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Abstract

A real-time guidance scheme for the problem of maximizing the pay-
load into orbit subject to the equations of motion for a rocket over a spheri-
cal, nonrotating Earth is presented. An approximate optimal launch guidance
law is developed based upon an asymptotic expansion of the Hamilton-Jacobi-
Bellman or dynamic programming equation. The expansion is performed in
terms of a small parameter, which is used to separate the dynamics of the
problem into primary and perturbation dynamics. For the zeroth-order prob-
lem the small parameter is set to zero and a closed-form solution to the zeroth-
order expansion term of the Hamilton-Jacobi-Bellman equation is obtained.
Higher-order terms of the expansion include the effects of the neglected pertur-
bation dynamics. These higher-order terms are determined from the solution
of first-order linear partial differential equations requiring only the evaluation
of quadratures. This technique is preferred as a real-time on-line guidance
scheme to alternative numerical iterative optimization schemes because of the
unreliable convergence properties of these iterative guidance schemes and be-
cause the quadratures needed for the approximate optimal guidance law can
be performed rapidly and by parallel processing. Even if the approximate solu-

tion is not nearly optimal, when using this technique the zeroth-order solution
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always provides a path which satisfies the terminal constraints. Results for
two-degree-of-freedom simulations are presented for the simplified problem of
flight in the equatorial plane and compared to the guidance scheme generated

by the shooting method which is an iterative second-order technique.
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Chapter 1

Introduction

An approach to real-time optimal launch guidance is suggested here
based upon an expansion of the Hamilton-Jacobi-Bellman or dynamic pro-
gramming equation. In the past, singular perturbation theory has been used
in expansion techniques used to solve optimization problems [1, 2, 3]. For
singular perturbation mecthods the states are split up into a set of ‘fast’ and
‘slow’ variables. The solution is then sought in two separate regions; one re-
gion where the fast states are dominant and an outer region where the slow
states are determined. A composite solution can then be determined by com-
bining the two solutions. Matching asymptotic expansions is one method for
obtaining the final solution. This research uses a regular asymptotic expansion
which is assumed valid over the entire trajectory of the launch optimization
problem. An example of a launch optimal control problem is to determine the
angle-of-attack profile which maximizes the payload into orbit subject to the
dynamic constraints of a point mass model over a rotating spherical Earth.
The solution of this type of optimization problem is obtained by an iterative
optimization technique. Since the convergence rate of iterative techniques is
difficult to quantify and convergence is difficult to prove, these schemes are not

suggested to be used as the basis for an on-line real-time guidance law.

In contrast, an approximation approach is developed which is based



upon the physics of the problem. Thrust and gravity are assumed to be the
dominant forces encountered by the rocket while the angle-of-attack is usually
kept small in order to minimize the effect of the aerodynamic forces acting
on the vehicle. Numerical optimization studies [4] have been performed which
support this assumption. These results also indicate that ignoring the aero-
dynamic pitching moment has a negligible eflect on the performance of the
vehicle. Thus the launch problem would seem to lend itself to the use of per-
turbation theory. It is shown that the forces in the equations of motion can be
written as the sum of the dominant forces and the perturbation forces which
are multiplied by a small parameter ¢, where € is the ratio of the atmospheric
scale height to the radius of the Earth. The motivation for this decomposition
is that for ¢ = 0, the problem of maximizing the payload into orbit subject to
the dynamics of a rocket in a vacuum over a flat Earth, is an integrable opti-
mal control problem. The perturbation forcing terms in the dynamics produce
a nonintegrable optimal control problem. However, since these perturbation
forces enter in with a small parameter, an expansion technique is suggested
based upon the Hamilton-Jacobi-Bellman equation. The expansion is made
about the zeroth-order solution determined when € = 0. This zeroth-order
problem is now solved routinely in the generalized guidance law for the Space
Shuttle [5] with a predictor/corrector scheme employed to guide the vehicle

along the desired path.

The higher-order terms of the expansion are determined from the
solution of first-order linear partial differential equations which require only
integrations which are quadratures. Quadratures are integrals in which the in-

tegrand is only a function of the independent variable. Previous solution meth-
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ods applied to guidance problems have motivated the approach suggested here.
These include the explicit guidance laws, E-guidance, developed by George
Cherry [6] for the Apollo flight. By writing the dynamics strictly as functions
of the independent variable a solution was obtained by quadrature integra-
tions. Past applications [7, 8] of the proposed scheme, have shown that very
close agreement with the numerical optimal path is obtained by including only
the first-order term. Because no iterative technique is required, this scheme is

suggested as a guidance law since the quadratures can be performed rapidly.

Chapter 2 contains a general formulation of the perturbation prob-
lem associated with the Hamilton-Jacobi-Bellman partial differential equation
(HJB-PDE). The technique for determining the higher-order expansion terms
due to the perturbation forces caused by the atmosphere and the spherical
Earth model is discussed. Lastly, the recursive relationship for the control is
presented. In Chapter 3, the characteristics for the Advanced Launch System
(aka National Launch System) and the general equations of motion in terms of
the small parameter ¢, are given. For ¢ = 0, a simplified optimal launch problem
in the equatorial plane is formulated, and its solution in terms of elementary
functions is given in Chapter 4. The coordinate system transformation used
to obtain the analytic solution is included. Also discussed is the linking of the
trajectory subarc for the first stage to the subarc of the second stage. In Chap-
ter 5 the first-order correction term to the control is determined. Results are
presented in Chapter 6 and compared to the shooting method solution, which
is a numerical iterative second-order optimization technique. It was found that
during much of the first stage the aerodynamics are not small when flying the

optimal vacuum trajectory. Chapter 7 presents a method for reshaping the



zeroth-order trajectory by including an aerodynamic effect. This effort cen-
ters on the use of constant acrodynamic pulse functions which are obtained by
averaging the aerodynamics along the zeroth-order path during various time
intervals. Lastly, Chapter 8 relates perturbation theory and the Calculus of
Variations with the expansion of the Hamilton-Jacobi-Bellman equation. The

equivalence of the two solution methods is presented.



Chapter 2

The Peturbed Hamilton-Jacobi-Bellman Equation

The optimal control problem can be formulated as one which mini-
mizes a performance index subject to a set of nonlinear dynamics and a set of
terminal constraints; that is,

Minimize
J=(ys 7s) (2.1)
with the dynamics

subject to the terminal constraints
Yy, 7)) =0 (2.3)
and the initial conditions
y(t) = = = given (2.4)

Note that y is an n-dimensional state vector, u is an m-dimensional control
. . . . N .
vector, ¢ is a small parameter, 7 is the independent variable, § = dy/dr, t is

the initial value of the independent variable, and z is the initial state at ¢.

Eq. (2.2) is separated into two portions: primary and secondary dy-

namics. Note that the control appears in both parts. The primary dynamics
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can be assumed to dominate over the secondary dynamics because the sec-
ondary dynamics are multiplied by the small parameter (e) and therefore have

a small perturbing effect on the system.

The Hamilton-Jacobi-Bellman (H-J-B) equation [9] is
= Po=H™ =min H = P:{/™" + ¢g] (2.5)

where U is the class of piecewise continuous bounded controls and u™(z, P, t)
is obtained from the optimality condition H, = 0 and from the assumption
that the Legendre-Clebsch condition is satisfied (Hyy is positive definite). In
addition, f?* = f(z,u,t) and ¢g** = g(z,u’,t). The Hamilton-Jacobi-
Bellman equation will be used to determine the optimal control policy which

minimizes the cost criterion J.

The function P(z,t) is called the optimal return function and is de-
fined as the optimal value of the performance index for a path starting at z and
¢t while satisfying the state equations (2.2) and the terminal constraints, i.e.,
P(z,t) = é(ys,7s) at the hypersurface ¥(ys,7) = 0. The Hamilton-Jacobi-
Bellman partial differentional equation (2.5) can be interpretated [10] as the
derivative of the optimal return function P. The optimal return function is
a constant since it is dependent only on the terminal conditions and thus the
total derivative of the optimal return function along an extremal path must be
Z€ro.

ar

= P B+ g™ =0

Each point in space belonging to the optimal trajectory must give the same

value to the optimal return function as the optimal P(z,t) since the trajectory



is considered optimal from the initial conditions (z,t) to the terminal manifold.
Now, if a non-optimal control is chosen at any point in the trajectory, then the
resulting terminal state, as gencrated by the system cequations, must produce a
value for the optimal return function equal to or greater than the optimal value.
Thus the control that minimizes the cost is the control which at each point of
the trajectory causes the derivative of the optimal return function to be zero.
This is the fundamental notion represented by the Hamilton-Jacobi-Bellman
equation. Note that z and ¢ can be cither the initial or the current state and
time, respectively. In this context, it will be used to represent the current state
and time. Also note that every admissible trajectory must satisfy the terminal

constraints W (y,,77) = 0.

P(z,t) can be expanded as a scries expansion in € as
w .
H=3 P 0e (2.6)
=0
and the optimal control can also be expanded in a series expansion as
u”(z, Py, t) = Zu, (z,t)¢ (2.7)

where u" is obtained by substituting Eq. (2.6) into Eq. (2.7) and expanding
the function. Therefore, it is possible to obtain the control law in feedback

form.

The zeroth-order control, u,, is the optimal control for the zeroth-
order problem where ¢ = 0. If an analytic solution can be obtained for the
zeroth-order problem then higher-order solutions for the control can be ob-

tained by expanding the Hamilton-Jacobi-Bellman equation

Ptzip.-,(x,t)e": - (i[ﬂx(m ) (Zfe +Zg, ) (2.8)

i=0



where the dynamics have been expressed as expansions of the form

Pz, u ) = S Sz, )¢ (2.9)
1=0

9™ (z,u™,t) = igi(x,u, t)e (2.10)
i=0

Expanding Eq. (2.8) and collecting terms of equal powers in ¢, produces the

following set of linear, first-order, partial differential equations

1—1
Po+P.f" = =Y P.(fic;+gi01) 1=12,... (2.11)
j=0

= Rz, t,P_y,..., R)

The expansion of the Hamilton-Jacobi-Bellman equation will be detailed in the

next section.

2.1 Expansion of the H-J-B Equation

The solution to the optimal control problem requires the evaluation of
the Lagrange multiplicr, P,. Note that the quantity F; is the partial derivative
of the optimal return function with respect to the state y at the initial time
or the current time (since at 7 = t, y = z). The function P, is expanded in
a series in the small parameter e. The terms of this series expansion, P,_, are
evaluated in terms of quadrature integrals which are functions of R;. Recall that
the functions R; require the previously evaluated terms P,,, fi_;, and g;—;_,
for j = 1,...,i — 1. The coefficients f, and g; are the i** term in the series
expansion of f and g given in Eqgs. (2.9)-(2.10). Since f and g are assumed to

be sufficiently differentiable, they are expressible in a power series in € in terms



of the control. For a scalar control, this yiclds

fPx,u ) = i[(lf)l_f(y_ﬂ mm()) <§ ujej)i] (2.12)

=0 Z' (’3u‘

|/ 109y, u,T) > ' ;
gz, ut t) = ZKF—‘W . )( ujcf) (2.13)

i=0 . z,t,e=0 j=1

The above equations assume that the zeroth-order control, ug, is the dominant
term in the series (Eq. (2.7)). This implics that the higher-order correction
terms, wuy, uy, -- -, have a much smaller effect on the optimal return function,
P(z,t), than the zeroth-order term. The first four terms of f and ¢ are obtained

by use ol I2gs. (2.12) and (2.13).

fo = [Pz, u0,t) = f(z,u0,t) (2.14)
fi = wfulz,ue,t) (2.15)
2
foo= Tz o) + wfule w0, ) (2.16)
3
f3 = "(j—lfuuu(l','lio,t) + U]'U.quu(Z',U(), t)
+uy fo(x, ug, t) (2.17)
go = g"p‘(:c,uo,t):g(a:,uo,t) (2.18)
g1 = wgulr, uo,t) (2.19)
2
u
g = —2iguu(:1:,u(),t)+uggu(a:,uo,t) (2.20)
u
gz = Eguuu(xaumt)+u1u29uu(1‘;u03t)

+U3gu(.'l,', Up, t) (221)
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Note that in taking the partials with respect to u in Egs. (2.12) and (2.13), the
partial is taken first and then the partial is evaluated at x,t with e set equal to

zero. In other words, the partials are evaluated along the zeroth-order path.

2.2 Solution by the Method of Characteristics

The H-J-B equation (Eq. (2.5)) is a first-order partial differential
equation. The expansion of the H-J-B equation results in the first-order dif-
ferential equation for P, stated in Eq. (2.11) with the boundary condition
P(zy,ty;) = 0, for ¢ = 1,---. Recall that [P denotes the dynamics of the
zeroth-order problem (¢ = 0) using the zeroth-order control v = ug. Recall also
that the forcing term R; is only a function of expansion terms of P of order

less than 1.

The method of characteristics is used to solve a set of linear or quasi-
linear partial differential equations. This technique [11] requires the identifi-
cation and solution of characteristics curves. The characteristic direction ds is

defined by the equation
P, (d7)s + P, (dy)s = (dP,)s i=12,-- (2.22)
Egs. (2.11) along with (2.22) can be put in the form

1 Jfo P, R,
{ (dr)s (dy)s ] [ P, } N [ (dP,), } (2.23)

The characteristic directions for Eq. (2.23) are given by the solution of the
differential equation that is obtained by setting the determinant of the matrix

given in Eq. (2.23) equal to zero, such that

(dy)s — foldr)s =0 = (dy/dr),=fo (2.24)
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The subscript s denotes the characteristic direction. Therefore, the charac-
teristic curves of the equations, for any order term of B, are given by the

zeroth-order optimal trajectory
:l:/() = fo (225)
whose solution is denoted as yo(T; z,t).

The solution for P; is given by
Pz,1) = —/tt’ ROdr (2.26)
where R? is defined along the zeroth-order path as
R} = Ri(yo, 7, Pci (%0, 7), -+, Poyo, 7)), =12 (2.27)

Therefore, having already determined P terms of order less than 1, a solution
for P, can be determined by integrating [2; from the current ‘time’ to the final

‘time’ along the zeroth-order path.

2.3 Determination of the Optimal Control

Since the primary and secondary dynamics, f and g, are expanded
in terms of the control (Egs. (2.12) and (2.13)), the control expansion terms
Uo, U1, Uz, - - -, Need to be determined. The optimality condition provides the

necessary tool to obtain these control terms. It can be stated as

Pulfu+cou) = [i:‘a P [g(ﬁu +eg)e =0 (2.28)

By expanding and multiplying out the terms of the two power series and equat-

ing like powers of ¢, the following relations are obtained

e : P fu=0 (2.29)
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61 . P(), [Qu + U]fuu.] + Pleu =0 (230)
1
62 : PO: [ulguu + 511?fuuu + u2fuu]
+1)1z[.(}u + ulfuu] + PQIfu =0 (231)

Note that ug, the optimal control for the zeroth-order problem, can
be solved using Eq. (2.29). Similarly, u; can be solved using Eq. (2.30) and u,
can be solved using Eq. (2.31).

2.4 Determination of the Forcing Functions

Egs. (2.14)—(2.21) and (2.29)—(2.31) can be used to solve for the

forcing functions R; where Eq. (2.11) can be restated as
&z_inz(fi—j+!]i—J—l) 1=1,2,... (2.32)
j=
Using the above equations, R, is
Ri=—Po,(fi +90) = —Po.(wi fu + 9) (2.33)
With the use of the optimality condition of Eq. (2.29), R, becomes
Ry =—P, 90 (2.34)
Similarly, the equation for f25 is

Ry=—Po (fa+ 1) — Pi.(fi + go) (2.35)

R, simplifies to the following equation when Egs. (2.14)—(2.21) and (2.29)—(2.30)

are substituted into the previous equation.

2

U
R, = ?’Poz fuw — P1.go (2.36)
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Finally, 23 can be expressed as

Ry =—Po,(fs+ 92) — P.(fa+ g1) — Po.(f1 + 90) (2.37)

This simplifies to

RS == PO, [%?fuuu + ul“?fuu - ’u2_¥guu]+Pl: [uéfuu] - P2:90
= PO; [?_;fuuu + E12ﬂfuu] _Plz [%l'gu] - P2: [gO + %fﬂ] (238)

Using the expression for R;, the expression for the Lagrange multipli-

crs, P;,, can be expressed as

P _6H__/t‘fa&

ot at,

Once these P;, are determined, they can be used in the optimal control ex-
pansion (Eq. (2.7)). As made apparent in the above equations, the solution
becomes increasingly complex as the higher-order correction terms rely on the

state information from the lower-order trajectories.



Chapter 3

Modelling of the ALS Configuration

This chapter presents the modelling characteristics and the equations
of motion for the rocket. Included are sections on the properties of the propul-
sion, aerodynamics, masses, gravity, and the atmosphere. A small expansion
parameter, the ratio of the atmospheric scale height to the radius of the Earth,
is then used to separate the dynamics into the primary and perturbation ef-
fects. Lastly, the equations of motion for the zeroth-order problem of flight in

a vacuum over a flat Earth arc presented.

The Advanced Launch System (ALS) is designed to be an all-weather,
unmanned, two-stage launch vehicle for placing medium payloads into a low
Earth orbit. The spacecraft (fig. 3.1) consists of a liquid rocket booster with
seven engines and a core vechicle that contains three engines. All ten liquid
hydrogen/liquid oxygen low cost cngines are ignited at launch. Staging occurs
when the booster’s seven engines have exhausted their propellant. The three
core engines burn continuously from launch until they are shut down at or-
bital insertion. Launched in the equatorial plane and ending at the perigee
of a 80nm by 150nm transfer orbit, the flight occurs in two-dimensions over a
nonrotating, spherical Earth. Note, the booster is assumed to ride on top of

the core throughout the first stage trajectory.

14
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Figure 3.1: ALS Vehicle Configuration
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3.1 Equations of Motion for the Launch Problem

The general equations of motion for a launch vehicle modelled as a
point mass over a spherical, nonrotating Earth are given for flight in three-

dimensions as

h = Vsiny (3.1)
V = (Tcosacrzsﬁ -D)_ gsin~y (3.2)
. [——(Tcosasinﬁ—Q)sinu+(Tsina+L)cosu]
T = mV
4 g
+[m — V] cos Y (3.3)
. [(Tcosasinf — Q)cosp+ (Tsina + L) sin p)
X = (mV cosv)
V tan ¢ cosycos x
3.4
(e + ) G4
. Vcosycosx
b = (re + h) cos ¢ (3:5)
. V cosysinx
= — 3.6
? (re+ 1) (39)
m = —0Tyac (3.7)

The vehicle coordinate system is shown in figure 3.2. Note, the engines are not
gimbaled and the aerodynamic pitching moments are neglected. For a vertical
launch Eqs. (3.3)-(3.4) experience a singularity caused by the velocity being
zero and by a flight path angle of 90 degrees, respectively. Therefore, a pitch-
over maneuver must be made at launch and equations of motion written in a

different coordinate frame must be used.



mg

Figure 3.2: Coordinate Axis Definition
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3.2 Propulsion

Thrust is assumed to act along the centerline of the booster-core vehi-
cle configuration and to be the same constant value for each engine. The total
thrust of the rocket changes after staging as the seven engines of the booster

are discarded, leaving only the three engines of the core vehicle.
T = (Tyac — nPAe) Tyac = 1 X 580,110. 1bs.

where T, is the total value of the thrust when acting in a vacuum and the
number of engines is 7. = 10 for the first stage and n = 3 for the second stage.
Notice the variation of the thrust due to the atmospheric pressure p is given
for an underexpanded nozzle and thus a conservative value for thrust is used.
The value of the engine nozzle exit arca is A, = 5814.8/144. sq ft. The specific
fuel consumption of the rocket is

1 sec
Iypgs ft

g =

(3.8)

and the specific impulse I,, = 430. scconds. The value of ¢ remains the same

after staging occurs.

3.3 Aerodynamics

Since sideslip causes drag, the vehicle is assumed to fly at zero sideslip
angle, so that only the angle-of-attack gives the orientation of the vehicle rel-
ative to the free stream. The direction of the lift vector is then controlled
through the velocity roll angle. With no sideslip, the side force Q is identically

zero. Therefore,
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Mach

Figure 3.3: First Stage Drag Model

Figure 3.4: First Stage Lift Model
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L= CLQS, D= CD(]S, Q = CQqS =0 (39)

where C, Cp, Cq are the lift, drag, and side force coefficients, respectively, S is
the cross-sectional area of the combined vehicle (booster + core), and g = %pV2
is the dynamic pressure. The cross-sectional area S is assumed to be the same

constant value before and after staging occurs.

The aerodynamic data has been provided in tabular form [4] and is
modelled by polynomials in o with Mach-number-dependent coefficients. Ior

the first stage, the aerodynamic cocflicicnts arc written as

CD(M,Q) = CDO(A/[) + C’[)a.‘,(]\/[)()!2 + C’[)a:‘(]\/[)al3

CLM,a) = Cp,(M)a (3.10)

where the Mach-number-dependent terms have been obtained from cubic-spline
curve fits of the tabular data. Three-dimensional plots [12] of the first stage
drag and lift models are shown in Figures 3.3 and 3.4. Note that the drag
coefficient of this vehicle at supersonic and hypersonic speeds has a minimum
at a positive angle of attack as shown in Figure 3.3. This is caused by the

aerodynamic shielding of the booster by the flow field of the core.

After staging, the vehicle operates in the hypersonic flow regime and

the aerodynamic force coefficients are modelled as

Cp(c) = Cp, + Cp,a + C002a2

CL(O!) = C’Laa+C’Laza2 (3.11)

with constant coefficients Cp, = .2011, Cps = 0.0, Cp_, = 001811, Cp, =
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Figure 3.5: Second Stage Aerodynamic Model

039962, and C, , = .00100272. The aerodynamic plot of C; and Cp is pro-

vided in figure 3.5.

3.4 Mass Characteristics

The inert weights of the booster and core, the weight of the propellant,
the payload and payload margin, and the weight of the payload fairing comprise
the ALS takeoff weight. The fairing encases the payload and is carried along by
the core vehicle until orbital insertion. The vehicle mass and sea-level weight
characteristics are shown in Table 3.1. The time at which staging is to occur is

obtained from the first stage mass flow rate and the propellant of the booster

— Mpropellant _ 153.54 sec.

tsta.ge -
O lyac
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Vehicle Stage | Vehicle Component Take-off Weight
(Ibs.)

Inert Mass 176,130.00

Propellant 1,479,180.00

Core Payload 120, 000.00

Payload Margin 12,000.00

Payload IFaring 39,120.00

Total Core 1,826,430.00

Inert Mass 216,880.00

Booster Propellant 1,449,980.00

Total Booster 1,666,860.00

Core + Booster | Total at Take-off 3,493,290.00

Table 3.1: Vchicle Mass Characteristics

where the vacuum thrust per engine is Tyec = 580110.

Once the stage time, the total first stage mass flow rate, the takeoff
weight, and the inert weight of the booster are known, then the weight of the
vehicle at the end of the first stage and the initial weight in the second stage

can be calculated. For this vehicle the values are

Mstager = 1421890. 1bs.,  Mstage2 = 1250010. 1bs., Amsage = 216880. Ibs.

3.5 Gravitational and Atmospheric Models

The gravitational acceleration is modelled as an altitude-varying func-

tion by the inverse square law,

7.2

9= gs(re + h)?
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but will be assumed constant in the zeroth-order problem to facilitate obtaining
an analytic solution. The constant values for gravity at sea-level and for the

radius of the Earth are

f
gs = 32.174 —tz Te = 2.09256725 x 107 ft.
sec

The atmospheric density is expressed by the exponential function,

_(rc+h)/hl —Te/h. e—h’/h‘ — pse_h/h' (3 12)

p = pre = pr€

where h, is the atmospheric scale height and py is the sea-level reference density.

The values for these parameters are

slugs

, = .002377
p i3

h, = 23, 800. ft.

The form of the density is chosen to motivate the selection of a small
parameter to exclude the acrodynamics in the zeroth-order dynamics. If € is
chosen as

€ = he/Te (3.13)

and defining
S, by = 2L 3.14)

then by atmospheric properties §(¢, h) > 0. The exponential density also sat-
isfies the requirement [3] that the perturbation term in the dynamics remains
small, i.e.,

lirré o(e,h) — 0 (3.15)

Satisfaction of this property will allow more general atmospheric models to be

used in the launch problem.
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The atmospheric pressure is also expressed as an exponential function,
p = pee "/t (3.16)

where h,, is the atmospheric pressure scale height and p, is the sea-level reference

pressure. The values for these parameters are

lbs
ps = 2116.24 o = 23, 200. ft.

The speed of sound can be obtained by the relationship
Ip

508 = | —
p

with the specific heat ratio for air givenas ' =14

The gravity can be rewritten as

__gsh@ret+h) egsh(2re + h)re
= gs ('I"e + h)2 - !]s h,(Te + h,)2 (317)

where the expansion parameter has formally been introduced and the second
term is clearly small in comparison to the first term which is the value for

gravity at sea-level, gs.

3.6 Expansion Dynamics

In terms of the small parameter e, the full-order equations of motion

are rewritten as

= Vsiny (3.18)
- Tyac :
V = — cosacos § — gssin-y (3.19)
npAe're gsh(2re + h)re sin Y pSV"’C'D're

+e|—

i, oS acos B+ T e 2mh,
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. Tvac . : ; s COSTY
¥ = ———(cosasinFsinu — sinacos ) —
mV 4

npAere
mVh,
pSV
2
h (2r. + h)
(rc + h V(rp + h)?

(cos asin Fsin yu — sin a cos 1)

(CQ sing + Cp,cos pt)

) Z—i cos ¥ (3.20)

x = ;‘C(cos asin 3 cos i + sin arsin )
mV cosy

npAere _ . :
ML LT (cos asin 3 cos . + sin asin u)

Vre tan ¢ cosycos x

—(C,sinp — Cg cos 1) + (3.21)

mhy cos~y hs(re + h)

: |4 > /¢
§ — LIOSTYCOSX Iy (3.22)
T'e COS @ h

. V ~ <3 }
o = ————COSTW“X(l—e}—L (3.23)
[ Li

Where the binomial formula has been used to rewrite (re+h)~! for the longitude

and latitude since r. > h.

3.6.1 Two-Dimensional Flight

In this section the three-dimensional equations of motion are reduced
for flight in a great-circle plane (the X-Z plane) over a flat, nonrotating Earth.
If the vehicle is assumed to be restricted to {ly in the equatorial plane then
the lift, thrust, and velocity vectors all lie in the same plane and the roll angle
(1 = 0) is eliminated from the equations. Under the previously mentioned
assumptions of no side force (Q = 0) and no sideslip (8 = 0), the zeroth-order

equations of motion representing flight in a vacuum over a flat Earth become

h = Vsiny (3.24)
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y Tvac .
V = ——cosa — gysiny (3.25)
m

. Tuac . gs

v o= _psina—{rcosy (3.26)
. |4

§ = LS5 (3.27)

Te
m = —0Tye=m=mg— cTyac(T — T0) (3.28)

These are the system dynamics used to obtain an analytic solution to the

zeroth-order optimization problem presented in the next chapter.



Chapter 4

Zeroth-Order Optimization Problem

The solution to the zeroth-order optimization problem is derived by
a coordinate transformation. A canonical transformation from the wind axis
to the rectangular or local horizon coordinate frame allows the zeroth-order
problem to be solved analytically. The solution is in closed form up to some
constants that can be determined numerically to solve the two-point boundary
value problem. The conditions for connecting the second stage subarc to the

first stage subarc are then presented.

4.1 Optimization Problem Statement

In this section the zeroth-order optimization problem is presented.

The problem is to maximize the payload into orbit
J = —my
subject to terminal constraints on the altitude, velocity, and flight path angle,

hf = h’fcpcc’ vf = vf-pea) 7] = 7f‘p¢c

subject to the state discontinuity in the mass at a interior point where staging
occurs,

Mstage2 = Mstagel — Ams&age

27
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and subject to the equations of motion for flight in the equatorial plane.

h = Vsiny (4.1)
vV = T COS ¥ — g4 Sin (4.2)
T s
o= v sina — gV coSs Y (4.3)
i - V cosy (4.4)
Te
m = —oT = m=mp—oT(T— 7o) (4.5)

Note, in this section and when discussing the zeroth-order trajectory, the total
vacuum thrust will be represented by T and the subscript notation will be

dropped.

The Hamiltonian for this system can then be expressed as

) T . T s
H = AV siny + /\V(E cosa — gysiny) + /\,Y(W sina — chos v)  (4.6)

The zeroth-order control law determined by the optimality conditon is

T, . T
Hy = —E)\vsma—t—mz\qcosa=0 (4.7)

By the strengthened Legendre-Clebesch condition Ha, > 0 choose

_ M
tana = Vo
Vv
cosa = —
VIV + X2
sinae = — M (4.8)

JIVA)? + A2

Whereas the optimal control can be derived in terms of the states and Lagrange

multipliers, an analytic solution is not possible for the states and Lagrange
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multipliers written in the wind axis frame. Therefore, a coordinate transfor-
mation into the Cartesian reference frame is presented in the next section. In

section 4.3 an analytic solution is obtained using this transformation.

4.2 Zeroth-Order Coordinate Transformation

The analytic solution for the zeroth-order problem can be found in
the Cartesian coordinate system but the equations of motion of the full sys-
tem which include the aerodynamic forces are written in the wind axis system.
Therefore, to derive the zeroth-order control and the first-order correction to
the control the transformation of coordinates and especially the transformation
of the Lagrange multipliers must be known. This can be accomplished by a
canonical transformation [see appendix B] from the (6, ¢, h) coordinates to the
right-handed coordinate system (X,Y, Z), where X is positive in an eastward
direction along the equator, Z is positive pointing towards the Earth, and Y
is orthogonal to the X — Z plane. The relationship between the two reference
frames (see figure 4.2) is X = 7.0, Y = r.¢, and Z = —h. In two-dimensions,
the corresponding velocity coordinates (u,w) are considered positive in the pos-
itive X and Z directions, respectively. A necessary and sufficient condition [13)
for a canonical transformation is the equivalence of the Hamiltonians in the two

reference frames.

Hiy = AxdX + AydY + Apdh + Audu + Aydw (4.9)
Hwina = Xodf + Mpdd + Apdh + AvdV + A dy (4.10)
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Figure 4.1: Transformation of Coordinate Systems
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This equivalence is obtained through the Jacobian of the transformation. There-

fore, the transformation

u =V cos~y, w=—-Vsiny (4.11)

A | [ & A ]
MR

Av | COs 7y —siny | [ A,
Ay | | =Vsiny —Vcosy | Aw

This produces the transformation of the Lagrange multipliers,

requires

and thus,

Av = A, cosy — Aysiny (4.12)
Ay = =V(Aysiny + Ay cosy) (4.13)
Ao = Ty (4.14)
Ao = Ty (4.15)

and the transformation of the states,

V = Vu?+w? (4.16)

w
i = —— 4.
sin -~y v (4.17)

4.3 Zeroth-Order Analytic Solution in the Cartesian
Frame

In this section an analytic solution will be derived for the zeroth-order
problem of maximum payload into orbit for flight in a vacuum over a flat Earth.

This solution is made possible by the coordinate transformation presented in
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the previous section. The equations of motion in a Cartesian coordinate frame

are

= u (4.18)

Y = 0=Y=Y=0

= —w (4.19)
T
p = — 0 4.2
U — cosbp (4.20)
v = 0=v=1=0
T
p = ——sind s 4.21
w —sin0p +g (4.21)
m = —oT=>m=my—0oT(T— 1) (4.22)
The Hamiltonian is
T T .
H = Axu—  w+ /\"E cos 0, + /\w(——a sinfp, + gs) (4.23)

The zeroth-order control law is determined by the optimality conditon

T T
Hy = ——M\,sinf, — —A,cos, =0 .
o —Ausinby — — cos Oy, (4.24)

p

Therefore, using the strengthened Legendre-Clebesch condition the control be-

comes
Aw
tan()p = —x
0., = ____’\_“___
sinf, = _ (4.25)
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The Lagrange multipliers arc obtained using /.\y = —HyT
Ax = 0
A =0
A = —Ax
/\w = )\h.

with the boundary conditions

Ax(Tf) =Vy, /\h(Tf) = Vp, /\u(Tj) = Vy, /\w(Tf) = Vy

where vx, v, vy, vy, are unknown Lagrange multipliers associated with the ter-
minal constraints. For the unconstrained downrange problem, the solutions to

the adjoint differential equations arc

Ax = ux=0
A = un (4.26)
A = vy=0C, (4.27)
M = Cut (T —70) (4.28)

The equations of motion can be integrated by changing the independent vari-
able from time to mass and using the mass equation (Eq. (4.5)) to substitute

mass for 7. As a consequence, the Lagrange multipliers are rewritten as

A = G, (4.29)
m
/\w = éw—/\hﬁ (430)

M+ X = emP4bm+a (4.31)
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where
M
¢ = LTy (4.32)
2
b = ——=MCu (4.33)
o = C2+C (4.34)
Cy = Cotn® (4.35)

ol
The derivatives of the states with respect to mass are

du Cu

dm ~ omVem +btm+a (4:36)
g_:% - am\/cm;\u:}— bm+a }giT (4.37)
% = —EUT (4.38)
% _ ;"’T (4.39)

Note that ¢ > 0, a > 0, and the discriminant of the quadratic mass equation

A & 4ac — b? > 0 since
4

_ 2
A= Ty (MCy) (4.40)
From these differential equations the solution is found from standard integrals.
Co [ ., i [2a+bm .y [2a+bmyg
— _ e h 1 _ | B el 4 .
u Ug oa [sm ( sy ) sinh ( —ry )] (4.41)
w = wy-— ag—;,,(m—mo)
B Ah sinh-! 2em + b _ sinh-! 2cmg + b
o*T+/c va N
Cov [. . _1(2a+bm .y —1 [2a+bmg
-~ {smh ( oy ) — sinh ( Y )] (4.42)
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An bl 1 (2em+b . -1 [2cmo+ b
—W (m+ Z) [smh (—\/_A_—> — sinh (T)}

Cu 1 {2a+bm - [ 2a+bmy
—ma—(-m {smh (‘m—\/_A—> — sinh (m)}

al [\/cmg +bmg +a — vVem? + bm + a} (4.43)

—O'(O'T)QC
(m — myg)
ol
Cu

tm————— [sinh‘l (__Qa * bm) — sinh™! (Qa ks bmo)
o(aT)\/a mvA movA

n Cy sinh-! 2em+by sinh~! 2emo + b
a(aT)v/c VA “ VA

The equation for the altitude can be manipulated further to eliminate some

X = X()— Uo

common terms.

_ _ Gs _ 2 (m - 777'0)
= hy —_2(UT)2 (m —mg)* + W
-m Al sinh™! 2em + b) — sinh™! 2emmo + b
o(eT)*/e | VA VA

—m————Cw [sinh'l (*QQ + bm) — sinh™! (_—Qa + bm())J
a(aT)va mvA movVA
An [\/cm3+bmo+a—\/cm2+bm+aJ

B o(cT)?c

At the final time, H; = —1 by the transversality condition. Using the Hamil-
tonian and the three state equations u,w, and h, which have prescribed initial
and final values, the four unknown constants associated with the two-point
boundary value problem can be solved. For the problem of flight restricted to
a plane, the unknowns are my, C,, C,, and A,. The analytic state equations

(Eq. (4.41)-(4.43)) are nonlinear and thus no statement can be made about the
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existence or uniqueness of the set of constants found. Therefore, if multiple
solutions are found the solution sct which minimizes the Hamiltonian would
be chosen. At the very least, the Legendre-Clebesch condition, Hy, > 0, for a

weak relative minimum must be satisficd.

4.4 Linking the First and Second Stage Subarcs

Of interest in this section is the linking of the two subarcs of the
two-stage rocket. By the corner conditions, the Lagrange multipliers for all the

states must be continuous.

/\y(tstage_) - /\y(tslage+) (444)

The analytic solution previously presented is still valid for either subarc but
only by using this relationship between the Lagrange multipliers can the sec-
ond stage be connected to the first stage subarc. Recall that the constant C,
is associated with the initial condition of the Lagrange multiplier for the ver-
tical velocity component. For a subarc with first stage initial conditions, the

equations become

Aw(tstage) - Cw + /\h(tsm_qe - tO) (445)

)\w(t) = )\w(tslage) + /\hu - tstagc) ¢ 2 tstage+ (446)

Rewriting the Lagrange multipliers using the corner condition and with mass

replacing time as the indepcendent variable, results in

An = vp = constant to <t <ty (4.47)

A = v, = C, = constant to <t <ty (4.48)
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A
Aw = Cy + —%(mo —m) to <t < tyrage (4.49)
(T[]
An An -
Aw(tt) = Cu + —=(mo = Msger) + —= (Mstages — M) (4.50)
ol ol

where T and 75 represent the thrust for the first and second stages, respectively.
The equations of motion, written with mass as the independent variable, which
were previously presented are still valid but the constant cocfficients of the

quadratic equation are of a different form.

M4 X = dmPibm+d (4.51)
/ ’\;21 -
I'ss = (07‘2)2 (402)
2
R (4.53)
gl
d = C2+C"° (4.54)
- mo Mstage? Mstagel
= Cyp+ A A - 4.55
i Tnstaqc'l mstaqc]
= Cyu+ A — — '
+ h( O'TQ O’Tl )

Therefore, the state equations become

du Cy

dm — omVImi+Um +a

dw Aw 9s
dm — omJimi+omta ol
dax U

dm 0Ty

dh  w

dm ols

The same standard integrals apply to the solution of the problem because

a’ >0, ¢ >0 and the discriminant

\ 2
A = 4d'd —b? =4 (—") C?>0. (4.56)
UFQ
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The simplified form of the solution to the state equations (Egs. (4.41)-(4.43))
is also still valid but with the first stage subarc used as the initial conditions

of the second stage subarc.

u = ug— Cu {sinh_‘ <2a+bmstagel> _ sinh™! (Qa-{-bm())}
° 0\/6 mstagel\/_A_ TTL()\/—A-

C, 2a' +bm 2a' +b'm
— % lginh~!' | Z=——~) - sinh™! ( mgﬂ) 4.57
U\/_i [ ( my A’ ) mstage? \ A/ ( )

w = Uy

- _ﬁ(mstaqel m())

U\/a mstag(zl\/z m[)\/z

C/w Ly -1 2a’ +Vm . =1 20" + b’Tnstaqu
— sinh™' | ———=—] — sinh ‘
U\/ZJ m A’ TrLstage?‘/_A—’
M sinh ™' (—————Qcmsch' i b) — sinh™! (——-QCmO ha
0'2T1\/E \/_A— \/_A—

Ah . 1 2dm + b,) . —1 (2(/Jmsm e2 + b
————— |sinh —— ——— | —sint o s 4.58
U2T2\/E [ " ( VA 1 VA ( )
h = hO 93( Mistagel mg) {]g(m2 B mila_qe?)
2(ch)? 2(0T3)?
LT Mo

0T2 O'Tl

mg agel Mg age? Gs

( UtTZ - ULTZ ) {wo - _[_l'(mslagel — my)

— Cu [sinh'l (2—————a + bmm"’“) — sinh™! (2—————a + bmoﬂ
0\/5 mst,agel\/—A— mo\/z
An 1 [ 20mgager + b 1 [2ecmp+b
_m [smh (——\/Z——> — sinh (—\7:5—)] }

An
;_(O'—TQ)_2C7 [\/dT’LQ + blm + a’ — \/C’msmgez + b’msmgeg + a}
An

+m [\/Tmsmgd + bMgiager + @ — \/(‘mo +bmo +a } (4.59)
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These are the equations that result {rom linking the first stage subarc to the
sccond stage subarc. These equations will be used to evaluate the states at a
time after staging occurs when the initial time is before staging. The first-order
correction terms will require the analytic solution for the states at any future

time along the zeroth-order trajcctory.



Chapter 5

First-Order Corrections

The use of the asymptotic expansion of the dynamic programming
equation as discussed in Chapter 2 by the approximate optimal guidance scheme
is an improvement over past analytic techniques whose guidance laws were lim-
ited to operate in the exoatmospheric region [6, 14]. The higher-order correc-
tion terms of the HJB expansion can be used to compensate for the effects of
the atmospheric forces neglected in the exoatmospheric solution. The deter-
mination of the first-order correction to the zeroth-order control is the subject
of this chapter. As noted bcfore, the solution to the first-order optimization
problem requires only the integration of quadratures, which can be evaluated
quickly enough to permit this method to be implemented as a real-time guid-
ance scheme. The correction to the Lagrange multipliers and thus the cor-
rection to the control is constructed in the following sections. Also derived
are all the partial derivatives nceded to evaluate the quadratures. The partial
derivative chain rule is employed since the analytic solution is found in the
Cartesian frame while the first-order forcing function, R;, used to evaluate the
quadratures is expressed in the wind axis frame. Recall that the angle-of-attack
is the control variable and the acrodynamic coefficients are modelled as func-
tions of the angle-of-attack. For this rcason the perturbation dynamics are left

expressed in the wind axes frame.

40
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5.1 Correction to the Lagrange Multipliers

The higher-order terms of the optimal return function were presented
in Eq. (2.26).
ty
Pz, 1) = —/ ROdr
t

By taking the partial derivative of this integral the correction term to the

Lagrange multiplier can be calculated. Recall,

8[)1 ty 8[{, ot ('3tf
2 = = — —dr + R — — Ry, — 2.39
= Oz /z gr lt(?;z: ly oz ( )
where the first-order forcing function was 1%y = — Py, go.

The first-order correction term for the Lagrange multipliers is used
to determine the first-order expansion term of the control. By the first-order

optimality condition, [2q. (2.30), the correction to the control is obtained.

w =~ (fuul0,) " [Poogu + P, fu) (5.1)

5.2 The First-Order Forcing Function

For the launch problem as formulated in the wind axis frame, the

first-order forcing function is

Te D re(2re +h) npA.
Rl = B—; {/\V[;l - gsmé— sin vy + m COS Q]
A L V2 Te(2re + h) npA. .
SN (gt T Y eosy — 5.2
% m+(r +g o3 )? ) cosy - sin a| (5.2)

The Lagrange multiplier for the first-order term of the expansion series is found
by integrating the partial derivative of R} with respect to the initial state. For

the launch problem, the optimal control depends on the Lagrange multipliers
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for the velocity and flight path angle, i.c., z = [Vb, 7). The partial derivative

of the first-order forcing function with respect to the initial state is

OR, 8 (pSV?r, A
Pz Bx( Gy )(/\ch_vcb)
2
+pS’V Te </\V8CD A\, OC,, (9/\VC 0 (b_) CL)

omh. 5z V oz oz % &z

h(2r.3 + h)r. N o M sin Oy
Tho(re + h)2 \"V T T YN ) 5y
h(2re + h)re [OAy | a (A

9 h,(re + 1) [ gz " Bz (v ) COS”]

o h(2re + h)re . Ay
-5 (gs PNEREWAE ) (Av siny + % Cos Y)

S [Oh 0 (A
mh,_, (){1: Cos & 813 v Sin «

__npAere ﬁ Oh
— ( % sina + Ay cos a) g
Vr, (9/\ 0y
h(re-{-h) cos’y /\A,sm'ya
a Vr.
—-a (m) (’\'Y COS ’}’) (53)
where
pSV2r, _ pSV2r, Z_B_‘i 3 i% (5.4)
2mhg 2mhs |V O  h,0z '
2_ 27'e h(2re + R)re 2g,re  Oh (5.5)
oz s(Te + h "~ hy(re + h)3 0z ’
_3_ Vre _ Vr, _1_2\1 _ 1 Oh (5.6)
9z \h(re +h))  hyre+h) |V Oz (r.+h)oz ‘
0Cp(M,a) .  0CpdM  0Cpoa
oz~ oM oz | ba oz (57
0CL(M,a) _ oC, M + oCy, 6_(1 (5.8)

oz oM Oz Oa Oz
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The partials of the wind axis states and Lagrange multipliers are related to
the partials of the analytic Cartesian states and Lagrange multipliers by the
canonical coordinate transformation. These partial derivatives are presented

in subsequent sections.

5.3 Relating the Partial Derivatives of the Wind Axis
Frame to the Partial Derivatives of the Cartesian
Frame

The canonical transformation of section 4.2 provides all the infor-
mation nceded to relate the analytic solution of the zeroth-order states and
Lagrange multiplicrs to the states and Lagrange multipliers in the wind axis
frame. Thus, the variations in the analytic Cartesian coordinates due to varia-
tions in the initial wind axis states can be determined and it was for this very
reason the canonical transformation was nccessary. Using the relationships

obtained in section 4.2, the partial derivatives of the wind axis coordinates

become

oV 1 Ou ow

O 1 w) 0w u du

% ta“”[(a'w)a‘ma] (5.10)
OA\v O\, 0w . . a0y
5 = 52 cosy — F sm'y——()\usm7+/\wcos'y)£ (5.11)
Ny, O O Al
= —V<6m sm’y+gcosv+[)\ucos'y /\wsm’y]gx—>

ov

~ b (Ausiny + Ay cos ) (5.12)
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and from the zeroth-order control law LXq. (4.8)

dax 1OA, 1 O\ 1av>

= i A

A Or A 0z Voz (5.13)

= Ccos asin (

Now that the partial derivatives for the wind axis coordinates are expressed
in terms of the partial derivatives of the Cartesian coordinates, the partial
derivatives of the Cartesian coordinates with respect to the initial states are to

be derived along the analytic zeroth-order trajectory.

5.4 Partial Derivatives of the Analytic Solution

In this section, the partial derivatives of the Cartesian coordinates are
derived. The zeroth-order analytic trajectory is used to evaluate the integral of
the partial of the forcing function R, from the initial time to the final time. For
the sake of notational brevity, the following common terms and their partial

derivatives are defined.

5.4.1 Partial Dcerivatives of Some Common Terms

The partial derivatives of the constants a,b,c, and C., used to express

the analytic state equations are

a = C2+C°

% = QCuQ(,%‘i+25w% (5.14)
b = —%)\h—Cw

% = _%[6,u%ﬁ+,\hag”} (5.15)

— Ah v
€= (UT)
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(9(,‘ - 2/\/1 (’),\h .
5z~ @TZ oz (5-16)
5C., 5C, 9\
‘ = Tw Tl (5.17)

ox or ol Ox
Recall that the function A = 4ac — ¥?, so the partial derivative is

0A Jc da 6b

Let the arguments of the inverse hyperbolic sine function be denoted

2em + b 2a + bmn

Sy (m) = Bp(m) = —— 5.19
S1(m) NN 2(m) /A (5.19)
Thus the partial derivatives of the arguments are
9, 1 a$, . de by Ob 3, da
- = 2 +(1+ - 20——=— 5.20
Bz VA { m =85 T+ \/ 2oz "R af] (520
8%2 _ ('\32 Jda b3y, Ob %2 Jdc _
‘a—nw¢“ v “+ﬂ%:aﬁ£%m

and by the partial derivative chain rule for a trignometric function, the partials

of the inverse hyperbolic sine functions are

(\,
2 (sinh—l (\}1) = ———1—& (5.22)
ox 1+ Q2 ox

('\..
863: (smh \sz) - 9% (5.23)

\/—H_—c\\fgax

5.4.2 Partial Derivatives of the Analytic States

The general form of the state equations in Eqgs. (4.41)-(4.43) is used
to derive the partial derivatives of the states with respect to the initial veloc-

ity or flight path angle. Using the terms defined in the previous section and
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simplifying the equations, the partial derivatives arce

d 3] 1
8—1; = FU;Q - [sinh’l Sy (rn) — sinh™! %Q(mo)] (% ~ %g&)
_ G 1 I9S2(m) 1 0S2(mo) (5.24)
ova | J1+8(m) O  J1+S%(mg) 97 '
dw  Owg | N 0C, Cy,0a
—a; = 5{1:— - 0'\/6 [smh %Q(m) — sinh gg(mo)] (—a-;' — E%)
3 Cu 1 0S2(m) 1 02(myg)
ova |\ /1 +S%(m) 9 J1+S3(me) 92
1 . -1 = —1 (’)/\h )\h aC
—m [smh () — sinh %1(m0)] (7); - ?c%)
/\h i 8(\\51(771) 1 Ogl(mo) -
~ T — e = 5 (5.25)
1+ S%(m) : 1+ SQ3%(mg) 97
Oh  Owo (m — mo)
oz 0z oT
o A 1 a5, (m) 3 1 331 (mg)
@T)Ve | /1 +S¥m) Oz 1+ S2(m) O7
m . —1 . —1 a—éw a,, Ba
_UT\/E [smh Go(m) — sinh %g(mo)] (—% - 2_(1%)
—m Eiw 1 5%2(7’”) _ 1 8(\\32(7710)
ofva | /1 +3%m) 9= J1+S3(mg) 92
/\h R 1 = -1 Oc
+mm§ [smh $1(m) — sinh %l(mo)] o
m - o OA
—m [smh 'Sy () — sinh ™' G, (mo)} a—;
1 oA An Oc
= |Vem? - 2 ] AL Sed
+0(0T)2c [ cm?+bm+a \/cm0+bmo+a 52 .
An m2§—§+m%+§’)§_m§§—§+m0§§+-§—‘;
too ) (5.26)
o(oTVe | VemP¥bmta | \Jomd + bmo+a
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The initial velocity components expressed in terms of the wind axis states are
Ug = ‘/[) COS ¥y, Wy = —VO sin Yo (527)

and therefore the partial derivatives with respect to the initial velocity and

flight path angle are

Buo o

—— = CO0S

aVy Yo

J

ﬁ = —Vpsin~yg
dv

Ouy B sin

(’)VO - ’YO
8?1)0

— = —VWycosy (5.28)
3

These partial derivatives are valid for a point during the first or second
stage of the trajectory with initial condition corresponding to that subarc. For a
point on the second subarc with first stage initial conditions, the state equations
which link the two subarcs must be used. Note also that these equations all
depend on the partial derivatives of the constants, A, Cy, Cw, and m; which
are unknown. The partial derivatives of the constants are dependent on the
initial and final conditions of the two-point boundary value problem. Using
the transversality condition
Hy = —Apw;, + CuTZ;—Qf cos Oy + /\w(tf)(—;nT—fr sinfy + g,) = —1 (5.29)

the partial derivative of the Hamiltonian at the final time is

BHI 6/\h <(9Cw _ (mf - mo) 8)\;1 /\h 67’1’”)

Oz oz oTy or oT, Oz
T, (bms + a) om; T, {m§%+mfaa—i+§—i

Qm}\/cm§+bm/+a dz  2my \/cm§+bmf+a

}(5.30)
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: Bh, Bu; dw; OH\ 1.
These results produce a system of four equations (5, 5f, 5t 72-) linear
: ., ot une. 9 0Cy BC Bmg :
in the four unknown partial derivatives: S, %2, %%, and - The partial

derivatives of the four constants are determined by the solution of this linear

system.

5.4.3 Solution to the Lincar System of Unknown Partials

For the second stage subarc, the solution to the linear system of four
unknown partial derivatives in the partial derivatives of the four transcendental

equations is determined by the matrix cquation

[ 0 ] [ oty oM, OH; OHy YN
O%n 9Cu OC, Omy 3z
_ dwg (my—mo) Ohy Ohy  Ohy  Bhy acy,
Oz ol — OAn OCy OCyw Om, oz (5 31)
_Bug Buy  duy  dus  Buy 8Cy '
oz OAn OCy 9Cw Omy oz
_dw Owy  duy  Owy  Suy omy
L oz J L 5%, JC., 8C, Om; s L oz |
The coeffiecients of the matrix are
oH; _ . _, (my=mo) (my — mo)[Cuw + 22(mo — my))]
- = Wy s + (5.32)
OAn oT omg/ems +bmy +a
0H; _ c.T (5.33)
0Cy mygy/emd +bmy +a
A
OH; _ G+ 2h(mg — my)|T (5.34)
= g, )
0Cy mf\/crn§+bmf+a
OH T M M[Cow + 2(mo—m
bbbl —5\/em +bmy +a — g, 2h [Cu + (o )l (5.35)
omy m *T * omy\fom? +bmy +a
Buf

— 1 1 =1y — ainh~ ) & a_CE._Cuaa
61‘ U\/E [Slnh \S?(mf) Slnh \SQ(TnO)] 6.’.E %a

e 1 8Sa(my) 1 835 (mo)
oVa | 1+8Y(m) 92 f1+me) O

] (5.36)
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6’(Uf 1 . 6—,“ Uw 5a
= T [smh So(my) — sinh™ (mo)} ( el ——a——x)
_C'—w 1 %Q(TTLI) _ 1 8%2(77’20)
ova | /1 +3%(m,) Oz 1+ Q2(m,) Oz
1 _ 8/\h /\h Jdc
ST e [mnh S1(my) — sinh \sl(mo)] ( Fr Q—C—a—x—)
An 1 0 (my) B 1 IS1(myg) (5.37)
*Tve | 1+ 8% my) 02 L+S3(mo) O
% — m An IS (my) B 1 Bgl(mo)
oz "eTy2ve | N +9%(m,) Oz 14 S%(my)
I TN o 3 OC., B E_Ba
T {smh Jo(my) — sinh™ (mo)] ( g 7 B
my —w 1 0%2(7”.]) _ 1 agg(mo)
oTva | /1 +S3(m,) Oz 1+ S2(me) 9z
An -1 -1 dc
+me [Slnh (\}](m‘() — sinh %1(7’77,0)] %
m . o
—W [smh (mf) — sinh ! %1(77?,0)] ———'—‘
1 (9)\}1 )\h. Jc
O'(O'T [\/cmf—kbmf+a—\/cm0+bmo+a} (E—?%)
W [mEemBen mEenmem]
5 .
20(cT)?c \/(,”rnf+b7nf+a \/crrLO+bmo—+—a

where the equations %‘.—L’ %wi, and —i are the same as derived for the analytic

state partials but are derived with respect to the constant parameters, i.e.
z = {M, Cyu, Cy}. All these terms thus depend on the partial derivatives of

the common terms a, b, ¢ with respect to the constant parameters. So,

6_C—w Mo 8?,” -1 aaw

o\, ol aC, aC,

Oa — 0C,
55: = QCu + QCw ‘—an

=0




50

da — 0C,
Tonli 2Cw;97w
Jda _ 0C,
. = v,
» _, o 2, oC,
9C. aC, ol "oC,
ab 2 aC,
- = A
6/\;, O'T [C + ha/\h]
de 2w de o %
o (e1)2ac. aC,

Remember that the variation of the terms with respect to the final
mass is also needed. For the arguments of the inverse hyperbolic sine functions,

the partial derivatives with respect to the final mass become

Bﬁl(mf) . 2¢ 6(\\52(771]) _ 2a
Omy VA’ omy m3vVA
The partial derivatives of the analytic states with respect to the final mass are
311,] _ Cu 1 83‘2(”’),[)
omy oVa [T+ 8Y(my) Oz
ow, g Cu 1 0S5 (mmy)
amy oT o\/c_z\/1+02 m;) omy
1 981 (my)
UzT\/E,/1+“2(mf omy
ah'f _ s Wo
Bm; TR Tt T
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o Cu 1 0Q2(my)
!UT\/E\/I +33(my) Omy
An (2cmy + b)

+
20(aT)%c \/cm? +bmy +a

All these relationships are used to determine the coefficient terms of
the algebraic set of equations. The variations in the constant parameters of
the zeroth-order two-point boundary value problem with respect to variations
in the initial states can subscquently be determined. These variations are
embedded in the quadratures used to calculate the first-order correction to
the Lagrange multipliers and dctermine how a change in the initial conditions
changes the path while flying along a path which will satisfy the terminal
boundary conditions.

For the situation where the vehicle has not yet staged, the partial
derivatives are similar to those shown above but the equations of section 4.4

which link the two subarcs of the trajectory are used.



Chapter 6

Aerodynamic Effect along the Zeroth-Order Trajectory

Previously the problem of minimizing the fuel into orbit for the flight
of a rocket in a vacuum over a (lat nonrotating Earth was the zeroth-order
problem, i.e., € = 0. It was found that this zeroth-order trajectory deviated
significantly from the optimal trajectory and the resulting correction terms were
not small as was assumed in deriving the expansion method. To compensate for
this problem the zeroth-order trajectory needs to be reshaped in order to keep
the assumed perturbing effects small. One method that might work is to include
a constraint on the control which will limit the zeroth-order angle-of-attack and
thus the aerodynamics gencrated along the zcroth-order path. The problem in
implementing such a constraint is that the zeroth-order solution must still be
analytic. Since the analytic solution was found in the local horizon coordinate
system the control was the pitch angle. From the standpoint of the physics
of the problem, there is no logical constraint which can be imposed on the
pitch angle. Limiting the angle-of-attack would crecate a mixed constraint in
the local horizon coordinate frame involving the state and the control and this
type of constraint is difficult to solve. A practical and necessary constraint for
launching a rocket is a dynamic pressure limit. How such a constraint may be
incorporated theoretically in the HJB-PDE expansion technique is presented
in appendix{C]. But a dynamic pressure constraint arc also does not allow

an analytic solution to the zeroth-order problem. Therefore, the zeroth-order
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trajectory was modulated by including acrodynamic terms in the zeroth-order
problem formulation. This process involved averaging the aerodynamics along
the vacuum trajectory and solving anew the zeroth-order two-point boundary
value problem. This technique was suggested by the successive approximation
method used in [15]. By modeclling the aerodynamics as constant terms, closed
form solutions are still available. This chapter presents the details of includ-
ing aerodynamic pulse functions averaged in the local horizon and body axes

coordinate systems.

6.1 Inclusion of an Aerodynamic Effect in the Zeroth-
Order Problem

Instead of assuming flight in a vacuum, the zeroth-order problem is
now formulated to include acrodynamic terms. Then if € = 0 the equations of

motion for the zeroth-order problem, valid over both subarcs, become

h = Vsiny
: T _ D
V = —cosa—gssiny+ —
m m
. T Js L
¥ o= psina - sy -
. Ve
i = cos 7y
Te
m = —dl = m=mp—0T(T— 1) (6.1)

where

D = (/12 cosy — A%sin 'y)

L = (Ag siny + AJ cos 'y) (6.2)
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are the assumed lift and drag forces along the zeroth-order trajectory. The
constant terms A2, A% arc the averaged acrodynamic forces in the x- and
z-directions. For a vacuum zeroth-order trajectory these terms would be iden-
tically zero. Nonzero values will be used in order to improve the zeroth-order
trajectory and keep the perturbation effcct due to the neglected aerodynamics
relatively small compared to the eflects due to thrust and gravity. Since these
terms are added to the zeroth-order dynamics, identical terms of opposite sign
are included in the perturbation dynamics. Thus their effect is identically zero

in the full-order system of equations.

The variational Hamiltonian is altered by the inclusion of these terms,

e.g.
T D
H = —-MVsiny+ Av(—cosa — gssiny + —)
™m m
AT L
+—X(—=sina — g,siny — —) (6.3)
V' 'm m

Notice since the pulse functions used in the acrodynamic terms are constants,
the zeroth-order control law dctermined by the optimality condition is not

changed from the solution obtained for vacuum flight.

tan o = V/\)Tv (6.4)

Once again the analytic solution to the zeroth-order problem will be

found in the Cartesian coordinate system.
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Figure 6.1: Coordinate frames for the aerodynamic pulse functions
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6.1.1 Zeroth-Order Acrodynamic Effect in the Rectangular Coor-

dinate System

The equations of motion in a Cartesian coordinate frame become

h = ~w
T 0
U = ——siné B 2
w msm p+ 9 +m
T Al
1 = —coslp+ —= 6.
U — cos p+m (6.5)

where the control variable for this problem becomes the pitch attitude ¢, =
a +v. The terms A2 and A? represent the constant assumed aerodynamic

forces along the zeroth-order trajectory in the x- and z-directions, respectively.

0 1 tit1 1 tivi .
A, = ——— Adr = / (=Dcosy — Lsinvy)dr
ti — big1 Ju ti — tiv1 Ju
o 1 tiy1 1 tiy1 .
A, = — / A dr = / (Dsiny — Lcosy)dr (6.6)
b —tiy1 Ju ti — tiy1 Ju

Figures (6.2-6.3) show the aerodynamics averaged over a different number of

intervals or subarcs.

The zeroth-order Hamiltonian is
T Al T A°
H=-A\ Ay (——sind s+ —= Au(— 0 £ )
AW + Aw( msmp+g+m)+ (mcos p+m) (6.7)

where Ax, Ay, and A, are Lagrange multipliers. These Lagrange multipliers are

propagated by the Euler-Lagrange differential equation )\y = —Hg" . Thus
M o= 0, M=0 Ao=M (6.8)
with boundary conditions

Ah(‘rf) = VUp, /\u(Tf) = Uy, ’\w(Tf) = Uy (69)
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Figure 6.2: Model for acrodynamic pulses in x-direction
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where vy, 1, and v, are unknown Lagrange multipliers associated with the
terminal constraints. Since the aerodynamic effect is added as a constant term
there is no change in the solution to the Lagrange multipliers or to the control
from the solution found for a vacuum zeroth-order trajectory. Therefore, the
zeroth-order analytic state equations become

U = A?’ln(m)
= W O'Ti mo

2a; + bim 2a; + bimg

w = wy— —(m—mo) —A—?‘ln(T—n-)
= o — Gs o, o o
_ -qu‘. Sinh_‘ (20.i + b.m) _ sinh_' (20,‘ + b,‘m())]
PN mv/A; mov/A;
A o —p2em+ b .y —1,2cmg + b
T [smh ( /Y ) — sinh (T)
_ (m — mo) (m — mo)?
h = ho + wg (0_71) s 2(07-;)2
A
+ m [(Cﬂ'n2 + bym + (),,~)l/2 - (qmg + bimo + a,-)l/z]
B Cuw,m sinh-! (2a¢ + bim) R <2a,- +bimo)]
o(oT) /& myv/A; mov/A,
Apm L _1.2em + b, oy _1,2cmo + by
- ——_0(0'7:)2\/6 [smh 1(—\/5—- ) — sinh 1(—-——\/05__ )}
A [ 1 (m) + ] 6.10
(oﬂzmnmo m + my (6.10)
where
C" = %)2, bi == —2;"%6‘0‘., ai = 03 + U:,‘
Coi = Cot M, Co=CotMimpulidzg (o)
A = dae-t = 4(S3m) i=12

and the subscript i refers to the current subarc. More pulse functions could be
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used to model the aerodynamics in an attempt to capture the effect of the aero-
dynamics in the closed form solution and thus the path would be broken up into
smaller subarcs. Note that because the assumed aerodynamics are only con-
stant terms their effect is an accumulative one. The zeroth-order trajectory is
altered since the boundary conditions can not be satisfied flying the same path
as the path flown in a vacuum. The vehicle does not modified its orientation
instantaneously in order to reduce the acrodynamics that it will encounter, i.e.
the vehicle cannot predict the acrodynamic effect on the vehicle by its choice
of angle-of-attack. Thus any change is in the total energy of the system and
the vehicle is not penalized for flying at large angles-of-attack and for incur-
ring large drag forces. This can be seen in the new open loop zeroth-order
trajectory in that the vehicle initially pitches over more than in the vacuum
solution. But over the entire course of the trajectory the vehicle remains at
lower angles-of-attack and does not lift up as much in the second stage. If more
pulses are added the aerodynarmics become larger over certain intervals and the

vehicle reacts accordingly to these regions of large aerodynamic forces.

6.1.2 FIRST-ORDER CORRECTION TERMS

The correction terms to the zeroth-order problem can be calculated

by the quadratures represented in (2.39). Therefore, for the launch problem

_T. D+D h(2r, + h) . npA,
R, = R {/\V [ ~ s (ro + h)? siny + - cos a] (6.12)
M[L+LC v? h(2r. + k) npA. .
- V[ m +((re+h)+g’ (re+h)2) T S

The first-order term of the optimal return function evaluated along the zeroth-

order trajectory with initial conditions before staging is written as in (2.26),
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but separated into two integrals. Only the velocity and flight path angle state
equations contain the control. Thus, the first-order terms in the expansion of
the Lagrange multipliers associated with the velocity and flight path angle are
the only co-state expansion terms needed to construct the first-order correction
to the zeroth-order control. The partials of P, with respect to the arbitrary

current conditions, z = (V4,v), become

_ aPl . tllagc aR](ygpt)
h. = ax_—./c oz dr
o ORy (?/(())pt) opt Oty
_ /c,, o —dr ~ R, %)) - (6.13)

Because acrodynamic pulses were added to the zeroth-order dynamics
the opposite terms are added to the perturbation dynamics such that the over-
all system equations are unaltered. If the zeroth-order trajectory is the vacuum
trajectory then the assumed acrodynamic terms (D, L) are zero. For nonzero
assumed aerodynamic forces the new perturbing aerodynamic effect is the dif-
ference between the actual drag and the assumed drag along the zeroth-order
path. It is necessary to keep this new perturbing aerodynamic effect small in
order to accurately approximate the optimal solution. That is the entire reason
for the inclusion of the aerodynamic pulse functions. The next sections present

the results for various assumed acrodynamic pulses.

6.2 Results for the Rectangular Pulse Functions

It was found that the more pulses used the closer the first-order cor-
rected solution came to the first-order solution obtained using a vacuum zeroth-

order trajectory. The best solution for the approximated control was obtained
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by using one pulse per stage. This seemed to keep the perturbing aerody-
namic effect small over a larger span of the trajectory. The convergence of
the Lagrange multipliers up to.a first-order approximation using the one pulse
aerodynamic functions for the zeroth-order problem is demonstrated by the
plots presented in the Results chapter. Iteration of the zeroth-order trajectory
for the assumed pulse functions was attempted but it was found that the first-
order correction terms alternated back and forth between the optimal values
and the solution based upon the vacuum zeroth-order path. This was a conse-
quence of the assumed aerodynamics switching between large and small values
on successive iterations. If large forces were assumed on a particular itera-
tion than the actual aerodynamic forces along the new zeroth-order trajectory
would become small and thus on the next iteration the assumed aerodynamic
pulses would revert to smaller values and therefore the first-order corrections re-
sembled the solutions obtained using a vacuum zeroth-order path. Attempts to
average the iterations also proved unsatisfactory. For multiple pulses per stage,
the averaged iterations did not adequate bring the assumed aerodynamic pulse
functions closer to the actual forces along the new zeroth-order path. For a
one pulse per stage solution the iterations could not improve on the solution
obtained from the first iteration and thus were not worth the computational
time and effort. In general, assuming more than one pulse per stage and more
than one iteration caused the first-order corrections to go towards the values
obtained assuming no aerodynamic forces along the zeroth-order trajectory. In
a final attempt to lift the vehicle up and keep the vehicle from trying to pitch
over, aerodynamic pulse functions were modelled as constants in the body-axes

frame. The next section briefly describes that effort and the results.
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6.3 Aero Pulses in the Body-Axes Frame

Because the use of acrodynamic pulses modelled as constant terms in
the local horizon coordinate system the vehicle did not respond in an instan-
taneous fashion to the aerodynamics it encountered along a particular flight
path. To remedy this situation the aerodynamic pulses were modelled as con-
stant terms in the body-axes frame. Thus there are aerodynamic components
tangent to and normal to the thrust. Rotation of these forces into the local
horizon coordinate frame still allows an analytic solution to the zeroth-order
problem but now the control law becomes a function of the aerodynamic ef-
fect assumed during a particular interval. This was not the case in using the
aerodynamic pulses in the local horizon system as presented in the previous
section. Because of the reliance of the zeroth-order control upon the aerody-
namic pulses used, the control becomes discontinuous along the zeroth-order
trajectory. Since the aerodynamic intervals are chosen as functions of a fixed
time interval the Hamiltonian is also discontinuous across these intervals. The
integrand used to derive the first-order correction to the Optimal Return Func-
tion and to the Lagrange multipliers is thus discontinuous and the integration
of these terms along the zeroth-order path must be broken up according to the
aerodynamic intervals. The equations of motion in rectangular coordinates for
body-axes aerodynamic pulses are

h = —w
w o= —T—sinﬂp + g5 — A—% sinf, — ﬁcosﬂp
m m m

T A A%
1 = —cosf,+ =4 cosl, — X sind 6.14
u mcos p — cos b, - sind, ( )
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The terms A% and A% represent the constant assumed aerodynamic forces
along the zeroth-order trajectory in the axial and normal body-axes directions,

respectively. The zeroth-order variational Hamiltonian is

T + AS AS T + A5 A%
A sin 0, +g,— —2 cos 0,) +Au *+ A cosO,,—WNsinO,,)
m

(6.15)

H= —/\hw-i—)\w(—

m

The solution for the Lagrange multipliers does not change from the solution
to the vacuum zeroth-order problem and the multipliers are continuous across
subarc times, as arc the states, since these times are considered fixed. The

first-order optimality condition produces the f{ollowing result.

Aw (T+A°)+A AS,
T OAAY = A (T + AY)

tan 0, = (6.16)

Using this new control relationship in the state equations the closed form so-

lution can still be obtained and the states are written as

CuT X _1 261,‘ + b,-m . —1 2ai + biTnO
— sinh ————— | —sinh —_—

Utrt\/—a—t myv A mO\/Z
(m — my)
w = W —gs o
(7'1,‘
B C..T sinh-! 20 + bim) sinh~" 2a; + bimg
T/ B oA
/\hT -1 2c;m + by . 2c;mo + b;
_o M lGah (BT 0N (G T
ey =
(m - m()) (m - mo)2
ho= ho+ g0 g (M= mo)
CTUOTGTy ey
AT 2 1/2 2 1/2
+ m [(Qm + blm + ai) — (qmo + b,—mo + a,') ]

_ .C'—w‘.'f’m Sinh_l 2(11' + bim Sinh_l 20.1 + b,-mo
(oT3)*vai my/A; mov/ Dy
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/\;j’m L 1,2em 4+ b .1 _1,2cimo + b
— h™' (———=—) — sinh™ (———— 1
ENENG [sm ( = ) — sinh™'( =~ ) (6.17)
where
¢ ()%, b=-22Cu, =C2+C.,
ral m (mO“msH)
Cw, = Cw + )\hﬁg' s C —20 + /\ — + )\h Ty (618)
A,- = 4a,c,~—b2 = 4(Cqu ) 1= 1,2

and the effective thrust 7' = \/ (T + A%)? + (A%)? is the magnitude of the sum
of the thrust and assumed acrodynamic forces. A typical open loop zeroth-
order trajectory is shown in figure (6.4). While the initial pitch over action
was curtailed compared to the previous results, the trajectory still deviated
from the optimal trajectory. sharply especially in the regions of high dynamic

pressure.

Corrections to the Lagrange Multipliers are made by the familiar

equation

dP tiet AR (1P o ot
P, = —‘=—Z / (“’ TR (y5(L) 5 (6.19)

T

for n aerodynamic intervals and where

Te D + Dy h(2re + h) . npA.
R, = I {/\v [ - gs o+ )? siny + cos & (6.20)
M [L— Ly v? h(2r. + h) npA. .
- V[ m w0 r e ) ST T Ty sine

The assumed drag and lift terms are the transformation of the body-axes aero-

dynamic forces into the wind axes coordinate system, that is,

Dy, = (A% cos o — A%, sin a)

Ly = (A%Ysina+ A% cosa) (6.21)
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The correction terms to the Lagrange multipliers based upon the
zeroth-order trajectory using body-axes acrodynamic pulses did not give any
improvement over the use of local horizon aerodynamic pulses. If anything
the solutions obtained were worse since the trajectory was strongly influenced
(as were the pulse functions) by the regions of high dynamic pressure and thus
the perturbation acrodynamic effect remained large. The results from iterating
with the averaged aerodynamic pulses and from averaging the iterations of the
averaged pulses exhibited the same pattern as the local horizon case. Thus
one pulse averaged over the first stage came closest to producing agreement
with the optimal solution. The one positive effect of the body-axes approach
when used in feedback to generate a trajectory was the elimination of the dis-
continuities in the control previously found when minimizing the Hamiltonian
using the first stage aerodynamic model. Unfortunately, the path generated
did not match as closely the optimal path as the results using the second stage

aerodynamic model matched.
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Figure 6.4: Open loop zeroth-order path for body-axes aerodynamic pulses



Chapter 7

Results

In this chapter the approximate optimal solution is compared to an
optimal solution for the launch of a vehicle in the equatorial plane. While
previous results for flight in the exoatmospheric regions [16] showed excellent
matching of the approximate solution with the optimal, problems arose during
the first stage. First, even at high altitudes where the aerodynamics are indeed
perturbing effects to the vacuum trajectory, it was found that the linear control
law derived for the first-order correction to the control (5.1) was in greater error
than the error in the first-order corrected Lagrange multipliers. As a remedy
the control was calculated by minimizing the Hamiltonian of the entire system
using the Lagrange multiplicrs approximated to first-order. This produced the
desired effect and the control profile converged to the solution obtained by the

shooting method.

The next difficulty encountered was due to the first stage aerody-
namic model. This model seemed to produce an irregular Hamiltonian. The
Hamiltonian was badly behaved and exhibited discontinuities in the control
at various points along the trajectory. The asymmetric configuration for the
rocket and the cubic spline functions used to fit the aerodynamic data caused
the Hamiltonian to take on almost identical values for different values of the

angle-of-attack. This can be seen in figure (7.1) which are plots of the Hamilto-
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nian versus the angle-of-attack at two consecutive points in the trajectory. The
sequence shows the Hamiltonian exchanging the location of the minimum be-
tween positive and negative angles-of-attack. Part of the problem can be seen if
the drag model is shown for larger angles-of-attack than was presented in chap-
ter 3.3. Figure (7.2) shows the drag coeflicient for different angles-of-attack and
Mach numbers than would be encountered along the optimal trajectory. Re-
member the first-order correction terms are based on the aerodynamics along
the vacuum path but the aerodynamics are not modelled adequately for these
regions. The drag model of figure (7.2) shows the peculiar nature of the aero-
dynamics that would be used at the larger angles-of-attack of the zeroth-order
trajectory. The smooth curve used to model the second stage aerodynamics was
substituted into the algorithm to eliminate this strange behavior and remove
the discontinuities in the control. This would prove successful. Figure (7.3)
compares the drag and lift forces along the first stage of the open loop vacuum
trajectory using the first and the second stage aerodynamic models. Another
advantage of using the second stage acrodynamic model can be seen in that
the drag has been reduced while the lift along the trajectory remains roughly

the same.

Overcoming these difficulties still left a problem. The first-order cor-
rection exhibited a boundary layer type effect near the initial conditions. This
would occur even if the problem was started at various points in the first stage.
When the approximation method was used in feedback, this effect would di-
minish during the trajectory and the solution would converge to the optimal
solution. In order to eliminate the initial over-corrections of the first-order

approximation, the zeroth-order problem was reformulated to include an aero-
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Figure 7.2: First stage model for the drag coeflicient
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final time | final weight | B.C. error
Method (sec.) (1bs.) ydeg| hft
zeroth 371.50 322861. -0.24 35.
order
first 369.91 329293. .03 | -.002
order
first 369.59 330576. .0001 | .0007
pulse
shooting || 369.57 330678. - -

Table 7.1: Comparison of Results

dynamic effect. This technique was presented in chapter 6. In this chapter the
results will be presented along with the results of the zeroth-order solution, the
first-order solution without the acrodynamic effect in the zeroth-order problem,

and the shooting method (17, 18].

The trajectories generated by the zeroth-order, the first-order with
and without zeroth-order aerodynamic pulse functions, and the shooting method
are shown in figurcs (7.4-7.9). Also plotted are the Lagrange multipliers for the
closed loop trajectory, figures (7.10-7.11). Each technique ran on a IBM 3090
mainframe computer. Integration was done by an eighth-order Runge-Kutta
method for the shooting method. The approximate optimal guidance schemes
employed a fourth-order Runge-Kutta integrator. The approximate method
used a fixed number of integration steps in the first and second stages with the
control held fixed over each step. Four hundred steps were used in both the

first and second stages. The time-to-stage was fixed at 153.54 seconds.
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All the methods were started at the same initial conditions: tg = 35
scc., ho = 660. ft., Vo = 9406. ft/s, o = 58. deg., mo = 3021107.44lbs.,
0y = —79.0 deg., and x = ¢ = 0.0 degrees. The terminal constraints to
be satisfied are hy = 486080. ft., V; = 25770. ft/s, and v, = 0.0 degrees.
The results are compared in Table (7.1). The solution shows the approximate
optimal guidance law using the first-order correction term matches the control
and state trajectories of the shooting method. Initially only the first-order
correction with the acrodynamic pulse generates a nearly optimal trajectory.
The cost obtained by the two techniques is nearly identical. The final weight
using the shooting method was 330678. lbs. at a final time of 369.57 seconds.
The final weight was 330576. 1bs at a final time of 369.59 seconds when using the
first-order approximation. The zcroth-order solution shows a greater variation
in the control from the optimal control. The final weight obtained was 322861.
lbs. at a final time of 371.5 seconds. The zcroth-order solution also does
not satisfy all the boundary conditions as closely as the optimal and first-
order solutions, with an error in the final flight path angle of -.24 degrees
and an error in the final altitude of +40 fcet. Because of this error in the
terminal constraints, large angles-of-attack can be seen in fig. (7.4) for the
zeroth-order solution in attempting to meet the terminal constraints. The first-
order correction picked up most of the deviation of the zeroth-order trajectory
from the optimal trajectory and as a result the boundary conditions are met
more closely with a better behaved control. The most important aspect in
obtaining good results is the convergence of the Lagrange multipliers to the
optimal Lagrange multipliers. With the use of the aerodynamic pulses the

flight path angle Lagrange multiplier approximated to first-order shows good
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Method | zeroth | first first | shooting
order | vacuum | pulse

CPU time
(sec) 49. 304. 344. 426.

Table 7.2: Comparison of computation time

agreement with the optimal solution. A last point about these result is that the
inclusion of the rotation of the Earth in the problem is expected to continue to
reduce the time of flight and consequently increase the final weight available at

orbital insertion.

The convergence of the asymptotic expansion is indicated by the re-
sult of the first-order solution in comparison with the shooting method so-
lution, thereby precluding the need to include higher-order correction terms.
This convergence is tentative since it took the inclusion of the aerodynamic
pulse functions in the zeroth-order problem to achieve the best results. Alas
the convergence properties when using these pulses cannot be guaranteed or
even quantified. Finally, since this algorithm is being proposed as a real-time
guidance scheme the computational time that was needed to generate the entire
trajectory by each method is presented in Table 7.2. While none of the codes
have been optimized for computational efficiency, the use of quadratures does
decrease the time needed to solve the launch problem in comparison to the
shooting method. It should be noted that the flight time is approximately the
same as the cpu time for the first-order approximation methods and that the
shooting method was given a good initial guess (nearly converged) of the un-

knowns. As expected, the zeroth-order analytic solution was found extremely
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quickly. The introduction of the aerodynamic pulse functions into the method

caused a modest increase in the computation time.



Chapter 8

The Relationship between Calculus of Variations and
the HIB equation

In this chapter the relationship between the Hamilton-Jacobi-Bellman
approach and the calculus of variations approach is presented. First, the HJB
expansion method is described in more detail in order to explicitly show the link
between it and the perturbation of the canonical form of the Euler-Lagrange
equations. The similarity of the terms involved and of the two solution tech-
niques is shown. Next the solution of linear, first-order, partial differential
equations is described. The significant result of the solution process is that
the solution to a partial differential equation is equivalent to the solution of
the characteristic curves represented by a set of ordinary differential equations.
A simple derivation of the Lagrange multiplier differential equation from the
HJB-PDE is also included. Lastly, the formulation of the ALS problem along
with the results obtained when using the expansion of the calculus of variations

method are presented.

8.1 Correction Terms to the Lagrange Multipliers

In Chapter 2 the equation for the Lagrange Multipliers (the change

in the cost due to a change in the initial state) was determined to be

6P1($,t) — _/Tf 6R|(y,T, PO:)
t

6Tf
Oz oz dr - Rl'”%

83
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where the terms are evaluated along the zeroth-order path and the higher-order

expansion terms P;(yy,t;) =0 (i = 1,2,...) at the terminal boundary.

Now recall that the integrand terms were

Rl(ya 7, PO:) = _P(?; (g(y1 U, T) + fl(y7 u, T)) (81)
OR\(y,m,R) _ O[PE (el u ) + iy, )] -
ox - 7 oz (8.2)

where the expansion term in the primary dynamics f; is

0f(y,u,7)

hyum)=—5- (8.3)

e=0
Along the zeroth-order path the optimality condition Py, fu = 0 eliminates the

f1 term in the integrand R,
Rl(yr T, PO:) = _P[)T;g(y)urT)

Therefore, the first-order term in the Lagrange multiplier expansion

is

Pz,t) _ (v ].r 0P, , pr|090y  990u
oz /: {9 Wwn) g+ o \5,5: T udz| 47
87'!
~Ri| o (8.4)

Now the equation for the zeroth-order control can be written as a
function of the independent variable, of the states, and of the partial derivative

of the zeroth-order Optimal Return Function with respect to the states.

uo(7) = Fo (1) fuly,u,7) =0
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Thus the variation of the control with respect to the initial state is

(9$ = PO,(T) ay 817 Oz( )T6I+fu (y7u7T) 6.’1: =0
ou o 0f]7! 8fu(y,u,7) By OP. (1)
= - - Ao {re2eudd g, 200

Substituting this equation into the first-order Lagrange multiplier

equation results in

P { pre  prds [P(;rafu(y,uﬁ)]_l P'rafu} dy
¢ z oz

ox %= 5y *Ju ou %= gy

[ T r 09 | sr Ofuly, u, 7) - T 0Fs,
/t {9 (v, u, 1) — Po,a [fo,_au fu Wu, ) p dr

o1y (8.5)

- R 7 0T

Note the notation used here is that the partial derivatives are taken with respect

to an individual initial state z not the initial state vector.

The integrations thus depend on the variation of the zeroth-order
states and the zeroth-order Lagrange multipliers due to variations in the initial
state z, i.e. the terms g;i and aTP;l represent the state transition matrix. This
matrix can be obtained from the zeroth-order analytic solution.

dy, . _ By " (9fdy Of du
5 = O+ {a*ya—ﬁm; dr

Therefore the time derivative of % is

L%y - {af af[ouaf"]

dr bz dy Ou

Of [pr 0] i1 0f,
L lmed] rewng

6. (T)

3fu(y,u 7)
63:
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where the equation for the control variation has been used. Similarly for the

Lagrange Multipliers,

8Poz _ 6P0: 8f8y ch'?u T 6P():
gz ) T g O /{ (6y6m+6uax R

d ohR, ) er0f  orof | or Oful pr, Ofulyu,T) | By
dr Ox (r) = {PO’ dy Fo. Ju Fo.(7) du Fo.(r) 0y ox
af, af.]"" aP
_ )T 79y | pT T :
{f (?]771, T) POI a |:P ( ) 8'& ] fu (y7 U,T)} 8I

These coupled equations could be written in matrix notation as

TE e &
dr | = Aposy Ar,ro, | | F*

where Ay, Ayp, , Apryys Am,m, are the cocfficients of the differential equa-

tions presented above.

The change in the parameters associated with the zeroth-order two-
point boundary value problem due to a change in the initial states can be
determined by the variation with respect to the initial states of the terminal
boundary conditions and of the Hamiltonian at the final time. For every change

in the initial state the transversality conditions must still be satisfied. So,

3\110 _ 6\1!0 ay 6\1'0 67’] _
20 = et o o 0
BPO: . ad)oy 8:{/ 6¢0y 3Tf TG\IIOy (93/ T@‘I/gy an T 81/0
Gz~ Gy oz o 0z TP dy oz 0 r, 0 T 9z
Lastly,

HamO = PoT,f(y,u’Tf) = —¢0’f - V(’]T\IIOTI
Therefore the variation of the Hamiltonian at the terminal time is

OHamo Y OP, By O, 07y
() = PO’BB +P0’67' + M) Ay 5z+3'rf or
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Jx

_ g v d¢o,, 0%, \ 9y (0%, UT({N’oU dry
B Orf 0 6Tf

— -V,
O Oz dy Oy 0x

The variation in the parameters associated with the two-point bound-
ary value problem with respect to variations in the initial states can be found
from these sets of equations. Notice these equations are linear in the unknown
parameters 2u 87 and 2.

dxr’ 9z dx

8.2 Expansion of the Euler-Lagrange Equations

This section attempts to relate the results of the expansion of the
HJB-PDE to the results derived from expanding the ordinary differential Euler-
Lagrange cquations as was done in [19].

The states, control, and Lagrange multipliers are all expanded in an

asymptotic series with expansion parameter €. Thus,

y(r) = yol7) +en(r) + O(e?) (8.6)
u(t) = ug(r) + euy(7) + O(?) (8.7)
M) = X, (T) +EA(T) + O(e?) (8.8)

These expansion cquations are used in a Taylor series expansion of

the dynamics:

fO = f(y7u7T) (89)

fl = fu(y,u,T)u1+fy(y,u,T)y1 (810)

90 = g(y7u1T) (811)
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g1 = gy u, )+ gy (y,u, Ty (8.12)

where the notation is the same as previously presented, i.e., the state and
dynamics y, f, and g are n-vectors and the control u and independent variable

T are scalars.

When expanded in the small parameter €, the optimality condition

/\Z‘ (af(y:u”r) +E@g(y,u,'r)) :U

Ju ou

becomes

AT af(y) u, T)

= 0
Oy ou
6f(y U,T) afl (y,u,T) ag(?])“u T)
T 9 T
T T I 0

after the coefficient terms of like powers of € have been collected.

Thus the first-order expansion term for the optimal control is

-1
w == A\ fuuww, D] [N, + N L Ty + N gy, u, 7)]

This result is substituted into the Euler-Lagrange ordinary differential equa-

tions.

8.2.1 Expansion of the State Equations

The differential state equations

d
—y = f(?/;U,T) + Eg(y,u,T)
dr
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with initial conditons y(7 = t) = z, can be expanded in the small parameter €
as
o+en+e+...=fote(fitg)+e¥(fatag)+...
Collecting like powers of ¢ leads to
o = fly,u,7) (8.13)

fuly,w, Tur + fy(y,u, )3

n
+9(y,u,7) (8.14)

The initial conditions are yo(t) = zo, y1(t) =21 =0 .
Thus,
yO(T) = f(y)u1T)
. T “Tayr T -lor
n(r) = {[fy —Ju (’\Oyfuu) ’\vauy] i — Ju (/\Oyfuu) fury,
-1
R ACT AR )

when the expansion terms of the control law are inserted into the state equa-

tions.

8.2.2 Expansion of the Lagrange Multiplier Equations
Expanding the differential equation for the Lagrange Multipliers
Ay =—(f] +eg5)h
produces the following set of equations

do, = —fy(u,T), (8.15)

v
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/\-ly _ _fyT(y,u,T),\lv - flTv/\gy - g;r(y,u,'r)/\ov (8.16)

Therefore,

R (8.17)

B 3f(y,u,T)T/\ O (y,u,7) | 897 (y,u,T)
= -2, - +
v Oy y Oy Jy

Consequently, the differential equations which describe the first-order expan-

i Ny Ay Ay, n
dr | Ay, Any Axa, At

M

] do, (8.18)

sion terms are

where
Ayy = [fy - fu (/\g;fuu)—l )\(T)quy} (8.19)
A!I'\v = —fu (’\()’I;,.fuu)—-l fI (820)
A'\vy = = [/\g;fyy - /\afuy (’\(’{vfuu)—l /\g;fyu:I (8.21)
AAyz\y = - l:f;,r - Ag;fuy (/\g;fuu)—l f;r] (822)

The solution to this set of coupled differential equations is

n(m,) | _ TR
[ My (7o, ] = P4l 0 { A0 ] + ) alr G

with G(r) representing the forcing terms.

G’(T)=[ 9= 1 (0L fu) ™ 6T, J

-1
—g;rf\o,, + /\g; fuy (/\Oyfuu) 93’\0y
This is the same transition matrix as derived for the variations of the Optimal
Return Function. Notice that the forcing terms are also the same as those

derived for the variation of the Optimal Return Function.
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8.3 Expansion of the Boundary Conditions

In order to expand the terminal boundary conditions properly the
states must be expanded about the zeroth-order path and the zeroth-order

final time. Thus,

T = 7o, +€my, + O(e?) (8.23)
y(r) = w(ro,) +€ [y1(r0,) + to(ro, )71, ] + O(?) (8.24)
Yo, + ey1, + O(€?) (8.25)

Next expand the terminal boundary conditions with respect to the

small parameter €:

V(ys,7) = > Wilyy,1p)et =0

1=0
= [Wolys, ) +€¥i(ys, 7) + €2 Walyy, ) + O()]

The Taylor series expansion of the terminal boundary conditions is

Yy, 1) = i[(lM)(iy”eJ>l+(lat_\pg‘/r-(’;’_r}))_)(ima)i:l

L\ Oy o i! =
ov ov
= Yy, T +e—| y, +ex—| 71, +O(
(yf f) e=0 ay[ e=0Jl! an ezo 1y ( )

Collecting like terms in the expansion parameter € results in

‘I’O(yf7 7-f) = lII(y./'a Tf) _0= 0 (826)
ov ov
‘I’x(yfﬂ'f) = 5‘1'; E=0y1, + 3_17 €=0T1, =0 (8.27)
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8.3.1 Expansion of the Transversality Conditions

Expanding the Hamiltonian A! (f+€g) in terms of the small parameter

¢ produces the following equations

HamO = /\g;f(y;U,"')

Hami = A g(u,u,7) + AL f(,u,7) + A5, fu(y,u, Ty (8.28)

with boundary conditions at the terminal time

_845(90,,7'0,) U'r({)\D(TJO/;T(),)

il

Hamg(7o,)

an 0 an
Oy, (Yo,,To,) O+, (yo,,To,) 0¥ (yo,, To,)
H = Ty Ty A A A A £ _ T EAs 10y
am, (7y) ar Y1, a7, T, — Uy a7,
ov,, (vo,, 70,) oV, (yo,,70,)
v wanf R Y J'6'rfj 8 i

Equating the first-order cxpansion terms of these relationships, the

equation for the first-order Hamiltonian at the terminal boundary becomes

oT
)‘g‘y(TOI)g(?IO,,UO,,TO;) + )"]T;(TO_{) + ’\Oy (TOI)TlI f(yo,,uo,,”'o,)
_a¢y1(y0/17-0/)1 _ a¢f/(y0/:Tof)T

+A§,(70;)fy(y0,,Uo,;”'o,)ylf = 87'! 1 an 1
%Wy rOVy (o mo) 0¥, o)
° Oty 1 ° Oty b t oty

Now proceeding in a similar fashion, the terminal Lagrange Multi-
pliers, determined by the relationship A] (77) = ¢y, (ys,77) + 79, (ys,7) |

become

_ a¢(y0/7 TO;) _ I/T aq’(?jo,,’ro,)

8.29
Oyy ¢y (8.29)

Aly(TOI) =
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* 8 1 ) (9 T )
oy (70,) + Ao, (70,)71, 0y, (10, To,)? 087, (yo, To,)T

oyy TV oyy
_ 0¥ (yo,, 7o,) T (()\1’3'1(3/0/7701)7 - UTa\I/TI (Yo, To’)n
b oy ° Oyy o dyy !

The expansion of the transversality conditions and the terminal bound-
ary conditions produces the boundary conditions for the first-order two-point
boundary value problem. As in the case of the variation of the Optimal Return
Function, the unknown parameters, (y1,, v1, and 71,), can be found by solving

a set of linear algebraic equations.

8.4 Solution to the First-Order Problem

The solution to the first-order two-point boundary value problem is

found by use of

yi(mo,) | _ 0] ™
[Al,(:of,) ] = Palrent) { A (D) } + [ @almo, TG (8.30)

subject to the terminal boundary conditions given for yi(70,) and Ay (7o,) in
Eqgs. (8.27 - 8.30) and subject to the Hamiltonian transversality condition
Eq. (8.29). Also recall that the initial states are considered known and are
zeroth-order terms. Thus the first-order initial states are set equal to zero,
y1(t) = 0. The unknowns which need to be found are the initial and terminal
first-order Lagrange multiplier terms, i.c. Ay (f) and v, and the first-order

term in the expansion of the final time 7.

For a trajectory that includes the staging condition, the terminal

conditions remain the same but the form of the solution becomes

. (TO ) B yl(t)
[ )\llv(‘l'()fj) ] - (I’AQ(TONTsmge)q)A’(Tsmge’t) [ ’\lv(t) ]
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To] Tstage
[ a0, NG - Caa(Tog Teane) [ P (tane VG (T
Tstage
where the state transition matrices ¢4, and $4, represent the state transition

matrix over the first stage and sccond stage subarcs, respectively.

Notice that the form of the solution determined by expanding the
Euler-Lagrange equations and the terminal boundary conditions in terms of
the states, the control, and the Lagrange multiplicrs is equivalent to the solu-
tion found by the expansion of the Ilamilton-Jacobi-Bellman partial differential
equation. The forcing terms and the transition matrix used in the quadratures
are the same. The first-order boundary conditions derived in this section are
identical to the variation of the zcroth-order boundary conditions which are
used in the HJB expansion method to determine the change in the parameters
of the zeroth-order solution with respect to a change in the initial states. In
the HJB expansion the variations gg and a_g_gl arc dependent on the changes in
the constant parameters or the constants of the motion. Any admissible vari-
ation in the initial conditions must still gencrate a trajectory which satisfies
the terminal conditions. Thus the variations in the boundary conditions with
respect to changes in the initial states determine the change in the constants
of the motion. And these changes are embedded in the solution of the vari-
ations in the state and Lagrange multiplicrs, % and %Pgl, which are used to
generate the first-order correction terms. In contrast, the first-order boundary
conditions derived from the Euler-Lagrange equations (which are equivalent to
the variation of the zeroth-order boundary conditions) are explicitly used in

solving the two-point boundary-value problem (8.30).

The similarity of the two techniques is not surprising since solving the
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HIB-PDE is equivalent to solving the first-order Euler-Lagrange cquations.
The reason for this equivalency will be presented more clearly in the next

section.

8.5 Solutions to First-Order Linear Partial Differential
Equations

The solution to first-order partial differential equations is described
in {11, 20]. In this section it will be shown that the canonical system of Euler-
Lagrange differential equations is identical to the system of characteristic ordi-
nary differential cquations used to solve the partial differential equation. This
is presented for the partial differential equation in two independent variables
but the casc of n-independent variables is a straightforward extension. First

consider a partial differential equation of the form
F(z,t, P, P) = a(z, )P, + b(z, ) Py — c(z,t) =0 (8.31)

where a, b, and ¢ are given functions and are considered continuous, as are
their first derivatives, in the region of interest. The solution of this partial
differential cquation is called the integral surface and is denoted as P(z,t).
Since the coefficient terms (a, b, ¢) are not explicitly dependent on the solution
P this is a linear rather than quasi-lincar partial differential equation. The
tangent plane to the integral surface P at the point Q(z,t, P) is defined by
the relationship (8.31) and the normal to the tangent plane is given by the
directions P, P, and —1. The partial diffcrential equation implies that the
normal to the integral surfacc < P, %, —1 > is perpendicular to a vector

< a, b, ¢ > and so the vector < @, b, ¢ > must be tangent to any integral
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surface at point Q. The vector < a,b,¢ > is called the Monge vector. The
tangent plancs to all integral surfaces through the point Q(z, ¢, P) belong to a

family of planes which are described by the relation for the normal as
dt :dr:dP=a:b:c

The direction of the Monge vector at the point @ forms a characteristic line
element ds. The directions of thc Monge vectors form a directional field in
the (z,t, P)-space. To solve the partial diffcrential equation (8.31) the surfaces
which fit the Monge vector must be found. Every surface whose tangent plane
is tangent to the Monge vector at the point is a solution to the partial differen-
tial equation. The characteristic curves of the partial differential equation are
the integral curves of the direction ficld and are defined by a set of ordinary
differential equations. If the characteristic curves are considered a function of

a parameter s then along the curves the characteristic cquations become

d_, odz_, 4P _
ds_a ds ds

c (8.32)
Thus a general solution surface can be generated independently of the initial

data as a one-parameter family of characteristic curves.

For the initial value problem the manifold of possible integral surfaces
can be created and the unique solution depends on the initial conditions of the
problem, i.e. y(s = 0) =z, 7(s = 0) = t, P(z,t) =constant. Starting with a
curve S in space the solution to the partial differential equation is sought. The
curve S is projected onto the (z,t)-space and an integral solution P(z,t) is to
be found, see figure (8.5). Through each point of the space curve a family of

characteristic curves can be generated according to the characteristic equations.
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These curves form a surface and all characteristic curves lie within this integral

surface.

The solution is sought at a point off of the initial data curve and in
the direction of the characteristic curve. Thus the solution becomes a function
of two variables, the initial state (y(s = 0) = z, 7(s = 0) = ¢t) and the running
parameter s along the characteristic curve. As a consequence the solution to the
integral surface P(z,t) can be written as a function of s only with z, ¢ replaced
by their respective solutions along the characteristic direction and with fixed
initial conditions at s = 0. This can be done if the characteristic solutions for
z,t can be inverted to obtain functions dependent on y(s =0) =, 7(s = 0) =
t. The transformation between the two sets can only occur if the Jacobian is

nonzero. In this case a unique solution exists to the initial value problem.

[f the characteristic curve and the projection onto the z,t plane of
the tangent to the curve S are identical then the curve S is a characteristic
curve. Mathematically this happens if the Jacobian is equal to zero for every
point along the curve. This is the relationship that was obtained in chapter
2 for the Hamilton-Jacobi-Bellman cquation where @ = 1 and b = f(z,u,t).
The solution obtained along the characteristic by definition must stay along the
initial data curve. The implications of this result are that an infinite number
of solutions exist for the integral surfaces which solve the partial differential
equation and which pass through the curve S. Since the ordinary differential
equations for the characteristic curves require the integration of a,b, and c
which are known data along the the space curve S and since the projection of
S in the z, ¢ plane is the curve S itself, the integral solution P(z,t) can be found

by integration of % = c¢. The unique solution to the problem is determined
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\

Integral Surface

Characteristic Curve

Projection of the
Characteristic Curve
in the x-t plane

Figure 8.1: Geometric Interpretation of Integral Surface
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by the initial conditions of the ordinary differential cquations and the terminal
boundary conditions such that £ can not be specified arbitrarily at the initial

point y(s =0) ==z, (s =0) = ¢.

In {10} the relationship to the calculus of variations approach is simply
derived. If a particular trajectory is the optimal trajectory then the Hamilton-
Jacobi-Bellman equation must hold at each point and thus can be written with
respect to the states y and independent variable 7. The fundamental equation
1S

B y,m) (f(y,u,7) + eg(y,u, 7)) + Pr(y,7) = 0
and the optimal return function depends only on the cost at the terminal
manifold. Therefore, the optimal return function is constant and the total
time derivative must be zero at cach point in the path. The partial derivative

with respect to y is

= a 8 T 6f(y1 u, T) 6g(y7 u, T)
T T Py F T
0 <f (,um) +eg (y’“”f)) y | By + 5 ( ay  ° Ay

Of(y,u,7)0u  dg(y,u,7)Ou
PT 3 Uy = y Yoy g
i < du oy ou oy
By the chain rule for differentiation

dp, oP, 0P,

Y _ (T T gfy
U7 wm) +eg" ) G2+

Thus a system of ordinary differential equations is obtained which is evaluated

along an optimal trajectory and is satisfied by the partial derivatives of the
Optimal Return Function P(y, 7).

Ei& _ T 8f(?/,u’7') ag(y,U,T)
I Py( oy + € By

_pr (M?L‘ 4 09y, uT) ‘9_“) (8.33)

v ou Oy Ju Oy
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Now the optimality condition is

Of(y,u,7) | 09(y,u,7)
T —
P, ( 50 +e€ o =0

Therefore,

g.}f! = _PT (af(y,u,‘r) +Eag(yau’T)>
dy Oy

dr Y

which is the familiar Lagrange multiplier rule for the optimal trajectory.

(8.34)

The material presented is intended to clarify the relationship between
the solution to the first-order, linear, partial differential equation which is
the Hamilton-Jacobi-Bellman cquation and the solution to the Euler-Lagrange
equations. The point to remember is that the solution to the partial differential
equation is given by characteristics generated by ordinary differential equations

which are the equivalent to the canonical Euler-Lagrange equations.

8.6 Formulation of First-Order Correction Terms for
the ALS Problem
In this section the solution for the ALS problem using the new per-

turbation method , i.e. the perturbed Euler-Lagrange equations, is presented.

The state transition matrix is determined by integrating

d
dr

@(r,t)=[ N }%,t), O(tt) =1
vy vy

where the A matrix was presented in Eq. (8.22)

For the ALS problem the primary and perturbation dynamics are

w gs — Tuac sin @,
f(yl u, T) = ’U, = Iry:n COs 0,,

h —w
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and
r A 2 h(2r.+h) n .
o 2 o+ BpAesingy)
9(y,u,7) = re (do 4 s — ZpA,cosly)
0

where A; and A, represent the aerodynamic forces in the x- and z-directions,
respectively. Also n is the number of engines per stage and p and A. are the

pressure and the engine exit arca. Remember that the thrust was modelled as

T = Tyac — npA..

The first-order partial derivatives of the primary dynamics are

0 00 — Tz cos 0,
fu= 0 00 Su= —%—j—“sinOP
-10 0 0

and all the second-order derivatives are identically zero except fuy,

I;‘“ sin 6,

fuy=fyu:fyy=0 fuu: '——;I;?'RCOSOP
0

Therefore the matrix A in the differential equation defining the state transition

matrix becomes

[0 0 0 a4 Qs 0
0 00 o4 Q25 0
-1 00 0 0 O
A= 0 00 0 0 1
0 00 0 0 O
| 0 00 0 0 0]
with
Thac cos? 0, Tac sin® 0,
Q14 = : Qg5 = -
m (Aycosf, — Ay sin0,) m (Aucosfp — Ay sin 6,)
Tvac cos 0, sin 0,
Q15 = Qg =

m  (Aucosl, — Ay sinby)
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An analytic form for the state transition matrix can thus be obtained.

and

(I)14

(I)l5 = (I)24

q>25

[ i 00 ‘bm (I)ls (Dlﬁ
0 1 0 $oy Pos Po
_ —(r—t) 0 1 &34 P35 D36
®(r,t) = 0 00 1 0 (-0
0 00 O 1 0
L 0 00 O 0 1

_2C%m; | (bem — 2ac + ) (bemy — 2ac +b°%)
omal | Vem? +bm +a \/%? +bm; +a
2c [ (2em +b) (2cm; + b)

oA | Vem? ¥ bm+a yem? +bmy + a

c? [ - 2a +bm - 2a + bmg
_ 0a3/2 Sin m\/z. - Sin m
22

(bem — 2ac + b*)  (bemy — 2ac + b?)

vem? +bm+a \/cm'f b +a

gal\

C,C. b= <2a + bm) winh-! 2a + lrm0>
omad/? | mvA mov A

2C,Cy | (bem — 2ac+b*)  (bemi — 2ac + b?)
omal | vem? +bm +a \/cm,2+bmi+a
2C,An (2em + b) 3 (2cm, + b)
omA \/C'fn2'+‘bm+(l \/mn?+bm+a

C2m, sinh-! 2a + bm nh-! 2a + bmyg
gTads? mva ) moVAs

6'2“ —sinh'l (Qa ha bm> — sinh™! <2a hs bmo)]

T gadd/? | mvA movVA
B 2C- | (bem — 2ac + b?) _ (bemi — 2ac +b°)
gal | vVem? + bm + a \/cmf-{-bm,»+a
N 26 (2em+b)  (2cmi+b)
oA | Vem? +bm +a \/cm?+bm,-+a




2c (2a + bm) _ (2a+bmy)
vem? +bm +a \/cm? +bm, +a
® C.Cum; - (2a+bm - 2a+bmo)
= ———— [sinh — si -
% oma’/? mvA movA
2C,C,m; | (bem — 2ac + b?) _ (bemy — 2ac + b?)
omall Vem? +bm+a \/Cmg +bm; +a
20, (= 2cm;
4 C' Cw+ﬁ7ni (2m+b) _ (2cmi +b)
o m vem* +bm+a\fem? + bm, + a
2Cu A (2a+bm)  (2a+bmy)
oA | Vem? + bm +a \/m? +bm, +a
2 2a + b 2a + bmg
= - sinh™! —sinh™! | Y———
$sy, Ur'na3/2m {sm 1 < A ) sin ( N )
2C2%b
_ Nl e T e = Jem? 1 }
UTh(J.A[ cm?+bm+a \/cm,+bm +a
2C? (bem; — 2ac + b?)
_ (m—m,)
ornal \/ng +bm; + a
C.C 20 +bm 1 [ 2a+ bmg
Gy = ama3/2 —n [bmh ( Y ) sinh (m)]
+2C (2/\'1 C) \/("m2+bm+a—\/cm +bmt+a}
omA a
2% {C (bcm1 —2ac+b ) ks (Qle + b)J (m — m.)
UmA \/C’I’TL,2 + bffli +a
b — C2m, i — 2a +bm\ Ginh-! 2a + bmyg
- om2a’/2 | mvA mov A
2C? bm
om2A< )[\/cm?+bm+a \/cm +bm; +a
2 2 1 - 1
_C“ [E (bcrm - 2ac+ b2) + (2em; + b)J (m — m.)
oA | a

\/cm?+bm.-+a
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The frst-order partial derivatives of the perturbation dynamics are

e 9A; Te (LBA; _ _2u ouw
mh, Ow hs \m Ou (re+h) oh
gy = | e (Lf”_fu _w ) e élf’ﬁ; w i
y he \'m Bw (re+h) he \m Ou (reth) 3h
0 0 0
and
‘3—3‘ + npA. cos 0,
_ e | ton. :
9o, = mh. a0 T npAesinby
0
where
Fgh e [ 10A 2 29,12 A
2o 0, U -l TP sind, (8.35)
oh hs \m 0h (re+h)?2  (re+h)* mhy

0u Te {1 0A; uw npAe ‘0p> (8.36)

3h ~ h, (E.ah T e e, <
The forcing terms in the quadratures pertaining to the first-order
correction terms can now be calculated. Recall
om=| ¢ (M ) T X,
=97 Xo, + A fuy (Mo, fuu) 950,

which becomes i
Giry= |97t (W fuw) 950,

“93 Ao,

The aerodynamic forces are considered positive in the x- and z-directions

respectively, and are
Az = —0.5pS(u?+w?) [Cp(M,a)cosy + C,(M,a)siny]  (8.37)
A = 0.5pS@? + w?) [Cp(M,a)siny — CL(M, a) cos v] (8.38)
The angle-of-attack is a function of the pitch angle and the flight path angle,

a = 0, — . The atmospheric density and pressure are modelled as exponen-

tials, i.e. p = p,exp(—h/h,) and p = psexp(—h/h,). The mach number is a
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function of velocity and altitude with M = (u? + w?)/sos. The speed-of-sound
is calculated by sos = \/@, where ' is the specific heat ratio for air and is
assigned a value of 1.4 . Lastly, the flight path angle is represented in the Carte-
sian coordinate system as tany = —¥. [rom these relationships all the partial

derivatives needed to calculate the forcing terms G(7) can be determined.

8.7 Results

The solution to the launch problem was first attempted for initial
conditions associated with staging. At these altitudes the acrodynamic forces
are small enough that they may correctly be consider perturbation terms. The
results of the new peturbation method (expansion of the Euler-Lagrange equa-
tions) show excellent agreement with the optimal solution. Note that the entire
first-order correction is available since this method is valid as an open loop solu-
tion as is shown in figurc (8.2). The results also agree exactly at the initial point
of the path with the previous results using the old method (HJB). Table (8.1)

lists the relevent values.

Next, the solution for initial conditions at a time of 35 scconds was
sought. Once again the solution via the new mcthod matched exactly the re-
sult obtained using the old method. To obtain agrcement with the optimal
trajectory, the acrodynamic pulse functions were utilized in the same manner
as previously discussed. Consequently, the first-order solution closely approxi-
mated the optimal solution. The values at the initial point are also included in
Table (8.1) and plots of the open loop profiles are in figure (8.3). The solution

in a fecedback configuration is presented in figures (8.4-8.6). Presented are the
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To = 35. To = 153.54
Method P, P P, | P
new -2.2535 | -843.12 | -0.8547 | -908.35
first
new -1.3925 | -153.50 - -
pulse
HJIB -2.2535 | -843.12 | -0.8547 | -908.36
first
HIJB -1.3954 | -153.82 - -
pulse
shooting || -1.2752 | -139.48 | -0.8151 | -860.63

Table 8.1: Comparison of open loop results

final time | final weight B.C. error
Method (scc.) (Ibs.) ydeg | hit
new 369.91 329295. 0.0026 | .219
first
new 369.59 330578. .0014 | -.144
pulse
HJB 369.91 329293. .03 | -.002
first
HJB 369.59 330576. .0001 | .0007
pulse
shooting 369.57 330678. - -

Table 8.2: Comparison of closed loop results
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profiles of the flight path angle Lagrange multipliers, the velocity Lagrange
multipliers, and the control over the entire trajectory. In the closed loop solu-
tion the values are practically identical with a slight difference in the accuracy
upon which the terminal conditions are met. In order to be consistent with the
results chapter, the second stage acrodynamic model was used throughout the
flight. Table (8.2) verifies that the results are the same for the two perturbation

methods.

To summarize, the expansion of the Hamilton-Jacobi-Bellman equa-
tion is equivalent to the expansion of the Euler-Lagrange canonical equations
with respect to the states, control, and the Lagrange multipliers. The theoreti-
cal and geometric concepts behind the solution of first-order partial differential
equations were also discussed. The reason for the equivalency of the two meth-
ods is that the result obtained by solving the partial differential equation and
differcntiating with respect to the initial states is identical to the result ob-
tained by the solution of the ordinary differential equations that represent the
characteristic equations for the partial differential equation. For the Hamilton-
Jacobi-Bellman equation the characteristic equations are the Euler-Lagrange
equations. As expected, the solutions obtained using the two perturbation tech-
niques are identical. While the calculus of variations approach took a longer
amount of computation time, the entire open loop trajectory can be generated.
Because of this fact the update to the feedback solution need not be com-
puted as often and thus the overall computational time can be reduced. At the
expense of this speed comes the additional burden of integrating a state tran-
sition matrix rather than calculating the partial derivatives of the zeroth-order

solution. While the state transition matrix approach is easier to understand
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Open Loop Flight Path Angle Lagrange Multiplier
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Figure 8.2: Open loop solution for Lagrange multipliers at

staging conditions
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than the embedded nature of the HJB solution, the state transition matrix can
be more difficult to obtain than the corresponding partial derivatives needed
by the HJB expansion method. Also note that the Hamilton-Jacobi-Bellman

equation can be written as a stochastic equation and can thus handle random

disturbances.



Chapter 9

Conclusions

The technique for applying the expansion of the Hamilton-Jacobi-
Bellman partial differential equation to derive a real-time guidance scheme has
been presented. The problem of launching a vehicle into orbit was simulated
for flight restricted to the equatorial plane. Difficulties arose at low altitudes
due to the large and highly nonlinear aerodynamic forces. While the expan-
sion method gave reasonable results, the use of aerodynamic pulse functions
in order to reshape the zeroth-order trajectory was vital to matching the opti-
mal trajectory. Thus it is essential that the zeroth-order path, upon which the
higher-order corrections are based, resembles the optimal solution such that the
assumed perturbing effects are indeed small. Based on the difficulties caused
by the aerodynamics and the modelling of these aerodynamics a few sugges-
tions are offered. First, the modelling of atmospheric and aerodynamic terms
should be adequate well beyond the domain of the optimal solution. This is
especially necessary if in some manner the zeroth-order trajectory significantly
deviates from the optimal trajectory. It is also suggested that this technique
would work better with a symmetric version of the ALS vehicle configuration
by eliminating the irregular behavior of the Hamiltonian. The results of this
research showed that the idea of using perturbation theory to perform real-time
on-line guidance is a valid one. The improvement in computational speed and

effort over the generation of optimal solutions is evident. Still, the technique as
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presented here was not designed for computational cfficiency. To that end, usc
of parallel processing in the integration of the quadratures is proposed. This
has the potential of decreasing the computational time even further. Lastly,
one of the goals for deriving an on-line guidance scheme is to provide abort op-
portunities or instantancous changes in the terminal destination. It should be
remembered that this method always provides a nominal path which satisfies
the terminal constraints while an improvement in the performance is obtained
by the first-order correction terms. Because of the robustness of the solution
to the zeroth-order analytic two-point boundary problem, in-flight aborts can

be easily included.

More sophisticated modelling, such as including an oblate Earth model
and wind profiles, can casily be done since these effects can be considered per-
turbations and included in the problem in the higher-order correction terms.
The result would be to integrate some additional quadratures. The technique
can also be extended in a straightforward manner to flight in three-dimensions
in order to reach a point in space. Sce appendix{A] for the zeroth-order ana-
lytic solution. This is done through the addition of the out-of-plane equations
but with an accompanying increase in the complexity of the problem. It is ex-
pected that the thrce-dimensional solution will increase the payload available
at orbital insertion due to the benefits of the rotational effects of the Earth.
The inclusion of a dynamic pressure point inequality constraint is also feasible.
In other ALS studies [4, 12] it has been shown that since the rocket cannot be
throttled, the vehicle only touches the dynamic pressure constraint at a point.
It is suggested here that this point incquality constraint can be included in the

analytic solution of the zeroth-order problem as an interior point constraint
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[see appendix C]. This new zeroth-order trajectory would avoid the large aero-
dynamic correction terms found in the unconstrained optimization problem.
These large correction terms arc due to the acrodynamic forces encountered
when flying through the region of high dynamic pressure. The solution to a
zeroth-order trajectory including a dynamic pressure constraint represents the
most important step in the evolution of this method for implementation as a

real-time, on-line guidance scheme for the launch problem.

Research is in order, on the inclusion of variable state and control in-
equality constraints in the expansion of the Hamilton-Jacobi-Bellman equation,
so as to generalize the class of optimization problems amenable to expansion
techniques. Future studies arc required on the general properties of the validity
of the asymptotic expansion of the HJB equation. For example, the question
of whether or not the asymptotic expansion is uniformly convergent remains
to be answered. This is especially true in light of the use of the ad hoc aerody-
namic pulse functions. Also, the approximatc optimal guidance scheme must be
made robust with respect to parameter variations and stochastic disturbances
in order to be implemented as a real-time on-line guidance scheme. Possible
solution methods [21, 22, 23] have been proposed to handle the more realistic
situation of a nondeterministic environment. The use of the Hamilton-Jacobi-
Bellman equation is particular advantageous under these circumstances since
a stochastic version of the equation exists. With the zeroth-order trajectory
providing full state information, the best solution in the presence of random

disturbances should be obtainable.



Appendix A

Zeroth-Order Solution for Three-Dimensional Flight

The analytic zeroth-order solution is derived once again by a transfor-
mation of coordinate system. A canonical transformation from the wind axis
to the rectangular or local horizon coordinate frame allows the zeroth-order
problem to be solved analytically. The solution is in closed form up to some

constants that can be determined numcrically. By making the transformation

u = Vcosycosy (A.1)
v = Vcosysiny (A.2)
w = —Vsiny (A.3)

the zeroth-order cquations of motion in a cartesian coordinate frame become

X = u (A.4)
= v (A.5)
h = —w (A.6)
= L s, cosy (A.T)
u = —cosly A.
: T .
v = _~cos Opsin (A.8)
. T .
W = ——sin Op + gs (A.9)
m = —oT
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where the Thrust pitch attitude, 0, = o + v, and the Thrust yaw angle, ¢ =

X + 3, become the control variables for the zeroth-order solution.

The optimization problem to zcroth-order is solved by the Hamilto-
nian

T
H = Axu+ Ayv — Mw + Ay— cos 0, cos ¢ +
m

r r

{
Av—cos U, sin ¥ + A\, (——sinf, + g) (A.10)
m m

The zeroth-order control laws determined by the optimality conditons are:

o
Hy = — cosOp( Ay cos v — Ay sinyy) =0 (A.11)
m
‘ . T . T
Hy, = —(Aucosw + A, siny)— sin 0p — —Awcosl, =0 (A.12)
m ™m
Thus,
Ay
t = =
any "
Au
CosY = ————
VAL A2
_ Ay ,
siny = ———— (A.13)
A2 + )2

and using these forms for the cosine and sinc of ¥, 0, is

Aw
tan 0p = m
0 A2+ A2
RV S vony Fany v
sinf, = Ay (A.14)

VAZ+ A2 4+ A2
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Propagation of the Lagrange multipliers by A, = — 17 gives
M = 0
Ay = 0
Moo= 0
M = —Ax
A= <Ay
Ay = A (A.15)

with boundary conditions given by Ay =Gy

Ax(T/) =Ulx, /\y(TI) = Vy, A;,_(Tf) = Vp, ,\u(Tf) = Uy,

/\U(Tf) = Uy, /\w(Tf) = Vy

where vy, vy, vy, vy, 1y, 1y are unknown Lagrange multiplicrs associated with

the terminal constraints. The solutions to the adjoint differential equations are

Ax

/\Y

= vy
= uy

= u,

= Cy = Ax(1—7)

= C, = Ay(T— 1)

= Cy+ A(7 - 1) (A.16)

The equations of motion can be integrated by changing the independent vari-

able from time to mass and using the mass cquation to substitute mass for .
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Therefore, the Lagrange multiplicrs becorne

— m

/\u = u Ax—=

Cu+ X T

= m

Ay = Co+Ay—

+ YO’T

— m

Ao = Cu— Ah—

hoT
NN = emP+bm+a

where

A+ A+ N
(¢T)?

2 — — —
b = ﬁ(z\xcu + M C, — /\wa)

o« = Co+C-+C,,

Uu - Cu'—AXEqw
ol
T, = C -\ 2R
YoT
Uw = Cw+)‘hr_n£1
ol

and the state equations become

du _ Ay

dm  omVemZ+bm+a

dv _ Ay

dm  omvem?+bm+a

dw . Aw Gs
dm om\/cm2+bm+a_0—T
dxX u

dm ~ oT

day v

dm ~  oT

dh w

dm oT

(A.17)
(A.18)
(A.19)
(A.20)

(A.21)

(A.22)
(A.23)
(A.24)
(A.25)
(A.26)

(A.27)
(A.28)
(A.29)

(A.30)
(A.31)

(A.32)
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Note that ¢ > 0, a > 0 and A £ 4ac — b? > 0 since

77 (OHCo = G + O Cu + MG + O Ca + G (A3

Therefore, the integrations can be obtained from standard integrals. After some
manipulation, solutions for the states are obtained in terms of the unknown

constants as

U +—/\X sinh™! 2em + b — sinh™! ___2cm0+b
°T T e VA VA

o1 {2a+bm o1 [ 2a+ bmg

nh™!' [ =——"| —sinh™' | ——F—= A.34
f{ (wz) <mo Aﬂ (A-30)

e
I

VA
C, [. 2a + bm .1 [2a+bmg
—— h™! —sinh™! | =———— A.35
Ua[sm (mA> sinh <m0\/5>] ( )
w = wo—ag—,}(m—mo)
S 2cm + b inh-! 20m0+b)
a?T/c VA VA
Co [ ._i(2a+bm 1 [2a+bmg
T |y ) - A.36
— [smh ( —y ) sinh ( — >] ( )
m—m
X - Xo—( - o)u0

2cmg + b

“oterye !t b)[smh_l< VA )_Smh-l (—‘/Z—)]
mg_(_f;_;ﬁ [sinh" (gfn—f/%—@) — sinh™ (%%)]
s o () - (257

Ax > > ]
_ m —vemn m A.37
a(aT)Qc[\/%+b o+a—vem?+bm+a (A.37)
Y = Yo———-———( _ )'Uo

oT
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Ay b -1 f2cm+b inh-! 2cmg + b

N C, [sinh" (‘Za + bm) b <2a + bmo)]

ma(aT)\/a mvA moVA
+—_C—u sinh ™! 2em +0 b) — sinh™! (————QCmO ki b)
o(oT) /e VA I
_;(;\TY)Q—E [\/cmg+1)m0+a— \/cm2+bm+a] (A.38)
b = b g+ 2

. S (m+ ﬁ) sinh™! 2em £ 63 _ sinh™! Zemo + 6
a(oT)?\/c 2" VA VA

Cy N 2a+bm)_ —_ 2a+bmo>
o [ )~ (s

T [sinh" (QCm + b) R (QCmo + b)]

a(aT)y/c va VA
_Ef/\ThT% [\/cmg +bmo+a— vVem? + bm + a] (A.39)

There are seven unknown constants that are to be determined
mys, Cu, Cy, Cuw, Ax, Ay, An. These unknown constants can be found using the
initial and final states which arc known, the six state equations above, and the

transversality condition for the Ilamiltonian.

These equations are valid for arcs before and after staging occurs. To
determine a point on the trajectory after staging, given initial conditions before
staging, the Weierstrass-Erdmann corner conditions can be used to relate the
Lagrange multipliers before and after staging and thus link the two subarcs.
Since the states are assumed continuous across the stage time and the change
in mass is a known fixed quantity, all the Lagrange multipliers are continuous

in time. The Return Function is thus continuous and constant across the stage
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time. But since the analytic state cquations are derived using mass as the
independent variable, the cquations for the states and Lagrange multiplicrs
change across the stage. The form of the cquations is the same but the initial
values for the states in the equations are now replaced by the values of the
states at staging before the discontinuity in mass. The mass flow rate, o7, will
change and the initial time associated with the Lagrange multiplicrs becomes

the stage time. Therefore,

ms m
All) = (Au(tﬁ)—Axﬁf—?) + A
= 611 +/\X ,n:l
01512
ms m
M) = (/\v(cst) - Ayﬁ%) R
= 611 +/\Y rn‘l
013t2
mg m
Aolt) = (/\w(tﬂ) + A,ﬁ;—‘;";) - M
— m
= Cw —A "
hUYsL?

Thus the constants a,b,and ¢ in the analytic solution have the same form but

the term C after staging becomes related to C belore staging.

- - Myt2 Mgy
Cu = Cu-» ( ——)
“ x 0 Tse 0T

M2 Mgt
T, = CT,— A ( 2 _ )
Y b Y UT9L2 UTstl

®!

ai Mgt2 Mg
w = Cw + /\h (,_" -
UFst? UTSH

Through a coordinate transformation back into the wind axis the an-
gle of attack can be determined. Higher-order terms in the Lagrange multipliers
can be found from expansion of the dynamic programming equation. The Opti-

mal Return Function can be determined by integrating the perturbation terms
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along the zeroth-order trajectory while taking into account variations in the
final time due to changes in the initial states. Taking the partial derivative of
the Return Function with respect to the initial states determines the Lagrange
multipliers. Expanding to first-order the control and Lagrange multipliers in

the control law determines the first-order approximation for the controls.

A.1 Zeroth-Order Coordinate Transformation

The analytic solution for the zeroth-order problem has been found
in the Cartesian coordinate system but the equations of motion of the full
system which includes the acrodynamic forces are written in the wind axes
system. To derive the zeroth-order control and the first-order correction to the
controls the transformation of coordinates and especially the transformation of
the Lagrange multiplicrs must be known. The rotation from the wind axes to

the local horizon frame is done by a canonical transformation.

u = Vcosycosy
v = V cos~ysiny

w = —Vsiny (A.40)

A necessary and sufficient condition for the transformation to be canonical is

that the Hamiltonians be equivalent.

Hig = AxdX + AydY + Andh + Aydu + Aydv + Apdw
Hwirna = Xpd0 + /\¢d¢ + Mdh + AvdV + /\A,d’)’ + /\xdx
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For the two reference frames, h and m arc the same. Also, for the model

X =710 and Y = r.¢. Thus,

Mo =TeAx, Ao =Tedy, and Axisthe same

In order to cquate the Ilamiltonians, the Jacobian of the transforma-

tion from the wind axes to the local horizon axes is computed.

Aodu + Apdv + Apdw = AydV + Aydy + Adx

So,
M=l o ow || N
A Su  du Ow A
X dx Ox  Ox w
and thus
Av COS Y COS X cosysiny —sinvy Au
A, | =| —Vsinycosxy —Vsinysiny -V cosy Av
Ax —Vcosysiny V cosvycosx 0 Aw
Therefore,
Av = A COSYCOSY + A, cosysiny — Ay siny (A.41)
Ay = —=V(Aysinycosx + A, sinysinx + Ay cos7) (A.42)
Ay = Vecosy(—Aysinx + A, cosx) (A.43)
A0 = Te)\X
/\¢ = T'C)\y
and

V = Vul+v?+uw?

tany =

gl

siny = —
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Plots are presented to show the characteristics of the solution for flight

n a vacuurn using the open loop analytic solution.
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velocity vs. time
28000 e

—velocity
20000 -

12000

1

velocity (ft/s)

8000

4000 -

0 —
0 50 100 150 200 250 300 350 400
time

altitude vs. time

A A It . i I

7 ——altitude

altitude (ft)
EEEEN

0 S0 100 150 200 250 300 350 400
time



Appendix B

Canonical Transformations

The use of the canonical transformation of section 4.2 is essential in
finding the closed-form solution to the zeroth-order problem because canoni-
cal transformations preserve the [lamiltonian form of the equations of motion
in the new set of variables. A more thorough discussion of canonical trans-
formations than what is presented here is in [24]. To transform between the
generalized coordinates and generalized momenta or Lagrange multipliers (g, p)
of one system to new variables (@, I°) of a new system, a set of transformation
equations linking the two systems must be known. This link between the two

systems can be derived from the generating function S(q, @, t).

250,000 = Lig.,0) ~ L(Q.Q.0 (.1

where L = T = V is the Lagrangian of the respective system. Let the transfor-

mation equations be of the form

Q=Qpt) P=7r@pt) (B.2)

with Hamiltonians associated with each set of variables such that the Hamil-

tonian equations are satisfied, i.c.,

[{((Lpat) = Zpi(h - L(QaQat) (BB)
oL
pi = T (B.4)
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311
G = ;7 (B.5)
K@, Pt) = S PQ - LQ,Q,¢ (B.6)
oL
po= % (B.7)
- IK
Q. = ;7 (B.8)

By solving Egs. (B.3)-(B.6) for the Lagrangians and substituting into Eq. (B.1),
the difference between two differential forms can be obtained as an exact dif-
ferential.

Y omidg — Idt =3 PdQ, + Kdt = dS (B.9)

This is the sufficient condition for a canonical transformation between the old

variables (g, p) and the new variables (Q, P).

The generating function can be written as a total differential of the

form

oS a8 N
dS = Z %d(], + Z 5@(1@1 + Edt (BlO)

Equating like terms of the differential dS yiclds

as as aS
= e = — =/ + — .

A simplified form of these equations can be obtained. Assume that
time is not changed in the transformation fromn one system to the other system.
Therefore, t is an independent parameter and the value of dt is set to zero. Also,
define a new function equal in value to the generating function but expressed

in a different form

Y(q,p,t) = S(q,Q,¢t) (B.12)
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Therefore, the variation of I2q. (B.1) is rewritten as

E P0G — E P60, = ov (B.13)
The equations

N 0Q;

5 - P EJ Pja—(h (B.14)

oY or

Y = N p B.1

Ip; z]: 7 Ops (B.19)

are obtained by cxpressing the variations 8i and P6Q; in terms of the old
variables. The new Hamiltonian is determined by integrating the expressions
presented above to obtain v, and then calculating

90,
at

K=l!+%7;—/}+z{i (B.16)
:

For a homogencous canonical transformation the generating function
S or v is identically zero and thus di is an exact differential and equal to zero.
For a point canonical transformation as used in section 4.2, the transformation
equations @; = Q:(q) are functions only of the generalized coordinates of the
old system. The functions @Q;(q) represent a full sct of independent functions,
therefore, the old variables ¢ can be expressed in terms of the new variables Q
using these same functions. This implics that the Jacobian determinant is not

zero,

aQi — O(QlyQQa "')Q")
8(11 ({)(ql y 42, "'7{]71)

Since the transformation equations (Q, %) do not contain time, the Hamiltoni-

| £0 (B.17)

ans of the two systems are equal (K = H). This result is obtained by the use
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of Eq. (B.16). The relationships expressed in Egs. (B.14)-(B.15) become

_ _ > (9Qj

0 = p Ej P, Ja, (B.18)
_ 00,

0 = — E P; o (B.19)

J
The Jacobian determinant of the new variables @ in terms of the old set of La-
grange multipliers p must be zero for a set of P’s not all identically zero and is
also required since the point transformation @ = Q(q) was independent of the
Lagrange multipliers p. The matrix %—? is uscd to determine the relationship
(Eq. (B.18)) between the Lagrange multiplicrs of the two systems. The trans-
formation between the wind axis coordinates and the Cartesian coordinates of

section 4.2 is a canonical transformation as can be verified by the use of the

canonical transformation equation (Eq. (B.13)).



Appendix C

Point Inequality Constraints

The inclusion of the a point inequality constraint on the dynamic
pressure is discussed in this section. Due to structural load limits imposed
on the ALS vehicle, the optimization problem must include a dynamic pres-
sure inequality constraint. Tor the unconstrained optimization problem that
is presented in this rescarch, the correction terms to the zeroth-order solution
become too large necar the region of maximum dynamic pressure. For a rocket
incapable of throttling, the optimal trajectory will not include a subarc on the
boundary of the dynamic pressure constraint but instead will only touch the
constraint at a point [4, 12]. This result would scem to indicate that the dy-
namic pressure inequality constraint can be handled in the same manner as
an interior point constraint. Thercfore, the Hamilton-Jacobi-Bellman equation
can be split into subarcs before and after satisfying the interior point constraint.
Let the optimal return function be

o0
P(z,t) =) ¢ Plx,t) (C.1)
1=(}

The point interior equality constraint is
N(y(t)) =0 (C.2)

where the constraint is a function of the states y at the time ¢; and the states

are assumed continuous at the constraint. The system dynamics are defined
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by
y=[y,ult) (C.3)

and thercfore the amiltonian is /7 = /. f. Across the cquality constraint

Pe(y,ti=) = Py, ti+) + 0N (y, ) (C.4)

Py, =)y, v, ti=) = Poly,b+)f(y,w, t1+) (C.5)

where IT is the Lagrange multiplier used to adjoin the constraint to the per-
formance index. These equations are the corner conditions derived using the
calculus of variations [9]. From the solution of the Hamilton-Jacobi-Bellman
first-order partial differential cquation, the higher-order terms of the expansion
of the optimal return function are

Lty

- t
P(z,t) = —/ Rdr - [ Rar  i=12, (C.6)
t ti+

Recall that the integration is performed along the zeroth-order trajectory. The

partial of the return function with respect to the initial state z is

b= Ot
Puat) = =[S 2

Ox
(’)t] ty (9]%,
I

ot
~Rlun ) Gy + sl i) 5 = [ S (C)

This equation determines the correction terms to the Lagrange multipliers.
Notice that the variation in the time at which the cquality constraint is satisfied
is explicitly taken into account in the correction terms. Substituting the partial
of the expansion of the return function (Eq. (C.1)) into the corner condition of

Eq. (C.4) produces

DEPL(y =) =3 €P, (y, 1 H) + TN (y, 1)) (C.8)
1=0 i=0



135

The solution for the Lagrange multipliers is then determined by collecting the
coefficients of like powers of the expansion parameter, c. Therefore, for the

zeroth-order term of ¢ = 0,
.y li=) = Po, (y, ti+) + TNz (y, 4) (C.9)
and for higher-order correction terms
Py, =) =Py, +) 121 (C.10)

"This result implies that the higher-order correction terms for the Lagrange mul-
tipliers are continuous across the equality constraint. The jump discontinuity
in the Lagrange multiplicrs is completely taken into account by the zeroth-
order term. The higher-order terms of the expansic: of the return function
are thereby continuous across the corner. The continuity of the Hamiltonian is
ensured by substitution of the partial of Eq. (C.1) into Eq. (C.5), which results
in

o0 o0

STEP (=) u =) =3Py, R [y u bt (C.11)

i=0 1=0

Thus, by collecting terms in like powers of ¢, the equation
Rz(xatl—)f(yvu: tl_) = I)II(I¢t1+)f(y)urtl+) (ClQ)

is obtained. This condition is just the continuity of the expansion terms of the

Hamiltonian, i.e., H,(y,u, Pr, ti=) = HL(y,u, P, bi+)-

The dynamics of the system are the same after meeting the point
constraint as they were before the constraint. Thus, the analytic solution of
the states as derived previously is still valid but with a change in the La-
grange multipliers at the dynamic pressurc constraint. The rclationship be-

tween the Lagrange multiplicrs across the constraint given by Eq. (C.9) can be
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used to link the subarc of the zeroth-order trajectory that occurs before the
constraint equality is mct to the subarc that occurs after the constraint equal-
ity is met. These equations arc additional conditions that are used to solve the
constants associated with the two-point boundary value problem. Since the
zeroth-order problem totally accounts for the dynamic pressure equality con-
straint N(y,t1) = 0, the first-order correction term to the zeroth-order term
should be small and the asymptotic expansion should remain valid near the con-
straint. Therefore according to the method of characteristics, the zeroth-order
trajectory can be used as the characteristic curve to determine the higher-order
correction terms. In contrast to the unconstrained optimization problem, this
zeroth-order trajectory should be close cnough to the optimal solution such

that only small corrections to the zeroth-order guidance law are necessary.



Appendix D

Analytic Partial Derivatives for Zeroth-Order Solution

The partial derivatives with respect to the general initial state z de-
rived in Chapter 5 for the first-order correction terms are presented here in
their explicit form for the initial states, Vy and 7. The equations derived are
for the second stage subarc. The initial velocity components expressed in terms

of the wind axis states are
Uy = V(] COS Yo, wo = —V() sin Yo (Dl)

and therefore the partial derivatives with respect to the initial velocity and

flight path angle are

Ouo
— = COS$
0 V() 1o
({)710 .
—— = —Vsiny
O
Jdwy o
JR— — — 8
ave Yo
ow

AL — Vb cos Yo (D.2)
v

The partials of the analytic zeroth-order state equations are then expressed as

u
o

570 2a 8‘/0

cos Yo —

I (e - 8C, C. da
G [sinh ™" Sa(m) — sinh %Q(mo)}<
1 03, 0S2(me)

C. 1
ova | J1+33m) Vo \/1+33(my) 9V
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(D.3)
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Ou . . 1 ST N — anh~! < acu 91 da
6_% = —Vpsinvo 7 [smh J2(m) — sinh ‘sz(m‘))] dv  2a 0y
C. 1 9%, 1 0S5 (my) D.4
- _ e 2 0 (D-4)
av/a \/1 + $3(m) 970 1 + S3(mo) Yo
aw 3 ) 1 . -1 o o -1 o a—éw aw 60.
a_vo = —siny m [smh S2(m) — sinh Jz(mo)] Vo 2a 0V,
_Cu L 0% ! 992 (mo)
Ve [ JI+83m) M 11 sYm) OV
e (O e
T [smh 31(m) — sinh \H(mO)] (avo 2¢ OV,
_ An 1 43, B 05, (my) (D.5)
PTVE [ /U4 SHm) %~ 4 Slma) OV |
ow [ AR inh~! < 0Cy _Cy a
o = Vo cos Yo oz [smh So(m) — sinh \52(mo)] 1o 2a H
T, 1 8, 1 9S2(mo)
Ve [\1+83m) 0% 1+ S3mg) O
a?T\/c [smh S1(m) — sinh \Sl(mO)] 07 2¢Oy
_ /\h 1 (?%1 _ 1 agl(TnO) (D 6)
PTVE | T3 5Hm 0 i+ i) 00 |
a_h ~ o dn (m ~ mp)
Ve o ocT
_ m IR I ikl a_éw —_ Qﬂ
N [smh S2(m) — sinh Jz(m(’)] (avo 2a 0V
. Uw 1. 03, N 1 332("’0)
oTVa | /1 + 33(m) Ve 1+ S§(m) o
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B m . -1 o a/\h
__—O'(O'T)Q\/— [smh Sy (m) — sinh™ \S](mo)] oV,
oA An Oc
ST (2222
(orT { cm? +bm+a \/(:m0+bmo-+—a 3V0 A
M [migs A miE + e misg + megk + 5
oo | Vet T ) o7
o(oT)?%c cm+)m+a \/;n0+bmo+a
QE = —sin ______(m—mo)
6000 B o aoT
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Cu 1 R 1 0S2(mo)
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20(0T) vem?2 +bm+a yemd +bmy + a

The partial derivatives of the constants a,b,c, and Cy, used to express

the analytic state equations arc

60. aCu Vol 6611}

e = 20“5170”&”5% (D.9)
{f_jo 2. aaco +2C. %‘i (D.10)
80—‘2 = —l[é‘w%?/—’;“h%} (D.11)
% _ _U%[aw%%uh%%] (D.12)
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8?2 _ (03 )22?/3 (D.13)
o = ot e o2
%co _ (U;)z ((99/;2 (D.15)
e = ot oo (010
Rl oD
Also, the derivatives of the discriminant function A = 4ac — b? are
g% - 4a38$0 + 4(;;30 - Qbaa‘l/)o (D.18)
g% _ 40%“6(;9_;_%% (D.19)

The arguments of the inverse hyperbolic sine function are defined in

Eq. (5.19) as

i(m) = w\/ng $ Sulm) = zfnf/bzm
The resulting partial derivatives of the arguments are
+2€§%} (D.20)
Do Lm- e P2 g e
+262_:/ﬂ (D.21)
(89_(\;: - -r;\l/_K [2(1 m%)g‘z +m(1 + 3/351)8330
ma%%—%a(g—;ﬂ (D.22)
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0%, _ 1 <3, 9a b9, 3b

3’70 m\/Z

2 9¢ 4 om (D.23)

(D.24)

Note that unless the partial deriviatives are evaluated at the terminal manifold
the partials -g%o and g% are zero. Using the partial derivative chain rule for a

trignometric function, the partials of the inverse hyperbolic sine function are

obtained.
a ;. 1 03,
—_— h 'S = e — D.25
F7A (sm \sl) 51 0% ( )
(73—’%- (smh \SQ) = ma—% (D.26)

Therefore, all the partials derivatives nceded to evaluate the partial derivatives
of the analytic state equations along the zeroth-order trajectory depend on the
eight constant partial derivatives —g—’}:)l, g—c‘%t,%—f,g‘, %'—%, Z—’;ﬁ, %%;, ‘?,—s:, %—':oi. These
partial derivatives are functions of the solution to the two point-boundary value
problem. Therefore, they are constant when integrating the forcing function R,

from the initial to the final conditions but they change as new initial conditions

are given when the guidance scheme is used in feedback.
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