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Summary and Conclusion8

We describethe use of simulationand contrastitto

analyticalsolutiontechniquesforevaluationofanalytical

reliabilitymodels. We alsodiscussthe roleimportance

sampling playsin simulationofmodels ofthistype. We

next describethe simulatortool we use for our analy-

sis.Finally,we demonstrate the use ofthe simulatortool

by applyingitto evaluatethe reliabilityofa faulttoler-

ant hypercube multiprocessorintendedforspacecraftde-

signedforlong durationmissions.We use the reliability

analysistohighlighttheadvantagesand disadvantagesof-

feredby simulationoveranalyticalsolutionofMarkovian

and non-Markovian reliabilitymodels.

I. INTRODUCTION

Recent work in the development of reliabilityanalysis

toolshas produced a number ofsoftwarepackagesthatal-

low complex system behaviortobe expressedwith analyt-

icalmodels.The systems towhich thesemodeling meth-

ods areappliedoftenare complex faulttolerantcomput-

ing systems designed for very high reliability. However,

thesesystems can exhibitcertaintypesofsystem behav-

iorthatrequireanalyticalmodels forwhich feasibleana-

lytical(numerical)solutiontechniquesare not currently

available.Inthesesituationstheexistinganalyticalmod-

elingframework may be enhanced to allowsimulationof

the analyticalmodel (i.e.a faulttreeor Markov model)

as a replacementsolutionmethod to the traditionalan-

aiyticalsolutiontechniquesfor the model. This is the

approach that we followinthispaper.

The very largenumber of trialsneeded to obtain sta-

tisticallysignificantresultshistoricallyhas been a signifi-

cant problem fortheuse ofsimulationtomodel complex,

highlyreliablefaulttolerantsystems. Recent effortsto

overcome thisproblem have produced new modeling tools

capableofobtainingacceptableresultswith a reasonable

number of trials through the use of a variance reduc-

tion technique called importance sampling. New modeling

tools which incorporate this technique have been designed

to be compatible with the Hybrid Automated Reliabil-

ityPredictor(HARP) modeling tool[9],which isitselfa

component of the HiRel package of reliabilitymodeling

tools[I].HARP solvesthe same types ofmodels as the

simulator,but uses analytical(numericai)solutiontech-

niquesinsteadofsimulation.

As isoftenthe case,the development of the new mod-

elingtoolwe describehere was driven by the needs ofa

specificreliabilityanalysisproject:the use of hypercube

multiprocessorsfor highlyreliableguidance,navigation,

and control(G,N,& C) systems forlong durationmanned

spacecraft.We are interestedin exploringthe use of a

faulttoleranthypercube architecturethat can use either

hot or cold spares. Itisclearfrom preliminarystudies

that the use ofhot and cold spareswith the traditional

constantfailurerate model willnot meet the high relia-

bilityrequirementforlong durationspace missionswith-

out onboard repair[t1,12, 19].Recently acquiredempiri-

caldata provideconvincingevidence that decreasingfail-

ure ratesare common in spacecraftapplications[10].For

these reasons,we want to be able to includedecreasing

failureratesin our reliabilityanalysis.The inclusionof

decreasingfailurerateswith cold sparesrequiresthe use

of a non-Markovian reliabilitymodel which issubstan-

tiallymore difficultto solveanalyticallythan a Marko-

vian model that assumes constant failurerates. Given

the currentstateof the art,analyticalsolutionof such

non-Markovian models generallyistractableonlyforvery

smallsimple models, whereas the model ofthe above hy-

percube system isvery large.The cumulative effectofall

of thesefactorsled us to the use ofsimulationmodeling.

In thispaper we summarize the use of simulationas a

modeling method and describehow itcan be appliedto

the evaluationof analyticalsystem models. We compare

evaluationof'analyticaimodels by simulationto evalu-

ation by analyticalsolutiontechniquesand describethe

roleofimportance sampling inour implementation ofsim-

ulation. We next describe the simulator itselfand the

processof specifyinga model for mm with it. We then

ilhmtmte the use of the simulatorby applyingitt5 a by-
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per cube architecture proposed for a G,N,_ C system for

long duration spacecraft. We explore the effect of assum-

ing decreasing failure rates for active and cold processors

within the hypercube instead of constant failure rates,

and demonstrate the advantages that simulation provides

over analytical solution methods for such system models.

2. SIMUI_A TION MODELING FOR RELIABILITY

PREDICTION

The usual method of using simulation to evaluate re-

liability and performance of systems involves building a

computer model of the system, generating events of in-

terest (i.e. component failures), and observing the re-

sponse of the model to the generated events. The timing

and types of events are generated using probability dis-

tributions which are assumed to govern event occurrence.
Values are sampled from the appropriate probability dis-

tributions and are used to specify which type of event oc-

curs next and when that occurrence will be. A sequence

of events is generated in this manner until either the mis-

sion time expires or the system fails. Such a sequence of
events provides one instance of how the system would be

expected to behave in the environment characterized by

the governing probability distributions and is referred to

as a _hlstory _ or "trial". The model is evaluated at the
end of a trial to determine mensures of interest snc.h as

whether the system is still operating (reliability) or how

much work was accomplished (performance), etc. This
process is then repeated numerous times to obtain aver-

age _es for the measures of interest and accompanying

sample_st_dard deviations. From probability theory it

follOWS that ab the number of trials increases, the average
value Obtained in the simulation approaches more closely

the actual value that characterises the long run behavior

of the system as expressed by the model. The standard

deviaticm, which is a measure of the expected closeness of

the simulation average to the actual value, is proportional

to _ (where n is the number of trials)[18]. Hence o5-
raining a highly accurate value for a measure of interest

may require a very large number of trials.

in individual states and the characteristics of the tran-

sition rates between states differentiate Markovian and

non-Markovian modeis[13]. Analytical models are usually
solved using either direct or numerical methods, so often

they can give answers with greater accuracy than simula-

tion methods for a comparable amount of computational
effort. However, analytical solution methods suffer from

requiring much more memory storage for data structures

than simulation methods. As a result, models that be-

come too large to be accommodated by analytical solution

methods might still be within reach of simulation tech-

niques. In addition, increasing behavioral complexity in

analytical models requires analytical solution techniques
with increasing computational requirements. Hence to

solve a model of sufficient complexity, an analytical solu-

tion method _tttd _e Imre _za_er than less) execu-

tion time than a simaLatioa metlwd _or a¢ompardde .level

of accuracy in the m_ut. Ia cases ]ik_ these _ tke

limitations of analNlb:al solution methods are exceeded,

simulation provides s useful alternate approach.

The drawback to building a computer simulation model

of a system under study is that constructing the model

and validating it is often a complex, time consuming,

and error-prone process. An alternative is to apply sim-

ulation not to a model of the system itself, but to an

analytical model of the system such as a Markovian or

non-Markovian model. With this approach there is of

course the problem of constructing the analytical model.

However, this tends to be easier than constructing a
system-level simulation model. Also, the topic of ana-

lytical model construction has been addressed by a num-

ber of researchers in the past several years and tools

have been created to assist in model construction (see [3]
and [4] for brief surveys of tools for automated Markov

model construction). The approach we have chosen for

the current study applies simulation to Markovian and

non-Markovian models of the hypercube multiprocessor

system. This allows us to capitalize on previous work

performed by the authors on the hypercube system using

Markovian models[5] and permits us to extend the scope
of that work.

t..1 AnalFtic Solution Methods _s. Simulation

An alternate approach to reliability evaluation involves

building an analytic (mathematical) model to express the

relevant behavior of the system. A number of different

analytical model types are in widespread use. One very

successful analytical model type is the Markov chain and

its generalisations (non-Markovian discrete state models).

These models express system behavior by identifying a

number of distinct states in which the system may be.

The system can be in only one state at a time, and from
time to time makes s transition from one state to an-

other. The distribution of the time the system spends

_.2 Simulation for Eraluation of Markovian and non-
Marko_ian Models

Markovian and non-Markovian discrete-state models

can be evaluated by simulation in the following way. Each

trial represents a single trsversal path among the states

of the model. The co n2zmon beginning point for all trials
is at an initial s_ate in which all system components are

assumed to be operating correctly. Upon entry into each

state, the process is begun for determining the time of
transition out of the current state and which state the

system goes to next. The time to next transition is sam-

pied from a probability distribution that depends upon
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Figure 1: Hypercube Multipr_ System
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the failure rates d the components still active. If the fail-

ure rates of all components are constant, the model is a

Markovian model. If the component failure rates are all

functions of mission time (i.e. non-constant), the model

is a non-homoseneous Marker model. If the component
failure rates are individually functions of more than one

time variable (i.e. there is more than one "clock" in the
system upon which component failure rates may depend),
the model is a non-Markoviau model. We use all three

types of models in the present study. Once the time to

next transition has been determined, a sampling from a
second distribution is done to determine which of the re-

maining operating components will experience the fail-
ure that is the cause of the transition out of the state.

The determination of the sampling distributions is de-

scribed in [14] and [16]. We note that this formulation

of the simulation process can accommodate the use of

Fanlt/Error Handling Models (FEHMs) to implement be-

havioral decomposflion for incorporating imperfect fault

coverage as is done in HARP[15]. Although that capa-

bility was available, we did not consider imperfect fault

coverage in the present study. During each trial succes-

sive inter-state transitions are generated until either the

mission time is exceeded or the system fails, causing the

trial to end. The system unreliability is then estimated

from the proportion of trials during which the system
failed before the mission time was reached.

2.$ Importance Samp//ng

A major characteristic of highly reliable systems is that

system failure events are extremely rare. This means that

a large majority of the tzials are likely to end by the mis-

sion time expiring rather than through a system failure.

Since system failures are the events of interest, • very

large total number of trials must be run before a sufficient

number of system failures occur to provide a meaningful

estimate from the proportion of failure trials to total trials

(i.e. an estimate of the system unreliability). A variance
reduction technique called importance sampling may be

employed to reduce the total number of trials required.
An excellent introduction to importance sampling may

be found in [6]. The basic idea behind importance sam-

piing is to select an alternate distribution from which to

sample which has much higher probability density than

the original distribution in the regions of interest where

the original distribution's density is very small. Parity to

sampling from the original distribution is maintained by

weighting the observations sampled from the new distri-

bution to reflect the relative difference in density magni-

tude between the two distributions. For example, if the

density of the new distribution is four times greater than

the density of the original distribution in a certain region,
then a failure event observed in that region by sampling

from the new di.stribution is counted as only ¼ of a failure.

The importance sampling techniques implemented in the
simulator we Used for this study, called forced transitions

and failure biasing, are described in [14]. Both have the

effect of emphasizing component failure events in order to
increase the number of trial terminations due to system
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Figure 3: Fault tree model of Architecture I Processing
Node with Cold Spares

failure, hence reducing the total number of trials needed

in order to accumulate a sufficient number of system fail-

ure terminations to provide an acceptable estimate of the

system unreliability.

24 Simulator Description

The original version of the simulator w_ used for our

analysis was designed by Lewis[17] and implemented at

Northwestern University. It required a system model to

he described as a set of components arranged in groups.

Each group could optionally have cold spares, and could

have either a constant or a Weibull increasing failure rate.

Each group could also have a Fault/Error Handling Model
(FEHM) associated with it to allow the use of behavioral

decomposition as is done in HARP. System failure cri-

teria were specified in the form of a set of component

cut sets which the analyst had to derive from a combi-

natorial model of the system (for example, a fault tree).
For our study, we modified this simulator to enable it to

use decreasing as well as increasing Weibull failure rates,

and to allow it to accept the input model in the form

of a dynamic fault tree (see below) rather than as a set

of component cut sets. The resulting simulator program
accepts its input model in the same form as the HARP

program, and accepts input files with the same format as

HARP. In addition, it is capable of evaluating all models

that HARP is capable of evaluating, making it completely

compatible with HARP. This is an important advantage

because it allows the reliability analyst to develop his/her
system model once and then input it to whatever evalua-

tion program is most appropriate depending on the char-

acteristics of the model and the programs. It also allows

a comparative evaluation of the performance of the two

programs by applying them both to the same model(s).

3. SYSTEM MODE[,

The hypercube multiprocessor system and the;i_el

we use in this study are described in [_]=anaof it that

[5] under the name of Architecture 1. We give a brief

description of it here. The architecture is shown in figure

1. It consists of a 3-dimensional hypercube :configur4d _I

as two fault-tolerant 2-dimensional urn(Jules, each witlr:a _ :_

spare processing node. The processing nodes themselves

are multiprocessors containing four active processors and:

a spare processor. The spare_processor _n_be,either a _

hot or cold spare. The struct_treof the pro¢_node8 :_.

is also shown in figure 1. Each processin_.nod_ _comjng_i_ :-.:-
cares with other processing nodes in _he_syste_hto_gb_:_e

four ports. For the system to be operational all eight pr_-::_::.

ceasing nodes must be operational and must all be able _ _

to communicate with each other. Therefore, the system .:

will be considered failed if any processing node fails and

a spare processing node is unable to take over or if any

two nodes in the hypercube are unable to communicate
with each other.

Although the form of the analytical model that is ac-

tually evaluated is a Markovian/non-Markovian discrete-

state model, it is specified by the reliability analyst in the

form of a dynamic fault tree[3, 8]. When simulation is not

used for model evaluation, the dynamic fault tree can be
converted into a Markov chain which can then be solved

numerically for state probabilities. When simulation is

used for model evaluation, the discrete-state structure of

the underlying Markovian model is inherent in the sim-

ulation process and the dynamic fault tree is used only
to determine whether a state which has been entered is a

failure state."

A dynamic fault tree is a generalized fault tree model in

which the traditional set of combinatorial fault tree gates

is extended to include several non-standard gates that

are designed to express sequence dependent behavior. Se-

quence dependent behavior is behavior that depends in
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Figure 4: Fault tree model of Architecture 1 Processing
Node with Hot Spares

Component Initial constant failure rate

Shared Memory 3.477 x 10 -7
Intra.node bus 1.147 x 10 -7

Processor 1.990 x l0 -s

Table 1: Initial Constant Hnsard Rates (.failures/hour)
for Components in Processing Nodes

some way on the order in which events occur. The hyper-

cube system under study exhibits two instances of this

• type of behavior: functional dependencies (the failure of

one component causes one or more other components to

either fail or become unavailable) and cold spares (a cold

spare cannot fail while it is "coldW; it can fail only sf-
ter it has been activated to substitute for a failed active

component). The functional dependencies appear in the

interconnections between the processing nodes; specifi-

cally, if either the internode link or one of the two ports

on either side of the internode link fails, the remaining

two components (link and/or port(s)) become useless to
the remaining operation of the system and hence may

be considered to be effectively failed themselves. These

functional dependencies are modeled with j%nctional de-

pendency gates, as shown in figure 2. Cold spares are used

within the processing nodes and are modeled using a cold

spare gate, an example of which appears in figure 3.

Figure 4 models a processing node when the spare pro-

ceesor is hot (i.e. active and running from mission start

just like the four initially active processors). The 2-out-
of-4 gate for which the four ports are inputs reflects the

effect of the message routing protocol[5]. Figure 3 models
the processing node when the spare processor is cold. Di-

agrams of fault trees modeling the full architecture were

omitted from this paper due to lack of space. The inter-

eared reader may find them in [3].

_. ANALYSIS RESULTS

We evaluated the system model for the cases where

all components had constant failure rates with hot or

&100.

0.@00-

!
0_o

O.000 t--"- • : i

0 Z 4 4 II t0 12

IdlnJon Time (years)

Figure 5: Effect of Weibull DFRs on System Unreliability

(Hot Spares)

-*- f_oc vm_

• 1vm4)

cold spare processors (time homogeneous Markov mod-

eb), various components had Weibull DFRs with hot

spare processors (non-homogeneous Markov model), and

various components had Waibull DFRs with cold spare

processors (non-Markovian model). For this paper our

primary purpose is to illustrate the use of simulation to
evaluate the models and contrast it with analytical solu-

tion techniques. Therefore we will use here only selected

results from our analysis to compare the advantages and

disadvantages of simulation vs. analytical solution meth-
ods. A more complete reliability analysis of the hyper-

cube system is found in [2]. Our primary analysis goal

was to determine whether assuming Weibull decreasing

failure rates (DFRs) for components instead of constant

failure rates would result in a su_cient improvement in

predicted system reliability to conclude that the archi-

tecture was adequate to successfully complete a 10 year

mission, l_esults using constant failure rates[2] indicated

that the proposed architecture would be inadequate, with

the probability of system failure exceeding 60% after 10

years. Initial attempts to evaluate the model with HAKP

(which uses analytical solution techniques) were not suc-

cessful due to the large size of the model. The dynamic

fault tree model of the system contains 70 basic events

(110 components total), and 175 fault tree nodes (basic

events + gates). It produces a Markov model with many
thousands of states. Furthermore, when Weibull DFRs

are assumed together with cold spares, the size and com-

plexity of the resulting non-Markovian model is well be-

yond the capability of any analytical solver tool that ex-

ists today, both in terms of memory and execution time

required for its solution. In contrast, our simulator was
able to evaluate the model with none of the problems ex-

perienced by HARP. Components with decreasing failure

rates were assumed to have an initial failure rate A,xp

given in table 1 which declines monotonically over the
mission time according to the Weibull failure rate expres-
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Mission
Time

(Years)
i

2
3
4
5
6

7

8
9

I0

Table

All Components
Constant Fits

.249 :k .016

.271 :k .016

.312 -4-.017

.361 :k .018

.419 _ .018

.475 :k .018

.530 -!- .018

.576 "4-.017

.609 4- .016

.631 ± .013

Processors
Weibull DFRs

.0250 -4-.0031

.0489 -4-.0048

.0738 -4-.0065

.0988.4- .0091
.126 -4-.014
.152 -4-.017

.176 -4-.019

.202 4- .023

.231 4- .031

.257 4- .036

Processors
and Ports

Weibull DFRs

•000519 _ .00022

•00147_ .00031
.00286 _ .00044
•00481 _ .00078
•00729 _ .0013
.0102 _ .0018
•0135 _ .0024

•0173 i .0037
•0208 _ .0045

.02574-.0091

All Components
Weibull DFRa

.000255 _ .00013
.000361 _ .00015

.000439_.00017

.000504 _ .00019

.000550 _ .00020

.000638 _ .00031

.000673 _ .00033

.000718 _ .00036

.000766 _ .00041

.000777 _ .00041

2: Effect of Weibull DFRs on System Unreliability (Hot Spares)

sion:

_,,i_(_) = ._,,=p_t.°-1 (1)

where c_ is the Weibull shape parameter[20] which is as-

sumed to have the value let = 0.5. All components not

having DFRs were assumed to have constant failure rates

given in table 1. Table 2 and figure 5 show the effect of as-

suming Weibull DFRs for various subsets of components.

The results reported in table 2 are averaged over 10 runs

of 10000 trials per run. The effect of assuming Weibull

DFRs for increasing numbers of the components clearly

results in decreasing system unreliability. The result of

assuming Weibull DFRs for all components is a difference

of about three orders of magnitude in the system unre-

liability (from 0.631 _ 0.013 when all components have

constant FRs down to about 0.777 x 10 -s i 0.41 x 10 -3

when all components have Weibull DFRs).

The above discussion illustrates the advantage that

simulation can have over analytical techniques: simula-

tion may be able to evaluate models that are beyond the

reach of analytical techniques both in terms of memory

and execution time. Furthermore, if only ballpark evalu-

ations are desired, simulation may be able to produce the

required results relatively quickly. Figure 0 contrasts the

reliability predictions for the hypercube with hot spares

assuming constant failure rates and Weibull DFRs for all

components. The results are averaged over 10 runs, with

each run consisting of only 1000 trials requiring approx-

imately 4 minutes or less of clock time. With only 1000

trials per run, the standard deviations are relatively large.

Nevertheless, the outcome of the comparison is clearly ap-
parent.

However, simulation does have an important disadvan-

tage compared to analytical solution techniques. If the ac-

curacy of the evaluation is important, then the execution

time required by simulation to achieve the required accu-

racy increases rapidly and can quickly become uncompet-

itive with that required by analytical solution techniques

(provided the model is small enough for analytical solu-

tion techniques to be used). Table 3, which shows the

reliability of a single processing node in the hypercube

and the execution time required to obtain it, contrasts

the values obtained using HARP to values obtained us-

ing the simulator with varying numbers of trials per run.

Increases in the accuracy of the reliability estimate, as

measured by the decreasing size of the standard devia-

tion, require very significant increases in the execution

time. The table clearly shows that it is better to use

the analytical solver than the simulator, both in terms

of execution time and accuracy of the reliability predic-

tion. This result holds in general, and experience has

shown that it is usually preferable to use an analytical
solver whenever feasible rather than a simulator to evalu-

ate a reliability model. In particular, whenever accuracy

in results is important we feel that the use of a simula-

tor generally should be a last resort to be pursued after

analytical modeling techniques have been found to be in-
feasible.

5. SUMMARY

We have described a reliability analysis study which

was performed to determine whether assuming of Weibull

decreasing failure rates (DFRa) for components of a fault

tolerant hypercube would significantly improve the 10

year system reliability estimate over that obtained as-

suming constant failure rates. Our results show that a

substantial improvement in system reliability does result

from assuming Weibull DFRs, indicating that a candi-
date architecture that would otherwise be considered in-

adequate instead could provide acceptable reliability after

all. we also contrasted the use of simulation and analyt-
ical solution techniques to evaluate Markovian and non-

Markovian reliability models. Observations made from

our analysis indicate that analytical solution techniques

are preferable whenever the model is small enough and

when accuracy of the answer is important. Conversely,
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Figure 6: Ballpark Evaluation of the Effect of Weibull DFRa on System Unreliability (Hot Spares)

Solver Reliability CPU time

Estimate required
HARP

Simulator, l0 s trials/run
Simulator, 104 tzlah/run

Simulator, l0 s tsials/run

Simulator: liP trials/run

O.O4468
.04374 4- .0023

.04455 i .00073

.04482 4- .00023
.04463 4- .000073

8.4 aec

20.2 aec
4 rain 53.8 sac

48 rain 28.9 aec
8 ires 0 rain 2.5 uc

Table 3: Procemin S Node Model Evaluation Accuracy vs. Execution Time

oxo vewmsap royal. SO

.@. OtG un_. SO
4- dun_ld

-_ ad unmi. 80

o ai u,vsl. SO

simulation is preferred whenever approximate ballpark

answers for a large model are mdlicient, or when the model

is too large or exhibits system behavior too complex to

be accommodated by analytical solution techniques. Fi-

nally, we have described a simulator tool for evaluating

Markov and non-Markovian reliability models which is [3]

compatible with the HARP (analytical) reliability evalu-

ation program and is part of the HiRel package of reliabil-

ity evaluation tools. There is a great advantage to having

analytical and simulation tools be compatible with each

other in this way (i.e., both using the same input models [4]

and files, and both providing the same analysis capabil-

ity) because it allows the reliability analyst a great deal

of flexibility in conducting the analysis. Solution meth-

ods may be mixed and matched and applied in the most

appropriate way to a single system model depending on [5]
the type and scope of the desired results.
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