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Abstract

This paper presents the results of controlling A PUMA 560 Robotic Manipulator

and the NASA shuttle Remote Manipulator System (RMS) using a Command Gener-

ator Tracker (CGT) based Model Reference Adaptive Controller (DMRAC). Initially,

the DMRAC algorithm was run in simulation using a detailed dynamic model of the

PUMA 560. The algorithm was tuned on the simulation and then used to control

the manipulator using minimum jerk trajectories as the desired reference inputs. The

ability to track a trajectory in the presence of load changes was also investigated in

the simulation. Satisfactory performance was achieved in both simulation and on the

actual robot. The obtained responses showed that the algorithm was robust in the

presence of sudden load changes. Because these results indicate that the DMRAC

algorithm can indeed be successfully applied to the control of robotic manipulators,

additional testing was performed to validate the applicability of DMRAC to simulated
dynamics of the shuttle RMS.

1 Introduction

Direct adaptive control offers the potential for uniform control of robotic manipulators

in the presence of uncertain flexibilities, changing dynamics due to unknown and varying

payloads, and nonlinear joint interactions without explicit parameter identification.

One such direct adaptive algorithm that is especially attractive for robotic control is

the direct model reference adaptive controller (DMRAC) discussed in [1-3]. This adaptive

algorithm is very appealing for robotic control because of the following features:

• asymptotically zero output error with all states bounded,

• lack of dependence on plant parameter estimates,

• direct applicability to multiple input-multiple output plants,

"This paper is breed upon research performed under NASA grant NAGW-1333 and under NSF grant
ECS-9111565.
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• sui_ciency conditions which axe independent ofplant dimension,

• control calculationwhich does not require adaptive observers or the need for full

state feedback,

• ease of implementation, and

• successfulexperimental validation.

This procedure has been previously used to control a single link flexible robotic joint

and a nonlinear model of a two link Puma [4,5]. In view of the excellent tracking results

demonstrated in these papers, it was concluded that this adaptive algorithm should be

used to control an actual Puma arm. This effort has consisted of two m_n thr_asts: nv_mely,

control of the representative simulation model developed in [6t, and the transitic_ of the

tuned algorithm to the actual robotic arm.

Because results indicated that the performance of the DMRAC algorithm was robust

with respect to representative load variations, additional applicational studies were initi-

ated using the NASA shuttle Remote _ System (RMS).

2 Direct MRAC Development

2.1 Basic algorithm

The linear time invaxiant model reference adaptive control problem is considered for a

plant which is described by

_,(t) = A,x,(t) + B,_,(0 (1)
yp(t) = Cpz,(t) (2)

where zp(t) is the (n x 1) plant state vector, _(t) is the (rn x 1) control vector, yp(t) is

the (q x 1) plant output vector, and As, Bp axe matrices with appropriate dimensions.

The objective is to find, without explicit knowledge of Ap, and Bp, the control up(t)

such that the plant output vector yp(t) approximates _reasonably well" the output of the

following (and usually lower order) reference model:

_,(t) = A_,_,,Ct)+ B,,_,(t) C3)
_.(t) = c._.(t) (4)

The MRAC algorithm is given by [1]:

up(t) = Ke(t)[y,n(t) - yp(t)] + Kz(t)z,,_(t) + Ku(t)u,,,(t) (5)

with the gains Ks(t), Kffi(t), and Ku(t) being adaptive. The adaptive gains axe concate-

nated into the matrix Kr(t) which is given by

Kr(t) = [K,(t),Kffi(t),K,,(t)] (6)



blW

and the vector r(t)isdefined by

.(t)= [y._Ct)- ypCt),_..(t),u.Ct)]T C7)

Then

u_,(t) = K,(t)r(t) (8)

The adaptive gains are obtained as a combination of an integral gain and a proportional

gain as shown below:

g,(t) = g,(t) + K_(t) (9)
KpCt) = [y.,(t) -- YpCt)lrTCt)_" (10)
R_(t) = [y=(t) - _r(t)]rT"(t)T (11)

Sufficient conditions for stability derived for a constant model command in [2]. These

conditions require that the matrices T and i" be respectively chosen as positive definite

and positive semidefinite, and that the plant be almost strictly positive real (ASPR),

that is, for the plant represented by the triple (Ap, Bp, Cp) there exists a matrix K, (not

needed for implementation) such that the fictitious stabilized plant described by the triple

(Ap - BpK, Cv, Bp, Cp) is positive real. If these sufficient conditions hold, then all states

and gains are bounded and the output error vanishes asymptotically.

The adaptive control of plants that are not ASPR is a more difficult problem when

utilizing the CGT based MRAC laws. BarKana [3] suggested augmenting the plant with

parallel dynamics such that the augmented plant is ASPR in which case the previously

described adaptive controller may be utilized. To illustrate this concept, consider the

non-ASPR plant described by the transfer matrix

C,(,)= C,(,X-&)-*B, (12)

Then, choose a matrix H(s) such that the augmented plant transfermatrix

C°(,) = H-*(,) + C,(_,) (13)

isASPR. In [3]itisshown that G,(s) willbe ASPR provided that

• H(s) itself is ASPR

• H(s) stabilizes the closed loop output feedback system with transfer function.

[I + a,(,)s(,)l-_a,(_).

An easily implementable version of H(s) which has had extensive use is

resulting in:

H(s) = K(1+ ,/so)

D

G..(t) = 1 + ,/,o + Gt'(') (14)
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where D = K -t.

Unfortunately,the errorwhich isensured to be stableisnot the true differencebetween

the plant and the model. Rather, the errorisnow the differencebetween the outputs of

the augmented plant and the model. However, in 13]itisshown that ifthe plant isoutput

stabilizablevia high gain output feedback,then IID IImay be chosen to be small. Thus,

the augmented plant error willbe approximately equal to the originalplant error.

One procedure for eliminatingthisoutput erroristo also incorporatethe supplemen-

tary feedforward of (14) intothe referencemodel output as shown in [2].To illustratethis,

denote the augmented plant output as zp where

zp = y_+ Hu_ (15)

= yp + H[Kzx,, + K,u,_ + K, ev] (16)

and

H = D/(1 + ,r). (17)

In a similar manner, define an augmented model output as

(18)

Now, for adaptive control of the augmented plant, consider the error between the aug-

mented plant and model outputs. Thus,

(z,_,- zp) = y,,_- Yl,- HK, ez

= y,,,- yp- I-IK,(z,,,- zp)

or - = (I+ -

Consequently if as in [2l zp is forced to follow z,,,, then y_ will follow y,,_.

3 Puma Model Development

In order to test the performance of the Direct Model Reference Adaptive Controller (DM-

RAC), an accurate non-linear coupled model of the PUMA manipulator was needed. A

full explicit dynamic model of the PUMA 560 manipulator, derived by Armstrong, Khatib,

and Burdick [6], was selected. Theformulation of the PUMA model was computationally

efficient using 25% fewer calculations than a 6 degree of freedom recursive Newton-Euler

method. The algebraic formulation of the model also allowed for the easy addition of a

load by modifying the link 6 mass, center of mass, and inertia parameters.

Figure 1 shows the six rotational joint axis, {zl,..., ze}, for the PUMA 560. Only the

rotational,zl, axis are shown in the figure.Positiverotationsfollowthe righthand rule-

counter-clockwise looking down the z axis.The sixjointof the PUMA 560 are as follows:

• Joint 1. A vertical rotation about the base, zl.
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• Joint _. A horizontalrotationabout the shoulder,z2.

• Joint 8. A horizontalrotation about the elbow, Zs.

• Joint _. A twistof the wrist,z4.

• Joint 5. A inclinationof the wrist,zs.

• Joint 6. A twistof the mounting flange,ze.

The positionof the manipulator in Figure I illustratesthe zero position.Note that when

Joint 5 isat zero,axis z4 and z6 coincide.

The dynamic equations of motion used to model the PUMA are:

A(0)# ÷ B(0)[##]+ C(0)[02]+ 9(O) = r

where

A(0) isthe 6 x 6 positivedefinitekineticenergy matrix,

B(0) isthe 6 x 15 matrix of coriolistorques,

C(0) isthe 6 x 6 matrix of centrifugaltorques,

g(0) isthe 6 vector of gravitytorques,

isthe 6 vector ofjointaccelerations,

[00]isthe 15 vector of velocityproducts, where

[##]= [01#2,0,#s,...,0106,#203,...,

[82]isthe 6 vector of squaxed velocities,where

[#2] "2"2= [o_,o_,...,o_lT

(20)

and I"isthe 6 vector ofjointtorques.

The above model can be cast intostatespace form by solving Equation (20) for t_and

choosing the following12 x 1 state vector,

xT= [er,vT]

where

(21)
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Thus, the state space model isas follows,

0 -- o

0 = A-IC0)[F - BC0)[b0]- C(0)[02]- 0(0)]

The controlledoutput vector for the plant was

Yptant = 0 + otv (22)

where, ct is a diagonal 6 x 6 matrix of velocity weighting factors.

This velocity term is present to help remove high frequency oscillations caused by the

controller. The maximum allowable torques (in n-m) were [97.6, 186.4, 89.4, 24.2, 20.1,

21.3]

4 Implementation Issues

4.1 Reference Model

The first decision to be made in implementing the DMRAC algorithm is the choice of

reference model order, if one chooses the order too low, then excessively large gains may

occur even in a well-tuned controller. This n_y produce grater than desired accelerations

inthe robot arm jointsresultinginjointtorque s_tur_tionsleading topoor model following.

Ifone chooses the order too high then excessiveresponse delaysmay be incurred. For the

PUMA 560, an independent second order referencemodel was selectedfor each of the six

joints. This is not unreasonable since in a PUMA 560, as with many manipulators, the

mass matrix isapproximately diagonal forall0 making the system nearly decoupled.

Thus, for each joint,the referencemodel transferfunction was:

where

and

W,_ ----5

_i = I i= {1,2,S,4,5,6}.

Critical damping was selected so as to reduce the possibility of joint angle overshoots.

This conforms to a standard safety feature of robot arm controllers which tends to avoid

obstacle collisions. Of course, once the choice of critical damping is made, the choice of

natural frequency governs the speed of model response to inputs. A choice of wn = 5

yields a 90°_ rise time of about 0.8 sec.
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4.2 Command Generation

For Testing purposes a minimum jerk trajectory was generated through the following

positions at the noted times.

loint Position (deg)

1 2 3 4 5

0 -45 180 0 45

90 -90 90 45 0

0 0 180 0 90

0 -45 180 0 45

The resulting angular paths for each

mands u,_, (t).

6 Time (sec)

90 0

45 6

90 13

9O 18

joint were then used as the reference model com-

4.3 Bias Introduction

For the PUMA 560 manipulator, the origin of the coordinate system should be such that

the adaptation gains have a non-zero excitation throughout the range of interest. For

example, assume that in order to maintain an output of yp = [0, ..., 0] T, a non-zero input,

up, is required. However a zero command to the reference model, u,,_ = [0, ...,0] r, will

result in a zero model output and a zero state vector. Thus in this case % = y_ - yp

will also be zero, and the vector, r(t), defined by (3.10) will be zero resulting in a zero

control. Since the plant requires a non-zero control to maintain a zero output, the DMRAC

algorithm requires a non-zero error signal in order to apply a non-zero control which will

result in a steady-state error at the zero output position.

If the reference model coordinates are shifted by a constant bias term, then a zero

command to the reference model, u,,, = [0, ...,0] r will produce non-zero outputs for the

model state and output vectors which, in turn, will produce a non-zero command to the

plant. This bias term is subtracted from the model command, u,,,, and the plant output,

y_, as follows,

u_(t) -- t_(t) - q_a, (23)

y,(t) - _,(t) - q,,., (24)

where tim(t) is the original model command in the original coordinate system, u,n(t) is

the new biased model command to be applied to the model dynamics, Op(t) is the actual

plant output, yp(t) is the new biased plant output to be used to form the error signal,

and q_,0 is a constant bias term. For robotic manipulators, q_ has units of radians

and should be selected such that a new plant output of yp - [0, ...,0] correspond to an

equilibrium position. By examining the zero position of the robot, Figure 1, it is clear

that y_ = (0, 0, 0, 0, 0, 0) is not an equilibrium. However bias of,

q_. = {0,90,90,0,0,0) degrees (25)

will shift the zero position to that shown in Figure 2.
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4.4 Feedforward Design

The feed-forward filter dynamics for joint i is given as,

D_(s)= Kd,
l+r_s

where Kd, is the DC gain and r_ is the time constant.

(26)

5 PUMA Simulation Results

In this set-tion, we briefly discnss the tuning process and present plots of a simultaneous,
six joint response of the PUMA 560 under DMRAC control.

5.1 Tuning

Once the referencemodel has been chosen,one must choose valuesforthe variousDMRAC

parameters. Specificallythese are

:T -= proportional gain weighting matrix, eq. (10)

T - integral gain weighting matrix, eq. (11)

D -- plant/model feedforward gain, eel. (17)

r - plant/model feedforward time constant, eq. (17)

_a _= 6 vector of plant rate feedforward gains, eq. (22)

For the fully centralized DMRAC algorithm with the plant derivative output term and

the supplementary feed-forward in the reference model and plant, there are 1182 param-

eters to be selected as shown in Table 5. At first, this number seems very intimidating,

but as will be shown, the number of tuning parameters can be greatly reduced by some

simplifications and by adjusting _he parameters in groups rather than individually.

The most drastic reduction in the number of tuning parameters can be achieved by

forcing the integral and proportional adaptation weighting matrices, T and 2_ to be diag-

onal. This reduces the number of tuning parameters from 1182 to 78.

The reference model dynamics have 12 tuning parameters, six w,_'s and six f_'s.

It is customary in robotic applications to tune controllers for critical damping so that

there is no overshoot. Overshoot may cause a robot end effector to penetrate the surface

of the work environment. The undamped natural frequency terms, wn_ are chosen such

that the reference model will have a specified step response. Typically, the reference

model dynamics are chosen such that they are "reasonable'for the plant to follow since

the DMRAC algorithm will try to force the plant to follow the model output. For the case
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of a PUMA 560 Manipulator, allof the w,,,were initiallyset to 5.0.The model's dynamic

parameters can be changed as needed ifthe robot ishaving problems tracking the model.

Initially,the plant output derivativeweights,a, are set to zero. These weights are used

to remove high frequency components from the plant controlsignal,u,_,and should only

be used when needed as they will_affectthe transientresponse.

The feed-forward filterhas 12 tuning parameters, six gains Kd_ and six time constants

r_.A good firstchoicefor the r_isapproximately one-tenth the model time constant.

Initiallythe value of_ were allset to 0.1 s, and the six DC filtergains Kd_ were set to

1.0.Increasingthe filtergain was seen to typicallyimprove thetracking performance.

The diagonal components of T and T were initially,allset to unity. A reasonable

method of tuning a DMRAC controlleristo startthe plant at an equilibrium positionand

apply small step inputs. After a reasonable performance isachieved with the step inputs,

the DMRAC should be finetuned using typicalplant trajectories.

Ifthe closed loop system isvery sensitiveto initialconditions,start with small steps

as described above, letthe system reach steady-state,and then save allof the DMRAC

controllerstateinformation (integraladaptation matrix, KI; referencemodel statevector,

x,_;and the filterstatevector) to be used as initialconditionsfor the next run. This will

significantlycut down the adaptation time requiredforthe gainsto reach theirsteady-state

values.

In order to compare the tuning results,some criterionmust be established. For this

excessive,the goal was to kept the peak model followingerrorssmall and to keep the error

trajectoryas closeto zero as possible.Small errorswere tolerableduring motion. Itwas

alsodesiredto achieve zero error in steady-state.

The step response with the initialtuning valueswas sluggishfor Joints 1,4, 5, and 6

with overshoot and oscillations.Joints2 and 3 settledintotheirsteay-statevalues quickly

but with very large steady-stateerrors.The process used to complete the tuning was as

follows:

Ii

2.

Refinethe tuning for a I0 degree step from the equilibriumposition.

Using the refinedparameter values,move the robot to the shutdown position of

Figure 12 and save the DMRAC internalstate values at that position for use as

initialconditions.

3. Refine the tuning for a 10 degree step from the shutdown position using the initial

conditions from Step 2.

4. Refine the tuning from typical min-jerk trajectories from the shutdown position.

The final tuning parameter values after Step 4 are shown in Table 6. The weighting

matrix values for Joints 1, 2, and 3 differ from the weighting matrix values for the last three

joints by a factor of about 100 which reflects the mass/inertia difference between the upper

arm and the wrist. The weighting matrix values which are multiplied by the "z,_"products

are about a factor of seven lower than the values multiplying the "z,_l'productl since the
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second state variable of each decoupled reference model had a higher peak value in a

transient. The Joint 1, 2, and 3 reference models have an undamped natural frequency

of 4.0 rad/sec where the wrist model used 7.0 rad/sec which again reflected the inertia

difference between the upper arm and the wrist. The feed-forward filter values were set

to Ka = 6.0 and r - 0.1 for all joints. The alpha values were increased from the initial

values of zero to damp out some high frequency oscillations.

5.2 Response

Initially the PUMA arm is in the [0 0 0 0 0 0] position. The _ shutdown position was
(0, -45, 180, 0, 45, 90) degrees as shown in Fig. 3.Simulation results of the PUMA 560

dynamics responding to the tuned DMRAC controller are displaF_ in Figure 4.

Note that the model following is excellent for all 6 joints. Furthermore it was observed

that all joint torques were smooth and below their saturation limits. In addition, for

this specific case, the use of the feedforward component did not significiantly affect the

response, although in other cases (eg. step response) use of the feedforward resulted in
significant improvements.

6 PUMA Experimental Results

Because the simulator results of the previous section indicated that DMRAC should be

useful for robot control, a set of L_mrimcat8 was performed on an actual PUMA 560

manipulator. The tuning process was similar to that described in the previous section.

All parameters were initalized at those values from the simulation studies. Only minor

variations were required. Final values are in Table 1.

Examples presented illustrate performance of the DMRAC for tracking various trajec-

tories in the presence of static and dynamic load changes. In all cases the robot starts at

the shutdown position and follows a trajectory which finishes at the shutdown position.

6.1 Three Joint Trajectory Tracking Study

The trajectory listed in Table 1 is very similar to the one used in the simulation (Section

5). The arm first moves to a straight up position, curls up, and then moves back to the

safe position. The wrist joint_ remain locked in their shutdown positions of {0.0,45.0.90.0}
degrees.

The response to the first trajectory is shown in Figure 5. The response is quite good.

The effects of stiction can be seen on Joint 2 at t = 15 seconds in Figure 5. Figures 6-8

show the model following error and the link torques for Joints 1, 2, and 3 respectively.

Figure 6b shows that the Joint 1 torque signal was quite noisy. This noise did not have

a physically detectable effect on the actual arm motion. Typically one can feel or hear a

noisy torque signal on the actual arm.
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The stictioneffectmentioned above forJoint2 can alsobe seen infigure4a at t - 15 sec

near the 'X' at the peak error location.When stictiongrabs a joint,the error ramps up

as does the torque (Figure 4b).

6.2 Static Load Changes

This section describesthe abilityof the DMRAC algorithm to adjust to staticload vari-

ations. The trajectoryof Table 3 will be run with differentloads in the gripper. The

algorithm will firstbe allowed to adjust to the load, and then the trajectory will be

started.

The wrist jointsremained locked in theirshutdown positionsof _0.0,45.0, 90.0} de-

grees.Five differentloads were run for the trajectory- Okg, lkg,2kg, 3kg, and 4kg.

Figures 9 and 10 show the response for Joints 2 and 3 respectively.The numbers on

the plotsare to help identifywhich curve representswhich payload. For Joint 3,the peak

errorsvary from 2.4390 degrees for the no load case to 3.9972 degrees for the 4kg load

case. The load changes make up only about 50% of the error. The other 50% isdue to

the adaptation to the changing arm dynamics. For Joint 2, the peak errors are around

0.8-1.0degrees. As with Joint 3, the portion of the errordue to the load change for Joint

2 issmall compared to the no load case.

For Joint 1,the error signalsdid not vary by more than 0.1 degrees between the five

differentload cases.

6.3 Dynamic Load Changes

To illustrate the effects of dynamic load change, the trajectory of Table 4 was considered.

While running the same trajectory, various loads were added to the gripper while the robot

were in motion. The same loads used in the previous section were employed. The wrist

joints remained locked in their shutdown positions of {0.0, 45.0, 90.0) degrees. Note: The

lkg and 4kg loads were added at about t -- 6.76 seconds and the 2kg and 3kg loads were

added at about t -- 7.348ec.

Figure 11 shows the model following error for Joint 2 for all loads. The numbers on the

graphs indicate which peaks in the error plots match up with the various loads. This figure

shows that the DMRAC algorithm has a good load disturbance rejection. The transient

period only lasts about 2 seconds.

Figure 12 shows the error for Joint 3 for the various loads. Joint 3 suffers more

with a load disturbance having a peak error of almost 5 degrees when the 4kg load is

added. Again, the transient period is roughly 2 seconds. After the transient, good tracking

performance was achieved with the additional loads.

As with the static load case, the model following errors for Joint 1 did not vary by

more than 0.1 degrees.
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7 Adaptive Control of the Shuttle RMS

7.1 Introduction

Because of the previous demonstrated capabilities of DMRAC, consideration was given

to its application to the NASA shuttle Remote Manipulator System (RMS). This system

experiences damped oscillations of the end etfector after the motion control input by the

shuttle operator has been removed [7]. It is desired to design a controller that will take

control of the RMS, after the operator releases the motion control joystick, and increase

the damping of the oscillations. Linear models have been developed for three manipulator

orientations expected to be encountered during normal payload handling [7]. This section

discusses work on a direct model reference adaptive controller design for the RMS based

on the adaptive algorithm discussed in Section 2.

7.2 Linear Plant and Feedforward

The three linear plants are 3-input, 3-output with 6 states. The plants all have a feedfor-

ward compensator H(s), since they are not ASPR. Three types of algorithm feedforward
were examined in the course of this work.

static:

H(s) = diag3{dll, d22, d23}

1st order:

2nd order:

H(s) = dingS{d11/(r,s + 1)}

H(s) = diag3{d,/[(n,s + 1) • (r2,,s + 1)]}

The scalarfeedforward provided the best results(based on work to date) and was used

for allpresented simulations. Itwas found that,forthescalar feedforward, the combined

plants (plant 1,2 or 3 in parallelwith feedforward)were allASPR for:

0.125 < d < 1.0

where H(s) was diag3{d, d, d}. That is, the closed loop system formed from the inverse

of H(s) in negative feedback with the respective plant, had all the characteristic roots in

the left half plane for:

1.0 < d-* < 8.0

After simulations were performed with many of the possible combinations of values within

this range, it was found that d - 0.25 provided the best results for MI three orientations.

No ASPR analysis was performed for the 1st and 2nd .order feedforwards and the po-

sition 1 plant. The stability of the adaptive algorithm for the dynamic feedforwards was

somewhat a function of the adaptive gains, T and T, for given feedforward time con-

stants and gains. Tuning for the dynamic feedforwards was difficult, and very little to
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no improvement over the uncontrolled system could be achieved. The dynamic feedfor-

ward compensator might possibly provide improved results with further work on the time

constants and gains.

7.3 Reference Model

Originally, a reference model were developed for each position using a LQR design based

on the uncontrolled plant at the respective orientations. The model used the uncontrolled

plant's B, C, and D matrices with the model A matrix formed as follows:

A=, = (Ap,+ B,, , K,)

where Ki is from the LQR design for the i-th orientation.

Satisfactory control of the plants could not be achieved by the adaptive algorithm using

these models. A new reference model was then developed using two dominant eigenvalues

from the original LQR model for position 1. The new model has a damping ratio of f and

a natural frequency of 1.0 r/see so that:

h_(,) - 1/(,' + 2f, + 1)

This new model was utilized as the reference for each plant output, that is:

H,,,(,) = diag3{h,,_(,),h,,_(s),h,,,(,)}

Y,,,(s) = n,n(,) * u,,,(s)

7.4 Simulation Sequence

The sequence for simulation represented a 3.0 second perturbation followed by use of the

controller to dampen out oscillations.

The three plant outputs were:

Y1

Y2

Y3

= shoulder yaw

= shoulder pitch

= elbow pitch

The plant inputs were limited to 0.7 deg/sec..

In order to simulate the perturbation, the following control sequence was input to the

uncontrolled plant:

ul = 0.70<t<1.5

ul = -0.7 1.5 < t < 3.0

u, = us --- 0.

The resulting plant states at the end of this perturbation were the plant initial conditions

for all controller simulations. The plant outputs at the end of the perturbation were the

model initial condition (s). The model rate initial condition (s) were set to zero.
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7.5 Simulation Results

Figures 13 a,b,c show the position 1 outputs for the following parameters:

T = diag9(6000, 10,6000, i, I, I, I, I, I)

= diagg(1, .000001,1,100,100,100,100,100, I00)

D - diag3(.25, .25, .25)

model damping - 0.15

Note that all controlled outputs decay faster than do the outputs with no control.

Figures 14 a,b,c show the position 2 outputs using the above position 2

tuning parameters, and Figures 15 a,b,c show the position 1 outputs using controller

parameters, tuned for position 2. For these crams the differencesbetween the controlled

and uncontrolled responses were not remarkable.

These resultsand other experiments show that a satisfactorylevelof control can be

achieved by the MRAC with tuning tailoredfor the individualpositions. Attempts to

develop one set of controllertuning parameters that would provide satisfactorycontrolfor

allthree positionswere not successful.

8 Conclusions and Recommendations

In summary, the DMRAC algorithm has been found to be an effective robotic control

algorithm in both simulation and on the actual robotic manipulator. Its performance was

robust with respect to static and dynamic load variations and also disturbances.

At present the DMRAC is being considered for all six joints of the actual PUMA and

further tuning with dynamic feedforward is begin considered for the shuttle RMS.
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Table 1:
Parameter Values for 3 Joint Trajectory Tracking Runs

f "ez_ 20 40 40-

(diag "z._ _- 140 20 200

component) 30 200 30

"u,n" 140 200 200

T %," 30 30 40

(diag "z_ _ 200 30 400

component) 60 400 60

200 400 400

1 2 3joint

Model

Feed

Forward

alpha

w,_ 10 I0 I0

f 1 I I

Kd 6 6 6

r 0.05 0.05 0.05

a 0.02 0.02 0.02

Table 2: First Three Joint Tracking Test Trajectory

Knot Joint Positions (deg) Time

Point 1 I 2 I 3 [ (sec)

0 0 -45 180 -

I -90 -90 90 6

2 0 0 180 8

3 0 -45 180 6

Table 3: Static Load Change Trajectory

Knot Joint Positions (deg) Time

Point I [ 2 ] 3 (sec)

0 0 -45 180 -

I 0 -45 180 3

2 45 0 -0 10

3 0 -45 180 10

Table 4: Dynamic Load Change Trajectory

Knot Joint Positions (deg) Time

Point 1 I 2 I 3 [i (sec)

0 0 -45 180 -

1 0 -45 180 3

2 45 -90 90 I0

3 0 -45 180 10
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Parameters

T

Wn i

a

Kd,

Table 5: Tunable ParAmeters
Description

24 x 24 integral weighting matrix

24 x 24 proportional weighting matrix

Undamped natural frequency for Joint i model

Damping ratio for Joint i model

6 x 6 diagonal plant derivative weighting matrix

DC gain of Joint i supplementary feed-forward block

Time constant of Joint i supplementary feed-forward block

[I Values

576

576

6

6

6

6

6

Total [[ 1182

T_

(diag

component)

T

(diag

component)

Uez _

_Xm _

Final Parameter Values
20 40 22 0.2 0.2 0.2

140 20 140 35 100 22

1.4 0.2 1.4 0.2 1.4 0.2

140 160 110 1.4 1.4 1.4

20 60 25 0.2 0.2 0.2

140 20 150 35 140 25

1.4 0.2 1.4 0.2 1.4 0.2

140 160 130 1.4 1.4 1.4

Joint 1

Model w,, 4

f 1

Feed K_ 6

Forward r O.1

alpha a 0.0.35

2 3 4 5 6

4 4 7 7 7

1 1 1 1 1

6 6 6 6 6

0.1 0.1 0.1 0.1 0.1

0.02 0.02 0.01 0.01 0.01

Figure 1: PUMA 560 Coordinate Frame
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Figure 2: PUMA 560 in Stable Equilibrium

Figure 3: Shutdown Position
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Figure 12: Joint 3 Dynamic Load Model Following Errors
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