
N94- 25666 3

SYSTEMATIC PROPULSION OPTIMIZATION TOOLS (SPOT)

University of Alabama in Huntsville

Department of Mechanical Engineering

Huntsville, Alabama

Dr. Mark Bower

John Celestian, Teaching Assistant

Abstract

This paper describes a computer program written by

senior-level Mechanical Engineering students at the

University of Alabama in Huntsville which is capable of

optimizing user-defined delivery systems for carrying

payloads into orbit. The custom propulsion system is

designed by the user through the input of configuration,

payload, and orbital parameters. The primary advantages

of the software, called Systematic Propulsion

Optimization Tools (SPOT), are a user-friendly interface
and a modular Fortran 77 code designed for ease of

modification.

The optimization of variables in an orbital delivery

system is of critical concern in the propulsion

environment. The mass of the overall system must be

minimized within the maximum stress, force, and pressure

constraints. SPOT utilizes the Design Optimization Tools

(DOT) program for the optimization techniques.

The SPOT program is divided into a main program and

five modules: aerodynamic losses, orbital parameters,

liquid engines, solid engines, and nozzles. The program

is designed to be upgraded easily and expanded to meet

specific user needs. A user's manual and a programmer's

manual are currently being developed to facilitate

implementation and modification.

Introduction

Improved propulsion system designs and problems and

problem solutions are vital to the future of the aerospace

industry. To this end, propulsion optimization software

can be a valuable tool to the design engineer. However,

the software packages currently available are poorly

organized and difficult to modify, thus placing the user in

an unenviable position. Clearly the problem at hand is to

develop a software package which delivers accurate results

without sacrificing the user-friendly work environment.

This paper describes the Systematic Propulsion

Optimization Tools (SPOT) program written by senior

level engineering students at the University of Alabama in

Huntsville. Its purpose is to develop the optimum system

for delivering a payload into orbit. This is accomplished

by optimizing the launch vehicle configuration based on

the payload weight, engine types, and orbital parameters

entered by the user. The code is written in FORTRAN

with a QuickBasic user interface and employs a

commercially available optimization routine, Design

Optimization Tools (DOT), for all optimization
calculations. This allows SPOT to be accurate, user-

friendly, and easy to modify.

Scope

SPOT is designed to allow for quick analysis of either

the effectiveness of a desired launch hardware

combination, or to provide an optimized system to achieve

a given orbit. The code allows the user to input any

combination of elements within its parameters and to

quickly obtain a "useful" answer.

In terms of hardware, SPOT can handle relatively large

hardware combinations. The input vehicle can have

anywhere from one to four stages. Each stage can be

either liquid or solid-fueled and can have up to five

engines. Between two and eight solid fuel strap-on

engines can be used on the first stage to provide additional

thrust. A propulsion system can be designed for payload

weights of up to 100,000 pounds.

Some orbital mechanics constraints were also placed on

the program in order to help make coding easier. Orbits

are circular rather than elliptical. Any desired orbital
radius within the feasible limits of the launch vehicle can

be used. If the launch vehicle cannot reach the orbit input

by the user, the program will relay this information to

DOT which will modify the launch systems accordingly.



SPOT Code

The user interface was written in QuickBasic instead of

FORTRAN to provide a friendly work environment by

offering a system of menus that can be easily navigated by

the user. The menu--driven interface offers the option of

optimizing any of three parameters: the size of liquid

engines per stage, the number of solid engines per stage,

or the number of strap-on engines on the first stage.

Those variables not targeted for optinuzation are assigned

values by the operator. After the optimization parameters

are set, values for the desired orbital altitude, angle of

inclination, launch site, and payload weight must be

entered. SPOT then exits the user interface and begins

executing the code within the main program.

Main Program

The main program serves as the heart of the SPOT

project by acting as the driver for the DOT, liquid, solid,

and orbital modules. The data returned by these modules

is combined with the input values from the data files

created by the user interface. This combination is then

developed into the objective and constraint functions tor

the optimization routine. In this case the objective

function describes the total vehicle weight. This function

is evaluated subject to the system constraints within the
DOT routine.

The DOT routine iterates the objective function in

search of an optimum value by adjusting the system

design variables. The design variables are the number of

solid engines, the liquid fuel mass, and the number of

liquid engines. When DOT arrives at the optimum

configuration, it returns an array to the main program.

This array contains the values of the optimized variables.

The main program then interprets the DOT array into the

optimum mass values for the specified launch sequence.

Liquid Module

The first module called by the main program is the

liquid module, which determines the total initial mass of

the liquid stages. In order to accomplish this task it must

first receive information pertaining to the engine type of

each stage, the number of engines used in each stage, and

the propellant mass. The routine begins by determining

which of the four possible stages were assigned liquid

engines. After the liquid stages have been identified, the

type of engine on each stage must be known. This allows

a set of standard design variables characteristic to each

Proceedings of the 8th Summer Cotlfcrcsc¢
NASA/USRA Adranccd Deslgs Program

engine type to be initialized. These variables include

miscellanex_us mass, fuel flow rate, and tank length-to-

width ratio among others. The module is now ready to

begin its calculations.

The first computation determines the stage burnout time

in terms of the fuel flow rate and propellant mass. After

the burnout time is found, the volumes of oxidizer and

fuel are found. These values allow the respective storage

tanks to be sized and their weight computed.

In computing the mass of the fuel and oxidizer tanks the
routine takes into account the stresses under a worst-case

scenario of 12 G's. This, coupled with a design safety

factor of 1.5, is used to design the tank thickness using

the equation for hoop stress given below.

t = pr/cr

where t = tank thickness

p = tank pressure
r = tank radius

cr - hoop stress

The total mass of each liquid stage is determined by

adding the propellant mass (which is time-variant), the
fuel and oxidizer "tank masses, and the miscellaneous mass

characteristic to the type of engines used. The total mass

of the liquid stages is then determined by summation of

the individual stage masses. This value is then returned to

the main program.

Solid Module

Alter the initial mass of the liquid stages is calculated,

the main program calls the solid module to perform a
similar task. The determination of the initial mass of the

solid stages is less complicated than that of the liquid

engines because the mass of the solid propellant is not a

design variable. The routine begins by identifying which

stages were assigned solid engines and the type of motors

they were designated. Since the propellant mass is a

constant dependent on engine type, it is necessary only to

multiply the number of engines present by the mass of

each engine to determine the initial stage mass. The total

initial mass of the solid stages is then simply the

summation of the individual initial stage masses. This

value can then be returned to the main program for use in

the objective function.



Ueilvcrs_ of Alabama, Hu_vlU¢ 5

In addition to calculating the initial solid engine mass,
this module must also determine the time to burnout of

each solid stage. This value is simply read from the data

file for the corresponding solid engine type.

Orbital Module

The orbital module is concerned with two phases in the

rocket's flight, the first being from launch until final stage

burnout, and the second being from burnout to orbit

(coast). During the first phase the specifics of the flight

path are evaluated using the trajectory subroutine. It

begins by gathering the values for drag force, thrust, and

the system mass at an instantaneous moment during the

powered flight of the vehicle. The radial and angular

thrust are then determined using the relations below.

Fix = 1 (m)(g/r) 2 -Fd(COS 13) + x(cos 13)

F 0 = -l(Fd) (sin 13) + x(sin 13)

where m = total mass of vehicle

g = gravity
r = distance of vehicle from center of Earth

F d = drag force
"_ = rocket thrust

13 = angle of inclination

The next step in the solution process is to determine the

radial and angular position, velocity, and acceleration. A

Runge-Kutta subroutine is used to determine the velocities

and position that are, in turn, used to calculate the
acceleration values. This is done for time increments until

the final stage burnout occurs. At this point the

responsibility for the analysis of the vehicle's flight is
transferred to the coast subroutine. This routine also used

the general Runge-Kutta routine with the one exception of

a thrust value of zero. The velocity and position of the

vehicle are continually calculated until either the desired

orbit is reached, or the vehicle comes to rest. If the

rocket fails to reach the desired orbit, a warning message

is returned to the main program.

The orbital module employs the services of three

additional subroutines in its computational process. First,

an aerodynamics routine is used to evaluate the

instantaneous drag force experienced by the vehicle.

Next, the orbital module calls the liqminor routine to

determine the thrust delivered if a liquid engine is

burning. In addition, it calculates the instantaneous mass

of the liquid stages. Finally, subroutine solminor is called

to find the thrust delivered as the solid engine is burning,

as well as the instantaneous solid stage mass.

Conclusion

The driving concept behind SPOT is to provide the

aerospace industry with a useful tool with which to

evaluate launch and hardware configurations. While the

actual program still contains some rough spots, the

concept is very solid. With some additional work and

modification, we will have achieved our objective and

developed a useful design tool.


