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ROBOTICS IN A CONTROLLED, ECOLOGICAL LIFE SUPPORT SYSTEM

ABSTRACT

Controlled, Ecological Life Support Systems (CELSS) that utilize plants to

provide food, water and oxygen could consume considerable amounts of labor unless crop

production, recovery and processing are automated. Robotic manipulators equipped with

special end-effectors and programmed to perform the sensing and materials handling tasks

would minimize the amount of astronaut labor required.

The Human Rated Test Facility (HRTF) planned for Johnson Space Center could

discover and demonstrate techniques of crop production which can be reliably integrated

with machinery to minimize labor requirements. Before the physical components (shelves,

fighting fixtures, etc.) can be selected, a systems analysis must be performed to determine

which alternative processes should be followed and how the materials handling tasks

should be automated.

Given that the current procedures used to grow crops in a CELSS may not be the

best methods to automate, then what are the alternatives? How may plants be grown,

harvested, processed for food, and the inedible components recycled? What comnm'vial

technologies current exist? What research efforts are underway to develop new

technologies which might satisfy the need for automation in a CELSS? The answers to

these questions should prove enlightening and provide some of the information necessary

to perform the systems analysis.

The planting, culturing, gathering, threshing and separation, food processing, and

recovery of inedible portions of wheat were studied. The basic biological and materials

handling processes of each task are defined and discussed. Current practices at Johnson

Space Center and other NASA centers are described and compared to common

production practices in the plant production industry. Technologies currently being

researched which might be applicable are identified and illustrated. Hnally, based on this

knowledge, several scenarios are proposed for automating the tasks for wheat.
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Hetzroni, et al. (1992) used a machine vision and image processing system to

monitor the nutrition and health of lettuce grown in a controlled environment chamber.

Neural networks were used to classify picture elements (pixcls) into normal or nutrient-

deficient classes. Miles (1989; 1991) showed that image processing could detect patterns

in wheat leaves caused by nitrogen, iron and/or potassium deficiencies.

The ROTRAN ® 2000 _ robotic transplanter for bedding plants uses an integrated

machine vision and image processing system to check for seedlings and to direct the robot

to correct for misses (Beam, et al, 1991). This is one of the few comrm_ially available

machines which has the versatility required of a CELSS.

Benady, et al., 1992 utilized an electronic sensor for ethylene to determine ripeness

of cantaloupes. The aromatic volatile gases emitted naturally from climacteric fruit during

ripening arc detectable by the small, hand-held SnO 2 sensor. The ability to accurately

measure crop ripeness is necessary for selective harvesting, and for automating a CELSS.

Manipulators and End-effectors

Robot manipulators may be Cartesian, revolute, or hybrid combinations depending

on the physical location of the servomechanisms. In Cartesian style robots, the actuators

are positioned so that each axis provides linear motion for a carriage that carries the next

axis, or the end-effector. Otwilinear motion is provided by coordinating the relative

motion between each axis. In revolute robots, the manipulator consists of a base and arm

sections with servos at each joint to provide rotary motion. By coordinating the motions

between each servo, linear motions of the end-effector can be achieved. Cartesian-axes

and revolute-joints may be combined to produce a wide variety of robot types.

End-effectors, or grippers provide the mechanisms to grasp objects. Many end-

effectors also have axes or joints, which permit objects to be positioned or oriented

independently of translocation by the manipulator. The physical design and size of

grippers depends on the objects to be grasped, and may be unique for each task.

Simonton (1991) has developed end-effectors for manipulating plant materials.

Because the robot(s) will be required to perform a multitude of tasks, the end-

effectors must be automatically changeable, without human assistance. This capability is

not nomaally found on industrial robots and may require considerable development efforts

for the unique set of CELSS end-effectors. The connections to the end-effector must

include:

• physical support,

• electrical, pneumatic, vacuum, and/or hydraulic service, as well as

• sensor and control lines.

Kutz, et al. 1987 demonstrated robotic transplanting of bedding plants from a

seedling flat to a grow flat (Miles and Kutz, 1991). The gripper was two fiat pieces of

spring steel that open and closed pneumatically around the seedling plug. The Puma robot

inserted the gripper into each cell by following an "L" shaped approach path which kept

1ROTRAN 2000 is a registered trademark of Robotic Solutions, Inc., 129143 Ctanberlamd Avenue, West Lafayette,
IN 47906.
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the seedlings from being bent and broken during the downward motion. The seedlings

were inserted in a previously dibbled hole in the grow fiat soil mix, and released by

opening the grippers.

Beam, et al., 1991, developed a Cartesian type of robotic transplanter which uses a

similar gripper, but employs different technologies for automating and coordinating

motions of the twin gantries and the conveyors which position the flats. Pneumatics are

used for positioning the gripper vertically and for opening the fingers, while stepper-

motors are used to position the gantry carriages laterally, and to position the flats on the

conveyors. Because all the motions are controlled by a microcomputer, ROTRAN ® 2000

is capable of transplanting from a wide variety of fiat types and sizes, at a rate of

approximately 2000 seedlings per hour.

Melon Harvestintz

Selective harvesting of cantaloupes is being accomplished by a Cartesian robot

designed by engineers at Purdue University and the Agricultural Engineering Research

Institute, Agricultural Research Organization (Volcani Center), Bet Dagan, Israel (Edan

and Miles, 1991; Edan, et al., 1991; Benady, et al., 1991). The 3 axes position the ring

grippers over the fruit, and match the ground speed of the vehicle while the gripper

descends and grasps each melon. After the rings close around the melon and the

manipulator lifts it a short distance, a swinging knife trims the vine. Because the

manipulator picks each fruit individually and the machine vision and image processing

system and the "sniffer" sensors detect fruit ripeness, multiple and selective harvests are

possible with this robot.

Animated Simulation�Systems Engineering

Because of the versatility of programmable machines and the complexity of tasks,

a myriad of scenarios are possible when automating crop production. When harvesting a

row, or tree, are differences in performance from one test to another due to changes made

in the machine, or differences in physical properties of the crop? In agriculture, it's not

uncommon for threshing efficiency to change by 30% or more due to changes in the

physical properties of wheat, with no changes in combine settings. Such uncertainties

could lead to endless experimental research. A preferred approach would be to develop 3-

D, animated models of robots which could be used to simulate materials handling and

quantify responses for changes in environmental conditions and the machine design. This

approach would permit the affects of changes in design of the machine to be clearly

separated from crop parameters. In addition, solutions are much quicker to obtain, and

answers earl be obtained at any time, not just when the crop is ready.

The animated simulation approach clearly defines the work space and time

requirements to perform a task. This information determines some critical design

parameters for the robot, namely the size or length of each axis, and the sizes of servos

required to move the materials along each axis in the allocated time period. With this

information, the design engineer will be able to make better decisions concerning the robot

hardware and software specifications.

The modeling and simulation approach does not eliminate the need for laboratory

studies to validate the results. Tests must be perfomrA to confmn that the grippers and
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AUTOMATED WHEAT PRODUCTION IN A CELSS

Because the potentialscenariosfor a CELSS are so complex and varied,it is

almost impossible to conceptualizeautomation scenarioswithout considering a specific

example first.By studying how wheat may bc grown in a CELSS, itishoped thatthe

generalrequirements forautomation willbecome evident.

Planting

Planting is the process of transporting seed or propagule from the storage area,

opening the container,and placingthe seed in the desiredlocation,at the proper depth,

orientationand spacing.

Process Model

The prime requirement of planting is to ensure that the seed or propagule is in

contact with the soil, or wicking apparatus, that provides adequate exchange of essential

nutrients, primarily oxygen and water. During the germination process, the seed swells as

it imbibes water, absorbs oxygen, and respires CO 2 . Germination also requires darkness

and a proper range of temperatures.

Current Practices

Hydroponics and nutrientfilmtechniqueshave been devised for growing plantsin

a CELSS. At JSC nutrientsarc circulatedthrough trays which have fiberglasswicks

insertedinrows. Imbibed wheat seeds are sown inthe rows between adjacentwicks. As

the seeds germinate, roots extend down into the tray and form a mat that absorb the

essentialnutrientsfrom the liquidsolution. By imbibing the seed, more uniform stands

can bc established,but sincesoaking softensthe seed coat,thistechnique requiresmuch

easierhandlingto avoid damaging theemerging tissues.

Minnesota basaltshave been ground to particlesizedistributionswhich simulate

lunar soils,and used as media for growing plants.In thisprocess, the lunar simulant is

spread evenly across traysthrough which water with added nutrientsispumped. Seeds

arcplanteddirccdy inthe simulant.

Drcschel, et aI.,1988 have devised a method of circulatingnutrientsolutionsin

porous tubes under slightvacuum to prevent dripping.Seeds or seedlingsarc placed on

the tube,and wrapped with black plasticsheathto shieldthe roots from light.A plastic

tube cut along itslengthisplaced over the plasticto hold itand the roots againstthe

porous, nutrientsupply tube. The roots wick the nutrientsfrom the solutionby capillary

actionacrosstheporous tube.

In a demonswation of a cornrncr_d robot's capability,Boeing personnel at

Kennedy Space Center (Parker and Eckhoff, 1989),equipped a robot with a suctiontip

end-effector, and programmed it to dip the tip into a canister of seed, then when a seed

had plugged the suction hole, transport the seed over to a seed tray. While this scenario

results in the simplest end-effector, it is very slow. A multiple-tip end effector would seed

the fiat much faster (del CastiUo, 1987), but adds complexity and mass to the design.

Comme_iaUy, wheat is usually seeded with drills with disc openers about 7 inches

apart. For seeding rates of 1 bushel per acre and seed counts of approximately 15,000 per
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lb., the within drill spacing should be about 1 seed per drill-inch. A crop similar to wheat,

rice is usually transplanted. Rice seedlings are started by germinating the seeds in a fiat

without ceils. Workers or machines then pinch plugs out of the mat of roots and shoots

and place each one individually into the soil. Often, rice is transplanted directly into

puddled soil and flooded with water.

In the bedding plant industry, a considerable amount of automation has been

developed (Chen et al., 1992; Gautz and Wong, 1992; Honami, et al., 1992; Kondo, et

al., 1992; Mohapatra, et al., 1992; Morimoto, et al., 1992; Nambu and Tanimura, 1992;

Onoda, et al., 1992; Roberts and Swanekamp, 1992; Sakaue, 1992; Shaw, 1993; Suggs, et

al, 1992; Tanaka, 1992. Customary practices include sowing seeds into flats with many

small cells filled with a light-weight soil mix, and transplanting the seedlings into a grow-

flat where the plants continue to grow. By germinating seeds in small cells, better control

of environmental conditions is possible and this leads to healthier plants and a higher

percentage of germination. Because the seedling fiat cells are 10% the size of the grow

flat, transplanting frees up some greenhouse space for a few days. Since 100%

germination is practically impossible to obtain, even with selected seed, the seem flats often

have 20% misses or more. During the transplanting operation, these empty cells are

skipped, and the grow flats 100% populated. By transplanting, the growth chamber, or

greenhouse space is better utilized.
Seeding is often accomplished with a rotating, perforated drum on which a vacuum

is pulled. The drum constitutes the bottom or side of a seed hopper, and by rotating

upwards, seed are sucked against the tiny holes and carried up and out of the hopper. On

the opposite side, the seed are released into tubes which route them to a row of cells in the
fiat. The drum rotation and flat advancement are coordinated so that one seed is placed in

each cell. Usually the seed are then covered with a small amount of vermiculite or soil

mix. Because the seed are dropped, they often roll to the corners of cells, which make

them difficult to transplant mechanicaUy.

Because each plant species has unique requirements for root and canopy

environments, a myriad of seed fiats and grow flats have been developed by coral

growers. The size, shape, depth, density and pattern of cells vary greatly. Some are in

neat rows and columns, others are arranged to facilitate movement of air in the root zone

and canopy. Because of this diversity, automation of a full range of tray configurations

has not been possible until the introduction of robotic transplanters such as ROTRAN ®

2000.

Proposed Automation

The tasks of transporting the seed from storage, opening the container, singulating

the seed, and placing the seed in the growth media at the proper spacing, depth, and

orientation can be automated by a number of suggestions.

One possibility is to develop a storage container which also performs the

singulation task, and which can be grasped by the end-effector and positioned by the robot

to the proper locations for planting each seed directly in each grow-flat. The robot would

supply the power (pneumatic, vacuum, or electric) required to operate the singulation
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mechanisms. This device is envisioned as a large pencil, in which the barrel holds the

seed, and the point of the pen is used to hold the individual seed and place them into the

proper places in the grow-fiat. The singulation might be accomplished by a ball-point pen

type of mechanism. A push on the top of the pen would cause the device to acquire

another seed from the barrel, and leave it on the tip ready for insertion into the lunar

simulant, or placement on a wick. The pencil seeder has several attractive aspects:

• Planting the seed in the same container used for storage eliminates a materials

handling task and simplifies the process of seeding;

• The pencil seeder can be quickly adapted to any type of robot;

• In case of robot failure, the pencil seeder becomes a tool used by an astronaut

to mechanize planting and to reduce the labor requirements; and

• The pencil seeder has considerable commercial spin-off for small farmers,

especially producers of specialty crops where seed quantities are small and

seed prices often reach several thousand dollars per pound. The pencil seeder

actually favors the smaU business because it handles the small quantities
required in a CELSS.

Tapes in which seeds are placed at the proper intervals could be considered for

automating the seeding process. The seed tape would be stored until needed, then the

proper amount unrolled and placed on the growth chamber trays. This would require the

robot to spool and cut the tape to the proper length for each row. End-effectors to

accomplish this task would be simple and easy to design. The tape would be made of a

wicking material that provides the proper flow of nutrients to the germinating seed. For

missions where all the seed are supplied from Earth, the material could be bio-degradable.

Eventually, the material needs to be reusable, or if biodegradable, made from plant

materials generated as a by-product, such as rice, cotton, or linen fiber mats. The features

of this technology are:

• The end-effector mechanisms to spool and cut the ribbon are simple and easy
to design;

• Commercial technology already exists to place seed into seed-tapes prior to a
mission; and

• The technology could be readily adapted for manual use if the robot fails;

fzcl.s_cff.aam 
Seed could be prepackaged with dehydrated gels or foaming agents in containers

similar to tubes of caulk which can be squeezed, or pushed. By injecting water several

hours prior to planting, the seed could be pre-germinated. After adding water, the tubes

would need to be stirred, or rotated to insure uniform distribution of seeds in the gel. The

robot would grasp the tube, and move it across the trays, depositing the correct amount of

gel or foam. For some, high-density applications, the robot might lay down a continuous

bead of gel, while in other cases, the seed would be placed in hills or squirts. The plant
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population would be determined by the statistical density of seeds in the gel, and the

volume of gel applied, and the positioning of the robot manipulator. Foams are mentioned

with gels because the carrier material must provide not only liquid nutrients, but for rapid

exchange of carbon dioxide and oxygen as well. Tiffs approach has several attractive

features:

• Gels are a commercial method of planting high-value seeds and much of the

technology is readily adaptable;

• The sensing and controls required for robotic application of glue and weather-

stripping have already been worked out and can be quickly adapted for this

use;

• In case of robotic failure, an astronaut could wield a "caulking-gun" filled with

a tube of gel seeds;

• Seed are stored in the application container, saving a materials handling step;

• The knowledge gained by researching the nutrient transfer characteristics of

gels and foams would have immediate impact in commercial gel products; and

• This approach to seeding could also be marketed to small, family producers of

high-valued seed crops.

Seed-Eats and Transvlanting

In order to optimize the use of the growth chamber, seeds could be planted into

seed flats with small cells, then transplanted into pots or grow-flats after the seedlings

have outgrown the seed-flats. For the germination and seedling growth stages, the seed

flats would occupy about 10% of the space required by the fully-grown plants. For a few

weeks at least, the seed-flat or transplanting approach would make growth chamber space

available for other crops. The technologies required to place the seed into the seed-flats

could be any of the above-mentioned ones, including the commercial, drum-style. In this

case, the seed-flat would be brought to a stationary seeder, instead of taking the seed to

the grow-flat located in the chamber.

Once the seedlings have filled out the space available in the seed-flats, they can be

transplanted to the grow flats or pots. During the transplanting process, inferior seedlings

can be removed, thus only the best plants would occupy space in the grow-flats. Grading

could be based on superior growth rates, leaf areas, stem diameters, etc. The need to do

this comes from the requirement to make optimum utilization of space in the growth

chamber. Because of genetic variation even within a cultivated variety, individual plants

may have several times the productivity of "average" plants. As a result, this technique

could significantly increase yields.

The seed-flats should be constructed of porous materials which enable nutrients to

flow freely to the seed. New designs will be required since commerdally-available, plastic

flats are practically impermeable to liquid and air flow, and rely on a drain hole in the

bottom of each cell. The seed and grow flats proposed here would be made of fiber-glass,

or porous plastic material that wick nutrients from beneath the flat, and provide adequate

air exchange. The seed and grow flats would sit in nutrient delivery trays through which

liquid media and oxygen are pumped. Control of the nutrient delivery system would
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provide for ebb and flow to prevent saturation or drowning of roots. The soil media used

in the seed fiat should be finer than the grow fiat, and can be made from decomposed plant
materials, or lunar or Martian materials.

The seed-fiat or transplanting method has a number of salient features:

• Seedlings grow better in smaller, confined cells provided by the seed fiat;

• Less space is consumed during the juvenile stages of growth, thereby freeing

chamber shelf space for other crops;

• The s_ding process can occur in a single location, with the seed-flats

transported to the growth chamber, (Designing machinery to automate s_ding
may be much easier.);

• Higher crop productivities are likely because of plant selection during

transplanting;

• Transplanting can occur into pots, making it possible to place plants or clumps

of plants individually, Plants requiring higher light intensities could be placed

where such conditions occur. Plants requiring low light levels could be placed

on the edges, or sides away from the light This could lead to inter cropping,

and substantial increases in food productivity without inc'reasing the chamber
size;

• These technologies could pave the way for improving performance, lowering

costs and raising profits of cornmercial greenhouse producers of plants. The

potential for conanercial spin-offs in the plant cell culture industry is highly
significant.

Culture

The efficient production of wheat in an environrr_ntal chamber re_luires control of

the nutrient supply and exchange rates. The level of nutrients must be between minimum

required for growth but less than toxic concentrations. Environmental variables, such as

temperature, humidity, radiation, and nutrient pH must be such that the rate of basic

physiological processes is satisfactory to sustain growth and development of plant tissues.

Since the processes are complex and dynamic, the rnod¢l must consist of a set of

numerical equations describing the rates of material transfer as functions of physiological

states and environmental conditions. As much as possible, the equations should be cause

and effect models, to permit them to be used to predict responses for future conditions.

Numerous researchers have collected data on wheat growth in controlled

environment chambers and developed models of the results. Work by J. T. Ritchie and S.

Otter 0985, and 1987) has resulted in the CERES-Wheat model. Recently, Cunpolat and

Bolte (1993) converted CERES-Wheat into an object-oriented model that facilitates

updates and changes, and makes it more usable as a management tool. Salisbury and

Bugbec (1988a, b; 1989; 1991) showed that the potential production is far greater than

re.cord yields achieved in the field. Volk and Cullingford (1989) and Volk and Runmlel

0987) developed BLSS, a model of wheat that tracks the flow of carbon, hydrogen,

oxygen and nitrogen through the complete processes of a CELSS.

Current Practices
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Wheat has been grown hydroponicallyinenvironmentalchambers at Kennedy and

Johnson Space Centers. In each case,seed arc pre-soaked,then placed on wicks which

supply nutrientsfrom a liquidsolutionpumped intothe traysbeneath the wicks. The

seedsgerminate,and the rootsextend intothe tray,forming a mat which take-up nutrients

and water. By theend of thegrowing season,therootshave filledthe entireroofingzone.

Wheat has alsobeen grown on theporous tubesdeveloped atKSC.

Wheat isgrown incontrolledenvironrncntsonly forresearch purposes due to the

considerablecost differenceover fieldpractices.As a result,thereislittlcmechanization

of a scalesuitablefor a CELSS. However, practicesdeveloped for other crops may bc

adaptable.
Because lightingisa largeenergy costand radiationnot absorbed by plantleavesis

wasted, relocatingand spreadingof plantsisa common practicein greenhouses. Plants

grown in pots are moved apart as the leaf area increases to absorb additional radiation. In
some com.n_rcialfacilitiesfor leRuce,plantsarc grown in traysthatmove progressively

apart as the plantsmature. Previously proposed scenariosfor CELSS would have a

system of conveyor-tableswhich moves every few minutes to expose allthe plantsto the

same amount of lightand the same photo period. In a simple system, where the return

conveyor isbeneath the illuminatedtables,the lightswould stayon 24 hours per day, but

each plantwould receiveonly 12 hours of light,unlessa supplementalbank of lamps were

placed beneath the top conveyor to shineon the bottom tables.The motion of the plants

would alsodampen out spatialdifferencesinlightintensity.All such systems seek to have

leavesintercept100% of thelight.

Another concern forilluminationisthe peak energy consumption. By adjustingthe

timingof the lightperiod for each shelf,the peak can be greatlyreduced. For an 8 hour

photo period,the peak would be I/3,and for a 12 hour period,the peak would be I/2.

For photo periods greaterthan 12 hours,the peak would be the same, but the area (power

or wattage)would be reduced.

Proposed Automation

The one approach that appears to provide the versatilityin environmental

conditionsrequiredfor theCELSS-candidatc cropsiscbb and flow tableswith pots and/or

flats. The volume of each pot must accommodate the root mass at plant maturity. The

top surface of the pot must be as small as possible, to permit plants when small to be close

enough to intercept the maximum amount of light. Then, as the plant leaf area enlarges,

the pots can be spaced apart. The pot would rest on ribs or fingers fomaed in the bottom

of the table, to facilitate drainage and air exchange. The nutrient solution would be

pumped onto the table to a predetermined level that permitted the soil or wicks in the pots

to saturate and wet the plant roots. Then the nutrient solution would be drained from the

table, which would permit air to replace the liquid in the soil mix or wicks, much like

natural, field conditions. Thus, the name ebb and flow. Although there are suggestions

that hydroponics techniques are more efficient in carbon utilization than soil techniques,

there is no reason that if provided similar rates of nutrient flow to the roots, that one

system would grow a root to shoot ratio different from the other. The root mass (carbon)

typically tied-up in a soil mixture can be extracted from an inert simulant or lunar soil by

supersaturating it and developing a fluidized bed (quicksand), then lifting the plant by its

22-12



Robot/csinaCELSS
Milesand Krorn

shoot. Once the plant was extracted from the pot, the soil mix could be dumped, washed,

and reprocessed for the next crop. The ebb and flow technique should air-prune the roots

(Huang and Ai, 1992; Chun and Takakura, 1992), and cause less root entanglement with

the soil particles. But if not, then the soft can be recovered by oxidizing the root mass,

which would also recover carbon and other nutrients. This would obviously be much

simpler to automate than hydroponics which requires wicks to be cleaned and reprocessed
between crops.

This approach would require that carriers be developed to transport the pots from
the central processing station to each growth chamber table. The carriers would be held

by a revolute-joint robot that moves along a rail in each chamber. At the airlocks between

chambers, the robot would secure the carrier, and then affix itself to a special joint in the

next chamber, which would permit it to be powered as it detached itself from one rail and

attached to the rail in the next chamber. This capability would permit the robot to move

along rafts, yet cross obstacles such as airlocks and doorways. And, it would permit the

robot power leads to be the length of one raft (probably one chamber long). The same

procedure would be followed when going from one level in a chamber to another. The rail

would be suspended from the "ceiling" in each chamber. This robot would have a number

of end-effectors which permit it to grasp different objects and perform the required tasks.
For example, when spacing the pots in the ebb and flow tables, the robot would traverse

the raft until coming to the bay requiring the plants to be spaced. Then it would reach out

and grasp each pot to be removed and place them in a carrier. When the required number

of plants have been moved, the robot would move each remaining plant to the desired

place on the table, according to predetermined patterns. The plants removed from this bay

would be transported to other locations in the growth chamber and positioned correctly on
tables by the robot.

Although the scenario described above refers to stationary tables, there are

advantages to moving them along a conveyor, to pass beneath a bank of lights, and

various stations where the required tasks are accomplished. Vertical lifts at each end of

the sliding (conveyor) shelf would transfer the rectangular table from one level to another.

The advantage of this system would be to minimize the number of lights required, but at

the cost of additional hardware to move the tables of plants. Usually, systems which do

not require motion are more reliable and require less maintenance. Since a robot carrier

will be necessary to transport materials to and from the preparation and processing areas,

letting it also provide the movement of plants will reduce the complexity, size and expense

of the growth chamber. And, it is not likely that the launch weight of the extra automation

mechanisms for the conveyor tables would be less than the weight of the lights required to
illuminate all the growth chamber shelf space.

However, a single moving conveyor would bring all the plants past a workstation

at the end, thereby alleviate the need for an aisle, and make the growth chamber more

efficient. In a cylindrical chamber, the shelves could rotate on a conveyor which moves

around the axis of the chamber. The workstation or aisle space would be in the center and

the shelves rotate around it. The lighting would be around the inside wall of the chamber.

The aisle floor would block out light from the plants beneath it, creating a clark or night

period. The height of the floor would be such that the plants receive up to 16 hours of

light per day, with 1 revolution of the shelves per day. The ideal width of the shelf must
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be determined from light interception models. It's possible that two or more conveyors

could rotate concentrically, with plant species requiring lower light intensifies on the

inside. In either case, the shelves would be populated with plants in pots.

The potted plant approach has a number of desirable features:

• Multiple robots could perform simultaneous tasks, or be held in reserve in case

of failure of the primary unit;

• By using pots, the seeding, transplanting, harvesting, and recycling of pot

materials would occur in a central work station, thereby simplifying the

mechanization of materials handling;

• The energy efficiency would increase because pots can be easily spaced further

apart when the plants grow large;

• Pots facilitate inter cropping which would accommodate variances in

environmental conditions, particularly light intensity; and

• In case of failures, single pots can be replaced rather than entire trays, and the

production quickly return to normal capacity.

Gathering (Harvesting)
As wheat matures in the field, it dries and turns a golden brown, due to

physiological aging, and to stresses imposed by high temperatures and late Spring

droughts. In some situations, wheat and rice are cut and left to dry for a few days before

combines (combined harvesters and threshers) are used. This decreases the energy

required to thresh and separate the grain. In the growth chambers, drying can be

accelerated by withholding the nutrient solution, decreasing ambient humidity, and

elevating air temperature.

The optimum time of harvest is a tradeoff between grain moisture content and the

need to plant the next crop. The grain must be below 14% to minimize the risk of molds

and to store well for up to 12 months (Brooker, et al., 1992), but if allowed to dry in the

chamber to 14% or less, the kernels shatter easily, leading to serious pre harvest and

gathering losses, and possibly increasing damage to the grain during threshing. The

optimum grain moisture content to minimize gathering losses is about 18%. Obviously,

the temperature and humidity conditions must be such to not only facilitate the dry down

process, but to accelerate it. Each day the crop stands in the growth chamber beyond

physiological maturity is a day which could have been used to grow the next crop.
The translocation rate of carbohydrates to the seed, the physiological maturation

of abscission layers, and the process of drying in the spikes is not a well documented

aspect of wheat growth. Data are required to develop adequate mathematical expressions

of the relationships, in order to simulate the process and determine optimum harvest

strategies.

Current Practices

The time required to harvest 11.4 n_ of wheat grown in the plant growth

chambers at Johnson Space Center, place the above ground and root portions in bags,

weigh the bags, and clean the trays was observed to be approximately 1.5 hours for 20
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people. That's approximately 2.6 person-hours per m2 of effort to harvest and initiate

biomass recovery and processing of a crop which took 80 days to grow. That averages

about 2 minutes per day. But with startup and cleanup, a crew member is likely to spend

much longer if harvest occurs each day. A much better scenario would be to harvest more

than one day's supply at a time. The exact amount will be a tradeoff between the demand

for space in the growth chamber, labor requirements for harvesting, and the costs of

storage of the processed grain.

The numerical values of such statistics have little long-term merit because no

accurate measurement was made of the time and motion of each worker, or was each

worker supervised to be sure they were constandy performing their task. The processes

which are best suited for mechanization or automation may be c_nsiderabiy different, and

require much different times. Comparisons should be made only after mechanization and

automation are integrated into the processes.

At Kennedy Space Center, McDonnell-Douglas personnel undertook the task of

developing the sensor and robot control programs for a robot to reach into a canopy of

mature wheat and remove each head from the stalk. Such an approach would minimize

the amount of biomass which must be threshed, but it proved to be a most difficult and

time-consuming task.

Commercially, farmers harvest grain crops with combines (machines that combine

the processes of gathering, threshing and separating) with field capacities of 5 or more
acres per hour. At this rate, the 11.4 m 2 chamber area would be harvested in 2 seconds!

The crop is cut with a sickle-bar and guided by a finger or bat type reel onto a cross-auger

which carries it across the grain platform to the feeder-conveyor which takes the crop to

the threshing and separation mechanisms. The grain platform headers are often 20 feet or

more in width. By adjusting the height of the platform, the operator can cut the crop just

below the heads, thereby reducing the volume of biomass which must be threshed, which

reduces the energy requirements for threshing and the amount of trash in the grain.

Japanese rice combines gather each row of stalks and by maintaining the plant

orientation are able to insert just the heads for threshing. This procedure _ the

energy required for threshing, it keeps the rice straw intact, whole and useful for mats,

thatch, etc., and it permits rice to be harvested when the straw is relatively wet and green.

These large, American style machines have been designed for 1 G conditions and

operate in only a very narrow range of crop properties, particularly moisture content. The

scale of these machines is certainly inappropriate, and probably the materials handling

mechanisms (cutter-bars, augers, conveyors, etc.) are as well. The Japanese rice

harvesters maintain a positive control of the plants after cutting, which may make this

technology adaptable for lunar or Martian gravity.

Proposed Automation

Gathering the wheat crop would be greatly facilitated by growing the plants in pots

which can be quickly removed from the growth chamber to initiate the dry-down process.

The pots and soil/wick mixture can be immediately processed and recycled for the next

crop. The wheat crop (roots and all) can be held in ventilated racks where waste heat and

low humidifies are used to dry the grain to the desired level. The robot arm would

perform the task of moving the pots into carriers and wansporting the carrier to the pot
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and soil recovery area, and after the plants are extracted, moving them to the dry-down

area. Because of the versatility of the robot, its grippers, and its sensors, very little if any

new hardware will be required for gathering. The programs will be different from

planting.

Threshing and Separation

Once the crop has been gathered from the field and dried to the best moisture

content for threshing, the grain kernels must be detached from the head and separated

from the chaff or other plant parts. Detaching requires mechanical, rubbing motion with a

minimum of impact which could cause damage to the grain. Centuries-old practices for

separation (winnowing) utilizing differences in particle densities and their aerodynamic

drag coefficients are also followed by modern machinery.

A model of the soybean material flow through a combine was developed by Miles

and Tsai, 1987. Materials were divided into categories: heads or pods (with kernels

attached), free grain (kernels detached or free), and MOG (material other than grain). The

equations describing the rate of material flow through the combine and from one category

to another were based on bio-physicai properties of the crop and the machine design

parameters such as conveyor speed, and cross-sectional area. Reed Turner developed the

HarvesTrainer _ personal computer program which models the harvesting, threshing, and

separation of corn, wheat and barley for several models of John Deere combines.

Mathematical models show the complex interaction between doing an adequate but not

excessive job of threshing, and the size of sieve opening and counter-flow air volume

(Mailander and Krutz, 1984; Mahoney and Srivastava, 1986; Kim and Gregory, 1989;

Bjork, 1991;Nath, et al., 1982; Trollope, 1982). Excess threshing not only detaches the

seed, it grinds the heads and stems into fine particles that are difficult to separate from the

grain. Sieve openings may be adjusted to screen out the larger chaff particles. The fan

speed must be adjusted to provide a sufficient counter-flow of air through the louvers to

exceed the terminal velocity of the chaff, but not the grain. Problems occur when the

thresher breaks the head and stems into a particle size distribution whose aerodynamic

drag coefficients and densities overlap those of the grain. By properly adjusting the

machinery, and by threshing when the proper crop bio-properties exist, clean, darnage-

free grain can be obtained.

Current Practices

Researchers typically use a plot-thresher which detaches and separates the grain.

In such a device, wheat plants are fed by hand in small quantifies. A rotating drum with

spikes rubs the head against a stationary set of spikes, and the detached kernels fall down

into a catch pan. A small fan provides a cross-flow of air that blows the chaff into a bag.

Modern combines not only gather the crop, but also thresh and separate the grain

as well. Sensors detect grain loss and measure the bio-properties of the crop, and

microcomputers adjust the machine to optimize performance. Properly adjusted, modern

combines harvest 95% or better of small grain crops. Over 80% of the losses occur at the

header during the gathering process.

Conventional combines use rotating cylinders with rasp-bars, which rub the grain

against open grates called concaves. Occasionally, in tough conditions, special rasp-bars
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and concaves with intermeshed spikes are used. The clearance between the rasp-bars and

concaves is adjustable for different crops and quantity of biomass. The openings in the

concaves can be changed by adding or withdrawing curved wires or rods. The flow of

material is radial, or tangential to the axis of rotation. As the heads are threshed, the

kernels and chaff fall through the grates in the concaves to the cleaning mechanisms.

Secondary separation occurs in the straw-walkers.

Axial flow combines use similar threshing mechanisms, except the flow of material

is along the axis of the cylinder (termed a "rotor") which is mounted parallel to the axis of

the combine. This mounting permits much longer and larger diameter cylinders (rotors) to

be used. Since the threshing occurs over a much greater area, the process is usually more

gentle than the conventional threshing mechanisms, and less grain damage occurs.

Manufacturers claim that grain separation is enhanced by centrifugal force of the rotating
cylinder.

Although the threshing and initial separation mechanisms of conventional and

axial-flow or rotor machines are significantly different, the cleaning mechanisms still rely

on the proven technologies of oscillating sieves with a counter-flow of air. Louvers in the

sieves are adjusted to permit the grain to freely pass, but prevent larger biomass pieces to

bounce across the top due to the oscillatory motion. Chaff particles the size of grain are

prevented from falling through the sieves by counter-flow of air. The velocity of air

through the sieve openings must exceed the terminal, or settling velocity of the chaff, but

not that of the grain kernels. Air velocity is adjusted by modifying fan speed.

Unfommately, the actual velocity through the openings is affected by the density and

uniformity of the mat of chaff on the sieves. The denser, heavier and thicker the mat, the

greater the differential pressure, and the less the velocity. In case of non-uniformity, the

thin areas may blow completely off, which permits most if not all of the air to flow

through the hole. Excessive trash in the grain results from this situation.

Proposed Automation

The size of modem combines is obviously much too large for a CELSS, but the

efficiency and reliability of the proven mechanisms makes them very attractive for

consideration. As the plot threshers have proven, the mechanisms for threshing and

separation can be sealed to an appropriate size. No doubt, a robot could grasp each

bundle of wheat and place the tips containing the heads into the thresher. However, it is

not clear that the separation and cleaning mechanisms (sieves and fans) will work properly
in less than 1 G conditions.

A suggested alternative is to accelerate the threshed grain and chaff mixture and

utilize the difference in particle momentum to separate the kernels from the chaff. The

mixture could be forced pneumatically out a tube onto a slightly cupped, spinning disk

with short blades (similar to the spreader mechanism used on a bulk, dry fertilizer truck).

Coming off the spinning disk, the kernels would have the greater momentum, since they

would have the greater mass. An opposed flow of air would halt the horizontal movement

of chaff quickly because of their larger aerodynamic drag coefficients. The grain kernels

would move further away from the spinning disk because of their greater momentum and

less drag. Additional enhancements, if necessary would be to create a velocity gradient in

the opposed flow of air. This would permit particles to settle out of the horizontal stream
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at distances proportional to their coefficients of aerodynamic drag. Additional separation

is possible by adding a spiral separator, which permits the heavier and more round

particlcs to roll faster, and be carried out by centrifugal force. Vibratory separation should

also be considered.

The clean grain should be placed in a container which the robot can carry to a

temporary queue, place it the dryer, and/or place in storage. While the chaff residues from

the separation process can be returned to the crop biomass, the particlc sizes are now

much smaller, so a container must be used. This material can be fed into the machinery for

the recovery process.

Recovery and Recycling of Inedible Biomass

After the grain kernels have been detached, the stems and roots must be processed

to recover the nutrients. Among the processes proposed are leaching, bioMigcstion, and

oxidation, all of which arc more efficient if the plants are shredded or macerated.

Leaching nutrients with acids and bioMigestion with enzymes, micro-organisms and/or

animals may be better with the wet, green plant tissues. Oxidation would undoubtedly

require not only free particles, but dry materials as well.

In agriculture, devices used for changing the particle size of plant materials include

forage choppers, hammer mills, and grinders. Forage choppers leave particles

approximately 1 to 2 inches long, and work well with wet, green materials. Hammer mills

and grinders work well with dry materials, and are capable of particle sizes of. 1 inch or

smaller. Hay conditioners which scuffs the outer layer of the stems and/or crimps the

stems, are able to speed the drying process for the biomass.

The materials handling requirements to feed the plant residues to such machinery

are rather simple. If the crop is still bunched, a robot could grasp the clump and force it

into the machine. If not, the crop can be placed onto a conveyor which accelerates it to

thin it out to the desired thickness and feeds it into the machine. The output of any of

these machines must be delivered to the apparatus which effects the nutrient recovery.

This could be by mechanical conveying, pneumatic conveying, or containers carried by

robots.

Preprocessing
The most likely preprocessing of wheat is drying the moisture content below what

is best for harvesting (18%) to what is best for storage (14% or less). For storage less

than a year 14% is considered acceptable for up to 2 years it is 13%, and for 5-years the

wheat should be dried to 11-12%. Usually this is accomplished by heating air to reduce the

relative humidity and blowing it through the grain (batch-dryer). Alternative methods

include flowing grain across heated metal plates (continuous-flow dryer). Occasionally,

for small batches of grain, microwave ovens are employed. Too rapid drying creates

stress cracks in the seed whereas drying too slowly permits microorganisms to grow and

damage the quality of the grain. If the drying time is too long, more moisture than

necessary is removed, and in extreme cases, the seed become "cooked". The proper

moisture content, drying rate, and drying time also depend on what the grain is used to

make (Bruce, 1992). It is especially important to note that whenever any of the grain is
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kept as seed for subsequent crops, that the damage during drying be kept low to maintain
viability.

The basic principle is to keep the equilibrium relative humidity for the grain below

68%. Safe storage conditions can be determined from an equilibrium moisture content

curve as given in ASAE Data D245.4 (ASAE, 1993) which are different for hard (Durum,

high-protein, used for bread) and soft (pastry) varieties. Numerous models have been

developed to predict the drying time and quality of grain, especially corn (Chung and

Verma, 1991; Bunn and WisheR, 1991; Bruce, 1992; Giner, et al., 1991; Paxti, 1990;

Sanderson, et al., 1989; Sokhansanj and Bruce, 1987; Abawi, 1993).

The amount of grain harvested at one time from a CELSS plot is relatively small

and can easily be placed in drying ovens by a robot. The ovens used to dry the biomass

may also be used for drying the grain, provided the temperature is as prescribed by the

ASAE procedures. The grain should be uniformly scattered across a pan with a screen for

the bottom, and placed on a shelf in the oven. The oven should have air flowing through

the screen vertically to remove the moisture. The sensors in commercialiy-available, hand-

held grain moisture meters can be adapted to provide on-line, continuous measurement of

moisture without opening the oven. Another sensing technique would be to monitor the

air above the grain pan to detect a rapid decline in relative humidity, which would signal
that the grain has reached the equilibrium moisture content.

Mechanization for this process requires that the container of grain from the

threshing and separation process be poured uniformly on the drying pan, which is then

placed on a shelf in the oven. After the grain is dried, the dying pan is removed from the

oven, the grain is poured into a container which is sealed and placed in storage. The same

robot used to manipulate materials in the growth chamber can also be used for these tasks,

provided the base-raft extends into the processing chamber.

Storage

The design considerations for storage include the volume required for the raw,

edible products; and the environmental conditions (temperature, humidity, and oxygen
concentration) necessary to sustain the quality for the intended shelf-life. The containers

used to carry, dry and store the grain must be efficiem in utilization of storage volume.

The storage volume required depends on the crop yield, the harvest area, and the food

reserve factor. For example, if 11.4 m 2 of wheat yielding 100 bu/A were harvested, then

approximately 0.35 cubic feet of storage would be required. If a 3x reserve of wheat is

desn'ed, then 3 x 0.35 = 1.05 Ft 3 would be needed. Please note that two of the storage

binswould normally be full,butthe thirdwould be somewhat lessthanfull.Thus, the mac

amount of reservesisone lessthanthe number of storagesites.

In storage, the grain moisture content will reach an equilibrium with the

surrounding conditions,depending on temperature and humidity. Seeds very slowly

respire,which converts storedcarbohydrate and oxygen into carbon dioxide and water.

Respirationproceeds with a Ql0 of 2; that is,itdoubles for each 10° C risein seed

temperature. Low temperatures also inhibit the growth of microorganisms such as molds

and bacteria that lower the quality and in some cases make the grain unfit for human

consumption. Thus the ideal conditions for grain storage are low temperatures (even

below the freezing point of water), and low levels of atmospheric moisture and oxygen.
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The automation required for storage includes automatic insertion and retrieval of

containers of food. This could be on shelves, 1 unit deep, on which the robot could place

items. A more sophisticated approach would be to develop a miniature warehouse storage

and retrieval system with inventory control. Arguments for the robotic approach are

similar to those used for the robotic handling of plants in the growth chamber. With

machine vision, the robot could "see" each vacant slot and insert the food container into

the next available space.

Food Processing

Just as an army travels on its stomach, the amount of work accomplished by an

astronaut crew will depend on having a wide variety, and ample quantities of tasty,

nutritious foods. When selecting crop species and food processing techniques to provide

dietary needs, taste preferences and nutritional demands for humans working in space
environments must be considered. Its probable that the loss of calcium and muscle during

micro gravity conditions will require diets considerably different from earth-base

recommendations. After arriving on orbit, astronauts seem to choose spicier foods to

consume. To ensure needs are met, astronauts must be included in decisions about crops

and processing.

The automated food processing devices must retrieve the raw food products from

storage, measure and pour the desired amount into the hopper for the food processor,

whether it be a nfilling machine, pasta machine, or toaster. Bread, pastas, and cereals

require different processing: grinding, milling, cracking, toasting, and extrusion. The

machinery for these processes are different, so to provide a variety of foods from wheat or

other grains, several machines will be required. However, the concept of a grain container

that can be poured into a hopper by the robot, permits the materials handling to be

automated without a lot of complication. The difficult task is to clean the machinery after

use. This wiLl require special end-effectors on the robot which can disassemble the key

components of the machinery and place them in a washer. Later the robot can retrieve the

components and reassemble them.

Food Preparation

After the grain has been processed, it must be prepared into the food to be eaten

by the astronauts. Flour that has been ground must be sifted, mixed with water and other

ingredients and baked into bread, biscuits and rolls. Like other aspects of a CELSS,

questions arise: How much of this should be automated? What tasks are better left to the
crew? Should bread be baked in small amounts each day, or in larger batches each week?

The answers probably depend on which tasks the astronauts enjoy doing, and which

become drudgery to perform. As the frequency of occurrence increases and the drudgery

becomes higher, the greater the need for automation.

Again the processes can be automated by robotic handling of containers of the

food products.
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CONCLUSIONS

The myriad of tasks required to grow plants, process edible portions into food, and

recycle inedible biomass into nutrients required by subsequent crops, could require large
amounts of astronaut labor unless automated (Schwartzkopf and Brown, 1991;

Schwartzkopf, 1991; Schwartzkopf, 1993). Conceivably, the amount of labor required for
performing all the materials handling for planting, tending, gathering, separation and

threshing, processing, recycling wastes and cleaning equipment could exceed the life-

support capacity of a CELSS. Thus it is essential that automation become an integral

component of CELSS research. Because of their versatility, robots offer an overall less
complex and less cumbersome solution to mechanizing the materials handling tasks than

hard, fixed automation. Individual processes such as threshing, chopping and grinding are
best accomplished by special purpose mechanisms. Researchers around the world are

developing the sensors, end-effectors, manipulators and robot control programs necessary

to automate materials handling tasks for typical, earth-based plant production. Some of

the robotic transplanting, culturing, and harvesting efforts are applicable to a CELSS, but
in most eases additional technologies must be engineered.

Techniques for growing crops in controlled environments are being developed by
CELSS researchers. Data on oxygen and water recovery, carbon dioxide scrubbing,
nutrient and energy input requirements, and food production are being gathered for a

number of candidate crops. Techniques for germination and growth with hydroponics are
being discovered. Failure to simultaneously develop mechanisms which not only work
well with the bio-physiological processes but also automate the procedures and reduce the

manual labor requirements is a serious oversight. Engineers charged with automating

current, proven production and recycling practices will face enormous chaUenges unless

cooperation begins with the biological scientists immediately. The bio-physical science

research and the engineering for automation should proceed cooperatively. Working

together, the scientists and engineers will be able to develop hybrid techniques which

satisfy the biological requirements for life support and the operational constraints of space,
launch weight and labor. This is the only way to insure the sucessful development of a
CELSS.

Because the options for automation are so numerous, a general purpose solution

suitable for all crops is difficult to conceive. A systems engineering study based on
animated simulation of specific CELSS scenarios should be undertaken to evaluate and

compare alternative designs. Which tasks should be automated by fixed engineering, and
which ones should be automated by programming a robot to provide the necessary
actions? Which tasks should be performed by the crew? How much time does it take for

the robot to perform a task versus an astronaut performing it? How much power is

required by the robot? How much space is occupied by the automated machinery? What

does it weigh? If the volume and weight of a CELSS plus its automated machinery and

processing area were used to store food, and if water and oxygen were recycled by
physical-chemical means, how many people-days of life could be supported? The answers

to such questions can only be obtained by following the systems study with a laboratory
study to validate the proposed automation, and to collect statistics on human/machine

interactive performance. In addition to answering a number of basic biological questions,
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the proposed Human Rated Test Facility (HRTF) at JSC should be used to answer many

questions concerning mechanization and labor requirements for a CELSS.

A basic concept for automating materials handling required to grow wheat in a

CELSS is proposed to consist of removable benches on shelves, filled with containerized

plants (pots), which are transported by a robot to and from the processing area. The robot
rides on a rail mounted overhead, and has numerous end-effectors (grippers) which enable

it to perform many different tasks at any location in the growth and processing chambers.

Liquid nutrients arc recirculated to the benches by ebb and flow techniques used in the

connncrcial plant production industry. Pots enable the robot to space plants dynamically

as they grow to utilize the maximum amount of light possible, to cull plants not

performing to minimum expectations, and to replace the culled plant with a vigorously-

growing new pot.

In summary, the conclusions arc:

I. Materials handling in a CELSS must be automated,

2. Robots are superior to fixed-automation,

3. CELSS tasks require unique sensors, end-effectors and manipulators for

robots,

4. The bio-physical science research and the engineering for automation should

proceed cooperatively,
5. An animated simulation approach is necessary to evaluate the myriad of

alternatives for automation.

Immediate funding of scientific and engineering efforts to automate materials handling will

produce short-term benefits and help ensure the long-term success of Controlled,

Ecological Life Support Systems when needed for exploration of the Moon, Mars, or the

rest of our Universe.
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