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ABSTRACT: The efficacy of the UV spectroscopy technique used by Mariner 9 to

remotely measure ozone abundance at Mars is discussed. Previously-inferred ozone abundances

could be underestimated by as much as a factor of 3, and much of the observed variability in the

ozone abundance could be due to temporal and spatial variability in cloud and dust amount



INTRODUCTION

Ozone is a key to understanding atmospheric chemistry on Mars. Over 20 photochemical

models of the martian atmosphere have been published, and 03 is often used as a benchmark for

these models (e.g., Lindner, 1988; Shimazaki, 1989; Krasnopolsky, 1993). 03 abundance has

been inferred from instrumentation on several spacecraft, with the most complete coverage pro-

vided by Mariner 9 (Barth et al., 1973; Lane et al., 1973; Wehrbein et al., 1979). The Mariner 9

UV spectrometer scanned from 2100 to 3500 Angstroms with a spectral resolution of 15

Angstroms and an effective field-of-view of approximately 300 km2. The only atmospheric

absorption in the 2000 to 3000 A wavelength region was previously assumed to come from the

Hartley band system of ozone (Barth et al., 1973; Lane et al. 1973), which has an opacity of order

unity at winter polar latitudes (Lindner, 1988). Therefore the amount of ozone was inferred by

fitting this absorption feature with laboratory data of ozone absorption, as shown in Fig. 1 (Lane et

al., 1973). Mars 03 shows strong seasonal and latitudinal variation, with column abundances

ranging from 0.2 (im-atm at equatorial latitudes to 60 |im-atm over northern winter polar latitudes

(1 [im-atm is a column abundance of 2.689xl015 molecules cm'2). However, the 03 abundance is

never great enough to significantly affect atmospheric temperatures (Lindner, 1991; 1993a) or sur-

face temperatures and frost amounts (Lindner, 1990; 1992; 1993b). Figure 2 (Barth, 1985) shows

some of the previously-inferred 03 abundances.

MODELING PROCEDURE

A radiative transfer computer model is used to re-examine the Mariner 9 UV spectra. The

discrete ordinate method of Stamnes et al. (1988) is used to treat the scattering and absorption of

monochromatic radiation through the martian atmosphere. 03 absorption cross-sections from 2000

A to 3200 A are included (Daumont et al., 1983; Freeman et al, 1984). Ultraviolet absorption

cross-sections for CO2, O2, H2O, HC»2 and HI&I are negligible (e.g., Lindner, 1988;

1991;1993b). The Rayleigh scattering optical depth is computed as in Hansen and Travis (1974),

using parameters appropriate for Mars. Atmospheric composition is taken as 95% CO2 (Owen et

al., 1977). The altitude dependence of 03 is based on model results (Lindner, 1988).



Atmospheric properties are zonally averaged and assumed azimuthally-independent. The

region from the surface to 40 km altitude is broken into twenty 2-km-thick layers to account for

vertical inhomogeneity. The Chapman function is used to approximate the slant path in place of the

secant function (Smith and Smith, 1972), because the winter polar atmosphere always has large

solar zenith angles, and the secant function is in error for large angles. This work examines 57 *N

latitude in late winter (L$ = 343*), which is when the maximum 03 column abundance was

observed (Barth et al, 1973; Lane et al., 1973). [Ls, the solar longitude, is a seasonal index; LS of

0°, 90°, 180*, 270°, correspond to northern spring equinox, summer solstice, autumnal equinox,

and winter solstice, respectively]. The surface is covered by ice with an albedo of 0.6 (Warren and

Wiscombe, 1980; Hapke et al., 1981; James and Lumme, 1982; Warren et al., 1990; Lindner,

1993a). The altitude profile of temperature rises linearly from 150K at the surface to 160K at 10

km, and then falls linearly with altitude to 130 K at 40 km, typical for winter polar conditions

(Lindal et al., 1979; Kieffer, 1979).

Dust opacities varied from 0.2 to 1.0 for conditions other than global dust storms during

the Mariner 9 and Viking observations (Briggs and Leovy, 1974; Pollack et al., 1979; Lumme and

James, 1984), although dust opacities over winter polar latitudes may be slightly less [e.g.,

Lindner, 1990]. Dust opacity varies with wavelength (Zurek, 1978; 1982). The vertical

distribution of dust is well-mixed to 20 km altitude (Anderson and Leovy, 1978; Zurek, 1982;

Korablev et al., 1993). The single scattering albedo of airborne dust has a solar average of 0.9

(Clancy and Lee, 1991), but is only 0.6 in the 2000 A to 3000 A range (Pang et al., 1976;

Thorpe, 1977). Scattering of radiation by dust is represented by the Henyey-Greenstein phase

function, with an asymmetry parameter of 0.55 (Clancy and Lee, 1991). Typical cloud and fog

opacities of 1.0 are taken from theory (Kulikov and Rykhletskii, 1983) and observations (Moroz,

1976; Pollack et al., 1977; Clancy and Lee, 1991), although large seasonal and latitudinal

variations exist (Briggs and Leovy, 1974). A single-scattering albedo for cloud particles of 1.0 is

taken from observations (Clancy and Lee, 1991). The Henyey-Greenstein phase function with

asymmetry parameter of 0.55 is also used to describe the scattering by clouds (Clancy and Lee,

4

C-Z.



1991). Computational difficulties which accompany highly asymmetric phase functions are

removed with the Delta-L method (Wiscombe, 1977).

RESULTS AND DISCUSSION

Using a constant mixing ratio for 63 (e.g., Wehrbein, 1979; Lindner, 1988) and no

chemical or radiative interaction between 03 and clouds/dust, Fig. 3 shows that when typical

amounts of dust and cloud are present that significant underestimation of Os abundance occurs. A

factor of 3 times as much 03 is needed to generate the same spectrum the spacecraft would measure

for a cloudy, dusty atmosphere as for a clear atmosphere. If the scattering properties of martian

clouds and dust were well known, then their appearance would not be a problem, as a model

would be capable of retrieving the 03 abundance. However, these properties are not well known,

which raises doubts about the effectiveness of the UV reflectance spectroscopy technique for

measuring 03 abundance on Mars. The simulations shown in Fig. 3 are repeated for a range in

solar zenith angle (50°-90°), ground albedo (0.3-0.8), altitude distribution of 03, satellite viewing

geometries, dust scattering properties, and cloud, dust and 63 abundances. A factor of 3

underestimation is typical, with greater underestimation for high ground albedo or high dust opaci-

ties. Even if scattering by clouds is properly accounted for (as previously done with Mariner 9

data reduction in [4]), masking by dust can easily result in factor of 2 underestimation. Results are

not strongly dependent on solar zenith angle.

Spatial and temporal variability in temperature and water vapor have been claimed to ac-

count for the scatter of the data points in Fig. 2 (Earth and Dick, 1974). A decrease in temperature

results in a decrease in water vapor, assuming the atmosphere is saturated. A decreased water

vapor abundance decreases the availability of odd hydrogen (H, OH, and HO2), which converts

CO and O into COi catalytically, decreasing the abundance of O needed to form 03. However,

water vapor is a small source of odd hydrogen in the winter polar atmosphere compared to H2, and

may not account for most of the variability in Fig. 2 (Lindner, 1988). Masking by clouds and dust

may also account for some of the observed 03 variability, because the nature and opacity of the

clouds and dust at winter polar latitudes change significantly spatially and temporally. As the



maximum 03 abundance resides near the surface (Lindner, 1988), spacecraft must be able to

observe through the entire cloud and dust abundance in order to measure the total 03 column

abundance. If reflectance spectroscopy is used, as on Mariner 9, then the cloud and the airborne

dust must be traversed twice; first by the incoming solar flux down to the surface, and then once

again upon reflection from the surface out to the spacecraft In addition, the large solar zenith

angles at winter polar latitudes mean several times the vertical opacity of cloud and dust must be

traversed. Indeed, part of the observed latitudinal variation in C>3 abundance in Fig. 2 may be due

to the inability of the spacecraft to observe through the increasing effective optical depths as one

goes poleward.

By using a photochemical model which included multiple scattering of solar radiation,

Lindner (1988) showed that the absorption and scattering of solar radiation by clouds and dust

should actually increase 03 abundances at winter polar latitudes. Hence, regions with high dust

and cloud abundance could contain high 03 abundances (heterogeneous chemistry effects have yet

to be fully understood [Atreya and Blamont, 199O, Krasnopolsky, 1993]). It is quite possible that

the maximum 63 column abundance observed by Mariner 9 of 60(im-atm is common. In fact,

larger quantities may exist in some of the colder areas with optically thick clouds and dust As the

Viking period often had more atmospheric dust loading than did that of Mariner 9, the reflectance

spectroscopy technique may even have been incapable of detecting the entire 03 column abundance

during much of the Mars year that Viking observed, particularly at high latitudes. The behavior of

03 is virtually unknown during global dust storms, in polar night, and within the polar hood,

leaving large gaps in our understanding.

Other possibilities for measuring 63 abundance include solar occultation (Blamont et al.,

1989), IR observations in the 9.6 \un 03 absorption band (Espanek et al., 1991), and observations

of the Oi dayglow at 1.27 p.m, produced by photolysis of 03 (Traub et al., 1979). However,

further studies of these other techniques are required, especially as regards the effects of clouds

and dust.
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FIGURE CAPTIONS

Figure 1. Ultraviolet spectrum measured by Mariner 9 at 57*N latitude on orbit 144 (taken from

Lane et al., 1973). To enhance the 63 absorption feature, this spectrum was divided by one

obtained at 20*N latitude on orbit 144, where 03 abundances are minimal.

Figure 2. Measurements of the 03 column abundance previously inferred from the Mariner 9 UV

spectrometer data during the northern winter, Lg = 330-360*, in the northern hemisphere (taken

from Earth, 1985).

Figure 3. Synthetic spectra as would be observed by spacecraft for atmospheres with no cloud or

dust and 30 fim-atm 03 (solid line), vertical opacities of dust and cloud of 0.3 and 1.0, respec-

tively, and 30 |im-atm of 03 (dashed line), and vertical opacities of dust and cloud of 0.3 and 1.0,

respectively, and 100 nm-atm of 03 (dotted line). All cases assume a solar a zenith angle of 75°

(typical for winter polar observations), and a polar cap albedo of 0.6.
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