Application of Aircraft Navigation Sensors to Enhanced Vision Systems

Barbara T. Sweet NASA Ames Research Center 205735 7.11

ABSTRACT

In this presentation, the applicability of various aircraft navigation sensors to enhanced vision system design is discussed. First, the accuracy requirements of the FAA for precision landing systems are presented, followed by the current navigation systems and their characteristics. These systems include Instrument Landing System (ILS), Microwave Landing System (MLS), Inertial Navigation, Altimetry, and Global Positioning System (GPS). Finally, the use of navigation system data to improve enhanced vision systems is discussed. These applications include radar image rectification, motion compensation, and image registration.

Application of Aircraft Navigation Sensors to Enhanced Vision Systems

Barbara Sweet

Flight Human Factors Branch

Outline

- Current Accuracy Requirements
- **Current Precision Landing Systems**
- Inertial Navigation
- Altimetry
- GPS
- Image Processing Applications

Navigational System Accuracy FAA Requirements for

Non-Precision Approach:

Limited to 250 ft above surface 100 m 2 drms lateral position accuracy

Precision Approach:

				_	
	í	,	-1	۰	ı
	ĺ		-1	٦	d
۱	ĺ		1	١	ı
۱			1	1	ı
			-1)	١

Category II:

Vertical: +/- 1.7 m 2 sigma Lateral: +/- 5.2 m 2 sigma Decision Height 100 ft/30 m

Vertical: +/- 1.4 m 2 sigma Lateral: +/- 17.1 m 2 sigma Decision Height 200 ft/61 m

Category III:

Vertical: +/- .6 m 2 sigma Lateral: +/- 4.1 m 2 sigma Decision Height 50 ft/15 m drms = distance root mean square

Current Precision Approach Systems

Instrument Landing System

Come in three categories (I, II, III)

Straight-in Approach to Airport

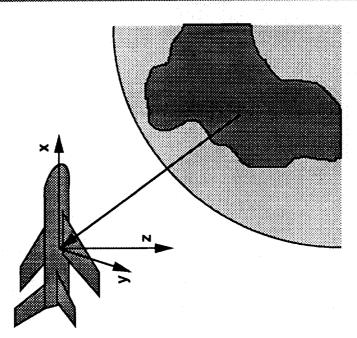
Requires Glideslope & Localizer Transmitter for each runway threshold with an ILS approach

Microwave Landing System

Come in three categories (I, II, III)

Supports both Straight-in & Curved Approaches

Requires Glideslope & Localizer Transmitter for each runway threshold with an MLS approach



Inertial Navigation

Method:

Inertial Measurement Unit (IMU) measures accelerations and angular rates with respect to three orthogonal axes.

Coordinate transformations/integrations to determine position, attitude with respect to the earth.

Types:

Platform & Strapdown

Limitation:

Lateral positioning only. Vertical position not feasible.

Inertial Navigation

Accuracies output from the IMU:

Acceleration: 6 g to 14 bit plus sign resolution = .00037 g

Angular rates: 256 deg/sec to 14 bit plus sign resolution = .015 deg/sec

Groundspeed: 6 knots

Position: drift rate 1 nm/hr

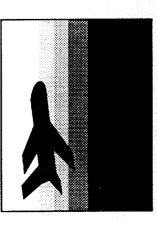
Pitch, Roll attitude: .25 deg

True Heading: 10 arc min

Track: function of groundspeed, nominally 3 degrees at approach

MINSA Ames Research Center

Altitude Measurement

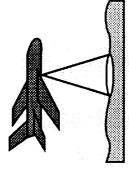

Barometric Altimeter

Indicates altitude based on standard atmosphere

Dependent on accurate altimeter setting

Error at surface: 50 ft (1 sigma)

Error at 40,000 ft: 200 ft (1 sigma)



Radio Altimeter

Calibrated to read zero when wheels touch at nominal landing attitude (3 degrees) Gives elevation above terrain (directly below aircraft)

Operate from 0 to 3000 ft above ground

Accuracy: 2 ft below 40 ft, 2.5 % of height above 40 ft (1 sigma)

Global Positioning System (GPS)

- Satellite based system, no ground-based aids required
- Give range/range-rate to each satellite received
- Positioning in two levels of accuracy:

Precision Code (P-code) 17.8 m 2d rms lateral 27.7 m 2 sigma vertical

Available only to military users

civil community Available to Course Acquisition Code (C/A-code) 100 m 2d rms lateral 156 m 2 sigma vertical

- Limitations due to masking of satellites can be encountered
- Typical update rates of 1 hz

Differential GPS

Ground-based receiver at surveyed location calculates ranges to all satellites in view

Range corrections broadcast to users

Demonstrated Accuracies:

P-code:

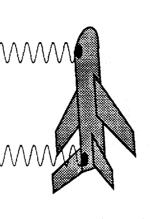

.91 m rms horizontal 2.7 m rms vertical

C/A-code:

7.6 m rms horizontal 8.5 m rms vertical Pseudolite at differential station can improve vertical position

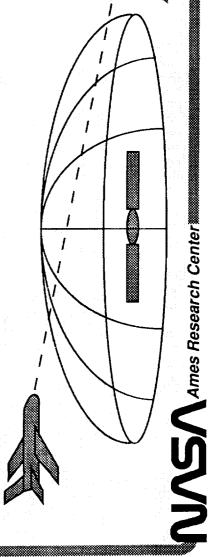
Carrier wave tracking shows promise for improving performance

MSS Ames Research Centeri



Other GPS Applications

Carrier Wave Attitude **Determination**


Multiple GPS antennaes on aircraft allows measurement of phase differential

Accurate to .05 deg 1-sigma

Carrier Wave/Pseudolite Navaid:

Demonstrated Accuracies in range of pseudolite of 5 cm

Summary of Navigational Accuracies .61 15.2 GPS DGPS DGPS CWGPS ა. .'ج 7.6 8.5 <u>.</u> 2.7 8 GPS 13.85 8.55 Inertial 18000 2.05 က ILS/MLS .85 2.6 8.55 Vertical Lateral

Radio

GPS DGPS DGPS CWGPS Baro

GPS

Inertial

ILS/MLS

MSS Ames Research Center

Applications to Enhanced Vision

Radar Image Rectification

Motion Compensation

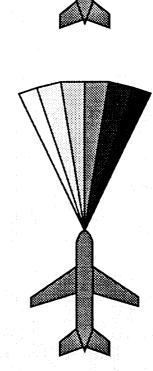
Image Registration

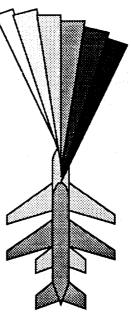
Radar Image Rectification

Issues

- Accurate altitude is key to producing rectified radar image
- Altitude is difficult to measure accurately
- Potential Energy vs Kinetic Energy

>50 ft potential energy is equivalent to 24 knots! mgh = potential mv² = kinetic


Possible issue for certifying under current criteria



Motion Compensation

Issues

- Aircraft motion can cause blurring/distortion of radar image for slower scanning rates
- Improvement of image from motion compensation will be limited by accuracy of path measurement

Image Registration

Issues

- Aircraft state information can affect registration times & registration accuracy
- In order to fuse images, registration is necessary
- Database image dependent upon position/attitude of aircraft
- Accuracy of position/attitude will affect feasibility of database fusion

Conclusions

Accuracies of aircraft state measurements need to be accounted for in enhanced vision designs Techniques to extract state information from the image should be investigated

O Att

II. SENSOR MODELING

PAGE 96 TO THE PAGE OF THE PAG