Infrared Sensors and Systems for Enhanced Vision/Autonomous Landing Applications

J. Richard Kerr FLIR Systems, Inc.

$$
\begin{aligned}
& 05731 \\
& 2 \cdot 23
\end{aligned}
$$

Abstract

Infrared Imaging Through Fog

There exists a large body of data spanning more than two decades, regarding the ability of infrared imagers to "see" through fog, ie., in Category III weather conditions. Much of this data is anecdotal, highly specialized, and/ or proprietary.

In order to determine the efficacy and cost effectiveness of these sensors under a variety of climatic/ weather conditions, there is a need for systematic data spanning a significant range of slant-path scenarios. These data should include simultaneous video recordings at visible, midwave ($3-5$ micron) , and longwave ($8-12$ micron) wavelengths, with airborne weather pods that include the capability of determining the fog droplet size distributions.

Existing data tend to show that infrared is more effective than would be expected from analysis and modeling. It is particularly more effective for inland (radiation) fog as compared to coastal (advection) fog, although both of these archetypes are oversimplifications. In addition, as would be expected from droplet size vs wavelength considerations, longwave outperforms midwave, in many cases by very substantial margins. Longwave also benefits from the higher level of available thermal energy at ambient temperatures.

Imager Technologies

The principal attraction of midwave sensors is that staring focal plane technology is available at attractive cost-performance levels. However, longwave technology such as that developed at FLIR Systems, Inc. (FSI), has achieved high performance in small, economical, reliable images utilizing serial-parallel scanning techniques.

In addition, FSI has developed dual-waveband systems particularly suited for enhanced vision flight testing. These systems include a substantial, embedded processing capability which can perform video-rate image enhancement and multisensor fusion. This is achieved with proprietary algorithms and includes such operations as real-time histograms, convolutions, and fast Fourier transforms.
RELEVANT ACTIVITIES AT FSI
LOCKHEED (C-130) HTTB
OTHER AIR FORCE ACTIVITIES
SITUATION AWARENSS FLIR
SAFIRE (Q22)

HIGH PERFORMANCE

TURRET WILL ACCOMMODATE EVS SENSORS

- FLEXIBILITY, COMPATABILITY

EMBEDDED PROCESSOR
SENSOR FUSION CONCEPTS
KEY: ECONOMICAL!

IMAGER
SIZE（IN）

$5.7 \times 5.7 \times 10.9$
$5 \times 5 \times 9$
$6 \times 6 \times 10$

IR SENSOR TECHNOLOGIES

$$
\begin{aligned}
& \text { SENSITIVITY } \\
& \text { (NETD) } \\
& \hline
\end{aligned}
$$

$0.5^{\circ} \mathrm{C}(3-5)$
$0.2^{\circ} \mathrm{C}(8-2)$
$0.08^{\circ} \mathrm{C}$

RESOLUTION
(HxV)

500×375
320×244
640×488
FUTURE
$\frac{8 \exists \mathrm{HII} \mathrm{\exists}}{\text { aN甘gヨオ甘M }}$
$\stackrel{r}{\text { r }}$
3－5
MICRONS
$8-12$
MICRONS

TECHNOLOGY
COMPACT
SCANNING

STARING ARRAY
（Pt Si）
STARING \＆
UNCOOLED
ARRAYS
BASIC FSI TECHNOLOGY
DETECTOR MINI-ARRAYS WITH TDI: "BEST OF SERIAL AND PARALLEL \sum^{\cdots}
PROPERTIES OF SERIAL-SCAN FLIRS:
CHALLENGES --
Low dwell time per resolution element
High speed azimuth scanner
Few detectors = high sensilivity and uniformity

$$
\begin{array}{l}\text { optimized front-end electronics } \\ \text { high yield (economical) } \\ \text { efficient cold shield }\end{array}
$$

Easy channel balance/low fixed-pattern noise
Freedom from vertical aliasing
BASIC FSI TECHNOLOGY, (continued)

> TDI vs SPRITE:

- freedom from charge carrier diffusion
- fast optics are permitted
- easier material fab (carrier lifetimes)
- less heat (resistance X bias current) RELIABILITY
MAINTAINABILITY
LIFE-CYCLE COST

OPTIONAL AND GROWTH FEATURES
SIMPLE PAN-TILT
SNAP-LOOK INTO TURNS
DIGITAL ZOOM
COMMON PROCESSING WITH RADAR (SENSOR FUSION)
INTEGRATION WITH GPS
"CAN INFRARED PROVIDE SEE-TO-LAND AT 2400 FEET IN CAT IliA
BASIS OF DECISIONS
- MEANINGFUL FLIGHT (APPROACH) AND FIELD DATA
- COMPLETE, OPEN VS ANECDOTAL, PROPRIETARY
- CHARACTERIZE PROPAGATION MEDIUM
- EVS SENSOR AND HF ISSUES
RELATIVE ADVANTAGES OF WAVEBANDS
MIDWAVE (3-5 MICRONS)
STARING-ARRAY TECHNOLOGY MORE MATURE AT MIDWAVE COMPARED TO LONGWAVE
runway lights are "beacons" at midwave
better at long ranges in high humidity atmosphere
APPROPRIATE FOR TAXI AND TAKEOFF
- FOG CHARACTERISTICS NEAR GROUND
RELATIVE ADVANTAGES OF WAVEBANDS (continued)
BETTER PERFORMANCE IN LOW-THERMAL-CONTRAST AMBIENT CONDITIONS
BETTER PERFORMANCE IN MANY FOG SCENARIOS
- SEE 1-3 TIMES VISUAL RANGE
- ALWAYS AS GOOD AS MIDWAVE
- CAN BE 100'S OF TIMES BETTER THAN MIDWAVE
FLIR PERFORMANCE ISSUES (continued)
•SHORTWAVE CAN HAVE SOME ADVANTAGE IN HUMID ATMOSPHERES
•MAY BE COMPARABLE FOR COASTAL FOG
•STARING ARRAY FLIRS NOT AVAILABLE AT LONGWAVE
HIGHLY DESIRABLE: INTEGRATED DUAL-WAVEBAND FLIR AT LOW PRICE
PERFORMANCE SPECIFICATIONS

FIXED, FORWARD (CONFORMAL WITH HUD) AZIMUTH PAN/SNAP-LOOK OPTION ELECTRONIC ZOOM OPTION

SPLIT-STIRLING COOLER
DUAL RS-170 OUTPUT
ENVIRONMENTALLY QUALIFIED TO MIL-STD-810D
FIELD OF REGARD
SPLIT-STIRLING COOLER
DUAL RS-170 OUTPUT
ENVIRONMENTALLY QUALIFIED TO MIL-STD-810D

FIELD OF VIEW
SENSOR HEAD ENVELOPE
RESOLUTION
ALTERNATIVE ("HYBRID") DUALBAND SYSTEM
SCANNING LONGWAVE / STARING MIDWAVE
COMMON VS CONTIGUOUS OPTICAL PATHS
RETAIN: COMPACTNESS, ECONOMY

- COMMON COOLER
IMA
IMAGE PROCESSOR SUMMARY
COMPONENTS
SENSOR INTERFACE
DISPLAY INTERFACE
CENTRAL PROCESSOR INTERFACE
CENTRAL PROCESSOR PERIPHERALS
SCSI I/O (TAPE, HARD AND FLOPPY DISK, OPTICAL STORAGE)
RS-232 (OR 422 OR 485))
As a console for operator communication
Or in a protected host communication packet mode with error checking
ETHERNET
CENTRONICS
SENSOR FUSION

SENSOR FUSION

CONFIGURES TO SCANNER RESOLUTION/SENSITIVITY
$256 \times 512 \times 8$ UP TO $1024 \times 1024 \times 16$
THREE PORTED MEMORY
VME READ/WRITE
SENSOR WRITE INPUT
TELEVISION RASTER SCANNED READ
(CONTROLLED BY DISPLAY TIMING)
SENSOR FUSION

DISPLAY PROCESSOR
COMPONENTS
8 BIT CONFIGURABLE OVERLAY
TMS 34020 GRAPHICS SUPPORT (TIGA)
HISTOGRAM PROCESSOR (KEYPLANE ADDRESSABLE AREA)
CONVOLUTION PROCESSOR (3 X 3)
FULL DISPLAY LEVEL ADDRESSING (REMAPPING IN RAM LUT)
OUTPUT SECTION
WINDOWS SUPPORT
INPUT SWITCHABLE BETWEEN 3 SENSORS
OVERLAY
1024 X 1024 X 8
(CAN BE CONFIGURED FOR LESS RESOLUTION)
SHARED CPU/VME MEMORY ADDDRESING (for DMA)
KEY-PLANE CONTROL OF WINDOW AREAS
GRAPHICS PROCESSOR SUPPORT IS VME ADDRESSABLE
HISTOGRAM AND CONVOLVER ARE REAL TIME
HISTOGRAM MEMORY IS SHARED WITH CPU for DMA ACCESS

SENSOR FUSION
DISPLAY SUPPORT (CONTINUED)
DISPLAY SUPPORT (CONTINUED)
VIDEO OUTPUTS
RGB AND SYNC
NTSC (OR PAL)
S-VHS OUTPUT (Y/C)
PARALLEL DIGITAL PROCESSING
RS-170 (OR CCIIR) BLACK AND WHITE OUTPUT
(TO 10 BITS + SYNC)
FULLY REMAPPABLE OUTPUT COLORS (TO 8 BITS EACH)
PROVISION FOR CGAVGA AND S-VGA
(NOT IMPLEMENTED YET)
ON BOARD VIDEO MEMORY SUPPORT (not real time)
(QUADRANT DISPLAY (only one quadrant can be live at a time)
FULL 16 BIT TO 10 BIT BLACK AND WHITE OR 8 BIT COLOR
REMAPPING ABILITY
(for histogram image correction, gamma correction, etc)
ACCEPTS EXTERNAL SYNCHRONIZATION

