS Oj A j
F(Aj)

Figure 2. Micro-structure of a NN
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BP uses a generalized delta rule for learning. This rule allows the eta'or to affect all layers

of the interconnection weights. The method of learning is supervised where actual training data

is used. Initially, the weights and threshold are randomized to small values, usually between 0

and 1 or -0.5 and +0.5. Adjustments to the weights and thresholds in all layers are made

according to the difference between the desired output activation level and the actual activation

level as shown in equation I.

ERROR = Cj ( 1- Cj) ( Cj k- Cj )
where:

(1)

cj = actual output of jth node

Cjk " desired output of jth node

The advantages of NNs have been reported by many researchers (ref. i). The rnost

attractive reason for using a NN, particularly for target classification, is its ability to generalize.

ANN has the ability to generalize and find similar features to that of the training database. For

a classifier to be successful in an unknown and poorly characterized environment, it must have

the ability to generalize. Another advantage is a NNs' ability to store and distinguish many

patterns. This is alluring as both the number of classes and the variability within the class
increase.

Researchers have also noted some limitations and disadvantages using a NN. BP in

particular suffers from lengthy training sessions. There are ways to reduce the training time by

adding momentum (ref. 2) , scaling inputs, thresholds and weights, and adapting the learning

rates after each iteration(ref. 3). However, even after optimizing for speed, training sessions may

still be lengthy. ANN is specific for a certain application. After it has been trained to identify

n classes, adding a new class, n + 1, requires retraining the NN. Another disadvantage is the

difficulty associated with selecting the number of hidden nodes in a NN. General formulas to

determine the number of hidden nodes (e.g. Lippman ref. 4, Hecht-Nielson ref. 5) may help for

an initial guess; however, the particular application appears to be the driving force. Selecting too

many hidden nodes may cause the NN to memorize the input patterns as opposed to generalize.

Selecting too few hidden nodes may yield an unstable NN incapable of forming complex decision

regions.

EXPERIMENT

Acoustic data was collected at White Sands Missile Range, Dirt Site in July, 1991 during

the Joint Acoustic Propagation Experiment(JAPE) by personnel from MIT Lincoln Laboratory.

All data was Iowpass filtered at 670 Hz and sampled at 2kHz at MIT Lincoln Laboratory. Single

channel data was selected from six different trials notated by trial numbers as shown in

Table 1.
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Table 1. JAPE data set

JAPE TRIAL NUMBER TARGET DESCRIPTION

015507 UH1 100 knots, 150 m AIt.

080507 M1 20 mph

092508 M60 20 mph

115509 M 114 15-20 mph

095amb none background

084508 M60 idle, 750 rpm

The selected data was segmented into 1 second samples, and Harming windowed. The

power spectrum was then estimated for each sample. The amplitude values from ! Hz to 150

Hz were used as input into the NN. The NN meso-structure consisted of 150 input nodes, 80

hidden nodes and 5 output nodes. The output nodes represent each target class: UHI, M I, M60,

MI14 and background (no target). In order to increase convergence all inputs, weights,

thresholds and outputs were normalized between -0.5 and +0.5. The error term was adjusted to

properly apply the modified sigmoid transfer function as shown in equation 2.

dj = ( c_ + 1/2 ) ( 1/2 - cj ) ( cjk - cj)

where:

cj = actual output of jth neuron

cjk = desired output of jth neuron

(2)

A momentum term was used to decrease oscillations and decrease training time. All

training continued until the rms error over the entire training set was less than I%.

Approximately 20-30% of the data set was not used in training sessions but saved for

effectiveness testing.

RESULTS

A closer look at the hidden activation levels may provide insight into the operation of the

NN. The hidden activation level is the actual output of a hidden node. Ideally the knowledge

stored in the hidden layer is abstracted from the information contained in the input pattern. A
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wide variety of features can be represented in the hidden layer. This layer often shows which

hidden nodes become activated in response to a particular input pattern.

Figure 3 shows sample input, hidden activation level and class activation level when the

target was a UH-1. The NN was able to map the differing inputs into a relatively invariant set

of hidden activation levels and class activation levels. Comparing the hidden activation levels

for the UH-I target to the hidden activation levels from other target class samples revealed that

certain nodes were responding to the input patterns. The 22nd and 32nd hidden nodes appeared

to be most useful for distinguishing the UH-1 from the M60. The 20th hidden node appeared to

be most useful for distinguishing between the UH-1 and the APC, whereas the 40th node was

the most useful for distinguishing between the UH-1 and the MI.

UH1 INPUT SPECTRUM

0 20 40 Irl 8O I nn 1_0 140

HIDDENACTIVATIONLEVEL CLASSACTIVATIONLEVEL
O.S

0.4

0,3

0`2

0`1

0

-0.I

.O.2

-0,,4

Figure 3 UH1 NN input, hidden and class activation levels

Figures 4 through 7 show samples of the M1, M60, APC and background NN results.

A similar hidden node analysis was done to yield the distinguishing nodes as listed in Table 2.

M1 INPUT SPECTRUM

0 'Jn 40 W tO 100 laO 140

HIDDENACTIVATIONLEVEL

Figure 4 M1 NN input, hidden and class activation levels
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M60 INPUT SPECTRUM

20 40 80 80 100 120 140

HIDDENACTIVATIONLEVEL CLASSACTIVATIONLEVEL

Figure 5 M60 NN input, hidden and class activation levels

APC INPUT SPECTRUM

J

0

..... i.

_I0 40 80 I0 100 1_I0 140

HIDDENACTIVATIONLEVEL CLASSACTIVATIONLEVEL

Figure 6 M114 NN input, hidden and class activation levels

AMBIENT INPUT SPECTRUM

40 An _0 100 1_ 140
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Figure 7 Ambient NN input, hidden and class activation levels
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Target

UH-I

M1

M60

APC

Ambient

UH-I

19,40,74

Hidden nodes for class se

M60M1

19,40,74

Table 2.

18,19,20,

52,74

40

20,40

17,29,40,64,

74,78

40

20,22,75,78

18,22,29,32,

52,56,64,68,.

7,4,75,78

mration

APC

18,19,20,

52,74

20,40

20,22,75,78

18,20,29,52,

74

Ambient

17,29,40,64,

74,78

18,22,29,32,

52,56,64,68,

74,75,78

18,20,29,52,

74

Analysis of the hidden nodes also revealed that some nodes did not assist in the

classification of any of the targets. Hidden nodes, numbers 2, 16, 34, 46, 73 and 79, yielded the

same hidden activation level for all inputs. This suggests that the NN could have learned the

same amount of information with less hidden nodes.

The test set was used to determine overall correct classification. Results showed greater

than 98% classification for all classes. A system user may want to know how confident an

identification is at a particular time. Confidence levels were calculated for each class by using

the difference of the highest activation level and the second highest class activation level divided

by the maximum activation level difference. Values should range between 0.0 and 1.0. Ideally

confidence levels should be high for correct identifications and low for incorrect identifications.

The confidence levels of the NN shown in Figure 8 adhere to these guidelines. Notice that for

each of the classes, if the NN identification was correct the confidence level was 0.9 or above.

However, when the NN identification was incorrect the confidence level was 0.6 or below.

178



1

X X X X

d

I.IJ
o
z
ILl
r_
I.L
Z

8

0.8

0.6

0.4

i"-'1

r-'l

r-i

O

X CORRECT ID
r-i INCORRECT ID

[El

UH1 M1 M60 APC AMBIENT

Figure 8 Confidence levels for a trained NN: correct ID vs incolTect ID

CONCLUSIONS

ANN has been used to successfully identify the acoustic emissions of ground vehicles

and helicopters. Initial analysis indicates that a high level of confidence can be associated with

the identification using a NN classifier. The hidden node analysis demonstrated that the hidden

layer is distinguishing between classes using the target specific input features. The analysis also

indicated that a smaller number of hidden nodes would suffice for this particular example. The

use of ambient or background data as an output class could prove quite useful in determining
when no target is present.

ANN trained using a fairly large database could improve the classification performance

of existing acoustic sensors. The generalization capability characteristic of a NN will enhance

the performance of acoustic sensors.
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Remotely sensing and classifying military vehicles in a battlefield environment have

been the source of much research over the past 20 years. The ability to know where threat

vehicles are located is an obvious advantage to military personnel. In the past active methods

of ground vehicle detection such as radar have been used, but with the advancement of

technology to locate these active sensors, passive sensors are preferred. Passive sensors

detect acoustic emissions, seismic movement, electromagnetic radiation, etc., produced by the

target and use this information to describe it. Deriving the mathematical models to classify

vehicles in this manner has been, and is, quite complex and not always reliable. However,

with the resurgence of artificial neural network (ANN) research in the past few years,

developing models for this work may be a thing of the past. The purpose of this paper is to

present preliminary results from an ANN analysis to the tank signatures recorded at the Joint

Acoustic Propagation Experiment (JAPE) at the US Army White Sands Missile Range, NM,

in July 1991.

BACKGROUND

Neural Networks

An ANN can be trained to find generalized patterns in data. The ANN is trained by

analyzing a series of training examples for which the appropriate response is known. Once

the ANN has been sufficiently trained, it can process unknown data and indicate which

category or pattern the data most closely fits. The advantages of an ANN over an analytic

model are twofold. First, an ANN is a general algorithm. It can be used in countless

applications and its basic structure never changes, while a model must be modified for each

investigation. The second advantage is speed. Given a sufficient training set and moderate

computing power, an ANN can be developed to classify data in a fraction of the time it

would take to produce a model to perform the same function.
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AcousticDataAcquisition

The acousticdatawere acquiredduring theJAPE by placing microphonesat several
distancesfrom the test track. The datausedin this paperwere measuredby a microphone
located10m from the centerof thetrack. The track wasapproximately3.5 km long and
was relatively flat and straight. The microphoneswere placed1 km from the southendof
the track nearthe southtower. The tank startedat either endof thetrack andpassedat a
constantvelocity, generallyabout20 kph. A total of tenrunswere acquiredfor eachtank,
five in theearly morning (0000to 0600hours)and five in the late morning (0900- 1100).

Tank Descriptions

The tanksusedat JAPEwere anM1 andM60, both US vehicles. Both of these
tankswere usedto train the ANN. The M60 wasthe United States'main battle tankduring
the 1960's. It's poweredby a 750 hp dieselengineand weighs52.6 tonnes. The M1 is the
current US main battle tank. It usesa 1500hp gasturbineengineand weighs57.1 tonnes.
The turbine enginein theM1 gives it a uniqueacousticsignaturethat is different from most
tanks.

PROCEDURE

NeuralNetwork Configuration

An ANN consistsof a networkof neurons. Eachneuronis a crude mathematical
equivalentof a biological neuron. It receivesmultiple inputs, sumsthem, passesthis sum
througha transfer function (usuallya sigmoidformula), andoutputsthe result. These
neuronsaregenerallyplacedin layers. Theoutputsfrom the neuronsin thepreviouslayer
neuronsare fed into the input of theneuronsin the current layer. Eachinput to a neuronis
weighted,andit is theseweightsthat arealteredwhenthe ANN undergoesthe iterative
training process. The greaterthe weight the greaterthe influencethat input hason the
output. By changingtheseweights, theANN selectswhich featuresin thetraining setare
important for classification.

The ANN programusedwas freewareobtainedover theInternetnetwork and was
written in the C programminglanguage. It wastestedextensivelywith simplepattern
recognitionproblemsandproved to be robust. The softwarewascompiledto run underDOS
usingthe Intel 32-bit C compiler, aswell ason the Cray Y-MP underUNIX.

ThreebasicANN configurationswere tested. The first two had onehiddenlayer with
20 and50 neurons,respectively. The last hadtwo hiddenlayerswith 50 neuronsin the first
layer and20 in the second. The output layer consistedof two neurons. The first yieldeda
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one for an M1 and a zero for an M60, while the second produced a zero for an M1 and a one

for an M60. All neurons implemented the sigmoid transfer function and were fully

connected. All networks were trained by the backpropagation technique.

Training Set

Selection

The primary training set consisted of two complete early morning runs, one of an M60

and one of an M1. Both travelled 1 km south of the closest point of approach (CPA) to the
microphones to 2.5 km north of CPA. The first set was selected to determine if this

minimum number of runs would be sufficient to train an ANN to recognize tank signatures

from other runs. In addition, a second set of four runs was briefly used to determine if one

pass in each direction was sufficient for each vehicle. It consisted of the two passes used in

the first set plus two passes of the vehicles travelling from north to south.

Processing

The recorded acoustic data were digitized by an 80486 Personal Computer (PC) based

16-bit Analog to Digital (A/D) board at 2048 samples per second. Fast Fourier transforms

(FFT's) were performed on each second of this data with only 1 through 100 Hz retained for

the training set. Only FFT magnitude information was used. Each FFT was normalized to

the largest frequency component within it. Table 1 shows the training sets used.

Training Procedure

The one second FFTs were ordered randomly in the training set without regard to run

or time into the run. The ANN program took this random training set and trained itself by

sequentially passing through the set. So while the training set was random, the randomness

was the same for every iteration. One iteration was defined to be one complete pass through

the training set. Several combinations of ANN configurations and training parameters were

used (Table 2).

Testing Set

Selection

Two test sets were used. The first consisted of two runs, one each of the M60 and

M1. One north to south pass was chosen at random from the early morning passes for each

vehicle. The second set also contained two runs, but both were south to north passes. As
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with the first set, one run was chosen from the early morning passes.

used because it matched the vehicle direction of the first training set.

information.

This second set was

See Table 3 for more

Processing

The processing of the testing sets was identical to the training sets, with the exception

that both testing sets contained 700 examples.

Testing Procedure

Since randomness in the testing set is not important, the examples were placed in

temporal order by run number. The ANN processed this data using the neural weights it

calculated during its training phase. Table 2 shows which test sets were tested with each

ANN configuration.

RESULTS

The percentages of correct classifications for ANN with 0.9 momentum, 0.7 training

rate, and training set 1 are shown in Figure 1. Most of the percentages hovered around 60

percent, with the 50 neuron case classifying the best on test set 1 with an average of 63

percent correct. The two layer ANN (50 and 20 neurons) performed the best on the second

test set at 63 percent as well. The same tests using a momentum of 0.7 produced the results

illustrated in Figure 2. This decrease in momentum rate improved the performance of the 20

and 50 neuron cases to over 60 percent for the second test set, but slightly decreased the two

layer performance.

The responses from the individual vehicle passes in the test sets for the 0.9 momentum

and 0.7 training rate configuration are shown in Figure 3. The M1 pass performed better

than the M60 pass for test set 1, with the opposite being true for the second set. For the 0.7

momentum case in Figure 4 the ANN predicted the M1 better than the M60 for all cases

except for the 20 neuron case using the second test set.

ANN configuration three (Table 2) was trained using the second training set (Table 1).

It correctly identified the vehicle 63 percent of the time, an improvement of 5 percent over

using the first training set.
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CONCLUSIONS

From the training and testingsetsused,theaveragecorrect prediction ratewas
between60 and 70 percent. This prediction accuracyis remarkableconsideringthe small
amountof analysisperformed. Altering the numberof iterationsandnumberof neurons
seemedto havelittle effect on this percentage.However, this percentagecanprobably be
improvedsignificantly by improving the training set. The frequencyrangeused(1 to 100
Hz) wasprobablytoo narrow in bandwidthandtoo low in frequency. Also, the numberof
passesusedin the training setwasprobably too few.

RECOMMENDATIONS

To improve the predictionaccuracyof the ANN severalimprovementsare suggested
below.

1. Improve the training set - This includes increasing and shifting the frequency

range of the FFT and increasing its frequency bin widths. Also, training the ANN only on

acoustic data when the tank is relatively close to the microphone may improve the response,

because of the capability of an ANN to generalize information.

2. More training examples - The one ANN trained on four vehicle passes showed

some improvement over the two vehicle pass case. More examples could be obtained by

using data gathered from several neighboring microphones and geophones.

3. Optimize the ANN configuration - Adjusting the momentum, training rates,

hidden layers, and neurons per layer would significantly improve the accuracy. Additional

adjustments include changing the neural transfer function and connection configuration.
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Table 1. Vehicle runs used in the training set.

Training
Set

Number
I

JAPE
Run

Number
078

090

078

079

090
091

Vehicle
M1

M60

MI
M1

M60

M60

Number of

Examples
375
375

350

350

350

350

Total

Examples

750

1400

Note: Even numbered runs are south to north

Odd numbered runs are north to south

Combination
1
2

3

4

5

6
7

8

9

10

11
12

Momentum
0.9

0.9
0.9

Table 2. ANN training combinations.

0.9

0.9

0.9

0.7

0.7
0.7

0.7

0.7

0.7

Learning
Rate

0.7
0.7

0.7

0.7

0.7

0.7

0.7
0.7

0.7

0.7

0.7
0.7

Number of

Layers
1

1
2

1

1

2

1
1

2

1

l

2

Neurons in

Layer I
20

50

50

20

50

50

20

Neurons in

Layer 2
N/A

N/A
20

N/A

N/A

20

N/A

50 N/A

50 20
20 N/A

50 N/A

50 20

Iterations
500

5O0

5OO

I000

I000

I000

250

250

250

5OO

500

500

Evaluated Using
_MS_I

YES

YES
YES

YES

YES

YES

NO
NO

NO

YES

YES
YES

Test Set 2
YES

YES

YES
YES

YES

YES

YES

YES

YES
YES

YES

YES

Table 3. Vehicle runs used in the test set.

Test

Set

Number

JAPE

RUn

Number Vehicle

2[ 0771 MI

091 [ M60

076[ MI
0861 M60

Number of

Examples
350!
350

350

350

Total

Examples

70O

700

Note: Odd numbered runs are north to south
Even numbered runs are south to north
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Figure 1. ANN Configuration Comparison

0.9 Momentum, 0.7 Training Rate, Training Set 1
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Figure 2. ANN Configuration Comparison
0.7 Momentum, 0.7 Training Rate, Training Set 1
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Figure 3. Individual Run Responses
0.9 Momentum, 0.7 Training Rate, 500 Iterations
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Figure 4. Individual Run Responses

0.7 Momentum, 0.7 Training Rate, 500 Iterations
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