Infrared Sensors and Systems for Enhanced Vision/Autonomous Landing Applications

J. Richard Kerr FLIR Systems, Inc.

:55731 P. 23

ABSTRACT

Infrared Imaging Through Fog

There exists a large body of data spanning more than two decades, regarding the ability of infrared imagers to "see" through fog, i.e., in Category III weather conditions. Much of this data is anecdotal, highly specialized, and/or proprietary.

In order to determine the efficacy and cost effectiveness of these sensors under a variety of climatic/weather conditions, there is a need for systematic data spanning a significant range of slant-path scenarios. These data should include simultaneous video recordings at visible, midwave (3-5 micron), and longwave (8-12 micron) wavelengths, with airborne weather pods that include the capability of determining the fog droplet size distributions.

Existing data tend to show that infrared is more effective than would be expected from analysis and modeling. It is particularly more effective for inland (radiation) fog as compared to coastal (advection) fog, although both of these archetypes are oversimplifications. In addition, as would be expected from droplet size vs wavelength considerations, longwave outperforms midwave, in many cases by very substantial margins. Longwave also benefits from the higher level of available thermal energy at ambient temperatures.

Imager Technologies

The principal attraction of midwave sensors is that staring focal plane technology is available at attractive cost-performance levels. However, longwave technology such as that developed at FLIR Systems, Inc. (FSI), has achieved high performance in small, economical, reliable imagers utilizing serial-parallel scanning techniques.

In addition, FSI has developed dual-waveband systems particularly suited for enhanced vision flight testing. These systems include a substantial, embedded processing capability which can perform video-rate image enhancement and multisensor fusion. This is achieved with proprietary algorithms and includes such operations as real-time histograms, convolutions, and fast Fourier transforms.

्रम् अ**अग्र** त

RELEVANT ACTIVITIES AT FSI (CONT)

COMPACT FLIR DEVELOPMENT - APPLY TO LONGWAVE EVS STARING ARRAY DEVELOPMENT - APPLY TO MIDWAVE EVS

DUALBAND IMAGING RADIOMETER DEVELOPMENT **APPLY TO DUAL-WAVELENGTH EVS**

EMBEDDED PROCESSOR

SENSOR FUSION CONCEPTS

KEY: ECONOMICAL!

	IR SENS	SOR TECH	SENSOR TECHNOLOGIES	
TECHNOLOGY	WAVEBAND	RESOLUTION (HxV)	SENSITIVITY (NETD)	IMAGER SIZE (IN)
COMPACT SCANNING	EITHER	500x375	0.5°C (3-5) 0.2°C (8-2)	5.7x5.7x10.9
STARING ARRAY (Pt Si)	3-5 MICRONS	320x244 640x488	0.08°C	5x5x9 6x6x10
STARING & UNCOOLED ARRAYS	8-12 MICRONS	FUTURE		

BASIC FSI TECHNOLOGY

DETECTOR MINI-ARRAYS WITH TDI: "BEST OF SERIAL AND PARALLEL SCANN

PROPERTIES OF SERIAL-SCAN FLIRS:

CHALLENGES ---

Low dwell time per resolution element

High speed azimuth scanner

ADVANTAGES --

Few detectors = high sensitivity and uniformity

optimized front-end electronics

high yield (economical)

efficient cold shield

Easy channel balance/low fixed-pattern noise

Freedom from vertical aliasing

BASIC FSI TECHNOLOGY, (continued)

Video output from simple electronics

- no complex E-Mux
 - no complex DSC

AC coupling artifacts and low-frequency noise minimized

"Fast" optics (low f#'s)

TDI vs SPRITE:

- freedom from charge carrier diffusion
- fast optics are permitted
- easier material fab (carrier lifetimes)
- less heat (resistance X bias current)

RELIABILITY MAINTAINABILITY LIFE-CYCLE COST

SERIAL SCAN

IMPLEMENTATION

RELATIVE ADVANIAGES OF WAVEBANDS	3 - 5 MICRONS)	STARING-ARRAY TECHNOLOGY MORE MATURE AT MIDWAVE COMPARED TO LONGWAVE	RUNWAY LIGHTS ARE "BEACONS" AT MIDWAVE	BETTER AT LONG RANGES IN HIGH HUMIDITY ATMOSPHERE	OPRIATE FOR TAXI AND TAKEOFF	LANDING GEAR MOUNT	· FOG CHARACTERISTICS NEAR GROUND	
₹ 	MIDWAVE (3 - 5 MICR	STARING-ARR/ LONGWAVE	RUNWAY LIGH	BETTER AT LO	APPROPRIATE		• F0G CH	

33.35

RELATIVE ADVANTAGES OF WAVEBANDS (continued)	LONGWAVE (8 - 12 MICRONS)	BETTER PERFORMANCE IN LOW-THERMAL-CONTRAST AMBIENT CONDITIONS	BETTER PERFORMANCE IN MANY FOG SCENARIOS	SEE 1-3 TIMES VISUAL RANGE	ALWAYS AS GOOD AS MIDWAVE	CAN BE 100'S OF TIMES BETTER THAN MIDWAVE	
--	---------------------------	---	---	----------------------------	---------------------------	---	--

LONGWAVE (8-12 MICRONS) VS MIDWAVE (3-5 MICRONS) FLIRS LONGWAVE CAN HAVE HUGE ADVANTAGE FOR INLAND FOG SHORTWAVE CAN HAVE SOME ADVANTAGE IN HUMID ATMOSPHERES -MAY BE COMPARABLE FOR COASTAL FOG -MAY BE COMPARABLE FOR COASTAL FOG -STARING ARRAY FLIRS NOT AVAILABLE AT LONGWAVE HIGHLY DESIRABLE: INTEGRATED DUAL-WAVEBAND FLIR AT LOW PRICE	FLIR PERFORMANCE ISSUES (continued)	JES (continued)
 LONGWAVE CAN H. SHORTWAVE CAN I MAY BE COMPARAI MAY BE COMPARAI STARING ARRAY FI HIGHLY DESIRABLE: 	ONGWAVE (8-12 MICRONS) VS MIDWAVE (3	MICRONS) FLIRS
 SHORTWAVE CAN MAY BE COMPARA STARING ARRAY FI HIGHLY DESIRABLE: 	·LONGWAVE CAN HAVE HUGE ADVANTAGE	FOR INLAND FOG
•MAY BE COMPARAI •STARING ARRAY FI HIGHLY DESIRABLE:		e in humid atmospheres
	•MAY BE COMPARABLE FOR COASTAL FO(
	•STARING ARRAY FLIRS NOT AVAILABLE A	LONGWAVE
		EBAND FLIR AT LOW PRICE

PERFORMAN DUAL-W/	PERFORMANCE SPECIFICATIONS DUAL-WAVEBAND SYSTEM	NS
FIELD OF VIEW	MIDWAVE 30 x 20 DEG	LONGWAVE 30 x 20 DEG
RESOLUTION	1.5 MRAD	1.5 MRAD
SENSOR HEAD ENVELOPE SENSOR HEAD WEIGHT POWER REQUIREMENT	10.5" H x 5" W x 6" L LESS THAN 12 POUNDS 28V AT 4A MAX	SON
FIELD OF REGARD FIX AZI	FIXED, FORWARD (CONFORMAL WITH AZIMUTH PAN/SNAP-LOOK OPTION ELECTRONIC ZOOM OPTION	Mal With Hud) Option N
SPLIT-STIRLING COOLER DUAL RS-170 OUTPUT		
ENVIRONMENTALLY QUALIFIED TO MIL-STD-810D	D TO MIL-STD-810D	

SENSOR FUSION IMAGE PROCESSOR SUMMARY IMAGE PROCESSOR SUMMARY COMPONENTS SENSOR INTERFACE DISPLAY INTERFACE DISPLAY INTERFACE CENTRAL PROCESSOR INTERFACE CENTRAL PROCESSOR INTERFACE UNAL BACKPLANE (32 ADDRES/16 DATA) CUSTOM/PARALLEL 16-BIT VIDEO BUS DUAL EUROCARD STANDARD (6-U) Provides for easy addition of standard procesing alternatives CUST (7 APE, HARD AND FLOPPY DISK, OPTICAL STORAGE) RS-232 (DR 422 OR 485)) RS-232 (DR 422 OR 485)) RS-232 (DR 422 OR 485)) CENTRAL PROCESSOR PERIPHERALS CONTICAL PROCESSOR PERIPHERALS CENTRAL PROCESSOR PERIPHERALS CONTICAL PROCESSOR PERIPHERALS CENTRAL PROCESSOR PERIPHERALS CONTICAL PROCESSOR PERIPHERALS CON	
23	

SENSOR FUSION SENSOR INTERFACE COMPONENTS SCAN CONVERTER COMPONENTS SCAN CONVERTER INPUT PROCESSING ALU SENSOR IDENTITY MODULE FRAME MEMORY SCAN CONVERTER SCAN CONTROL SCAN	CANS INTO TELEVISION RAME MEMORY RAME MEMORY BIT-MAP VIDEO MEMORY BIT-MAP VIDEO MEMORY BIT-MAP VIDEO MEMORY BIT-MAP VIDEO MEMORY BIT-MAP VIDEO MEMORY
NER	(not supported in current products)
DETECT/MASK	SUBTRACT

SENSOR FUSION ENCOR INTERFACE (CONTINUE) SENSOR INTERFACE (CONTINUE) SENSOR SYNCHRONIZATION SENSOR SYNCHRONIZATION SENSOR SYNCHRONIZATION SENSOR SYNCHRONIZATION SENSOR SYNCHRONIZATION MANCHESTER OR RS-232 COMMUNICATIONS ARE COMMON MANCHESTER OR RS-232 COMMUNICATIONS ARE COMMON SENSOR SYNCHRONIZ MANCHESTER OR RS-232 COMMUNICATIONS ARE COMMON MANCHESTER OR RS-232 COMMUNICATIONS ARE COMMON SENSOR SYNCHRONIZATION MANCHESTER OR RS-232 COMMUNICATIONS ARE COMMON MANCHESTER OR RS-232 COMMON M	
--	--

SENSOR FUSION	DISPLAY SUPPORT (CONTINUED)	VIDEO OUTPUTS RGB AND SYNC NTSC (OR PAL) S-VHS OUTPUT (Y/C)	PARALLEL DIGITAL PROCESSING RS-170 (OR CCIR) BLACK AND WHITE OUTPUT (TO 10 RITS + SYNC)	FULLY REMAPPABLE OUTPUT COLORS (TO 8 BITS EACH) PROVISION FOR CGA/VGA AND S-VGA (NOT IMPLEMENTED YET)	ON BOARD VIDEO MEMORY SUPPORT (not real time) (QUADRANT DISPLAY (only one quadrant can be live at a time)	FULL 16 BIT TO 10 BIT BLACK AND WHITE OR 8 BIT COLOR REMAPPING ABILITY (for histogram image correction, gamma correction, etc)	ACCEPTS EXTERNAL SYNCHRONIZATION
				27			