VENI, VIDEO, VICI: THE MERGING OF COMPUTER AND VIDEO TECHNOLOGIES
Jay G. Horowitz
NASA Lewis Research Center
Cleveland, Ohio

Pre- HDTV Milestones

Post- HDTV Milestones

Video Technology

Visual Information Bandwidth

Visual Factors:

Fleld of View (image size)
Visual Acuity (pixel size \& number of pixels)
Dynamic Range (number of bits/pixel)
Color (color components and enoding scheme)
Image Retension (flicker rate, images/sec)
Analog Bandwith (Hz):
$=$ (Images/sec)*(Lines/image)*('cycles'/line)*(Number of Colors) where 'cycle' is minimum horizontally resolvable unit, one 'on-off'

Digital Bandwidth (bps)

= Analog Bandwidth * 2 pixels/cycle * Number bits/pixel

Example: Monochrome Broadcast TV

$30 \mathrm{frms} / \mathrm{sec}$ * 525 lines $/ \mathrm{frm}$ * 250 'cycles'/line $=4,000,000$ cycles $/ \mathrm{sec}=4 \mathrm{MHz}$
at 2 pixels/cycle * 8 bits/pixel $=64 \mathrm{Mbs}$

Television Frequency Allocation and Bandwidth

Horizontal Scanning

Workstation Video
1024 Scanlines
60 Full Frames/sec
Non-Interlaced

Television
525 Scanlines 30 Full Frames/sec 2 Interlaced Fields

Workstation RGB Color Domain

NTSC Color Domain

American HDTV Time-Table

```
1988 - Acceptance of 1125/60 SMPTE 240M Analog HDTV Standard
1993 - FCC Selects Broadcast Standard in Aug.
    (Already delayed because all proposed standards
        had problemsl)
    - Begin ON-AIR Testing
1995 - First Commercial receivers/licenced broadcasts
    (All stations must also simulcast NTSC)
2000 - All Stations must be HDTV capable
    (Simulcast NTSC stIII enforced)
2009 - Shutdown NTSC Broadcasting
    (Recoup valuable broadcast frequencles & bandwidth)
```


HDTV Image Size

Comparisons of Aspect Ratio and Visible Image Size In Pixels

Digital HDTV Heirarchy

Task Force on Digital Image Architecture

Represents input from SMPTE, IEEE, ATSC
(Report Published SMPTE Journal Dec. 1992)
" To develop and propose a structure for a heirarchy of digital standards to facilitate interoperation of high resolution display systems. " [That are:]

Open

- In the Public Domain

Interoperable

- Images move across application/industry boundaries Scalable
- Wide range of image size, color, speed capabilities Extensible
- Room for future fechnology

Compatible

- Incorporate existing imaginghtelevision standards

Open Architecture Model

[Image Acquisition/Generation
 Processing
 Production Quality Storage

 Contribution Quality Storage
 Transport
 Distribution Quality Storage

 Reconstruction
 Display

Future Displays

Wrist Display

- Low power, wire-less transmission, close viewing

Personal Viewer -

- Eyeglass/visor Heads-Up dlsplay, head-tracking

Home Entertainment -

- Flat, wall mounted, typically 6 meter dlagonal

Physician's Work Surface -

- X-ray wall, close-viewing, super hi-res, locally magnifiable

Writer's Table -

- Desk-size, multi-page, pen/touch input, cut/paste

Artist's Canvas -

- Special color/contrast/texture capabilities, unique input/output control

Make-Up Mirror

- 'Through-the-screen' cameras, image processing

The ULTIMATE Imaging System

1) Field of View $\sim 1.5 \pi$ Steradians $=15,000$ sq. degrees
(typical movie screen - 1200 sq. degrees)
2) Spatial Resolution $\sim 0.65 \mathrm{arcmin}=.01 \mathrm{deg}$. Assume 2 pixels per minimum resolution implies 16 pixels/sq. arcmin

1 \& 2) $\rightarrow 36,000 \times 28,000$ pixel screen
3) Color -- 3 components
4) Dynamic Resolution ~ $10^{5}: 1 \rightarrow 17$ bits
5) Time Resolution ~ 60 images $/ \mathrm{sec}$
6) Stereopsis \rightarrow x2

$=771$ GBytes/sec (not including digital sound, closed-captioning, etc)

