Engineering Workstation: Sensor Modeling

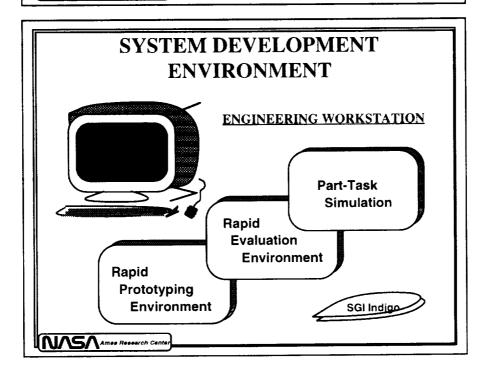
M. Pavel and B. Sweet NASA Ames Research Center 70.24 205740 1-10

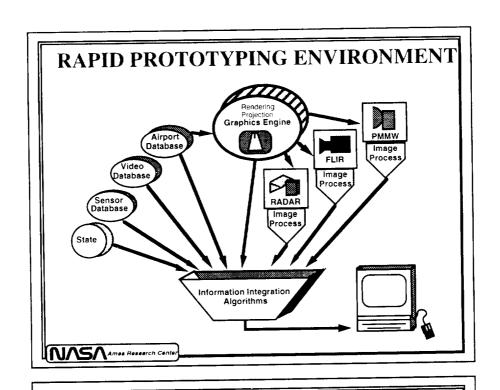
ABSTRACT

The purpose of the engineering workstation is to provide an environment for rapid prototyping and evaluation of fusion and image processing algorithms. Ideally, the algorithms are designed to optimize the extraction of information that is useful to a pilot for all phases of flight operations. Successful design of effective fusion algorithms depends on the ability to characterize both the information available from the sensors and the information useful to a pilot.

The workstation is comprised of subsystems for simulation of sensor-generated images, image processing, image enhancement, and fusion algorithms. As such, the workstation can be used to implement and evaluate both short-term solutions and long-term solutions. The short-term solutions are being developed to enhance a pilot's situational awareness by providing information in addition to his direct vision. The long term solutions are aimed at the development of complete synthetic vision systems.

One of the important functions of the engineering workstation is to simulate the images that would be generated by the sensors. The simulation system is designed to use the graphics modeling and rendering capabilities of various workstations manufactured by Silicon Graphics Inc. The workstation simulates various aspects of the sensor-generated images arising from phenomenology of the sensors.


In addition, the workstation can be used to simulate a variety of impairments due to mechanical limitations of the sensor placement and due to the motion of the airplane.


Although the simulation is currently not performed in real-time, sequences of individual frames can be processed, stored, and recorded in a video format. In that way it is possible to examine the appearance of different dynamic sensor-generated and fused images.

GOALS

- Tools for rapid development and evaluation of augmented vision systems
- Development of short-term solutions
- Simulation of sensor signals
- Signal and image processing
- Simulation of algorithms
- Error analysis
- Easy-to-use interface

SIMULATION: IMAGE GENERATION

- Database A simple airport scene
- Objects, materials and illumination
- Atmospheric attenuation
- Computer graphics rendering
- Sensor signal simulation

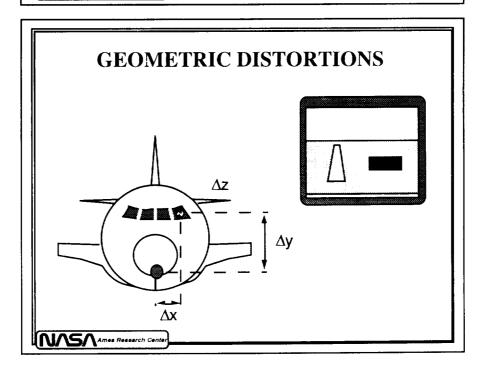
NASA Ames Research Center

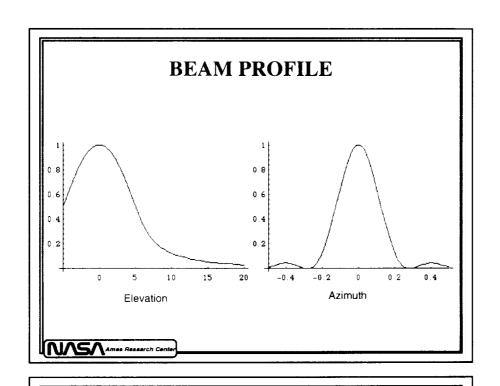
VISUAL IMAGE

- Simple airport scene
- Polygonal representation
- Simple lighting model
- Color image rendering

Amos Rosserch Contor

SENSOR SIMULATION PHILOSOPHY

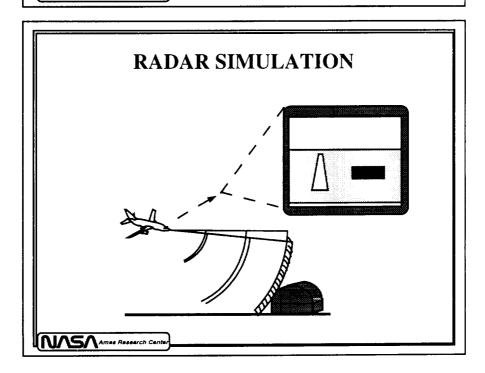

- Goal: Reduce simulation complexity
- Simulate critical characteristics
- Restricted viewing conditions
- Restricted environmental conditions
- Material specification -> Signal


NIASA Amos Research Center

SENSOR CHARACTERIZATION

- Relationship between a visual and a sensor image
- Spatial response characteristics
- Temporal response characteristics
- Sensitivity and signal-to-noise ratio
- Stability: drift, changes in gain
- Atmospheric effects and attenuation
- Inhomogeneity of sensor image

IMAGE PROCESSING


- HIPS Image Processing System
- Image Processing
- Special Algorithms
- Fusion

NASA Ames Research Center

RADAR SIMULATION

- Assignment of material or radar cros section (RCS)
- Computer generated image Rendering
- Beam profile calculations
- Compute Range using Hardware Z-buffer
- Scattering variability
- Gain control

Passive Millimeter Wave (PMMW) SENSOR CHARACTERISTICS

- The following are examples of particular implementations of selected sensor models
- 16 x 16 Focal plane array
- Operating Frequency: 94 GHz
- Spatial Resolution: 6 Milliradians (1/3 degree)
- Minimum Resolvable

Temperature:

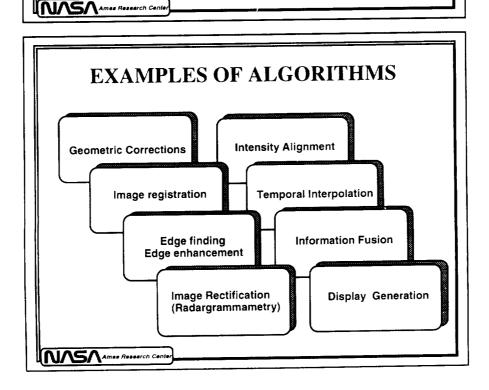
1 Deg K

• Update rate:

10 Hz


• Noise Figure

Passive Millimeter Wave (PMMW) SENSOR SIMULATION


Assumptions

- Uniform hot sky
- Runway, grass -> reflectivity specification
- Spatial modulation transfer function (MTF)
- Gaussian noise

HIPS IMAGE PROCESSING SOFTWARE

- Modular, UNIX-based system
- Modifyable source code
- Self-documenting image files
- Built-in functions:
 - Filtering, edge-detection
 - Image transformations
 - Image statistics
 - Image compression

USER INTERFACE

- Generate sequences of frames
- Menu-based interactions
 Stop, examine a frame
 Generate fog
 Render PMMW image
 Render radar image
 Modify parameters
 Save images in HIPS Form
- Save images in HIPS Format

NASA Ames Research Cente

III. SENSOR FUSION