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1.0 Introduction

Pulsed laser altimeters estimate the range to a terrain surface by measuring the round trip

time-of-flight of a laser signal 1. The measurement geometry is shown in Figure 1.1. Although

different transmitted laser signals can be used 2, most direct detection laser altimeters transmit a

single Q-switched laser pulse with a nearly Gaussian-shaped intensity profile. The laser altimeter

receiver must detect the terrain reflected laser pulse in the presence of optical and electronic noise.

Because the height variations of the terrain within the laser footprint spread the reflected pulse 3, the

receiver must also estimate the "center" of the received pulse in order to accurately measure the

range.

In airborne laser altimeters 4, the range is usually measured in two parts. The coarse range

is typicaUy measured as the time between the leading edges of the transmitted and received laser

pulses. A fine range correction is then computed from a sampled version of the received optical

waveform, and the correction is added to the coarse range to produce the final range estimate. In

some planetary laser altimeter designs such as MOLA 5, the instrument's power is very constrained

and only the coarse range is measured. 6,7 For these instruments, the primary task of the receiver is

to maximize the probabLlity of a successful measurement. 5,6

The accuracy of the timing (or ranging) performance is governed by both the altimeter's

design, its pointing angle, and the characteristics of the terrain surface. 3,8 Relevant laser

13"ansmitter parameter's include the laser energy, pulse width and beam divergence. Important

parameters of the measurement geometry and terrain surface include the altimeter's altitude and

pointing angle, and the terrain's surface slope, roughness and reflectivity. Relevant parameters in

the receiver include the receiver telescope area, the detector's bandwidth, gain, noise and the

design and sampling rate of the signal processor 9.

For some special cases, such as for flat or uniformly sloped terrain, closed form

expressions can be given for the laser altimeter's detection statistics and timing performance. 8

However, when the surface topography is more complex, it is difficult to describe the altimeter's

receiver signal shape, which is required to predict the receiver performance. As a consequence, for

many realistic measurement scenarios it is difficult to develop a high performance altimeter receiver

and to analyze its performance.

1.1 Overview

The Laser Altimetry Simulator was developed as a fLrst-generation tool to explore the

relationship between the altimeter's design, performance, and the terrain characteristics. It

calculates the altimeter performance in a simplified two-dimensional (height versus along track

distance) measurement geometry. As a complementary approach to the analytical calculations, it

can produce performance estimates over a variety of conditions, including those where the theory
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Figure 1.1. Laser Altimeter Measurement Geometry.
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is intractable. The simulator can also calculate and plot the altimeter's signal and noise at the

various stages within the altimeter receiver, which can yield insight into the altimeter's operation.

Although this simulator was developed for the GLAS mission, it is flexible, and it can be used to

analyzetheperformance of a varietyof airborneand spaccbome laseraltimeters.

Inpriorwork, Abshire and McGarry I0developed a simplerMonte-Carlo simulatorto

calculatethe timingperformance of shortpulsetwo-colorlaserreflectionsI1"13from a model of the

ocean surface.Itwas used asa guide forthiswork. However, thissimulatorismore complete

and encompasses theentirelaserpulseand detectorpropagationpaths.

This guide isintendedforuserswho have working knowledge of how a laseraltimeter

operatesaswell as a working knowledge ofUNIX, the NCAR graphicspackage and the SUN

sparcstation.

1.2 Simulator Design

The simulator operates by calculating the laser altimeter's optical intensity waveform, as it

propagates to and from the terrain surface and, after detection, through the altimeter's receiver.

The simulator operates in two dimensions (along-track distance and heigh0, and operates with time

quantized into 100 pscc bins, which correspond to 1.5 cm in range. It calculates the optical signal

path in two dimensions, (height versus along-track distance) and uses a finite number of rays to

approximate the laser's optical wavefront. A simplified flow diagra m is shown in Figure 1.2.

The simulator does not include the effects of atmospheric refraction. The laser transmitter's

wavelength, divergence angle and tilt angle of the altimeter are specified, along with its height

above the terrain surface and the along-track velocity. The terrain surface profile can be specified

fiat, tilted or have a predefined height profile. The terrain surface is assumed to be a diffuse

reflector, and its reflectivity and height can be specified for every centimeter of along-track

distance.

The simulator's receiver includes a telescope, optical bandpass filter, either a

photomultiplier or avalanche photodiode optical detector, a low pass filter with a raised cosine

impulse response, a timing discriminator, a time interval unit and a waveform digitizer. The

parameters of the optical detectors are specified in the parameter file, along with the impulse

response time of the lowpass filter. The sampling rate, number of bits, and voltage scaling of the

waveform digitizer are also specified.

The receiver waveform and coarse and fine timing estimates are calculated independently

for each laser f'tring. The threshold setting of the receiver's threshold detector is calculated from

part of the received waveform which contains only noise. The coarse range is calculated as the

time interval reading between the laser fLring and the receiver's fast threshold crossing time.

Several possible fine range corrections are calculated by using the digitized waveform. The

3
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receiver'sfreetiming estimatorsinclude50%risefime,andthemidpoint,centerof area,meanand
peakof thereceivedwaveform.

1.3 Operation

Typically, the simulator is used to calculate the altimeter's measurement response to a

sequence of laser firings. Each laser shot is simulated as an independent event. For each laser

firing, the simulator follows the following steps:

a). The simulator calculates the optical intensity waveform as its leaves the laser transmitter.

The optical signal has a specified energy, angular width and angular pointing offset from nadir.

The transmit beam's intensity and far-field angle are Gaussian. As the laser signal leaves the

transmitter, it starts the receiver time interval unit used to measure the coarse range delay.

b). The laser signal propagates to the terrain surface. The simulator divides the transmitted

beam into a finite number of rays in along-track angle. The reflected intensity and range delay are

calculated independently for each ray. The simulator calculates the laser pulse propagation to the

surface and the terrain reflection in the along-track distance and height dimensions.

c) The simulator calculates the terrain surface interaction. It does this by projecting the

altimeter's laser beam in a line which is parallel to the along-track altimeter motion. In doing so, it

ignores any cross-track terrain height variations. The terrain surface is assumed to be Lambertian

reflector, with a height and diffuse reflectivity specified for each along-track point. The height and

diffuse reflectivity can be specified independently for each location in the surface profile.

d) The terrain scattered signal collected at the receiver is calculated. The calculations are

based on 3-dimensional diffuse scattering from each terrain element and a 3-dimensional receiver

telescope. Solar illumination is also scattered by the terrain back to the receiver. The range delays

for each transmitted ray are calculated. The reflected laser pulse from each reflected ray are

summed with their appropriate range delay, producing the received optical waveform. When

added with the background light, this produces the optical intensity waveform at the detector

surface.

e). The simulator uses a Monte Carlo method to calculate the detector's output signal. The

user can select either a Silicon Avalanche photodiode (Si APD) or a photomultiplier (PMT)

detector. For the Si APD, the output detector statistics for both signal plus background and the

background only are assumed to have a Gaussian distribution. For the PMT detector, the statistics

have a Poisson distribution. Both detector models produce an electrical output waveform (voltage

versus time) for each 100 psec time bin.

f). The detector's output waveform is filtered with an electrical lowpass filter. The filter's

impulse response is modeled as a raised cosine. As long as the filter's impulse response is longer

than the laser pulse width, the f'dter's output is a smoothed version of the input waveform.

4
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g). The filter's output is sent to the receiver's threshold detector. If any voltage in

waveform exceeds the receiver threshold, the received pulse is detected. This stops the time

interval measurement, yielding the coarse range estimate. It also starts the waveform digitize used

to compute the fine correction estimate. If for that laser f'wing the entire waveform remains below

threshold, the ftring is registered as a missed detection. The present version of the simulator has

an ideal (no false alarm) threshold setting algorithm. However, future versions will incorporate

more realistic threshold setting algorithms.

h) For each detected pulse, the simulator calculates the fine ranging correction by using the

waveform digitizer data. Since the time interval unit triggers on the received pulse's leading edge,

it always triggers early and underestimates the true range. The waveform data is used to compute

various estimates of the center of the pulse to correct the coarse timing estimate. The pulse timing

estimators include 50% risetime, peak, mid-point center of area, and pulse mean, as shown in

Figure 1.3. The pulse area, which is proportional to received pulse energy, is also calculated.

1.4 Spacecraft Velocity

If the altimeter's velocity = O, then the altimeter will not move along track between laser

firings. The laser will illuminate the same surface profile on all shots. This mode is useful for

calculating timing and waveform statistics at a specified point in the terrain profile.

If the altimeter's velocity > 0, then the altimeter "moves" along-track between laser shots.

If the along-track distance moved between shots exceeds the laser spot diameter, then a new terrain

surface will be illuminated with each laser f'wing. This is a typical mode of operation, since it

allows the altimeter's performance to be calculated for a pass over given terrain.

1.5 Waveforms and Summary Statistics

For each laser f'wing, the simulator calculates waveforms at several locations in the altimeter

receiver. These include at the detector surface (photons vs. time), after the receiver eleclricai filter

(volts vs. time), and after the altimeter waveform digitizer (counts vs. time). These waveforms can

be plotted onto the screen or hardcopied.

Once a set of laser In'hags have been simulated, the results can be used to calculate the

statistics of the altimeter's performance. These are computed by accumulating histograms of the

desired timing or detection parameters. The histograms can be plotted and their mean and standard

deviations can be calculated. Additionally, the detection and false alarm probabilities can be

calculated.

5
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1.6 Simulator Parameters

Most simulator settings can be changed with the parameter list. Those related to the

altimeter instrument include the laser wavelength, laser energy, pulse width, transmitter bearnwidth

and off-axis pointing angle. Those related to the surface include diffuse reflectivity, background

light illumination level and terrain height profile. Terrain In'of'des can be selected to be

deterministic, including square waves and ramps with given slopes, or the terrain profile can be

input as a height vs. distance data f'de. This feature is useful when calculating altimeter signals

reflected from terrains which have been previously prof'ded with airborne altimeters.

Future versions of the simulator may include two different types of random terrain profiles.

The first would permit adding a random roughness component (with a specified rms value) to a

deterministic terrain profile. The power spectra (power versus along-track wavelength) of the

random component can be specified by randomizing the prof'de's phase term and calculating the

profile as an inverse Fourier transform. A completely random terrain prof'de, with a specified

power spectrum and rms value, can also be calculated with this approach.
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2.0 Examples of Simulator Results

The outputs from the simulator for four sample terrains illustrate the simulator's operation. The

examples "fire" a single laser pulse over four types of terrain for an aitimeter with the nominal parameters.

The four types of returns pulses for these examples are listed below.

FIGURE )Y_,A_YI _QI?.M

2.1 Impulse

2.2 Gaussian

2.3 Symmetrical pulses

2.4 Asymmetrical pulses

TERRAIN PROFILE

Flat, linear terrain.

10" sloped, linear terrain.

1 m single stepped, beam centered 50%.

(35.25 m plateau)

1 m single stepped, beam centered 25%.

(17.625 m plateau)

These figures show five different graphs for each type of terrain. The text in parenthesis indicates the

location of the waveform in the simulator. The graph types include:

a) Along-track terrain file.

b) SPACE_TIME subroutine output waveform (at the detector's surface).

c) RECEIVER subroutine output waveform (after the receiver electrical filter).

d) DIGITIZE subroutine output waveform (after the waveform digitizer).

e-i) Timing histograms.

For these examples, the simulator was run using its nominal parameters with the along-track

velocity equal to zero.

2.1 Slope and Terrain

A set of uniform terrain slopes of 0, 1, 2, and 3 degrees was also used to test the simulator's

statistical performance. One hundred laser shots were used for each terrain slope at transmit laser energies

of 100, 50, 25 and 12.5 mJ. The performance of each of the five f'me timing estimators was calculated and

plotted versus energy level. Figure 2.5 shows the Mean of the five fine timing estimators and Figure 2.6

shows RMS jitter of the fine timing estimator plotted versus energy level. Each set of figures show the

fine timing estimators for each of the four terrain profiles.

2.2 Ice Terrain

A similar test to the slope and terrain test was performed using ice terrain data. However, here the

terrain f'fle included a terrain segment from each of five classes of ice roughness. These are illustrated in

Figure 2.7. The ice roughness classes are defined in Section 4.6.3. One hundred laser shots were

simulated for each ice roughness class and the laser energies were 100, 50, 25 and 12.5 rnJ. The Mean and

RMS jitter of the five fine timing estimators are plotted versus signal level in Figure 2.8 and Figure 2.9.

There is a plot for each of the terrain classes.
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The small height features in the rough ice occasionally cause an increase in the simulator's timing

jitter. This is due to variations in photon counts near the receiver's threshold. Occasionally these cause the

threshold crossing time to shift from one ice feature to another. When this occurs, the waveform timing

point can shift considerably. The timing histograms of such data typically have a bimodal shape and a large

RMS time jitter.

2.3 Terrain Re-creation

If the satellite altitude is known exactly, the terrain height estimates from the simulator can be used

to "re-create" the height profile of the measured terrain. A sample segment of ice terrain, which included

ice roughness classes 1, 3, and 5, was used to illustrate this mode using both the peak and mean fine timing

estimators. For each estimator, the terrain height was determined at the center of the laser footprint for

every laser ruing. The satellite height was assumed to be known exactly. The following cases iUustrate

results from the Peak and Mean estimators:

1) Nominal parameters (given in Section 6).

2) Nominal parameters, receiver filter impulse response = 200 psec (nominal = 5 nsec).

3) Nominal parameters, receiver f'dter impulse response = 200 psec, laser divergence = 10 grad.

The results for the Peak estimator are shown in Figure 2.10 and for the Mean estimator in Figure 2.11.

The x's denote the simulator height estimates.

The figures show the abrupt transitions caused by the Peak estimator, and the time bias caused by

the delay of the receiver impulse response. The spatial smoothing caused by the nominal beam divergence

is also shown. As expected, the Mean estimator with the shortest impulse response time and narrowest

beam divergence gives the best performance.
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3.0 Simulator Design Overview

To simulate the laser altimetry measurement, the main routine, sim, fast reads the

parameter table and the terrain file. The simulator then calls the subroutines SPACE_TIME,

RECEIVER, and DIGITIZE to simulate the altimetry measurement and a subroutine, TERGPH, to

analyze the data.

The SPACE_TIME subroutine simulates the firing of a laser from a specified altitude to a

given terrain profile. Using link equations, the returned photon energy from the laser is calculated

as a function of time. A return waveform in the time domain for each shot is created as the

subroutine output. This routine is described in Sections 3.1 and 4.2.

The RECEIVER subroutine adds system noise and then converts the waveform photons

received from the SPACE_TIME subroutine into voltages for a single laser shot. In addition to the

waveform, the subroutine returns a threshold for the DIGITIZE subroutine based on system noise

statistics that are calculated in the RECEIVER subroutine. This routine is described further in

Sections 3.2 and 4.3.

The DIGITIZE subroutine digitizes the waveform output from the RECEIVER subroutine.

The waveform characteristics are specified in the parameter table. DIGITIZE also calculates the

five timing correction estimators, and accumulates timing statistics for all shots. This routine is

described in Sections 3.3 and 4.4.

TERGPH generates two files for plotting: the actual terrain prof'fle covered by all of the

shots, and the altimeter's height estimates. The user can compare the altimeter's measured prof'de

against the terrain prof'tle by plotting both of these files on the same graph. This routine is

described in Sections 3.4 and 4.5.

3.1 SPACE TIME Design
B

The SPACE_TIME routine is called once per shot. It propagates the laser pulse fro.m the

transmitter through the atmosphere, reflects it from the terrain, and propagates it back through the

atmosphere to the receiver. The simulator does not include the effects of atmospheric refraction.

The laser pulse is transformed from the space to time domain when it interacts with the

terrain. This subroutine breaks up the transmitted optical wavefront into a number of narrow

optical rays. This model approach is valid as long as the terrain is in the far field of the laser

transmitter. The number of rays depends on the satellite distance, the satellite off-nadir pointing

angle, the transmitter beam divergence, the height of the terrain surface and the slope of the surface

at each point. The individual rays have sufficiently small angular width so that each has negligible

1 bin) pulse spreading after interacting with its terrain segment. The along-tracksurface profile

is divided into discrete 1-centimeter segments. To simplify the computations, the rays are

constrained to have their tips lie exactly on the transition of the terrain segments (see Figure 3.1).
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This constraint causes the angular width of the rays to vary across the beam.

The terrain profile is analyzed by SPACE_TIME as shown in Figure 3.2. The size of the

time bin (At=-100 psec) and the terrain step size (=1 centimeter) are fundamental constants used in

the simulator and cannot be changed.

[A]

The SPACE_TIME routine performs the following computations:

Compute the ray angular width.

The ray's spatial width is chosen to be sufficiently smaU to ensure that all the light returning from a

single ray will lie within one time bin. This means that At" = r2 - r1 < 1.5cm (see Figure 3.3). To

ensure these limits on Ar (as well as to simplify the software), each ray base is constrained to a

single lcm terrain segment. From the geometry shown in Figure 3.3:

tan(0+d0) = x2 / (Rsat - h2)

and x 2 = x 1 + 0.01

which, when solved for the ray angular width, dO, yields

s i = (Rsat - hi.1)*tan0 i + 0.01

dOi = tan-1 (si/(Rsat - hi) ) - 0 i

where:

Rsat is satellite altitude above geoid,

hi is height above geoid,

0 i is off-nadir angle to ray "i", and

all distances are given in meters.

[B] Read the terrain from file.

The number of terrain points read is NP, which is equal to the number of rays in the transmitter

beam. The program reads NP terrain elements, starting at index "vsat*(k-1)*100+l" where "k" is

the shot number and "vsat" is the velocity of the satellite in meters/shot.

[c] Comoute the terrain slope angle of incidence.

The program uses 2 terrain points to compute the slope of the terrain within the ray, (see Figure

3.3):

O'T--tan-' h'- h'-')O.Olm
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Rsat

Satellite

Ray #2

_2 I h_2 h3

lcm <------ Sea-Level

Figure 3.1. SPACETM Geometry.

Terrain is
assumed to
look like...

h4

Figure 3.2. How SPACETM views terrain.
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where:

The angle of incidence of the beam with the terrain, _i (see Figure 3.4) is:

¢, = O,- 0'r

/0,= o0- +EdOj
j-I

P] Comoute the reflectivitv and eneruv in the ray.

The diffuse mflectivity (due to Lambertian scattering) is given by:

ri = ri cos_ for _ < 50 °

= 0 for _ _>50 °

where q the diffuse reflectivity is read from the terrain file.

The Lambertian scattering angles were limited to < 50 deg. to prevent photons from a single ray

falling outside of a single bin in time. Angles of incidence greater than 50 deg in combination with

certain other parameter values would cause this to happen.

The spatial distribution of the transmitted energy is assumed to be Gaussian with distribution:

1 (-(x / a) _)1(x,o)= exp[, .

The energy for each ray is given by:

where the assumption has been made that A0/2 is the 36 point of the Gaussian distribution.

[E] P_rfQrm the link analysis.

The receiver-field-of-view area on the terrain is:

Aspot = _.(RECFOV.Rsat/2)2

For the ith ray:

A i = Aspot.d0i/A0

where d0 i is the ray angle and A0 is the laser divergence.

This assigns an area to the ith ray proportional to its fraction of the along-track beam width. The

average number of signal photons returning to the receiver in the ith ray is:

Ni = E , "(_c) "(arec_"

28



Laser Altimetry Simulator (V 3.0) - User's Guide

IF]

The average solar background rate (in photons/see) seen by the receiver detector for this ray is:

where:

Bi = l,_ . f . . Ag . Arec. ¢,_, _,xi J \ J¢:

Et is the total transmitted laser energy,

_. is the laser wavelength,

h is Planck's constant,

c is the speed of light,

Arec is the area of the receiver,

x i = (Rsat - Hi)/cos i is the slant range,

Xsy s is the system transmission,

Xatm is the 1-way atmospheric transmission,

Hi is the terrain height,

ri is surface diffuse reflectivity,

Iday is the day solar irradiance at the Earth's surface (W/m 2 rim),

f is the night/day fraction, and

A_. is the receiver spectral ban@ass (nm).

Comt_ute the time of arrival of the photons in this ray

Assuming that the altimeter's coarse clock starts when the laser fixes, the arrival time of the ith ray

is given by

C

where the i th slant range, shown in (Figure 3.5), is

COS 0 i

The arrival time T_ is used to create an index in the timing histogram

Ji= At

where Tmin is the minimum delay time expected and At = 100psec is the simulator's time

resolution.
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Satellite

r 2

r 1

Rsat

h2

_ Icm _ Sea-Level

(Xl,h 1) (x2,h2)

Figure 3.3. RayfI'errain Connection.

Geometric Definitions

Vsat(+) ---->

Figure 3.4 Geometric Sign Conventions.

1iiiiiiI....
Figure 3.5. Computing Roundtrip Time.
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3.2 RECEIVER Design

The RECEIVER subroutine simulates the response of the detector by processing the photon

waveform from the SPACE_TIME subroutine and generating the detected electrical waveform. The

detector is modeled as either an avalanche photodiode (APD) or a photomultiplier tube (PMT), followed by

a low pass filter. Detector noise is included before, during and after the actual signal waveform. The

noise only portion of the response which surrounds the signal and noise segment is used to calculate the

threshold level for DIGITIZE subroutine.

APD Detector

For every time increment, At, RECEIVER calculates the mean signal response from the APD

detector by using:

Vo,,(t, At) = Nph. 11" RL "q" G (3.2.1)

where the detector constants are:
Nph is the number of signal photons illuminating the detector at time (T)

in the time bin At

Tp is the integration time

rl is the quantum efficiency of the detector

RL is the load resistor [ohms]

q is the electron charge 1.60 x 10 -19 [C]

G is the Gain of the APD

The RECEIVER routine adds detector noise to the electrical waveform. The detector noise is

modeled with Gaussian statistics. The AID noise moments are calculated in photoelectrons, referenced to

the input of the APD just following detection. In a given time, the mean photoelectron count is:

<N>=Ns+Nback+Nbu lk (3.2.2)

The standard deviation of the number of photo-emissions (in photoelectrons) is given by:

trt_ - _lVar(N) = _]F(N_t + Nb,_t) + No, (3.2.3)

The excess noise factor of the APD gain is given by:

F = k,#G + (1- k,# )(2- G)
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The photoelectrons levels due to optical background and APD bulk leakage current in time At are:

N_k = r/.B_ .At

and

The equivalent variation in photoelectron emissions caused by thermal noise in the APD preamp in time At

is:

= 2-Ka .7",.At
q2. RL "G 2

In these equations:

Nback is the background noise count in time At [photoelectrons],

11 is the APD quantum efficiency

Bi is the background noise rate [photons/sec],

At is the resolution time = 100 psec,

Nbulk is the AID bulk leakage charge in time At, referenced to the input [photoelectrons],

ibulk is the AID bulk leakage current measured at the output[A],

G is the AID gain,

Nth / is the preamp thermal noise referenced to the input [photoelectrons],

KB is Bohzmans constant = 1.38x10 -23 [C],

Tr is receiver pre-amplifier noise temperature ['K],

keff is the APD's effective ionization ratio, and

RL is the preamplifier resistor.

PMT Detector

RECEIVER also includes a model for a PMT detector. The mean voltage response in a time bin At

is given by (3.2.1). However, the detector fluctuations in each time bin are calculated using Poisson

statistics. The number of counts in each bin At, referenced to just after the PMT photocathode are:

Ntot = Nsig + Nback + Ndark (3.2.4)

The number of counts caused by optical background and dark noise in time At are given by:

Nback = 1"!• Bi .At

Ndark = id. At / qG,

where id is the PMT dark current [A].
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Filtering

The final segment of the receiver subroutine is the low pass falter. The output of the detector is

passed through a unity gain electrical triter with a specified impulse response width at the full width at half

maximum (FWHM). The filter impulse response can be selected to have either a square wave or Gaussian

shape.

Receiver Threshold

The receiver threshold is set by f'mding the maximum output for the two noise only segments. The

threshold is then set to slightly above (0.1%) this maximum value. This "no false alarm" algorithm will be

modified in the next version of the simulator.

3.3 WAVEFORM DIGITIZER Design

The waveform digitizer subroutine, 'digitize', emulates an A/D converter digitizing the

filtered detector receiver output signal. DIGITIZE calculates where the first and last threshold

crossings occur and then samples the input waveform by averaging a number of input bins (data

points) specified by time scale, parameter #56. The input waveform and threshold are supplied by

the receiver subroutine. DIGITIZE scales each sampled bin from volts to A/D counts by using the

specified A/D resolution, # of bits, and the expected maximum input voltage range of the A/D

given in the parameter file.

Using the scaled waveform, DIGITIZE then calculates and returns the five waveform fine

timing estimates. They include Center of Area, Peak, 50% Constant Fraction Discriminator

(CFD), Mean, and Midpoint. The value of each fine timing estimator is the location in time (array

index value) where the estimate occurs in the digitized waveform. The timing estimators are given

in units of the 100 psec time bins and are referenced to the start of that waveform. The RMS width

of the waveform is also calculated.

3.3.1 Waveform Estimators

The Figure 3.6 shows a digitized waveform example with sketches of the estimator values.

The DIGITIZE routine samples the electrical waveform output by using:
i+T a -1

,,(j)
vo(i)= J--*

ro

where v(j) is the output voltage from the filter and TD is the number of samples averaged.

3.3.1

Each entry in the digitized array is then quantized into A/D counts by using:

M(i) = vD(i) I Av 3.3.2

where Av = # of volts/bit specified in the parameter table. The array M(i) contains the waveform

which is quantized in both time and voltage.
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Voltage Center

l ofA_e_/.Risel

time50%Point"_ _..._...

Meal i

--- .... Peak

..... -I_/i_l__-50% Intensity

t_.._.P.°!nt...._. Th resh old Crossing

J.............
Time

Figure 3.6. Digitized Waveform with Timing Estimators.
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3.3.2 Timing Estimates

The fine timing estimates calculate the waveform fine timing points using the following

formulas:

a. Center of Area (COA_ - The COA index, icoa, is given by:

where:

/coa-I_J"M(i) < Aand M(i) > A

ill I

icoa - is the index where the COA occurs in M(i)

A - is the area of M(i) between the threshold crossing points

I1 - is the index of the first element in M(i) that exceeds the threshold crossing point.

3.3.3

An interpolation between indexes (ico a & icoa-1) is performed to determine the exact location in

time, in bins, where the center_of_area occurs (See Section 4.4.3 step 7).

b,

the interpolated index value where the peak of the waveform occurs.
-b

Index(,,._)=
2a

where the constants a and b are calculated from:

(xt - x2) * (it - i2) - (x2 - x3) * (it - i2)
a =

(it - i2) * (it + i2) * (i2 - i3) - (i2 - i3) * (i2 + i3) * (il - i2)

b = (xl - x2)- a * (i: - i2')
(ii - i2)

Peak - A quadratic fit, around the maximum value of digitized waveform, is used to calculate

it = io_)- 1 xt = M(iO

i2 =i<m_) X2 = M(i2)

and:

3.3.4

i3= ion,,)+ 1 x3 = M(i3)

c. 50% Risetime Point - The index of the 50% risetime point, icfd50+l, satisfies the equations:

g(icfd50) > (g(i m.0 -- g m ) / 2 + M m
3.3.5

M(icfd50 - 1) < (M(i,,_z) - grz ) / 2 + Mru

where MTH is the digitized threshold value.
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Mean - The index of the Mean (or center of gravity) of the waveform is calculated by using:
12

_i. M(i)

Ind,tx(Mcan) "- i=l_

M(i) 3.3.6

i=! I

where

I1 = index of first threshold crossing

12 = index of last threshold crossing

e. Midpoint - The index of the Midpoint of the waveform is calculated from:

Index(Mid) = "1''2 3.3.8
2

f. RMS Pulse Width - The RMS Pulse Width (in number of At elements) is calculated by using:

[_M(i). i 2

rms_ width = | i=1_ mean 2 3.3.7

3.4 TERGPH Design

TERGPH is used to recreate the terrain profile from the DIGITIZE subroutine's timing estimates. It

also prepares the estimates to allow them to be plotted superimposed on the actual terrain profile. TERGPH

is the last subroutine called.

TERGPH converts the round-trip time of flight timing estimates into terrain height estimates, and

plots them on a graph of the terrain profile at the correct along-track distance. The along-track distances are

plotted by placing the fast estimate at a distance corresponding to one-half the beam's footprint. Every

estimate after that is plotted at a distance corresponding to the velocity of the satellite.

Since each ray lies on exactly one terrain segment, the length of the beam's footprint in centimeters

is equal to the number of rays in the beam. The number of rays in the laser beam is NP, where
NP

A0=Edt,
i=1

and A0 is the laser divergence angle

dt i = tan-1 (si/(Rsa t _ hi)) _ 0i

si = (Rsat - hi_ l) * tan0 i + 0.01meters.

0 i is the off-nadir pointing angle of ray 'T'.
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IfXi isdenoted asthe along-trackdistanceof heightestimateHi, then

Xl = NP/2 centimeters,

xi= xl + vsat* (i-l)"100 centirnctcrs,

and vsatisthedistanceinmetersthatthesatellitemoves between shots.

where:

The height estimate Hi is computed from the timing estimate Ti by:

c .r,.coS0o
H i = Rsat --_

Rsat is satellite altitude

c is velocity of light

00 is the off-nadir pointing angle of the transmitter.

The simulator does not incorporate the effects of atmospheric refraction.

3.5 TERRAIN Program Design

TERRAIN generatestheterrainprof'fledatafileused by the simulator.The terraindatafileisinthe

format of (x,y,r).Here x isthelineardistancealong thesurfacetrackof the satellite(incrn,always

startingatzero),y istheterrainheightatlocationx,and risthediffusesurfacereflectivityatthatpoint.

The terrainfiledividesx intoIcm segments. Each Icm segment has aconstantheightand

constantrcflectivity.The Icngthofthe segrncntswas chosen toensurethatallphotons ina singleray,

which returnfrom a segment, licina singleI00 psec time bin.

In thecurrentsimulator,theterraintypesproduced are:

a. Flat

b. Uniform slopes

c. Single steps

d. Multiple steps

e. Ice terrains

The ice terrains are generated from sections of actual laser altimeter measurements over ice.
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4.0 Simulator Implementation.

SIM, is comprised of a main FORTRAN program and four subroutines, SPACE_TIME,

RECEIVER, DIGITIZE and TERGPH. The waveform array is passed between these programs

and undergoes processing that changes both the array's contents (See Figure 1.2) and size. Figure

4.0 illustrates the changes that occur to the waveform array as each subroutine is executed by the

simulator.

4.1. Main Routine

The main routine calls and coordinates the four simulator subroutines. It creates the output

histograms and creates text output and most of the graphical outputs. If graphical outputs are

selected, the graphs will be created with parameter 60, the graphlabel, as the label.

The main routine f'trst opens and reads the parameter f'de, PARAMETERS.SIM. After

reading the parameter file and initializing various variables, main prints the output text header.

Then the main routine names the parameters and opens files for the SPACE_TIME

subroutine. Main also converts THET0 from degrees to radians. SPACE_TIME is called with the

appropriate parameters from PARAMETERS.SIM. After the subroutine has been called, main

calculates the total number of photons by summing every element in the waveform array. The

current shot number is printed, followed by important numerical outputs from the SPACE_TIME

subroutine. If parameter 2 is negative or greater than or equal to the current shot number, the

photon return is graphed using NCAR graphics.

The RECEIVER subroutine is called with parameter array values and the waveform and

background noise output from the SPACE_TIME subroutine. The receiver energy is found by

summing the array, and important numerical outputs are printed. If parameter 3 is negative or

greater than or equal to the current shot number, the receiver output voltage is plotted.

DIGITIZE is called with the waveform output from RECEIVER and the appropriate

parameters. The estimators are printed as text. If parameter 4 is negative or greater than or equal

to the current shot number, then the digitized output is plotted.

After the three subroutines are called, the main routine updates the histograms. If the

number of shots is greater than one, the main routine reruns the _ree subroutines once for each

shot specified by parameter 36. The histograms are updated after each shot. If all shots have been

fired, then, if parameter 5 is equal to 1, the main routine graphs the histograms of the estimators.

If parameter 1 is greater than 0, the TERGPH subroutine is called to recreate data files of the actual

and recreated terrain from the simulator output. Parameter 1 value indicates which of the 6

estimators to use. These terrains can be graphed using NCAR graphics routines.
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SPACE TIME (Outputs Optical Waveform Array)

- (photons/bin)

Zeros 4!1
(100 bins)

10,000 bins

Wave form

RECEIVER (Outputs Electrical Waveform Array)
(Volts/bin)

Lm 40,000 bins
I'"

Noise (20,000bins) Waveform

V

I Noise (10,000bins) I
t

1st Threshold Crossing Point

DIGITIZE (Outputs Digitized Waveform Array)
(counts/bin)

200 bins _!_' Waveform [ Noise [

Figure 4.1. Waveform Array Representations.
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4.2 SPACE TIME Subroutine (Version 3.0)
D

The program reads the terrain from the terrain file corresponding to the entire spot size of the beam

on the ground. The subroutine always begins at the fast terrain record for shot #1. It computes d0 i (the

ray angular size) at each terrain segment. All segments are summed to obtain NP--n0 (the number of rays).

The minimum round-trip time of flight of all rays in the beam, Tmin is next computed. 10nsec is

subtracted from Tmin, to start the range window 10nsec early.

The following is performed for i = 2,n0:

- Compute d0 i from Section 3.1 [A].

- Compute the angle to this ray from the normal.

- Compute the slope at the terrain segment (xi,h i) associated with this ray. (Section 3.1 [C])

- Use the surface reflectivity of this segment (ri) to compute the transmitted energy in this ray.

(Section 3.1 [D])

- Perform a link calculation to obtain NS i, NBDOT i. (Section 3.1 [El)

- Compute T i (round-trip time of this ray) from Section 3.1 [F] and place

NS i photons in the WAVE histogram at position J = (T i - Tmin). See Figure 4.2 below.

Finally the program finds the maximum round-trip time of flight of all rays, Tmax, and sum up the

background rate NBDOT i. across all rays.

4.2.1

WHAT?

Space Time Constraints

UNITS

10 < NHIST < 1000

1.D- 10 < DELTH

100 < Rsat < 2000.D3

0 < THETO < 0.175D0

2 < # rays < MAXPEN

(elements)

(radians)

(meters)

(radians)

Max DIMENSION is 10000 for all of the subroutines

Limited since it is used as divisor in SPACE_TIME

Constrained to make all returns from a given ray return

within one 100 psec time bin.

Negative angle isn't defined in SPACE_TIME
Maximum limit is constrained by the DIMENSION on the

number of rays

Computed from input data (see detailed description in
ALGORITHM section).

4.2.2 Space

PI= rc

LAMLIM

CVEL

H

Time Constants

3.141592654

50.0 degrees (Lambertian scattering limit)

299792500.0 m/sec. (velocity of light in vacuum)

6.625D-34 Joule-sec (Planck's constant)
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Waveform Histogram

O

O

I

--..-----4

Tmin T i Tmi n + AT

Figure 4.2. SPACETM Waveform in Time Domain.
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4.2.3

NHIST (I'4)

Rsat (R*8)

vsat (R'S)

WAVL (R*8)

TROT0 (R'S) =%

Space_Time Inputs:

DELI'H (R*8) --A0

ITHFLG (1",1)

XEN 0t*8)

Arec (R*8)

TAUSYS (R*8)

TAUATM (R*8)

SUNIR (R*8)

SUNF (R*8)

RECFOV (R*8)

B0 (R*8)

TEXT_FLAG (1"4)

NCAR_FLAG (1"4)

Max number of WAVE (time domain) bins allowable.

Orbital aldtude from mean sea level (meters).

Ground speed of laser spot (meters/shot).

Laser wavelength (meters).

Off-nadir pointing angle from satellite to ground, defined from normal to center
of pulse (radians).

Divergence of laser (full angle, in radians).

Beam intensity pattern option (1--Gaussian).

Average transmitted laser energy (Joules per shot).

Telescope receiver area (sq.meters).

System transmission (0 to 1).

Atmospheric Wansmission (0 to 1).

Solar irradiance (Watts/meter**3).

Solar illumination fraction (0 to 1).

Receiver field of view (angular region).

Receiver optical filter width (meters).

Debug mode flag: 0 ==> no debug / 1 =ffi> output diagnostic messages to f'de.

Debug mode flag: 0 ---_> no debug / N>0 _> output diagnostic data for plotting
shot #N to file.,

The subroutine also reads terrain data from a file which has been opened by the main calling

subroutine as logical unit 10.

4.2.4

Train (R*8)

Train (R*8)

NBDOT (R*4)

WAVE (R*8)

TACT (R*8)

HGTACT (R*8)

IRETF (1"4)

Space Time Outputs:

TIU reading (start of WAVE histogram) in 2-way nanoseconds.

Longest round-trip time of all the rays in 2-way nanoseconds.

Noise photon arrival rate (photons/see).

Histogram of return times (waveform array). Each bin is 100 psec in width.
Count of each bin is in photons.

Actual round-trip time of flight in nanoseconds at the center of the beam.

Actual terrain height in meters at the center of the beam.

Return flag indicating ERROR or END-OF-FILE,

The response to all errors (except IRETF=3) is to return Tmin=Tmax=NBDOT=0
with WAVE=aU zeros.

-1
0
1
2
3
4
5

End of terrain file encountered.

Ok (expected return)
Error on terrain t'de read.

Number of calculated rays is out of range.
The angle (THETi) to one of the rays is 90deg or greater.
One of the following is out of limits: DELTH, Rsat, or THET0.
NHIST is out of rane_ae:._
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4.2.5 SPACE_TIME Diagnostics

The program can also write diagnostics to files on logical units 11 and 12. If TEXT_FLAG is non

zerothenon logicalunit11 theprogram willwrite4 ASCII linesof text(two data,two header)foreach

header

ray#, height, rcflcctivity, time hist.bin#,

transmit energy of this ray, angular size of ray.

LINE 3: header

LINE 4: slopeof terrain,anglefrom nadirto theray,

#photons in thisroy'spartof transmitbeam,

opticalbackground noiseratesec by thisray,

round-nip time associatedwith thisray'sreturn.

IfNCAR_FLAG isequaltoN > 0 thenattheNth shotthetirnc-dornainwavcform willbc written

to an ASCII file.This wavcform willcontaintwo linesatthebeginning (oneheader,one data).The data

linecontainsTrain,Tmax, NBDOT, TACT, and HGTACT. The wave itselfwillbe writtenone bin per

line as: i, WAVE i.

ray:

LINE I:

LINE 2:

4.3 RECEIVER Subroutine (Version 4.1)

Called from the main routine, sire, RECEIVER, process a photon waveform array created by

SPACE_TIME and creates a new array representing an electrical detector response waveform which is

passed to the DIGITIZE routine.
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4.3.1 Constants/Pa rameters

Constants/Parameters Used in RE('EIVER Subroutine

N_ber Name _ units nomin_ 1 formal2 modde

2O

21

22

23

24

25

26

27

28

29

30

31

32

NWID

QE

ID

G

RL

TP/BAMT

F

G

R

QE

IBLK

IANS

TR

Filter Width: 1 point = lOOps

PMT quantum efficiency

PMT dark current

PMT multiplication gain

PMT load resistor

Integration time/Bin Amount

APD excess noise factor

APD multiplication gain

APD load resistor

APD quantum efficiency

APD bulk current

Receiver Type Switch

APD Receiver Temperature

lOOps

amps

ohms

sec

ohms

A

K

mm

10 1"4

0.15 REAL*8

6AE-12 REAL*8

1.0E6 REAL*8

50.0 REAL*8

100.e-12 REAL*8

0.0065 REAL*8

194.0 REAL*8

22 000 REAL*8

0.35 REAL*8

50.E-12 REAL*8

l 1"4

750.0 REAL*8

RECEIVER

RECEIVER

RECEIVER

RECEIVER

RF.L_IVER

RECEIVER

RECEIVER

RECEIVER

RECEIVER

RECEIVER

RECEIVER

RECEIVER

RECEIVER

WAVESIG1

IWFMSIZE N

NN

NBDOT RBG

ST

TMAX SEND

RESP R

PARAMS

THRESHOLD VT

IFLAG

Dam Input/

REAL*8 10000 OUTPUT

1"4 10000 INPUT

1"4 1 INPUT

REAL*8 1 OUTPUT

REAL*8 1 INPUT

REAL*8 1 OUTPUT

REAL*8 40000 OUTPUT

REAL*8 50 INPUT

REAL*8 1 OUTPUT

1"4 1 OUTPUT

Source Comments

SPACE_TIME
SUB

I/O

DATA STMNT

SPACE_TIME
SUB

DATA STMNT

SPACE_TIME
SUB

RECVR
SUBROUTINE

FILE

RECVR
SUBROUTINE

RECVR
SUBROUTINE

Array containing received wave
(photons/bin)

Number of dements in WAVE

Number of elements in RES array

Noise photon arrival rate
(photons/sec)

Start time of signal in WAVE
arrayalways 0

End TIE reading for wave
2-way (nsec)

Filtered output from detector of
WAVE, with noise added

Array containing input parameters
for RCVR subroutine

Calculated threshold for waveform
processing

Error flag for processing data,
ERROR<0

44



Laser Altimetry Simulator (V 3.0) - User's Guide

4.3.2 Program Flow

1) Read input from PARAMETERS.SIM - 'receiver' initializes variables and constants with the values

contained in PARAMETERS.SIM items 20-40.

2) Expanding the Signal Array - An array (WAVESIG1) whose length is determined by the SPACE_TIME

subroutine is input to the RECEIVER subroutine. The output array from the subroutine (RESP R) is

fixed at 40,000 time bins, representing 100 psec each. The RECEIVER subroutine places the input signal

from the SPACE_TIME subroutine at position 20,001 in the expanded array and noise is added to all

40,000 array elements.

3) Add noise to the Response Waveform - As described in Section 3.2 equations 3.2.2 and 3.2.3, noise is

added, Gaussian for an APD and Poison for a PMT, to each bin (40,000) of the detector response

waveform.

4) Convert photo-electrons/bin to Volts/bin - RECEIVER converts the WAVESIG1 array from photo-

electrons/At bin to Volts/At bin.

5) Apply Filter - 'Receiver' filters the detector response waveform by a square or Gaussian f'dter as

specified in PARAMETERS.SIM.

6) Calculate Threshold Level - RECEIVER calculates the threshold level by finding the maximum value of

the noise bins only, bins 1-20000 and bins 30001 to 40000.
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4.4 DIGITIZE Subroutine (Version 1.3)

Called from the main routine, DIGITIZE, digitizes the output array from the 'receiver' and

calculates the waveform timing estimators as described above in Section 3.4.

4.4.1 Parameters

The major variables and arrays used by the DIGITIZE routine are described in the

following table.

Name I/0 Description Units
Status

nbits

xmax

moffset

Input

Output

Input

Output

Input

Input

Input

Input

Output

Output

Output

Real 40,000 point array that represents the
receiver/detector response data in terms of Voltage vs.
Time. DIGITIZE processes wfm in and returns an

array that represents sampled values in digital Counts
vs. Time. The digital counts range in value from 0 to
2" (# of bits) _ 1.

4 byte integer scalar representing the length of
wfm in(].

4 byto integer scalar representing the length of the
digitized array returned in wfm m[]'s location.
'lgRg_' should always be less than or equal to
length in.

T

double precision scalar representing the threshold value
of the discriminator.

4 byte integer scalar representing the # of input bins
(input bin is f'med at loo ps/bin) contained or averaged

into each output bin or sample.

4 byte integer scalar representing the # of A/D
converter bits used in DIGITIZE, (nominally 16, See
PARAMETERS.SIM item #57).

8 byte real scalar representing expected max. value of
the waveform and the max. of the A/D converter's input
range. 'xmax' is used for scaling wfm in in volts to
xout in counts.

4 byte integer scalar representing the offset pointer in
bins from the start of wfmm to the start of the output

array (See Section 13).

4 byte integer scalar representing where the #1
'estimator', center of area index, occurs in the digitized
waveform array wfm in.

4 byte integer scalar representing where the #2

'estimator', peak value index, occurs in the digitized
waveform array wfm in.

I-Volts

O-Counts

none

none

Volts

lOOps Bins

none

Volts

lOOps Bins

lOOps Bins

lOOps Bins

46



LaserAltimetry Simulator (V 3.0) - User's Guide

mmul 

mcfd 

meanx

rmswidth

Output

Output

Output

Output

Output

This parameter is not supported under this version.

4 byte integer scalar representing where the #4
'estimator', 50% CFD index, occurs in the digitized

waveform array wfm in. (units of bins)

4 byte integer scalar representing where the #5
'estimator', midpoint of threshold crossings, occurs in
the digitized waveform array wfmin.

8 byte real scalar representing the returned mean value
of the digitized waveform array wfm in.

8 byte real scalar representing the returned rms width
value (pulse width) of the digitized waveform array
wfm in

lOOps Bins

lOOps Bins

lOOps Bins

lOOps Bins

4.4.2 Program Flow

The program flow of the DIGITIZE routine is given below:

1) Find the Location of First Threshold Crossing Point - DIGITIZE finds the first threshold

crossing point in the W_ in array by comparing the value of each wfm infil to the threshold value

thresh. When wfm in [il exceeds the threshold value DIGITIZE sets the first crossing point to [i].

2) Perform A/D Conversion (Sample) - DIGITIZE samples the raw data in wfm in by time scale

to simulate digitizing the waveform with an integrating A/D converter. The simulated digitization

begins at a starting point, referred to as 'start', which is set to 20ns (200 bins) before the first

threshold crossing point. DIGITIZE then samples the waveform by averaging a number of input

waveform bins (# = |im_ scale) to form one output bin as shown in Eqn 3.4.1.

The digitized (averaged) waveform data is stored in an array named xouL and the length of xout is

stored in _. For each xout(i), dig_pointer represents the starting index of wfmin that is being

averaged. The value of dig__pointer is initialized to 'start', incremented by time scale for each

xout(i) and continues until the end of wfmin is reached.

3) Transform Threshold (counts) - If no errors occurred in the digitization processes (2), then

'digitize' scales the threshold from volts to A/D counts by the following expression.

f 2"u"cc,,,_) /
thres(cow) = thres(_) * \ x max(_,,) j

4) Convert digitized array from volts to counts - Translate the digitized array xout in volts to

in A/D counts using Eqn 3.4.2. If any voltage values exceed the max. expected range of the A/D
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(xmax)setthosevalues to (xmax) before converting to counts.

5) Set f'trst and last threshold crossings - Set/Determine the first and last threshold crossing

points/'mdexes as they occur in 211I_. Since the value of 'start' (the starting point of xtmp) was

equal to the first threshold crossing point in wfrnm minus 20ns (200 input bins), the fast

threshold crossing point in the digitized data xtmp is given by the following:

200(i_.t__bi_)
_F$1( outputbins)-"

time_ scale__

where:

last = i+l,

i > first and _ (i) < thresh

6) Calculate Area - With f_st and last, determine the waveform's area with the following

expression:
[luf

lir*t

7) Calculate Center_of_Area (COA) - Calculate COA by determining the index (icoa) of _ as

shown in Eqn. 3.4.3. DIGITIZE then in.terpolates between indexes (ico a & icoa-1) using the

difference in area of _ at ico a and ico a- 1 to determine the exact location in time, in bins, where

the center_of_area occurs.

¢_'ea
- sum icoa

XCco.)=i_o.+ 2 where sum= _xtmp(i)
xtmp ( i ) i.li,,t

8) Calculate the peak - DIGITIZE finds the max. of xtmp and then calculates the peak of the

digitized waveform, _(i(peak)) with the expressions shown in Eqn. 3.4.5

9) Calculate the 50% Constant Fraction Discriminator (CFD) - DIGITIZE finds where the 50%

CFD occurs as shown in Eqn. 3.4.6.

10) Calculate the Mean Index - DIGITIZE finds where the Mean Index occurs as shown in Eqn.

3.4.7.

11) Calculate the RMS Pulse Width - DIGITIZE finds the RMS Pulse Width using Eqn. 3.4.8.
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12) Calculate the Midpoint - DIGITIZE finds where the Midpoint occurs using Eqn. 3.4.9

13) Correcting Timing Estimators - DIGITIZE calculates where the Center of Area, Peak, 50%

CFD, mean, and Midpoint occur in the digitized waveform, _Iktl. The estimator values are

calculated from the start of _ and are given in terms of 100 ps bins. In order to make the

estimator timing values consistent with timing reference or starting point of the other simulator

routines, an offset factor is used to convert from digitize starting point, 'start', to the simulator

starting point. The offset is given by the following:

offset(100 ps bins) -- firstcross - 200

The estimator values were previously calculated in units of the output bins, where the value of the

estimator occurs in xtmp. The timing estimators and RMS width are converted to a time position,

in 100 ps bins, by the following formulas:

COA(inp bin) = COA(out bin) * time scale(inp bin/out bin) + _inp bin)

Peak(inp bin) = Peak(out bin) * time scale(inp bin/out bin) + ffg--ff-_,(inp bin)

CFD50(inp bin) = CFD50(out bin) * firne _e(inp bin/out bin) + °ffset(inp bin)

Mean(inp bin) = Mean(out bin) * time _alefinp bin/out bin) + offset(inp bin)

midpoint(inp bin) = midpoint(out bin) * time scale(inp bin/out bin) + offset(inp bin)

RMS_W(Inp bin) = RMS-W(out bin) * time scale(inn bin/out bin)

14) Store the digitized waveform - Store _counts) in the location of wfm in.

4.4.3 Return Value

Status = 0 if all functions and processes were completed successfully.

4.5 TERGPH Subroutine (Version 1.5)

TERGPH reads the terrain file which has been opened by the main calling routine as logical unit 10.

It determines the number of actual terrain points that it needs to plot, prior to plotting the first estimated

height, by computing the number of rays in the ftrst half of the laser beam.

TERGPH then reads and corrects the simulator's timing estimates as follows:

Tmeas i = TIU i - 2000 + Test i * TIMESCALE/10.

where Testi is the timing estimate from the DIGITIZE subroutine, and all terms units are nanoseconds.

TIU is the round-trip time of flight from laser fire to the start of the SPACE_TIME window. Subtracting
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2000 nsee from TIU gives the round-trip time of flight to the start of the DIGITIZE window. TIMESCALE

is the number of bins in each DIGITIZE waveform element where each bin is equal to 100 psec. The last

factor therefore converts Test from DIGITIZE units to nanoseconds. The subscript (i) represents the ith

shot.

The terrain height is then computed from the corrected timing estimate, and this terrain estimate, an

(x,y) Cartesian pair, is written to the file [TEREST.DAT] as CXXi,I-Imeasi). Here XX is the linear distance

along the terrain track and Hmeas is the estimated height in meters above sea-level.

Every 10th point of the actual terrain data is written to file [TERACT.DATI. The Cartesian

coordinates for each record are (XXi,HGT i) where XXi+ 1 - XX i = 10 centimeters and HGT i is the

corresponding actual height for the given XX i.

The file [TEREST.DAT] will contain "NSHOTS" number of points where "NSHOTS" is the

number of shots rued. The file [TERACT.DAT] will contain the actual terrain covered from half a beam

diameter prior to the fwst estimated terrain point to half a beam diameter after the last estimated point. The

number of points then is approximately:

(vsat* 100*NSHOTS + NP)/10

4.5.1 Tergph Inputs:

Test (R*8)

NSHOTS (1"4)

Rsat (R*8)

vsat (R*8)

WAVL (R*8)

THET0=0 0 (R*8)

DELTH=A0 (R*8)

Tmin (R*8)

TIMESCALE (R*8)

Array of estimated round-trip return times from waveform
calculations (one entry per shot) in waveform digitize bin units.

Number of shots fired.

Orbital altitude from mean sea level (meters).

Ground speed of laser spot (m/shot).

Laser wavelength (meters).

Off nadir pointing angle from the satellite to the ground
(radians).

Divergence of laser (full angle / radians).

TIU reading from SPACETM in nsec. This is the start of
SPACETM's window.

DIGITIZE subroutines scale factor indicating number of
SPACE_TIME bins used in each waveform digitize element.

4.5.2 Tergph Outputs:

IRETF (1"4) Return flag...

0 ==> OK

1 ==> read or write error

2 ==> End-of-file
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4.6 TERRAIN Program

The terrain file is a binary direct access file (16 bytes per record) which contains a height and a

reflectivity for every 1 centimeter of linear distance. The relative linear distance, x, is not explicitly given,

but is implicitly determined from the record number;, record "i" (where i starts at 0) represents 'T'

centimeters of along-track distance.

The program has two major output options:

1) simulated terrain

2) terrain generated from actual laser altimeter ice data located in the file [ICEX.DAT].

A simulated terrain can consist of a slope or alternating slopes, a single step or a series of steps.

The operator can chose the length of each section (in meters).

The terrain generated from the ice data can be chosen from anywhere in the ICEX.DAT file by

selecting the starting record number.

The constraints on the inputs are that the slopes must be between +85 and -85 degrees, the

reflectivity must be between 0 and 1 and the number of terrain points is arbitrarily limited to 100,000.

In this version, the reflectivity is a constant within the terrain file.

4.6.1 Inputs:

Operator entries and [ICEX.DAT] file.

4.6.2 Outputs

File of terrain data with operator selected name. The terrain file is a binary file containing one 16

byte record for each terrain point (8 bytes of floating point height and 8 bytes of floating point reflectivity).

4.6.3 Ice Terrain

A sample file of ice topography [ICEX.DAT] was furnished by Bob Swift/NASA Goddard-WFF

as Airborne Oceanographic Lidar (AOL) data file MAY20A.DAT. This data was taken on May 20, 1987 in

a NASA/WFF P-3 mission conducted north of Greenland. The measurements of ice topography were

referenced to GPS and measured with the AOL's laser altimeter in the fixed nadir viewing mode. This data

set was used in the simulator by converting the data from the Latitude-Longitude-Height reference frame to

an Along_Track-Height reference frame (i.e. the 2-dimensional GLAS reference frame). The FORTRAN

format for the [ICEX.DAT] file is:

XX,HGT ---> (1X,F10.2,1X,F10.4)
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The [ICEX.DAT] file contains 128,000 records which span an along-track distance of _110 km (see Figure

4.3). The separation between recorded heights is approximately 1 meter and varies from point to point.

The file statistics are:

Latitude Longitude Height(m)

rain. 84.0784 - 17.2826 -0.60

max. 84.4616 - 11.6655 4.90

To generate a terrain fde with 1-centimeter-spaced data from the approximately 1-meter-separated

ICEX.DAT data, the program fits a straight line to two ICEX.DAT points and then uses this line to

interpolate between the two points.

Treating the height data as a probability function has allowed us to classify this large file into

segments of varying roughness. We computed a mean and standard deviation (g,o) for each 100 point

segment (group) and then divided the data into the 5 classes of roughness as shown in the table below and

the following Figure 4.4.

Fee RMS roughness % of file

Class o-range (m) in class

SMOOTHEST 1 0.00 - 0.25 62.7%

2 0.25 - 0.50 28.2%

3 0.50 - 0.75 7.2%

4 0.75- 1.00 1.3%

ROUGHEST 5 1.00- 1.25 0.6%

It is interesting to note that -90% of the ice surface sampled has an rms roughness of <0.5m.
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Figure 4.4A. AOL Ice Data Profiles, class 1 segment.
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5.0 Computer Requirements

The Goddard Laser Altimetry Simulator is written specifically for use on the Sun

SPARCstations I+ or later version. Software packages including the mctrsum screen utility,

NCAR graphics 1 and its associated postscript drivers are used to produce graphical outputs. The

amount of available memory on the workstation determines several factors, including the execution

time of simulations, the maximum size of the terrain files, and the number of simulations that may

be run simultaneously. This simulator was developed on a SPARCstation which has 40 MB of

memory.

The simulator requires the following executable and data files:

Im,g.BAg 
For simulator execution:

sire

PARAMETERS. SIM

[terrain file]

i.e. terrain.dot

SIZE DEStTRIPTION VERSION

360448 Simulator Executable

=500 Parameter File

variable Terrain File

160016

3.0

Additional Files:

NOMINAL.SIM 507

terrain 163840

icex.dat 2048000

param_edit 155648

NAMES.DOC 2104

mpost 148

mpost.cmd 16

Nominal Parameters

Terrain Generator

Real Ice Data

Parameter Editor

param_edit Data

Hardcopy Batch File

mpost Auxiliary File

2.2

2.1

These files require approximately 3.15 MB of disk space.

Note: Executable files names are printed in boldface italics, while data Ides are printed in normal

italics. In addition, UNIX systems are case-sensitive, so file names must be entered as shown.

1 The NCAR graphics package is a product of the National Center for Atmospheric Research,
Boulder, Colorado. A version for the Sun workstation is available from MINEsoft, Ltd, 1801

Broadway, Suite 910, Denver, CO 80202-3837. (303) 292-6449.
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6.0 How to Use the Simulator

This guide is intended for users that have a working knowledge of UNIX, the NCAR

graphics package and the Sun SPARCstation.

Four steps are required to use simulator.

A)

B)

C)

D)

Create or edit the parameter table.

Create or edit a terrain file.

Run sire, the simulator.

Generate and Analyze the outputs.

6.1 Creating/Editing the Parameter Table

The parameter file values determine the inputs to the simulator. It must be in the directory

from which the simulator, sire, is run and must be named PARAMETERS.SIM. Copies of the

parameter f'rie may be created under different names for runs of various test cases, but these fries

must be renamed PARAMETERS.SIM at run time in order to be recognized by the simulator. A

copy of the nominal parameter table is included in the next section.

6.1.1 Parameter Listing

Each line in the following parameter frie listing corresponds to a variable. Each of the

user-variable parameters has a def'mition, sample test value, and useful range of values. For a

more detailed description of each of these parameters, please see Section 4. For more information

on use of each of these parameters, see Section 3 and 4. Some variables can be changed by the

users, some are fixed, and some values are not used.
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PARAMETER TABLE

Parameter Name: Nominal._V_ah 

1. TERGPH Terrain Recreation:

2. SPACE_TIME Graph Option: I

3. RECEIVER Graph Option: >

4. DIGITIZE Graph Option: I (

5. Histogram Output:

where:

0 = none

n = estimator "n"

n- 1..6

1 = Center of Area

2 = Peak

3 = Not used

4 = CFD_50%

5 = Midpoint

6 = Mean

( -1 = all shots graphed )

( 0 = no shots graphed )

n = 1..n shots graphed )

1/yes 0/no

6.- 19. Unused.

20. Filter width (100 psec units):

21. PMT quantum efficiency:

22. PMT dark current (amps):

23. PMT multiplication gain:

24. PMT load resistor (ohms):

25. Fixed Value.

26. APD excess noise factor:

27. APD multiplication gain:

28. APD load resistor (ohms):

29. APD quantum efficiency:

30. APD bulk current (amps):

31. Receiver type switch:

32. APD detector preamp noise temp. (K):

33. - 35. Unused.

36. Number of Shots:

37. Fixed value.

38. Fixed value.

1 - 100

0.0- 1.0

0.0- 1.0

1.E3- 1.El0

10.0 - 90.0

10.E-6 - 0.1

1.0- 1000.0

2.2E3 - 220.E3

0.0- 1.0

0.0- 1.E-9

O/PMT 1/APD

500.0- 1000.0

1 - 2E9

0

0

0

0

0

20

0.15

6.4E-12

1.0E6

50.0

100.E-12

0.0065

194.0

22.0E3

0.35

50.E-12

1

750.0

100

10,000

40,000
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39. Fixed value.

40. Orbital altitude (m):

41. Ground speed of shots (m/shot):

42. Laser wavelength (m):

43. Laser pointing angle (deg):

44. Full angle laser divergence (rad):

45. Fixed value.

46. Transmitter laser energy (J):

47. Telescope receiver area (m2):

48. System transmission:

49. Atmospheric transmission:

50. Solar spectral at laser wavelength

irradiance (W/m3):

51. Solar iUumination factor.

52. Receiver field of view diameter (rad):

53. Optical f'dter width (m):

54. Diagnostic use only.

55. Diagnostic use only.

56. Time scale (input/output bins):

57. Number of bits in A/D converter (bits):

58.

59.

60.

100.0 - 2.E6

0.0-

100.E-9- 10.E-6

1.E-7- 10.E-3

0.0 - 0.175

0.0- 100

1.E-4- 10.

0.0- 1.0

0.0- 1.0

0.0- 1.El2

0.0- 1.0

1.E-6- 1.E-2

10.E-12- 1.E-6

1-400

2- 16

Maximum range of A/D converter (volts): 0.1 - 200.0

Name of terrain t'de: [any valid f'dename]

Label for graphical output: [up to 40 characters]

40,000

705 000

0.0

1064.E-9

0.0

1 .E-4

1

100.E-3

0.6

0.5

0.5

0.6E9

1.0

0.00025

2.E-9

0

0

3

16

65.536

TERRAIN.DAT

6.1.2 Editing the Parameter Table using param_edit

The recommended way to edit the parameter table is with the simulator's utility program

called param_edit..

It is run by typing: param_edit

The user is first prompted to enter the name of the parameter file to be edited. This

parameter table must already exist, but may be saved under a different name when exiting. For

example, the NOMINAL.SIM parameter table could be edited and then saved as

PARAMETERS.SIM when finished editing, param_edit displays the parameters in four

groups, by the portion of the simulator they affect: main, SPACE_TIME, RECEIVER, and

DIGITIZE. The user has the options to edit or accept a set of parameters, exit param_edit (with

or without save), or to reset to the top of the parameter listing. The program is designed to be

self-explanatory and the available options are displayed at every point.
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When saving the parameter file, the user has the option to save under a name other than

PARAMETERS.SIM, in order to allow creating multiple parameter tables for different simulation

cases. The user should rename the file PARAMETERS.SIM before running the simulator.

The simulator's graph is generated using NCAR graphics routines. These require spaces in

graphlabel to be entered as the underscore character. Also, the characters available for NCAR

graph labels are limited; refer to NCAR documentation for specifics.

6.1.3 Editing the Parameter Table using text editor

The parameter table may be edited using a simple text editor, such as v/.. Familiarity with

v/ is essential when exercising this option. When using an editor, be certain to retain the basic

format of the parameter table. Each line consists of a two-digit integer field specifying the

parameter number, followed by two spaces, followed by the parameter value in any number

format. Refer to the section above for limitations on possible entries for graphlabel.

6.2 Terrain Files

A terrain f'de must be created for the simulator. It must be in the same directory as the

simulator, sire.

6.2.1 Naming Requirements

The terrain file must be given the same name as is specified by parameter 59 in the

PARAMETERS.SIM. The usual name for this file is TERRAIN.DAT.

6.2.2 Size of Terrain Files

The terrain file must be sufficiently long to accommodate all of the laser footprints required.

Each element in the terrain file represents 1 cm of along-track terrain. A terrain file of 100,000

terrain points requires memory of approximately 1.6 MB, while 20,000 terrain points require 320

KB of memory. The present maximum terrain tile size is limited to 100,000 points by the terrain

generation file.

The required size of the terrain fde in points is given approximately by:

Npotm's = (100 x VSAT x NSHOTS + No) points

where No is the size of the footprint in centimeters, VSAT is the ground speed in meters/shot

(parameter 41), and NSHOT S is the number of shots (parameter #36). No is given by:
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where

NO = -- THD VR G centimeters
-1 S.o

S = (RSAT - H 2) x tan(THETO) + 0.01 meters

H 1 is the 1st terrain height in meters

H2 is the last terrain height in meters

THDVRG is the divergence of the laser (parameter #44)

RSAT is the altitude of the spacecraft (parameter #40)

THET0 is the laser off-axis pointing angle (parameter #43)

Using fiat terrain with nominal parameters, and while pointing at nadir (pointing angle of 0

degrees) the footprint size is 70.5 meters. Thus, the minimum number of terrain points required:

Npo_rrs = 100 x 0 x 1 + 7050 -- 7050 points.

This produces a terrain fie of approximately 113 KB. If the off-nadir pointing angle were 10

degrees, a terrain file containing 7252 points would be required for a single shot, since the

footprint size is 72.52 meters.

If the satellite altimeter is fixed (ground speed = 0), only a single footprint's worth of

terrain is necessary. However, if multiple shots are specified and the satellite is moving, a greater

number of points is required.

6.2.3 Creating the Terrain file

This section gives an overview of the terrain program. For a detailed description of how

terrain generates terrain files, see Sections 3.5 and 4.6.

The terrain program first prompts for an output file. This file name may be any valid

UNIX file name and may include a path. This name must match parameter 59, the terrain file

name, in the appropriate PARAMETERS.SIM file. Note that if a file with the same name

specified already exists, terrain will not be able to create a terrain file. So, to create a new

TERRAIN.DAT if one already exists, delete the original TERRAIN29AT before running

terrain.

The next input is surface's diffuse reflectivity which has a value from 0.0 to 1.0. The

simulator cannot process surfaces with spectral components.

The user is given the option to generate a sloped or stepped terrain, or to use data from

measured topography.

- If the sloped terrain option is chosen, the program prompts for the terrain slope in
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degrees. Alternating slopes are also available.

- If the step terrain option is chosen, the user is prompted for the step size and the plateau

length. There is also an option to generate only one single step.

- Measured topography may be used. If this option is chosen, terrain will request a

starting record for the data file icex.dat. For more information on this option, see Section

4.6.3.

The last parameter is the number of terrain points to generate. 20,000 points are usually

sufficient, depending on the parameters and terrain conditions chosen. The maximum value of

terrain parts is 100,000.

6.2.4 Example Terrain Creation

An example of terrain creation using terrain is given in this section. The terrain will be a

flat plain which reflects 50% of the incident light. The file will be named TERRAIN.DAT. The

generation program is nm by typing

terrain

at the UNIX prompt. Upon being prompted for a file name, enter:

TERRAIN.DAT

For 50% surface diffuse reflectivity, at the prompt enter: 0.5

The terrain for this run will be flat, which will return an impulse response. So, at the

sloped/stepped/real terrain prompt, enter: 0

terrain will now prompt for a starting surface height. Enter: 0

The terrain slope for a linear, level slope, in degrees, is simply: 0

Since we want a continuous linear slope, without any variation, at the alternating slopes

prompt enter: n

Finally, choose the number of terrain points. This value must be large enough to cover all

footprints. For this example, use: 20000

Upon entering this value, terrain will generate the requested terrain f'de. This example takes

approximately 13 seconds to generate on the SPARCstation 1+.
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6.3 Running the Simulator

If a proper PARAMETERS.SIM file has been created and a terrain f'de exists whose name

matches that in the PARAMETERS.SIM file (parameter 59), then the simulator is ready to run.

Ensure that sire, PARAMETERS.SIM, and the terrain fde are in that same directory or path.

The simulator is run by typing sire.

Run-time Options

There are no run-time options. All simulator parameters and output options are controlled

by PARAMETERS.SIM. See the next section for a description of possible outputs, as determined

by the parameter table, and redirection of outputs.

Execution Time

Using nominal values but with only a single shot and with the attached nominal

PARAMETERS.SIM and a flat terrain, the simulator takes approximately 20 seconds to execute

on the NASA Goddard SPARCstation 1+ (eibl).. Changing parameter values can significanOy

alter the execution time of the simulator. For instance, using a triter width of 100 instead of 10 in

the RECEIVER subroutine increases the execution time to 50 seconds.

6.4 Simulator Outputs

As it is run, the simulator produces both text and graphical output. The text output includes

calculated values for each shot, are sent to the display device, by default the monitor. These are the

only numerical outputs from the simulator.

6.4.1 Description of Text Outputs

The outputs are defined below. More detailed descriptions of each of the outputs are given

in Section 4. The output from the nominal case with the flat terrain created above follows this

section.

The f'trst time gives the version of the simulator being run and the date of this version.

SHOT# = Specifies the shot number for the text.

DATE EXECUTED = Gives date and time of the simulation.

SPACE TIME Subroutine Outputs:

ITREF = Return flag indicating error if non zero.

TACT = Actual round-trip time of flight in nsec.

(TACT - TMIN) = Return offset from start of waveform.
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TMIN = TIU Reading / to the start of the waveform window.

RECEIVER Subroutine Outputs:

NBDOT = Number of background photons in counts/sec.

SIGNAL PHOTONS = Number of total signal photons in counts.

IFLAG = RECEIVER error flag (zero - ok).

THRESHOLD = Threshold voltage level of the receiver.

AREA = Area underneath time response of output voltage.

DIGITIZE Subroutine Outputs:

The following are the return time estimators. Values are in nanoseconds. Add 2 I.tsec to

compute the timing estimate from start of waveform window.

OFFSET = offset of the start of the digitizer window to the start of the waveform window.

CENTER OF AREA = Center of area of the digitized waveform.

PEAK -- The peak of the digitized waveform.

MULTIHIT = The peak of the curve calculated by waveform analyzer.

CFD 50% = The 50% CFD of the digitized waveform.

MIDPOINT = The midpoint of the digitized waveform.

MEAN OF PULSE AT - Location of mean on digitized waveform.

RMS MEAN OF PULSE - Mean of the digitized waveform.

LABEL - Graphlabel to ensure proper text-graph matching.

6.4.1.a Redirecting the Text Output

The text output may be redirected into an output f'de using the pipe command after sim.

e.g.. sire >nominal.out

To suppress text output, the output may be piped into the null device:

sire >/dev/null
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6.4.2 Graphical Outputs

The simulator's graphical outputs are determined by parameters 1-5 in

PARAMETERS.SIM. Each graph produced is labeled with the graphlabel, parameter 60, and with

the shot number. The simulator places the NCAR graphs in a meta file named simJnet. This meta

file must be renamed if future reference is desired, since each time the simulator is run a new

sire.met is created. For detailed information on the graphs, see Section 6. The parameters' effects

are as follows:

1. TGR: TERGPH Terrain Recreation

This option creates f'des that can later be plotted of the original terrain and recreated terrain. The

estimator used in the recreated terrain file is selectabl¢; zero here implies no terrain _on will

Occur.

2. STGR: SPACE_'HME Graph Option

This option produces graph(s) of the output photon count of the SPACE_TIME subroutine for the

first STGR shots, if STGR > 0, or for all shots if SGTR=-1.

3. RGR: RECEIVER Graph Option

This option produces graphs of the output voltage signal of the RECEIVER subroutine for the first

RGR shots, if RGR > 0, or for all shots if RGR=- 1.

4. DGR: DIGITIZE Graph Option

This option produces graphs of the digitized signal of the DIGITIZE subroutine for the first DGR

shots, if DGR > 0, or for all shots if DGR--- 1.

5. HGR: Histogram Output

Choosing this option (setting HGR=I) causes the simulator to create histograms of all of the fine

tuning estimators values.

6.4.2.a NCAR Graphical Output

The NCAR meta files generated by the simulator may be viewed using the

mctrsun filename

command. The graphs of the most previous run are always stored under simm_et. To view the

graphs from the previous run, type

mctrsun sire.met

mctrsun displays the graphs in the order they were generated. This utility is mouse driven, with
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a menu popping up in the lower left-hand comer when the mouse is clicked. If'ERASE' is

chosen, the current graph is erased and the next graph is plotted. If 'OVERLAY' is chosen, the

next graph is plotted over the current one. mctrsun also has the option to 'ZOOM' into a portion

of the graph.

6.4.3 Hardcopy Outputs

The NCAR utility mctrpost converts the NCAR meta file to a postscript file which may

be printed on any laser printer with a postscript driver. The format for this command is

mctrpost [meta file] >[postscript file]

For example:

mctrpost nominal.met > nominal.ps

creates a postscript file, named nominal.ps of the NCAR graphs saved under the filename

nominal.met.

If the text output has been redirected into a text file, then the graphical and text outputs may

be combined, as detailed below.

A simple file conversion utility, mpost, has been included which uses the v/ editor to help

consolidate the output. In order to usempost, the simulator output must have be redirected into a

text file with a .out extension, mpost concatenates the text and graphical outputs into one

postscript file, using the pstext command. It then removes the page break from the text file by

means of a batch-levelv/ edit. The output postscript file is given a .ps extension, mpost will

also save a copy of the NCAR meta output under a .met extension. The usage format is"

mpost [text output filename without extension]

For example, if the output has been redirected into a file named nominal.out, typing

mpost nominal

will cause mpost to produce a postscript file called nominal.ps of the graphical output with the

text output above the first graph. A copy of the meta f'de, named nominal.met, will also be saved

for that run.

To run mpost, both mpost and mpost.cmd must be in the current root or path.

mpost.cmd is a file containing the commands that mpost uses to edit the text output file. mpost

is simply a batch file accessing postscript conversion utilities and may be easily edited to suit

particular applications.

The text and graphicaloutputs in Section 7.0. were generated using the above technique.

The text output and the NCAR meta file were combined using mpost, as described above.
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