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FOREWORD

The fourth annual Space and Earth Science Data Compression Workshop was held on April 2,
1994, at the University of Utah in Salt Lake City, Utah. This NASA Conference Publication
serves as the proceedings for the workshop. The workshop was held in cooperation with the
1994 Data Compression Conference (DCC'94), which was held at Snowbird, Utah March 29 -
31, 1994.

The goal of the Space and Earth Science Data Compression Workshop series is to explore the
opportunities for data compression to enhance the collection and analysis of space and Earth

science data. Of particular interest is research that is integrated into, or has the potential to be
integrated into, a particular space and/or Earth science data information system. Participants are
encouraged to take into account the scientist's data requirements, and the constraints imposed by
the data collection, transmission, distribution and archival system.

Papers were selected from direct submissions to the Workshop and selected submissions to the
1994 Data Compression Conference (DCC '94). Thirteen papers were presented in 4 sessions.
Discussion was encouraged by scheduling ample time for each paper.

Tile workshop was organized by James C. Tilton of the NASA Goddard Space Flight Center,
Sam Dolinar of the Jet Propulsion Laboratory, Sherry Chuang of the NASA Ames Research
Center, and Dan Glover of the NASA Lewis Research Center. Contact information is given
below.
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ABSTRACT

This paper describes a study conducted by NASA Ames Research Center (ARC) in
collaboration with the Jet Propulsion Laboratory (JPL), Pasadena, California on the

image acceptability of the Galileo Low Gain Antenna mission. The primary objective of
the study is to determine the impact of the Integer Cosine Transform (ICT) compression
algorithm (Cham, 1989) on Galilean images of atmospheric bodies, moons, asteroids and
Jupiter's rings. The approach involved fifteen volunteer subjects representing twelve
institutions involved with the Galileo Solid State Imaging (SSI) experiment (Belton et al.,

1990). Four different experiment specific quantization tables (q-table) and various
compression stepsizes (q-factor) to achieve different compression ratios were used. It
then determined the acceptability of the compressed monochromatic astronomical images
as evaluated by Galileo SSI mission scientists. Fourteen different images were evaluated.
Each observer viewed two versions of the same image side by side on a high resolution

monitor, each was compressed using a different quantiza'tion stepsize. They were
requested to select which image had the highest overall quality to support them in
carrying out their visual evaluations of image content. Then they rated both images using
a scale from one to five on its judged degree of usefulness. Up to four pre-selected types

of images were presented with and without noise to each subject based upon results of a
previously administered survey of their image preferences. Fourteen different images in
seven image groups were studied. The results showed that: (1) Acceptable compression
ratios vary widely with the type of images; (2) Noisy images detract greatly from image
acceptability and acceptable compression ratios; (3) Atmospheric images of Jupiter seem
to have higher compression ratios of 4 to 5 times that of some clear surface satellite

images.

INTRODUCTION

The Galileo spacecraft was launched in October 1989, and it will reach Jupiter and its
moons in late 1995. Its mission includes Io flyby, releasing a probe into the Jovian

atmosphere, probe data capture and relay, Jupiter orbital insertion, and 10 satellite
encounters with Ganymede, Callisto, and Europa. In April 1991, when the spacecraft
first flew by Earth, the Galileo team commanded the spacecraft to open the 1.8m X-band

high-gain antenna (HGA), but it failed to deploy. The only way to communicate between
Earth and the spacecraft is now through the use of one of the two S-band low-gain

3
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antennas (LGA), which at Jupiter's range, can only support a telemetry data rate of 10
bit/second compared to the expected data rate of 134kbits/second in the HGA mode.
Since the detection of the HGA anomaly, several unsuccessful attempts (including a
major effort to perform hammering or pulsing of the deployment motor in December
1992) were made to free the HGA. A parallel effort was conducted from December 1991

through March 1992 to evaluate various options for improving Galileo's telemetry
downlink performance in the event that the HGA would not open.

This contingency plan was known as the Galileo S-Band Contingency Mission, a mission
based upon using the S-band LGA. This LGA mission includes major ground upgrades

as well as inflight reprogramming of the Galileo spacecraft microprocessors to
incorporate advance signal processing algorithms to boost the effective data rate. These
onboard algorithms include advance error-correction coding, packetizing, and data
compression schemes. A lossy image compression scheme known as the integer cosine
transform (ICT) scheme [2] [3] was proposed, which is simple enough for spacecraft
implementation. This scheme was extensively tested and was shown to provide good
compression performance on images. It can also give a wide range of rate-distortion
trade-offs for the image data, which accounts for over 70% of the total planned downlink
data. In March 1993,the Galileo Project abandoned further attempts to free the HGA and
adopted the LGA mission as the baseline.

ARC and JPL Collaboration, With ICT image compression algorithm baselined into the
Galileo LGA mission, the evaluation and validation of this compression scheme with
Galileo SSI principal investigators - in- the-loop is even more critical. The joint study
conducted by ARC and JPL addressed this issue and resulted in validation of the ICT
algorithm in terms of acceptability by the science user. The study incorporated
representative images, anticipated noise and instrument signatures, quantization tables,
expected compression ratios and most importantly, the science user community who
evaluated and validated the expected compression scheme. Furthermore, the SSI
principal investigators became more educated on the compression scheme and its effects
on the visual quality of the Galilean images.

Ames' role was to develop the experimental design, implement the design, collect, and
analyze the data from the subjects, and report findings and results. A pre-experiment
survey of all members of the SSI was first conducted to collect preliminary information
about the scientific interest of the expected imagery, what scientific questions are
targeted for the images, how the questions are answered and what applications would be
performed on the images. The survey results provided the basis for the PI-in-the-loop
experiment. Subjective judgments and ratings were made by the scientists in a controlled
environment at the Galileo SSI Compression Workshop held at NASA ARC. Ames
collected, analyzed and reported the results to JPL.

JPL provided guidance to the ARC personnel and facilitated close communication with
the SSI team members. JPL provided the ICT algorithm, library of representative
images, quantization tables in support of the experiment.

ICT Algorithm. The ICT was chosen for the spacecraft because of its simplicity and
performance. ICT can be thought of as an integer approximation of discrete cosine
transform (DCT), which is regarded as one of the best transform techniques in image
coding. The transform-based coding scheme consists of three stages: the data transform

stage, the quantization stage, and the entropy coding stage. Both ICT and DCT are
independent from source data statistics, and there are fast algorithms to perform ICT and
DCT. Unlike DCT which requires floating-point or fixed-point operations, ICT requires

only integer multiplications and additions, making it much simpler to implement than the
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DCT. The elementsin an ICT matrix areall integers,with sign andmagnitudepatterns
thatresemblethoseof theDCT matrix. Also therowsof theICT matrixareorthogonal.
The similarity of the ICT matrix to the DCT matrix, togetherwith the orthogonality
propertyof theICT, guaranteethattheICT compressionschemeperformsalmostaswell
astheDCT compressionscheme,JointPhotographicExpertGroup(JPEG).

METHODOLOGY

Basic Experimental Assumptions. We assumed that images can be .grouped according to
their visually based scientific features of interest and that experienced investigators

having similar interests in these images have common requirements for acceptable visual
fidelity. These assumptions permitted us to design an experiment around a reasonably
small number of "representative" images as well as a manageable number of interested
members of the SSI science team.

Experimental Design and Approach. The experimental design used to administer the
variables of interest may be characterized as a 4 by 32 by 2 by 15 parametric design. The
variables were:

q - Tables 4 tables
Quantization level 32 levels
Image type 2 (no noise; with noise)
Observers 15

Pair Comparison Method: Method of Paired Comparison was used [5]. Each observer
was presented two compressed versions of the same image at a time side by side, varying
only in their quantization level. They were not told anything about either image and only
had to select which of the two possessed the highest overall quality to support them in
conducting their visual examinations of that image. Then they rated each image on a
scale from "1" to "5" where "1" represented a totally unacceptable scientifically-useless

image, and "5" represented an image of the highest possible usefulness, value, or merit.
A score of "3" was used as the threshold between acceptable and unacceptable for

subsequent scoring purposes. No image pre-processing (contrast enhancement,
stretching, etc.) were conducted on the images.

Method of Progressive Division: The Method of Progressive Division was used to

quickly focus in and identify the optimal quantization level (q-level) for a given image
and q-table, a group of observers were presented the same image and q-table with each

person being presented a progressively smaller range of q-levels. The objective was to
identify the quantization level(s) which separated an unacceptable from an acceptable
rating. It will be recalled that a rating of "3" was considered as the threshold between an

acceptable and an unacceptable image. Thus, images given a score that was hig.her or
lower than "3" were used to determme when to decrease or increase the quantlzation

levels, respectively, in subsequent testing. That acceptable half was presented to the
next observer and bisected again, etc. This approach is based upon the (untested but
reasonable) assumption that these observers possess a fairly consistent set of image
evaluation criteria.

Observers: Fifteen people participated as subjects in the experiment. Six were SSI team
members (representing six different institutions) while the remaining nine were
participants at the workshop from another nine institutions. All possessed corrected or
uncorrected 20:20 acuity and viewed the images on a high resolution SUN monitor.
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Images Tested: Based upon meetings and telephone interviews with SSI team members
at Ames and elsewhere we identified the following image classes of most interest to
them. Images were selected for presentation for each of these seven classes from a larger

ima.ge library provided by JPL. The experiment was conducted in a controlled
environment at the SSI Compression Workshop held at Ames on July 22, 1993. Images
were selected from each of the classes listed below, along with their respective noise-
superimposed images.

Image Classes Studied

Solid surface with limb
Solid surface without limb
Solid surface with terminator
Gaseous surface without limb

Small bodies (e.g., asteroid)
Dark side phenomena/lightning
Rings

A total of fourteen separate images were studied in the experiment (cf. Table 1). Four
represented the solid surface without limb category from Ganymede and Io. Three
represented the solid surface with limb of Europa and Io, and another three represented a
gaseous image without limb (all Jupiter). There was one image each representing a solid
surface with terminator, small body (Gaspra), darkside phenomena (lightning), and rings
(Saturn). All image files were cropped to fit side by side on the high resolution monitor
and all but three were magnified x 2 in order to better demonstrate the effects of ICT
compression. Four of the fourteen images were superimposed with noise frames.

Table 1 Image Details

Image Class Name Body File Name Noise Mag. Q-tables
(1) (2) (3)

Solid with Limb

Solid - No Limb

Solid with Termin.

Gaseous - No Limb

Small Bodies

Darkside/Lightning

Rings

Europa r.6.r
Europa r6.noise.r
Io r.9.r

Ganymede r.4.r
Ganymede rq538.g.r
Io sr7.raw.r
Io sr7.noise.r

Callisto r. 1.r

Jupiter
Jupiter
Jupiter

Gaspra

Earth

Saturn

r.14.r
r.15.r

rq538.j4o.r

rq538.gas.r

rq538.1itn.r

r.11.r

X

X

X

X

x2 0 1 2
x2 0 1 2
x2 0 1 2

x2 0 1 2
x2 0 1 2
x2 0 1 2
x2 0 1 2

x2 0 1 2

xl 0 2 3
xl 0 2 3
xl 0 2 3

x2 0 1 2

x2 0 1 2

x2 0 1 2
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q -Table Selection: Four quantization (q) tables were developed for use in this study by
A. B. Watson of Ames Research Center [8]. Each was designed to produce maximal ICT

compression for different types of image characteristics, e.g., low contrast soft-boundary
details, medium to high contrast high spatial frequency details.

RESULTS

Final Results Summary_

Compression as a Function of Image Type: In general it may be said that the maximum
ICT compression level(s) cannot be predicted apriori for a given image type and/or q-
table. Nor are the perceptual response characteristics of observers understood well

enough to predict whether unacceptable distortions of useful features with the digital
image will be produced by the ICT algorithm at different q-levels. Visual ratings and
associated commentary made by experienced observers/scientists are needed in order to
determine how well a particular q-table and quantization level handles certain kinds of
details. Nevertheless, the present data does provide some useful insights into the relative

magnitude of acceptable compression ratios for different classes of images, noise types,

quantization matrices, and levels presented.

The present data were grouped into a low, medium, and high acceptable image ICT
compression ratio category. The low compression ratio group was selectively defined as
ranging from no compression (1:1) to 4:1 and 8:1. The four images having superimposed
noise all fell into this category regardless of which q-table was used.

There were three images in the medium acceptable compression ratio category (i.e., from
8:1 to 17:1), viz., r.l.r, r.4.r, and r.6.r. All three are solid surface images characterized by

the presence of high spatial frequency details such as craters, linear structures, and other
varied shapes of medium to high contrast.

The highest acceptable ICT compression ratio group was, on the basis of the present
results, defined as higher than 35:1. Six images fell into this group. They are all
relatively diverse from one another in image detail and deserve detailed commentary.
Table 2 is a summary of acceptable image quality for each image type and q-table. The
"Safe" range of compression values cited represent a more conservative (wider range of
values) estimate of acceptable compression. These values take into account response
variability. The "Likely" range represents our estimate of the actual range of

compression ratios for each condition.

Influence of Radiation Noise: Four image types contained superimposed noise which
would be expected to influence its visual appearance after compression. Three types of
simulated radiation noise were studied. Two (Noise type B and D specified by JPL)
consisted of random dots and short lines at random inclinations. Noise type C specified

by JPL consisted of identical pairs of dots and short inclined lines separated by about
1/20th of the frame dimension. In three of these cases both a noise and non-noise version

of the same image was quantified. It was found that radiation noise greatly reduces the
ICT compression ratio that is judged as being acceptable to these observers. In the most
extreme case found (r.15.r of the gaseous atmosphere of Jupiter vs. the same image with

noise [ rq538.j4o.r]) compression was reduced from 57:1 down to <3:1 (q-table 2) by the
noise alone. In a less extreme case (r.6.r vs. r6.noise.r of Europa), compression of the

same image was reduced from about 12:1 down to 5:1 (for q-table 0) due only to noise.
In a third case involving a solid image without limb and high spatial detail (r.4.r vs.
rq538.g.r of Ganymede) compression was reduced from about 10:1 down to 8:1 (q-table



Table2
Summaryof AcceptableImageQuality

CompressionResultsbyTypeof Imageandq-Table

ImageType file Acceptance q = 0 q = 1 q = 2 q = 3
Criterion

Solid Surface r.6.r Safe 8-12 9-15 4-12 .....
with Limb Likely 8-12 9-15 8-12 .....

r.9.r Safe 37-42 35-46 44-46 .....
Likely 37-42 41-46 44-46 .....

r6.noise.r Safe 1-5 < 2 < 3 .....
Likely 4-5 < 2 < 3 .....

Solid Surface r.4.r Safe 9-10 6-9 8-12 .....
without Limb Likely 9-10 6-9 8-12 .....

sr7.raw.r Safe >38 23-41 23-36 .....
Likely >38 29-41 32-36 .....

rq538.g.r Safe 4-8 < 3 <4 .....
Likely 4-8 < 3 < 4 .....

sr7.noise.r Safe 1 < 2 < 2 .....
Likely 1 < 2 < 2 .....

Solid Surface r.l.r Safe 11-17 12-15 11-18 .....
with Terminator Likely 11-17 12-15 11-18 .....

GaseousSurface r.14.r Safe 55-67 51-71 54-72 .....
without Limb Likely 55-67 51-62 54-72 .....

r.15.r Safe 36-53 ..... 42-57 48-53
Likely 36-53 ..... 42-57 48-53

rq538.j4o.rSafe 1 ..... < 3 6
Likely 1 ..... < 3 6

SmallBodies rq538.gas.rSafe 35-61 37-50 36-54 .....
Likely 35-61 37-50 36-54 .....

rq538.1itn.rSafe 71-75 80-86 83-88 .....
Likely 71-75 80-86 83-88 .....

Rings r. 11.r Safe > 36 > 45 > 48 .....
Likely > 36 > 45 > 48 .....



0). Each q-table used produced slightly different results but of a comparable magnitude.
In another image involving radiation noise (rq538.j4o.rof Jupiter) the q-table 0 image
could not be compressed at all and still be acceptable. However, only two observers
rated this image and neither responded to the instructions very seriously. Results for the

q-table 2 and 3 yielded compression ratios of less than 3:1 and 6:1, respectively.

Compression as a Function of q-Table: By scanning vertically down Table 2 for each q-
table one can quickly gain an understanding of the relative effect each q-table had on
acceptable compression ratio by image. Q-table 0 yielded the highest acceptable ICT
compression in only two (14%) of the fourteen images studied [viz., sr7.raw.r, and
rq538.g.r]. Both are solid surface without limb. Q-table 1 yielded the highest acceptable
ICT compression from 9:1 to 15:1 in only one (1%) of the fourteen images ([viz., r.6.r].
Q-table 2 yielded the highest acceptable compression in eight (57%) of the fourteen

images studied.

GENERAL CONCLUSIONS

Radiation noise tends to reduce ICT compression acceptance ratings if high frequency
information is desirable. Radiation noise also degrades low frequency information if the

ICT compression used also eliminates high frequency information. The results showed
that: (1) Acceptable compression ratios vary widely with the images; (2) Noisy. images
detract greatly from image acceptability and acceptable compression ratios; (3)
Atmospheric images of Jupiter seem to have higher compression ratios of 4 to 5 times
that of some satellite images.

DISCUSSION

It is clear that the impact of compression algorithms on images need to be studied further
for specific science domains and specific principal investigators' scientific use for the
images. Further, the ICT compression scheme is a block transform coding scheme. It
performs lossy image compression, and it exhibits blockiness and checkerboard artifacts
to different degree in the reconstructed image, depending on the image background and
compression ratio. These block-oriented artifacts are caused by quantlzmg the transform
coefficients of the ICT, and there are standard techniques in the literature to "remove" or

"hide" these artifacts subjected to certain visual criteria. Most of the standard
techniques assume no knowledge of the original image. The Galileo image compression
scheme operates in a unique scenario where an addressable 96 pixel x 96 pixel area in an
image can either be losslessly compressed or uncompressed (truth window). This area
can provide valid statistics and boundary information to facilitate image reconstruction
and artifacts removal. New and modified image restoration and enhancement techniques
are now being developed to take advantage of the information provided by the truth
window. New experimental procedures can be designed to evaluate the restoration and
enhancement techniques by comparing the reconstructed images (with and without
enhancements) with the original images. The PI-in-the-Loop approach can be a good

approach to assess the validity of the compression techniques.
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ABSTRACT

This paper describes the lossless and lossy image compression algorithms to be used on board

the Solar Heliospheric Observatory in conjunction with the Large Angle Spectrometric

Coronograph and Extreme Ultraviolet Imaging Telescope experiments. It also shows

preliminary results obtained using similar prior imagery and discusses the lossy compression

artifacts which will result. This paper is in part intended for the use of SOHO investigators

who need to understand the results of SOHO compression in order to better allocate the

transmission bits which they have been allocated.

INTRODUCTION

The Solar and Heliospheric Observatory (SOHO) is currently scheduled for a July 1995 launch

into a lunar L1 orbit. The software described will compress images from the Large Angle

Spectrometric Coronograph (LASCO) (a wide-field white light and spectrometric coronograph)

and the Extreme Ultraviolet Imaging Telescope (EIT) experiments. LASCO will image the solar

corona from about 1.1 to 30 solar radii, and has a built in spectrometer to measure, point-by-

point, plasma temperature, density, bulk and turbulent velocities, and the direction of the

magnetic field.

The transmission bandwidth (5200 bits/sec) is insufficient to transmit the desired imagery. In

order to resolve this problem, our software implements two image compression algorithms:

1. A lossless image compression algorithm.

2. A lossy image compression algorithm, expected to be used for most of the imagery. In most

cases investigators are expected to select an output of about 1.6 bits/pixel (bpp), a

compression factor of 10 from the input 16 bit format. This will allow transmission of about

240 images/day, plus some other overhead and small transient images.

The code is mostly written in the C programming language. It will run on a Sandia SA3300

CPU, a rather slow (about 1 MIPS) radiation hardened space qualified processor which was

designed to emulate a National Semiconductor 32C016 .Series CPU.

The relatively slow data rate allows us to use compression algorithms which are of higher quality

on the solar test imagery than published standards such as JPEG, in spite of the hardware

limitations of the target computer. This was accomplished at the cost of increased complexity

and processing load. However, these are acceptable for our application because:

1. The data will be gathered at substantial cost.

11



2. As in many space applications, the allotted transmission bandwidth is the major limiting

factor on the transmitted spatial and radiometric resolution, and on the frequency with which

images can be transmitted. This is because transmission bandwidth translates directly to

power and storage requirements, and thus to the weight and cost of the satellite.

As in many space applications, the imagery will be reconstructed (decompressed) by a work

station on the ground with much more computing power than the compressing computer.

Some comparisons with the independent JPEG algorithm will also be given.

This statistics that appear in this paper are somewhat preliminary. The final paper may use

somewhat different algorithms which may produce better results. In particular, several changes

to our algorithms will be investigated in order to insure that the result is as close to the optimal

as is practical within the constraints of the target processor. For lossless compression this might
include the use of a non-integral number of bits to code the least significant fraction of the split

coder, or the use of adjusted binary codes after the style of Golomb. It is not clear at this time

what this might include for lossy coding.

LOSSLESS COMPRESSION ALGORITHM

The method described in

Rice, "Some Practical Noiseless Coding Techniques, Part IN, Module PSI14,K+", JPL

Publication 91-3, 11/91

served as a starting point for the development of the lossless compression algorithm because:

1. It requires relatively little code or time to implement.

2. Very few bits are needed to provide small block size adaptivity. This is important because

there is expected to be a great deal of difference in brightness and texture between different

parts of the image, and because CCD array sensors develop small area defects.

Various changes were made to that algorithm. In brief:

1. Different choice of block size, and the use of bi-level two dimensional blocks.

2. More adaptive classes.

3. Triplet coding was not implemented because it is anticipated that the 14 to 16 bit images will

be statistically random in the lower few bits.

4. A somewhat improved prediction algorithm.

5. A somewhat more complex coding technique was used to keep down the number of bits used

for adaptivity.

An optimal DPCM technique was also investigated. The weights were determined by a least

squares fit. This produced predictions which were then input into the modified Rice algorithm.

This improved the compression factor by only 5% for the 13 bit eclipse image. The

improvement will probably be even smaller for the 14 and 16 bit imagery that the software will

be applied to. Hence it was decided that it was not worth performing least squares processing

to determine optimal weights.

Small scale adaptivity outweighs the advantages of more sophisticated entropy coding. For

example, it significantly out-performs pure Huffman coding techniques on sample images similar

to those expected from SOHO. In fact it performs somewhat better than would appear to be
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possibleon the basisof whole-image "entropy" measured in terms of the frequency of original

pixel values, or in terms of the differences from predicted pixels. Note, however, that some

methods, such as lossless JPEG, do produce better results for many 8 bit images. It is quite

possible that a better algorithm may be used in the final software.

LOSSY COMPRESSION ALGORITHM

The ADCT (Adaptive Discrete Cosine Transform) method described in

Chen and Smith, "Adaptive Coding of Monochrome and Color Images", IEEE vol 25 #11,

Nov 1977, pp. 1285-1292

served as a starting point for the development of the lossy compression algorithm because:

1. It is a method with which NRL Code 7230 has a great deal of experience. We have

implemented that algorithm (somewhat differently) in a software package which has been

used operationally for some time by various U.S. government agencies.

2. It is a fully adaptive ADCT, which chooses the number of bits used to specify each DCT

transform coefficient within each class of block according to its activity. No a priori statistics

are required.

3. Max-Lloyd Gaussian quantization is used in the frequency domain, which performs much

better than uniform quantizers.

4. One may specify a definite compression factor can be specified over a large, fairly continuous

range.
5. It is not especially fast or simple, but it is certainly faster than known high quality fractal and

vector quantization algorithms.
6. It remains one of the very best image compression methods yet developed, performing better

than many of the more recently published algorithms.

Various changes were made to that algorithm, some of which improve upon our earlier work.
In brief:

1. A different block size was chosen, to improve quality, and to mesh better with other intended

spacecraft processing.

2. More block classes (up to 16, depending on image size) and a somewhat different method of

separating classes (a compromise between block variance and maximum coefficient scaling)

is used. These changes were done in order to largely eliminate the discontinuities in

brightness and texture that occurred across block boundaries, at the price of somewhat larger

RMS pixel errors.

3. The quantization tables are normalized somewhat differently.

4. Very low intensity coefficients are randomized to prevent systematic quantization errors

leading to bright or dark spot artifacts.

5. Several details not specified by Chen and Smith were provided by us, such as:

a. The bit allocation table is sent efficiently, employing run length encoding of alternate

direction diagonals.

b. The coefficients are scaled so as to emphasize the most visible features.

The modified algorithm produces surprisingly good results. In particular, the existence and

position of edges remains accurate up to fairly high compression factors (but some blurting

occurs, there are echoes and shifts in the radiometric centers of isolated bright points, and there
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are some discontinuitiesat block boundaries). Preliminary work using full search vector
quantizationsdid not yield asgood results. Wavelet transformmethodsmight producemore
continuousresultsacrossblock edges,but that did not generallyappearto bea problemfor the
sampleimagesat the desiredcompressionfactors.

As a test, the eclipseimagewascompressedandreconstructedusingthe lossyalgorithm. The
differenceimagewasthencompressedusinglosslesscompression.Thetotalnumberof bits used
was about the sameas to code the image using losslesscompressionalone. Therefore the
losslessand lossyalgorithmsstoreaboutthesameamountof informationper bit.

APPROPRIATE IMAGERY AND COMPRESSION FACTORS

The software was written to apply to 2 dimensional continuous tone monochrome still imagery,

with up to 16 bits/pixel. A number of arbitrary factors in the design were decided on the basis

of the solar test imagery.

Both the lossless and lossy compression algorithms perform best with images which are

somewhat smooth. For example, they will not perform very well with images that have been

digitized in a small number of bits or quantized at a small number of levels, such as dithered

images, nor with extremely noisy images, such as one-look SAR.

Both the lossless and lossy compression algorithms perform sub-optimally on images which are

so smooth that a significant fraction of pixels are perfectly predictable from their neighbors; the

14-16 bit quantization of our input data will probably contain noise or small scale features in the
lower few bits.

The Iossy algorithm performs sub-optimally on isolated bright and dark spots or lines, although

edges between two regions of differing brightness are represented fairly well. In addition, images

containing features with a very wide dynamic range may tend to distort small features with low

contrast levels, and some noise is introduced into very low contrast areas. For example, images

consisting of many stars or spectral lines would be inappropriate.

If lossless compression is applied to inappropriate images, substantially more bits will be used

than are needed. Lossy compression of inappropriate images will blur features, shift the

radiometric centers of isolated bright and dark spots, and introduce shape distortions or lose small

and subtle features. It may also introduce discontinuities in brightness and texture at block

boundaries.

For this project the lossy compression software was intended to be applied at a compression

factor of 10 to 15 relative to 16 bit/pixeI input, yielding 1.07 to 1.6 output bits/pixel. The

algorithm can produce adequate results at somewhat smaller compression factors, and it could

theoretically be applied at compression factors up to several hundred. In practice, the

inefficiencies due to packet format and small block size make our implementation inappropriate

above a compression factor of about 20.

Applying lossy compression with excessive compression factors yields problems similar to

applying it to inappropriate images.
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DEFINITION OF TERMS

There are a number of terms that we use in evaluating the performance of our software. These

terms are defined in many different ways by different researchers.
t

Compression Factor relative to the 16 bit/pixel input format:

Bits in original image (at 16 bits/pixel) with no overhead
Off6 =

Bits in compressed image with overhead including packets

(1)

RMS Error

RMS Error=_Mean Square (original image - reconstructed image)

Note that RMS error is very close to standard deviation for both our technique and the

independent JPEG algorithm, because systematic bias is negligible in both cases.

Normalized Mean Square Error:

Mean Square (original image - reconstructed image) (3)
NMSE =

Mean Square (original image)

Other definitions of NMSE, in which the mean square pixel value is replaced by the maximum

or maximum possible value, are quite common. Errors shall be reported both for pixels and for

gradients (first differences, taken along both image directions). The former is scientifically

meaningful because plasma brightness can be related to total electron content, the latter because

feature detection and recognition depends on detection of edges and texture.

Throughout this paper we have omitted the approximately .0625 bits/pixel to be expected in

compression packet overhead, as well as the overhead to be used for other types of packets and

transmitted information.
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TEST IMAGES

We use 5 test images. We shall also test with parts of images masked out. Masking will

sometimes be used in the spacecraft to omit parts of the image covered by the occulters.

(Occulters are used to eliminate very bright light which would otherwise wash out the desired

imagery.) Masking is a very simple form of additional compression, which eliminates the bits
needed to code the masked out features.

Image Name

Eclipse

Same, masked

Same, masked 2
Vidicon

Same, masked

Helio

H_
Lenna

Pixel

Columns*Rows*Bits

512"512"13

512"512"11

512"1024"13

1024"1024"14

512"512"8

Actual Source Instrument

Ground Photograph
II II

II II

Solar Max
l| ||

HRTS Spectroheliograph

Similar to LASCO/EIT

telescope

C1

C1

C3

C2

C2

E1T

HRTS H_

Human Photograph

Err, but lower contrast

None

The HRTS images were summed in 2*2 pixel blocks to reduce the data to the approximate

resolution of EIT. Note that the Lenna (sometimes Lena) image has been included simply

because it is probably the most commonly used test image in the image processing field. No

importance was given to getting good results with Lenna.

All of the test images except Lenna are shown in the figures.

LOSSLESS COMPRESSION RESULTS

Results are first listed for the original test image. 16 bit rescaled values are also very

pessimistically estimated by assuming that the additional bits are random. Real imagery should

perform better.

Image CFl6 CFI6, rescaled bit.qpixel, rescaled

Eclipse

Same, masked

Same, masked 2
Vidicon

Same, masked

Helio

H_
Lenna

2.24

2.35

2.64

3.96

4.64

1.63

1.77

3.37

7.13

6.80

6.06

4.04

3.45

9.80

9.04

4.75

bits/pixel

1.58

1.63

1.77

1.77

1.89

1.25

1.45

1.25

10.13

9.8

9.06

9.04

8.45

12.8

11.04

12.75
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LOSSY COMPRESSION RESULTS

Lossy compression, by definition, involves the loss of intbrmation. The tbllowing table

represents the results of compressing the test images to a nominal 1.6 bits/pixel:

Image Pixel Error Gradient Error

SOHO JPEG SOHO JPEG

RMS NMSE RMS NMSE

Eclipse

Same, masked

Same, masked2
Vidicon

Same, masked

Helio

H_,
Lenna

RMS NMSE

10.9 1.1E-5

10.2 9.2E-6

9.3 9.3E-6

1.7 8.6E-5

1.5 5.7E-5

100.5 5.2E-3

58.2 1.4E-4

3.5 9.8E-4

19.2

n/a

n/a

3.7

rda

114.5

70.9

3.24

3.3E-5

n/a

n/a

4.1E-4

n/a

6.8E-3

2.1E-4

8.3E-4

RMS NMSE

13.8 .077

13.1 .069

11.8 .080

2.1 .038

1.9 .025

135.0 .026

85.0 .123

4.6 .156

25.6

n/a

n/a

5.3

n/a

173.6

104.1

5.0

.263

n/a

n/a

.241

n/a

.425

.185

.183

It was not practical to provide JPEG results for the masked images, because the independent

JPEG code, as supplied did not implement masks.

Pixel errors are better than those from JPEG, partly because the independent JPEG software was

designed to handle 8 bit imagery, so our imagery was scaled to fit. (With real 8 bit test imagery,

the results were mixed.) The exception is Lenna, where JPEG does noticeably better. It is our

belief that the very extensive use of Lenna, together with RMS error or NMSE, in the

compression literature, caused the JPEG and independent JPEG algorithms to be somewhat biased

to produce good results with that image.

Gradient errors are uniformly better than those from JPEG, partly for the same reasons, but partly

because gradient errors are rarely looked at, so that they probably did not much influence JPEG

design.

The figures show that there is very little visual loss. For all images the major apparent change

is a blurring of isolated bright and dark points. There is also some noticeable blurring of edges,

and there is a modification and introduction of some noise into low contrast features. Overall,

however, the compression quality is excellent.
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Fig. 1A OriginalEclipseimage,512"512pixels Fig. 1BSOHOcompressionto about1.6bpp

Fig. 1CSame,with Cl-like mask Fig. 1DSame,with C3-1ikemask
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m

Fig. 2A Stretched 64*64 pixel section of 1A Fig. 2B Same for 1B

Fig. 2C Same for JPEG compression Fig. 2D Same for 1D
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Fig. 3A Original Vidicon image,512"512pixels Fig. 3B SOHOcompressionto about1.6bpp

Fig. 3C Samewith mask
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N94-28254

Comparison of the Lossy Image Data Compressions for the

MESUR Pathfinder and for the Huygens Titan Probe

P. Rfiffer 1, F.Rabe 1, F.Gliem 1, H.-U. Keller 2 _/,--_ 7

1 Technische UniversitZt Braunschweig, Postfach 3329, D-38023 Braunschweig F .- _
2 Max-Planck-Inst. f. Aeronomie, Postfach 20, D-37191 Katlenburg-Lindau

Abstract : The commercial JPEG standard complies well with the specific requirements of

exploratory space missions. Therefore, JPEG has been chosen to be the baseline for a series

of spaceborne image data compressions (e.g. MARS94-HRSC, -WAOSS, HUYGENS-DISR,

MESUR-IMP). One S/W-implementation (IMP) and one H/W-implementation (DISR) of

image data compression are presented. Details of the modifications applied to standard

JPEG are outlined. Finally a performance comparison of the two implementations is given.

1 Introduction

This paper introduces two lossy image data compressions designed for exploratory space

missions. Both compressions represent task oriented modifications of the Joint Photographic

Expert Group ('JPEG) standard for still image data compression [1]. Accordingly, both are

based on Discrete Cosine Transform (DCT).

For the NASA/ESA Cassini/Huygens Descent Imager Spectral Radiometer (DISR) 1 [2] the

mission profile required the development of a dedicated compression hardware. Apparently,

both the mission profile of the NASA Imager for MESUR Pathfinder (IMP) 2 [3] and the

availability of a RISC central board computer supported a completely software oriented

implementation. The modifications of the JPEG scheme can be categorized as :

(a) simplifications for H/W savings (DISR)

(b) improved data dropout robustness

(c) adaption of compression algorithms to the actual scene

1Principle Investigator : M.G. Tomasko, Univ. of Arizona
_Principle Investigator : P. Smith, Univ. of Arizona
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2 JPEG baseline scheme

Load/Select

Load/Select

Image ] DCT

Data • 8 x 8

Blocks

Load/Select

i °c- T blo,,,,Q Huffman -
Table

,, ,, Ill I

[ [ [_ ,, Compressed

Image
]Coefficient[ [DC/ACI I _. I Data

-'[ Quanti- _-_ Encoder II I[ zation I [ Huffman HFor_n_t_ter[ "

AC-

' Huffman-
Table

I t

Figure 1: Data/control flow of JPEG sequential DCT baseline scheme

The JPEG standard describes a collection of image compression tools from which a subset can

be selected to satisfy application specific requirements. JPEG offers four modes of operation

(1) Sequential DCT, (2) Progressive DCT, (3) Sequential lossless and (4) Hierarchical mode.

Sequential DCT (1) is well established and is implemented within numerous H/W- and S/W-

applications. Therefore, the "baseline system" option of sequential DCT was selected as the

compression scheme for IMP and DISR.

The sequential DCT mode consists of a "baseline system" and an "extended baseline system".

Contrary to the "extended baseline system" the "baseline system" represents a minimum

of coding flexibility, defined by the capability of the decoder. This scheme is splitted into

a sequence of DCT-operation, coefficient quantization and Ituffman coding (sec Figure 1).

Finally a data formatter organizes the compressed data.

DCT based transform coding is well suited for compression of pixel data with high correlation

between adjacent pixels. Application of the DCT to a 3/1 x N_ array of pixel intensity values

(image domain) maps these values into a N1 x N_ array of coefficients (frequency domain).

Because of the DCT energy packing nature most of the image energy now is concentrated into

a small number of neighbouring and highly dccorrelated coefficients. The residual majority

of coefficients represents a small fraction of image energy only.

Moderate savings of computing time (DCT operation) and limitation of error propagation

are the rationals for the subdivision of the image array into nonoverlapping blocks each of
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Coefficient block ::_ Coefficient substring
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• DC coefficient (0) is treated separately

Figure 2: Rearranged coefficient block

size M x M pixels. However, signal to noise ratio degrades with decreasing block size. M = 8

and M = 16 provide a reasonable compromise between these contradictory constraints.

In order to increase the coder efficiency the coefficients of the two-dimensional array are

rearranged in zigzags to a one-dimensional string representation (Figure 2) [4]. The dis-
tance between coefficient localc and the upper left corner reflects thc spatial frequency. The

coefficient values have the tendency to decrease with increasing spatial frequency. Coeffi-

cients with values below a coefficient dependent low bound arc set to zero in the case of

quantization. Therefore zigzag rearrangement increases the length of "zero" sequences.

Data compression is achieved by

1. coefficient quantization, which reduces the accuracy and therefore the number of bits

per coefficient (lossy operation)

2. coding which optimizes (reduces) the average word length of coefficient representation

(lossless operation)

The baseline system operation of coefficient quantization is based on the model of an uniform

quantizer. It uses an individual quantization step width for each coefficient of the substring

and for the DC value.

Quantization values arc set individually using perforfiaancc criteria such as human visibility

or any kinds of image signal qualitics. They are stored using a zigzag arranged quantization

table (Q - Table). JPEG offers the selection of one out of four possible Q-Tables. The
selection is fixcd for the complete image. Compression amount is user controlled by a factor

called quality level. Dcpending on this factor the quantization values of the actual Q-Table

are rcscalcd before the quantization starts.
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The baselinesystemdistinguishesthe codingof the single DC-coefficient and the M 2 - i AC-

coefficients. While there is only one DC-coefficient for each coefficient block it is sufficient

to code the DC magnitude only. Accordingly coding of the AC-coefficients involves both,

coding of the coefficient magnitude as well as coding of the coefficient position.

3 Requirements derived from mission profiles

mission

target
DISR Titan

IMP Mars
experiment ] averaged

operation time data rate

2.5h _

30d- 1 a 600bps

total amount

of data
image

rate
implemen-

tation

450 bps 4 Mbit/mission 10/s H/W

0.2/min50 Mbit/d s/w

Table 1: Mission profiles

The major aspects of the mission profiles are summarized in Table 1. IMP will be launched in

1996 and will land on Mars in 1997. During a 30 days primary and a second operation which

is extended to one year IMP will take different kinds of images (single images, panorama)

and will monitor the rover operation. Analysis of preceding images will be used to define

both the best suited imaging mode and compression mode. Requirements for the IMP image

data compression are

(a) a 256 x 256 image has to be compressed within 5 minutes

(b) automatic operation, but human interaction

(c) self adaption to spatially varying image statistics, target compression factor selcctable,

image quality adjustable

(d) compliance with RISC board computer capability

Due to the moderate image rate (see (a)) no dedicated H/W is needed. Unfortunately, this

comfortable and flexible situation is not applicable to the tIuygens Camera.

Cassini with its daughter probe Huygens will be launched in 1997 and will arrive at Saturn

moon Titan in 2006. After release by the orbiter the probe will descend through Titan's

atmosphere down to its surface within approximately 2.5 hours. Only during this descent

DISR will take, preprocess, compress and transfer images. Due to this mission profile the

image data compression concept for DISR has to comply the following requirements :

(a) a 256 x 256 pixel image has to be compressed in less than 0.1 s

(b) completely automatic operation, human interaction via telccommand is impractical

because of signal propagation time (70 rain. one way, 150 min. operation time)

(c) self adaption to spatially varying image, fixed set of target compression factors
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(d) compliance with environmental requirementsas board area (225cm2), mass (2109),
peak power (0.6W) and averagedpower consumption (0.4W @imagcfrequency = 10
images/s)

Driven by these tough requirementsa dedicatedhardware solution has been implemented
for DISR.

4 IMP image data compression

Target Compression
Factor

Image

Data

Load/Select

Load/Select

DCT
8x8

Blocks

Load/Select

Added
f Actual

t" Compression
FactorControl

Processor
,. More Tables

II IIL  om rss
Image

CoefficientJ DC/AC I I Data
• Data .

. Quant,- H lluffman HFormatterl
zation I I Encoder I I I

I tl J l \L
T [ Changes to

[ ' ]h [ Improve

I AO III / Robustness

•1Huffman -[[_- J

[ Table 4
" " "_ More Tables

Figure 3: Data/control flow of IMP image data compression scheme

The IMP compression is a pure S/W solution based on the JPEG baseline system. According

to mission specific requirements baseline system algorithm has been stripped down to scrve

only monochrome images. Further all not applicable parameters have been removed from

the output data format•

Generally, entropy/redundancy reduction increases the tendency of error propagation in case

of telemetry dropouts. To cope with this serious problem the following modifications have

been implemented:
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(a) JPEG : Q- table loadable, table contents are included in each compressed image data
set

IMP :

instead

(b) JPEG :

pressed

IMP

highest

16 loadable Q- tables, selectable by telecommand, multiple table references

of full table contents are included in each compressed image data set.

Huffman table individually generated for each image is included in each corn-

image data set.

: 16 loadable lIuffman tables, selectable by telecommand or automatically for

compression ratio. Multiple table referencing as (a)

(c) IMP : in order to restrict error propagation to block boundaries a specific image

position identifier has been added

Further, an optional feedback path has been implemented for the iterative adjustment of the

compression factor to a given target value.

Arithmetic coding as proposed by JPEG improves coding efficiency. Error robustness re-

quires additional synchronization means, which degrades the performance of arithmetic cod-

ing. Whether a reasonable balance does exist, shall be investigated by simulations being in

progress.

5 DISR image data compressor

As stated before tile DISR task is characterized by a rather high image rate of 10 images per

second. Phase A/B studies have shown that the handling of this rate requires the design of a

specific H/W processor[5]. This design was based on the Thomson DCT Processor STV3200,

which provides sufficient radiation hardness.

Again, the processing scheme is rather similar to JPEG. Modifications are mainly directed

to hardware savings. The most prominent modifications are :

(a) JPEG : 8 x 8 blocks

DISR : 16 x 16 blocks, provides a slightly improved compression ratio at the expense

of a slightly degraded error robustness

(b) JPEG : Individual Q-value for each coefficient of a block

DISR : Coefficient quantization is subdivided into coefficient qualification by threshold

(th) and quantization of the remaining cqefficients. Coefficients are quantized using

one unique (adjustable on image level) Q-value. Deletion map provides efficient coding
of deleted coefficients.

(e) JPEG : Huffman coding

DISR : Run lenght coding
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Figure 4: Data/control flow of DISR image data compression scheme

Quantization value Q and threshold th are feedback controlled by the control processor.

They are iteratively adjusted until the best approximation of the target compression factor

is reached. Iteration time is included in the DISR compression time of less than 0.1 s.

6 Performance

By simulations it has been verified that the IMP S/W implementation delivers JPEG equiv-

alent image quality combined with improved error robustness. Figure 5 shows the signal to

noise ratio

E E f°(?7"l'l12)2

n 1 =0 n2 =0

SNR [dB] = 10 log N__l N_-I

nl n2

fo : pixel intensity of original image

fr : pixel intensity of reconstructed image

versus the compression factor c for tile well known "Lena" image and a mars surface image

which was derived from a viking mission. The DISR H/W implementation shows slightly
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Figure 5: Comparison of IMP and DISR SNR [dB] performance versus c

degraded image quality, but increased error robustness, too. For a compression factor greater

than 4 the compression quality expressed by SNR [dB] versus c is degraded to less than 1

dB. But a visual comparison of tile decompressed images shows more visible blocking effects.

This is caused by suboptimal cocfticient quantization and suboptimal redundancy reduction.

Still, these slight performance degradations have to bc balanced against the substantial

higher compression speed.
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1. Introduction

Developers of data compression algorithms typically use their own software together with

commercial packages to implement, evaluate and demonstrate their work. While convenient

for an individual develope L this . approach makes it difficult to build on or use another's work

without intimate knowledge of each component. When several people or groups work on

different parts of the same problem, the larger view can be lost. What's needed is a simple

piece of software to stand in the gap and link together the efforts of different people, enabling

them to build on each other's work, and providing a base for engineers and scientists to

evaluate the parts as a cohesive whole and make design decisions.

AESOP (Advanced End-to-end Simulation for On-board Processing) attempts to meet this

need by providing a graphical interface to a developer-selected set of algorithms, interfacing

with compiled code and standalone programs, as well as procedures written in the IDL and

PV-Wave command languages. As a proof of concept, AESOP is outfitted with several data

compression algorithms integrating previous work on different processors (AT&T DSP32C, TI

TMS320C30, SPARC). The user can specify at run-time the processor on which individual

parts of the compression should run. Compressed data is then fed through simulated transmis-

sion and uncompression to evaluate the effects of compression parameters, noise and error

correction algorithms.

The following sections describe AESOP in detail. Section 2 describes fundamental goals

for Usability. Section 3 describes the implementation. Sections 4 through 5 describe how to

add new functionality to the system and present the existing data compression algorithms.

Sections 6 and 7 discuss portability and future work.
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Design Goals

A few goals are central to the design of AESOP. AESOP must:

Be usable enough that scientists and system designers can ezperiment with their data with

little inslruetion. There must be clear visual feedback as applications execute. The user

must be able to easily display algorithm data using a variets of display types.

Be easy to augment. It should be easy to integrate executab_es for which source is unavail-

able, as well as code written in compiled languages such as C and FORTRAN. Non-

programmers should be able to use a high-level interpreted language to add capabilities.
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3. Rely on outside development when such is commonly and cheaply available. It should pro-

vide for the integration of commercial packages as much as possible.

4. Isolate itself from applications; changes to AESOP must not require that applications be
rebuilt or otherwise modified.

5. Provide complete error handling. AESOP must be prepared to handle internal errors, user

errors and errors in applications, in a useful way, preserving the current state and provid-

ing the user options as much as possible.

6. Coexist well with other executing software. It should be efficient and flexible in use of

screen space and other system resources.

7. Be user-customizable in look. The user should be able to choose cosmetic features such as

user interface colors, as well as operational defaults, such as which types of displays are

automatically enabled.

3. Implementation

The AESOP implementation assumes two simple concepts: modules, compiled or interpret-

able code which performs specific computations, and algorithms, module sequences used to

implement complete applications. The following sections describe these two concepts in more

detail, and then show how they provide a basis for the complete system.

3.1. Modules and Algorithms

Each AESOP module, compiled or interpreted, has a usage type and some number of input

and output arguments. Input modules are used to read in files from disk or bring other data

into the system which the user can't practically enter from the keyboard. Compute modules

perform computational tasks. Output modules are selected at run-time by the user and per-

form data display. Arguments also have usage types. An input argument is one read by the

module; an output argument is a value or data item that the module generates. Update argu-

ments are both read and modified by the module. Each argument also has a data type, as
summarized in Table 1.

Table 1 - AESOP data types

char char Id char 2d

short short Id "short 2d

int int id int 2d

_oat Hoat id Hoat 2d

double double id double 2d

string string_id string_2d

kwd kwd id kwd 2d
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An AESOP algorithm is a sequence of compute modules where the inputs for each module

are taken either from the user or from the output of a previous compute module. Algorithms

are typically a mixture of compiled and interpreted modules.

3.2. The Dictionary Interface

Figure 1 shows an overview of AESOP implementation. Sections 3.2 through through 3.4

will discuss the major components, beginning with the dictionary interface and continuing

with code execution and the GUI.

Dictionaries are ASCII files listing available modules (compiled routines, binary execut-

ables, interpretable procedures) and algorithms (module sequences designed to perform com-

mon tasks). AESOP looks for one standard dictionary, "stdlib.dict", to contain generally use-

ful routines for output display, local file formats, etc. Users may define any number of other

dictionaries to describe modules and algorithms in specific application areas. AESOP looks

for dictionaries in the local directory, with the AESOP executable, and in other directories

specified by the user using the AESOP APPL_DIRS environment variable. Dictionaries can
be reread without leaving AESOP to gain access to newly-defined or modified algorithms and

modules. Dictionaries can also contain graphics directives specifying how an algorithm is

displayed on the screen, including labels and boxes. Dictionary entries have se_veral formats

depending on whether they are defining a compiled module, an interpreted PV-Wave module

or an algorithm.

Entries for compiled modules have the form:

module_type name:label:pathname

PV-Wave modules are defined similarly, but with the module inputs and default values fol-

lowing the pathname. Entries for interpreted PV-Wave modules have the form:

module_type name:label:pathname:

arg_use_type I arg_data_typel arg_labell[--default],

arg._use__type 2 arg_data_type 2 arg_label2[---default] ....

arg_use_typen arg_data_typ% arg_labeln[--default]

The first line of the entry is similar to the entry for the compiled-module. Subsequent lines

list parameters, separated by commas, where each parameter has a use type, data type and

prompt. Initial values may be specified by following the prompt with an equal sign (=) and
the value. Scalars are considered user options automatically; higher-dimensioned parameters

are retrieved from previously-executing modules. Type conversions are implicit.

Dictionary entries for algorithms have the basic form:

algorithm name:label:module1 module2 ... modu1%

Extensions to this basic syntax allow the user to group modules in labeled boxes and to lay

these boxes in any direction.
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3.3. The Code Execution Interface

AESOP provides access to two different types of modules: interpreted modules written in

the PV-Wave command language and compiled modules written in C or another high-level

language. Both types of modules have "glue functions" which are called by AESOP and call

the module code in turn. This approach isolates the details of executing application code

from AF_,SOP internals.

In the case of compiled code, glue functions are programmer-written and allow AESOP to

call exeeutables for which source code is unavailable, as well as routines written in languages

other than C. The glue function, written in C, creates local storage for use by the function

and defines parameters in a manner AESOP can understand. AESOP calls these glue func-

tions using dynamic loading, further isolating application routines from AESOP itself. The

parameter definition interface is simple, using keywords and program-callable functions for

optional capabilities, allowing the interface to be extended in the future without requiring
modification of currently-integrated code. Glue functions for compiled modules take a single

argument, an initialization flag. When an algorithm is selected, AESOP calls the glue func-
tion for each compiled module in the algorithm with the initialization flag set to 1. At this

time each module uses the AF_OP def () function to describe its parameters where clef ()

is defined:

def(char *prompt, enumuse type use, enumdata_type type,

void *local addr, char *kwds[], int num_kwds, int optionl,

int option2, ..., O)

The glue function will be called a second time, with the initialization flag 0, when the module

is actually executed. The kwd data types provide a simple way to restrict the user's choice of
values. Glue functions can indicate an error in either their initialization or execution parts by

returning -1, causing AE,SOP to stop algorithm execution with that module.

For PV-Wave modules, a generic glue function is supplied by AESOP. Since PV-Wave

modules have their parameters defined in the dictionary, their glue function need only be

called at execution time, when it creates temporary files needed to communicate with PV-

Wave, instructs PV-Wave to read necessary data, and invokes the PV-Wave procedure.

Module parameters listed in the dictionary and valued by the user before the run are passed in

as arguments to the procedure. The AESOP-Wave interface uses temporary files and PV-
Wave's cwavec () facility. The AF_,SOP-Wave interaction is transparent to the developer

and user.

When an algorithm is loaded, AESOP automatically matches up non-user-specifiable

parameters. It does this by comparing the names of module outputs with the names of inputs

from subsequent modules and assigning to each possible matchup a score. This scheme will

probably need to be refined in the future. At the moment, close attention must be given to an

algorithm in development to make sure AESOP is attaching inputs to outputs as expected.
AESOP uses dimensionality and data type to reduce the potential for error. Nevertheless,

simple generic names are best, for example, "output image" rather than "decompression out-

put". In the latter case, a subsequent module expecting "input image" might get connected up
with some other "image" in the system, rather than the more ambiguous "decompression out-

put". Once all the connections have been made, AESOP uses the PV-Wave or dynamic load-

ing interface as necessary to execute each module in turn. AESOP ensures before each
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module is executedthat the inputs to the moduleare available, either because the user expli-

citly specified them or because they were generated by a previous module in the algorithm.
Signal handlers are installed to catch memory usage errors in applications. If AESOP detects

such an error it stops execution of the module, restoring itself to its state before execution
started.

3.4. The GUI

The usability goals described in Section 2 are met in part by a graphical interface. Most

user interactions can be done with the mouse. The current status of the system is graphically
displayed. Options prohibited in a specific context are hidden until needed to avoid confu-

sion. The implementation is divided into 5 general parts: graph drawing, error messages,
application output catching, application parameter valuing and display control.

The graph drawing section presents algorithms selected as dataflow diagrams. Graph draw-

ing is done using X11/Motif, with application modules represented by boxes and connected

with arrows in a single-stream pipeline. Modules may be grouped and groups labeled.

Groups may be oriented in any direction, clearly distinguishing different parts of an algorithm.

Grouping, labeling and orientation are optional and taken from the algorithm specification in

the dictionary. When algorithms execute, module boxes are highlighted to show progress.

Since for large algorithms the graph area may not be large enough to show all the modules,
the graph area scrolls itself to keep the currently executing module visible.

The error messages section alerts the user to AESOP-discovered error conditions using

popup windows. AESOP detects 39 different error conditions, including fatal memory usage

errors in application modules. AESOP shows a popup window describing the condition and

then waits for user acknowledgement before continuing. Error messages printed by an appli-
cation module are also displayed in popup windows.

Non-error output from an application module is caught and optionally displayed in its own

window. When a module tries to send informational messages to the user, AESOP grabs that

output and, if the user has requested diagnostic output, displays it in a window created for that

purpose. Otherwise the output is discarded. AESOP can maintain a separate window for

each module, and switch between them as the different modules execute. This capability
allows the user to choose which parts and how much of the execution details to view, and
simplifies debugging during module development.

The application parameter valuing section allows the user to give values to optional and

required module parameters using popup windows. Both interpreted and compiled modules

may take parameters. The user specifies a value for a module parameter using the pulldown

menu attached to the module in the graph. AESOP lets the user enter scalar numerical quan-

tifies or choose items from lists using the keyboard. For larger paranleters like input images

the user selects a module to use to read in the required data. Such modules are typically
defined in the standard library but are otherwise similar to application modules.

Finally, AESOP allows the user to monitor module inputs and outputs using a variety of
display types. When AESOP starts it builds a list of all output modules listed in the dic-

tionaries. It then sorts the modules based on data type and the dimension of the primary

input(s), where a primary input is defined as an input such that no other input has a larger

number of dimensions. When the user requests display of a module input or output using a
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module's menu, AESOP allows the user to select a parameter to display and then presents a

list of output modules suitable for displaying that particular type of value. Alternatively the

user can add a display using the Displays menu. AESOP allows the user to specify the

dimensionality of the cldta and the type of display to create using the menu, and then presents

a list of module parameters displayable with that type of output module. Since some display

modules will take inputs other than the data to display, AESOP prompts the user for needed

information; in the ease of non-scalar inputs, it offers choices from among the data items

currently available in the system. These capabilities are provided automatically by AESOP

and do not depend on the algorithm writer. The Displays menu also allows users to change

or remove displays. PV-Wave has been used to implement most of the current output

modules.

Figures 2 and 3 show AESOP adding noise to a JPEG-compressed image and the resulting

output with no error correction.

4. Programming Environment

Adding functions or subroutines written in C, FORTRAN and other compiled languages

requires only writing the glue function and adding the name and object file pathname to a die-

tionary. Glue functions for compiled modules have two parts: the initialization part which

defines parameters using AESOP's clef() function, and an execution pan to call the com-

piled function. Glue functions should return -1 on discovering a fatal error and 0 otherwise.

Error messages should be written to stderr and informational messages to stdout. The

dictionary entry for the DCT compute module declares the type of the module, its name, the

label to use on the graph, and the pathname of the glue-function object:

compute_module jpeg_dct :DCT :lib/rpc, so

The glue function must be compiled and linked with the functions it calls into an executable

with a ".so" extension. For SunOS one would use:

acc -c -pic glue_funcs, c

id -o library, so glue_funcs.o funcs_to_add.o

Generally useful functions should go into the standard library Cstdlib.dict"). Other functions

can be listed in application dictionaries. Once the module has been specified in one or the

other type of dictionary it's available for use.

Adding code from PV-Wave and other command-line-based packages is similar to adding

compiled code, except that parameters are declared in the dictionary rather than using a glue

function:

output_module flick2 :Alternate Two Images :flit.k2.pro:

input u_char_2d First Image, input u_char_2d Second Image,

input int Iterations=20, input float Wait=0.3

Algorithms are added by simply defining them in the dictionary as an ordered list of

module names:

37



Figure 1 - AESOP execution of JPEG algorithm during downlink simulation
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CorrlDress

Figure 2 -- Image as hypothetically sent and received with random single-bit

errors (30,000 bit interval, no channel coding)
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algorithm jpeg:JPEG:jpeg_dct jpeg_quant jpeg_huff jpeg_decomp

The dictionary syntax allows the user to group modules in labeled boxes and to lay these

boxes in any direction. A group is introduced using a vertical bar (I) followed immediately

by the label for the group, a direction indicator (>, <, ^ or !), a list of space-separated modules

forming the group, and the direction indicator again. The algorithm shown in Figure 2 was

defined using:

algorithm jpegendtoend:JPEG End-to-end:

ICompress>jpeg_dct jpeg_quant jpeg_huff>

IXmit!packet segment addnoise unsegment unpacket!

becompress<jpeg decomp<

5. Data Compression Applications

Application development for AESOP so far has centered on data compression, but includes

simulation of flight-to-ground downlinks. Thus there are application modules not only for

various types of compression (/PEG, Rice, one- and two-dimensional wavelet compression)

but also for packetization, segmentation, channel coding and noise simulation, providing a true

end-to-end view from in-flight data acquisition to the reception of transmitted data on the

ground. Supporting the end-to-end simulation of compressed data transmission are a number

of computational capabilities (packetization, segmentation and channel coding, and noise

simulation) as wen as output types.

The packetization routine takes compression output and a set of packet lengths in bits, and

breaks the output into packets at the specified bit boundaries. Currently, variable length pack-

ets are formed such that each packet holds 8 lines of compressed image data. This approach

simplifies recovery should an entire packet be lost since the location of a packet in an output

image can be coded in the header, and the break is guaranteed not to occur in the middle of a

pixel. An inverse procedure takes incoming packets and recombines them into a single bit

stream for decompression.

Because channel coding requires fixed-length chunks of input data, packets are themselves

grouped into interleaved segments of uniform length; segments are packed into frames. The

interleave factor is an option with a default value of 8. Segmentation currently uses Reed-

Solomon coding for optional error correction. The inverse procedure unencodes the data and

restores the original input packets. Some diagnostic information (error counts, frame statis-

tics) is available using Show diagnostics on the module's menu.

A noise simulation module takes compressed, packetized, segmented data and flips bits on

a random interval. The user can specify the mean number of bits between errors, or turn off

noise simulation altogether. Better noise models are being developed.

In addition to many output modules in the standard library for reading, writing and display-

ing various data types, of special interest for data compression algorithms are "Showboth",

which allows a user to see two different images side by side, "Flick2", which alternates two

images rapidly in the same window using a user-chosen interval and number of iterations, and

"Imagediff", which displays the difference of two images using a user-chosen multiplication

factor. These are currently restricted to byte input images. Other modules compute signal-
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to-noiseratios for mostvector and image data types.

6. Portability

AESOP currently runs on Sun SPARCstations using SunOS 4.1.3 and Motif. While PV-

Wave is not required, support for it is built in and the current dictionaries use it for image

display. Operating system dependencies are minimal. AESOP is written in ANSI C. AESOP

uses dynamic loading to execute compiled modules, which is available on AIX 3.2, HPUX 8.0

and VMS 5.0 in addition to SunOS.

7. Future Work

The foundation is in place, but work remains to be done. AESOP currently relies heavily

on PV-Wave for output display; other packages nell to be integrated for portability. More

output types, particularly for one-dimensional data, need to be implemented. Support for

application-defined data structures would be useful. Some applications may have trouble with
AESOP's redefinition of the C write ( ) routine. Determination of graph connectivity will

eventually need enhancement. More control over output displays needs to be added.
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Abstract. A hybrid lossless compression model employing both the (Iossy) J-PEG DCT algorithm

and one of a selection of Iossless image compression methods has been tested. The hybrid model

decomposes the original image into a low-loss quick-look browse and a residual image. The

lossless compression methods tested in the model are Huffman, arithmetic, LZW, Iossless JPEG,

and diagonal coding. For both the direct and the hybrid application of these lossless methods, the

compression ratios (CRs) are calculated and compared on three test images. For each lossless

method tested the hybrid model had no more than a nominal loss in compression efficiency

relative to the' direct approach. In many cases, the hybrid model provided a significant

compression gain. When used in the hybrid model, lossless JPEG outperformed the other Iossless

methods over a broad range of browse image qualities.

1. Background

In many practical situations involving images, a small degree of error in the pixel values

can be tolerated without a significant effect on the display. This suggests that there are

advantages to a decomposition of images into a lossy component, or browse component, and an

error or residual component. The decomposition of the original image into browse and residual

images gives an end-user the ability to browse an image and determine whether the residual image

should be transmitted and added to the browse image to reproduce the original image. This

feature is not available with any direct iossless compression method. A hybrid compression model

employing the (lossy) JPEG DCT algorithm with the lossless diagonal coding scheme has recently

appeared in the literature [1].

Some of the standard Iossless compression methods are Huffman, arithmetic, the Ziv and

Lempel algorithms, predictive encoding, bit-plane encoding, and run-length encoding [2]. Each of

these compression methods have many variations which are reported in the literature. Another

Iossless compression method is Iossless JPEG which utilizes a combination of predictive encoding

and Huffman [3]. A non-standard lossless compression method is diagonal coding [1]. Diagonal
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coding is a type of lossless variable length encoding designed to take advantage of the Laplacian

distribution characteristic of the residual image. For efficient compacting of the coded bit stream,

a special C source code program was written that operates at the bit level [4]. Operating at the

byte level vC'ould destroy any advantages of this coding method. Lossy compression methods

consist primarily of the Joint Photographic Experts Group (JPEG) algorithm [5] and fractal

encoding [6].

2. The Lossless Hybrid Model

The hybrid model utilizes both a Iossy and a lossless image compression technique to

produce an overall Iossless image compression. Such an arrangement takes advantage of the high

compression ratios achieved by the lossy methods and the error-free compression of the lossless

methods. The image is first compressed using a lossy compression method. The iossy

compressed image is decompressed and compared on a pixel-by-pixel basis with the original

image. The decompressed image is termed the browse image as it can be used to browse an

image for suitability for the application intended. The difference between the original image and

the decompressed image is termed the residual image. The residual image is compressed using a

lossless compression method. The compressed browse and compressed residual images can be

appended for calculating overall compression. The forward process described here and the

corresponding reverse process are presented in Figures 1a and lb.

Because of the general acceptance and effectiveness of (Iossy) JPEG [3], all the results

from our hybrid model investigations presented here use this method to produce the browse

images. A similar investigation used fractal compression with LZW compression [7].

Our test results indicated that it is not feasible, in terms of compression overhead, to use

secondary compression to significantly compress either the compressed browse or compressed

residual. In most cases tested, secondary compression resulted in expansion of the compressed

image file size [4]. As a result, secondary compression was not included in the hybrid lossless

compression model presented here.

One compression measure used to gauge performance is the compression ratio (CR)

defined as [8, p. 10]:

CR = (1 -(Compressed Image Size/Original Image Size)) x I00. (1)

The overall compression ratio achieved by the hybrid lossless compression model is a combination

of the compressed browse image CR and the compressed residual image CR. Application of

Equation (1) to browse, residual, and overall compression ratios leads to:

CR.... . : [CR ro o- 50] + [CR o ,doa,- 50] (2)

where CtLo_o_o and CRv,_d_ are the compression ratios of the compressed browse and residual

images.

3. The Test Images

The hybrid model (Figures la, lb) was tested and evaluated using three 8-bit, 256x256

pixel images in raw pixel grey map format. The three images (Figure 2) were selected based on

their structurely different pixel distributions or histograms (Figure 3).
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Figure lb: Lossless Hybrid Model Decompression.

The Iossy JPEG algorithm used in the model was developed by Andy C. Hung at the

Portable Video Research Group (PVRG), Stanford University [5]. The quality factor used when

compressing an image determines the amount of compression achieved and the resolution of the

image when it is decompressed. The higher the quality factor, the greater the compression and

the less the resolution upon decompression. Figure 4a graphically displays the quality factor

versus compression ratio achieved for the three test images. One common measure of the

resolution of the decompressed image as compared to the original image is termed the root mean

square error (e,J as defined by:

erms N x=0 y=0

where, for NxN pixel images, f(x,y) is the array of pixei values for the original image while g(x,y)

is the array of pixel values for the decompressed image [9, pp. 256-257]. Figure 4b graphically

displays a plot of quality factor versus e_ for each of the three test images. As the quality factor

is increased, the e,_ of the decompressed image decreases as expected. The decompressed test

image LENA is displayed in Figure 5 after compression at various quality factors. Note that as
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the quality factor increases,the resolutionof the decompressedimagedecreases.At quality
factorsgreaterthan250, thedecompressedimagebeginsto exhibitdistinctblockinessdueto the
processingof 8x8pixelblocksby theJ'PEGalgorithm.

Theresidualimageresultingfrom the pixelby pixeldifferencesin the original imageand
the decompressedimageexhibitsa Laplaciandistributionwith a meanof zero [2, p. 60]. The
residualimagedistribution,or histogram,hasa reducedvariancecomparedto the original image
and is alsosignificantlylesscorrelated. The shape of the residual image histogram is dependent

upon the quality factor used to compress the original image using lossy J-PEG. As previously

discussed, the higher the quality factor used, the more compression achieved; however, the

decompressed image will less resemble the original image. This results in a residual image

containing a wider range of pixel values. As a result, the residual image histogram will exhibit a

wider Laplacian distribution. Figure 6 displays residual image histograms of LENA for various

quality factors. Note that as the quality factor used to compress the original image of LENA is

increased, the distribution of the corresponding residual image widens.

_::::::i_! ...... •...... "....4,¢4: z :._.: .:.

..':_

-:._:::-i_ " i._ ,,_N

:_:_:i:: "_:_::2_:_:_
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Figure 2: Three Test Images (a) LENA, (b) SHUTTLE,

(c) FINGERPRINT.
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Figure 3: Histograms of the Three Test Images (a) LENA, (b) SHUTTLE,
(c) FINGERPRINT.

4. Testing the Lossless Hybrid Model

The hybrid model (Figure l a) was tested using Iossless compression techniques previously

mentioned. Huffman, arithmetic, diagonal, and lossless JPEG were used to compress the residual

image ((B) shown in Figure l a). A comparison between the compression results achieved by the

direct lossless compression methods and the hybrid model is graphically displayed in Figures 7a,

7b, and 7c for each of the three test images at various quality factors. The corresponding results

for LZW are summarized in Figure 8. For ease of reading, it should be noted that the right-most

3-D bar in each column represents the compression achieved with that particular direct Iossless

compression method (not using the hybrid model). The graphical results of using diagonal coding
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Quality Factor vs CR for Three Test Images
CR
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Figure 4a: Comparison of Quality

Factor vs CR for the Three Test

Images.

Figure 4b: Comparison of Quality

Factor vs e,_ for the Three Test

Images.

in direct lossless compression is limited to a CR of-30% for each of the images due to the degree

of expansion diagonal coding produces when used in the direct compression application.

Diagonal coding produced CRs of-76%, -l 11%, and -144% when used to compress LENA,

SHUTTLE, and FINGERPRINT directly. In all cases, the hybrid model achieved greater

compression ratios on all three test images than did the direct lossless compression methods with

the exception of the direct application of the lossless JPEG method. From a comparison of

Figures 7a, 7b, 7c, and Figure 8, LZW does not appear to be a wise choice for lossless

compression in the hybrid model. LZW does not surpass the performance of the other methods

for any quality factor tested. The residual images do not contain long repetitive strings of pixel

values which are necessary for LZW to achieve high compression results. This is not surprising

since the LZW method is designed primarily for compressing text, not visual graphics [8, pp.

23-24]. For this reason the LZW results will not be included in the discussion of comparisons

which follow.

The CR for diagonal coding is not superior to the set of Iossless methods at any quality

factor (see Figures 7a, 7b, 7c); however, it does achieve close to the same compression results as

Huffman, arithmetic, and lossless JPEG at some quality factors. As the quality factor used to

compress the original image is increased, the compression achieved using diagonal coding

decreases. This is due to the residual image distribution widening, thereby resulting in longer

diagonal codes, At some point, diagonal coding will result in the expansion of the residual image

file size. Diagonal coding resulted in an expansion of the residual image size when used to

compress FINGERPRINT at a quality factor of 500 (see Figure 7c). It may be noteworthy that

the execution time for the diagonal coding method was qualitatively observed to be shorter

relative to the execution times for the computationally intensive Huffman, arithmetic, and lossless

JPEG algorithms.

Using only the CR as the criterion for comparison, the results indicate that for low quality

factors (N50) arithmetic coding is the best choice for lossless compression of the residual images

while at higher quality factors (>50) Iossless J-PEG is the best choice. Due to the wide diversity in
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(a)

(c)

(e)

(b)

(d)

(0

Figure 5: Decompressed LENA at Various Quality Factors (a) Original

Image, (b) Q=I00, (c) Q=250, (d) Q--350, (e) Q=500, (f) Q=800.

the histograms of the images tested, the observations made here regarding hybrid model

performance would ostensibly be qualitatively applicable to a large host of images.

5. Additional Performance Considerations of the Hybrid Model

The hybrid model, using the Iossless JPEG, achieved a lower CR on LENA and

SHUTTLE than did the direct application of the lossless JPEG; however, the model did achieve a

greater CR than direct lossless JPEG on FINGERPRINT at quality factors of 50 and 100 (see

Figure 7c). Nonetheless, the hybrid model enjoys the advantage of producing a compressed
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Figure 6: Residual Image Histograms of LENA (a) Q=5, (b) Q=50, (c) Q=500.

browse image which is significantly more compressed than the direct lossless JPEG compressed

image. For instance, using a quality factor of 100 to compress LENA produces a quick-look

Iossy compressed browse image with a file size of 4823 bytes (compression ratio of 92%). The

best lossless JPEG predictor algorithm produces a direct lossless compressed file size of 43322

bytes (compression ratio of 34%) (see Figure 9). The Q=I00 LENA browse image produces an

image that is visually lossless with no visual distortions (see Figure 5). If a lossless image is

desired then the residual image of 40353 bytes can be transmitted and added to the browse image

to produce an exact replica of the original image.

As previously discussed, the quality factor will impact the Laplacian distribution of the

residual image. As seen from Figure 9 for LENA, the compressibility of both the browse and
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residualimagesdependon the quality factor. At low quality factors,minimal compressionis
achievedon thebrowseimage;however,theresidualimagebecomeshighlycompressible.As the
quality factor is increased,the browse image is more compressible,but the residualimage
compressesless. Theseobservationsalsoapplyto SHUTTLEandFINGERPRINT[4]. Sincethe
overallIosslessimageis the sumof thecompressedbrowseandresidualimagedata(seeEquation
2), achievingmaximumoverall compressionwould ostensiblydependon finding someoptimal
quality factor. In this section,we will examinethis issueaswell asthe sensitivityof the overall
CR to thequalityfactor for the imageschosen.

Figures 10a, 10b,and 10cshow the overallCR versusquality factors usingthe hybrid
modelon LENA, SHUTTLE, andFINGERPRINTrespectively.Consistentwith theconclusions
reachedat the end of the previoussection,the focus of the comparisonswill now be on the

application of the arithmetic algorithm and lossless JPEG in the hybrid model. Note that for

sufficiently high quality factors the Iossless JPEG outperforms arithmetic. Under these conditions,

the YPEG predictor is better able to accurately predict pixel values for residual image distributions

and therefore produces higher compression ratios. This ostensibly is a result of a higher 2-D

correlation of pixel values within the corresponding residual images at higher quality factors (see

Figure 4b). As seen from Figures 10a, 10b, and 10c, for quality factors greater than

approximately 50, the arithmetic method becomes less effective as the quality factor increases. At

the higher quality factors, Iossless JPEG achieves asymptotically higher compression ratios.

Except at very low quality factors, the test results show that the overall compression ratio

achieved by the hybrid model, when using Iossless JPEG to compress the residual image, is

relatively insensitive to the quality factor used to compress the original image. Therefore the data

suggests that for the hybrid JPEG case, the trade-offs which dictate the best JPEG quality factor

can be limited to subjective browse image quality and the associated browse compression ratio,

but not the overall compression ratio.

CR

40

Comparison of Lossless Compression Methods

(LENA)

20

0

(2O)

(4O)
Huffman Arithmetic Diagonal JPEG

Lossless Compression Methods

Q=50[]Q=tOOB ..... reDirect ]..... _ Lossless

Figure 7a: Comparison of Hybrid Model with Lossless Compression

Methods for LENA at Various Quality Factors.
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Figure 7b: Comparison of Hybrid Model with Lossless Compression

Methods for SHUTTLE at Various Quality Factors.
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Figure 7¢: Comparison of Hybrid Model with Lossless Compression

Methods for FINGERPRINT at Various Quality Factors.
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Figure 8: Compression Achieved Using LZW in Hybrid Model for

Three Test Images at Various Quality Factors.
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Figure 9: Browse and Residual CR Comparison with Direct Lossless

Compression for LENA.
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Figure 10a: Lossless Hybrid Compression of LENA Using

Arithmetic and Lossless JPEG.
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Figure 10b: Lossless Hybrid Compression of SHUTTLE Using

Arithmetic and Lossless JPEG.
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Figure 10c: Lossless Hybrid Compression of FINGERPRINT Using
Arithmetic and Lossless JPEG.

6. Conclusions

Using the CR as a criterion for comparison, the results presented here indicate that the

(lossy) JPEG DCT-based hybrid model has merit as a Iossless image compression method. The

results indicate that for low quality factors (_<50) arithmetic coding is the best choice for Iossless

compression of the residual images while at higher quality factors (>50) Iossless JPEG is the best

choice. With the exception of lossless JPEG, the substitution of the other lossless compression

methods (Huffman, arithmetic, LZW, and diagonal coding) into the hybrid model produce

compression results that generally outperform their direct compression counterparts. CRs

obtained for the lossless J-PEG in the hybrid model were not predictably better than the CRs

obtained by direct application of lossless JPEG. Nonetheless, the hybrid model has the advantage

of decomposing the image into browse and residual components.
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Abstract

A number of quality measures are evaluated for gray scale image compression. They are all
bivariate, exploiting the differences between corresponding pixels in the original and degraded
images. It is shown that although some numerical measures correlate well with the observers'
response for a given compression technique, they arc not reliable for an evaluation across different
techniques. The two graphical measures (histograms and Hosaka plots), however, can be used to
appropriately specify not only the amount, but also the type of degradation in reconstructed
images.

1. Introduction

The need for storing and transmitting huge volumes of data in today's computer and
communications systems necessitates data compression in many fields ranging from medicine to
aerospace. Data compression is an encoding process to reduce the storage and transmission
requirements in applications. Many efficient techniques with considerably different features have
recently been developed for both lossless and lossy compression. The evaluation of lossless
techniques is normally a simple and straightforward task, where a number of standard criteria
(compression ratio, execution time, etc.) are employed. A major problem in evaluating lossy
techniques is the extreme difficulty in describing the type and amount of degradation in
reconstructed images. Because of the inherent drawbacks associated with the subjective measures
of image quality, there has been a great deal of interest in developing a quantitative measure, either
in numerical or graphical form, that can consistently be used as a substitute. We would like to
have such a measure not only to judge the quality of images obtained by a particular algorithm, but
also for quality judgment across various algorithms. The latter task is definitely more challenging
since a wide range of image impairments is involved. An extensive survey and a classification of
the quality measures that appeared in the relevant literature are given in [1].

It is known that the mean square error (MSE), the most common objective criterion, or its variants
do not correlate well with subjective quality measures. A major emphasis in recent research has
therefore been given to a deeper analysis of the human visual system (HVS). The HVS is too
complex to fully understand with present psychophysical means, but the incorporation of even a
simplified model into objective measures reportedly leads to a better correlation with the response
of the human observers.

We attempt to evaluate the usefulness of some of the objective quality measures listed in [1]
through a set of experiments.

2. Image Quality Measures, Compression Techniques, and Test Images

The quality measures included in our evaluation are listed in Table 1. They are all discrete and

bivariate, i.e., they provide some measure of closeness between two digital images by exploiting
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the differences in the statistical distributions of pixel values. F(j, k) and F (j, k) denote the samples

of original and degraded image fields.

Table 1. Imag_(_alit_ Measures

Average Difference

Structural Content

N. Cross-Correlation

Correlation Quality

Maximum Difference

Image Fidelity

Weighted Distance

Laplacian Mean Square Error

Peak Mean Square Error

N. Absolute Error

N. Mean Square Error

Lp-norm

mm

Hosaka plot

Histogram

M N

AD=,__, _ [F(j,k)-F(j,k)]/MN

,j=l k=l
M N M N

AC = '_ _'_ [F(j,k)] 2 / _ _ [F(j,k)] 2

,j-I k=l )=1 k=l
M N M N

NK=E _ F(J'k)F(j'k)/E E [F(j,k)]2

j=l k=l _=I k=l
M N M N

CQ= _ _ F(j,k)F(j,k)/'_ '_ F(j,k)

)=I k=l i=l k=1

MD = Max{IF(j, k) - f_(.j,k)l}
M N M N

IF = I-(_ _ [F(j,k)-F(j,k)] 2 / _ _ [F(j,k)] 2)

j=l k=l _=I k=l

WD: Every element of the difference matrix is normalized in

,, some way and Ll-norm is applied [11.
M-1 N-I M-1 N-I

LMSE= _'_ _'_ [O{F(j,k)}-O{F(j,k)}]2/ _ _ [OtF(j,k)}] 2

_1 k=2 j=l k=2
M N

PMSE =----L_ _ [F(j,k)}__(j,k)] 2/[MaxtF(j,k)}] 2

)=1 k=l
M N M N

NAE= E E IO{F(j'k)}-OtF(j'k)}I/E _ IOtF(j,k)}l

j=l k=l ,,j=l k=l
M N M N

NMSE = _ _ [OIF(j,k)}-OtF(j,k)}] 2 / _ _ [OtF(j,k)}] 2

j=l k=l , ,j=l k=l
M N

Lp = {_E E IF(j'k)-F(j'k)IP}I/p'P = 1,2,3

)=1 k=l
A graphical quality measure. The area and shape of the plot gives

information about the type and amount of degradation [ 1,6].
Another graphical quality measure. Gives the probability distribution

of the pixel values in the difference imal_e.

Note: For LMSE, O{F(j,k)}=F(j+l,k)+F(j-l,k)+F(j,k+l)+F(j,k-1)-4F(j,k). For NAE, NMSE,
and L2-norm, O{F(j,k)} is det'med in three ways: (1) O{F(j,k)}=F(j,k), (2) O{F(j,k)}=F(j,k) 1/3,
(3) O {F(u,v) }=H{(u2+v 2)1/2}F(u,v) (in cosine transform domain).
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Among the few models of the HVS that have been developed, we chose the one proposed by Nill
for dealing with cosine transforms. The function for the model is defined as [2]

I 0.05r .554

H(r) = [ e-9[ll°gl0 r-logl0 9112.3

for r<7

, for r>7,

where r=-(u2+v2) 1/2, and u, v are the coordinates in the transform domain. The subimage structure

weighting factor Wi in the original model was not used in our computations because we wanted to
investigate the effect of H(r) alone. Since Wi is proportional to the intensity level variance of
subimage i, a separate analysis is needed to determine a suitable proportionality constant.

Table 2 Image Compression Techniques

JPEG

EPIC

RLPQ

SLPQ

Fourth public release of the Independent JPEG Group's JPEG software

Vision Science Group, The Media Laboratory, M1T

Department of Computer Sciences, University of North Texas

Department of Computer Sciences, University of North Texas

The implementations of the image compression techniques are given in Table 2. Both JPEG and
EPIC belong to the class of transform coding techniques. The former performs the discrete cosine
transform and the latter a wavelet transform. RLPQ and SLPQ contain several modifications to the

Laplacian pyramidal decomposition and use a loose wavelet basis. After quantization, they employ
arithmetic coding with a specifically tuned adaptive predictive model to compress the pyramid.

It should be noted that the choice of the compression techniques for an investigation of the

performance of quality measures (especially those that are graphical) is important since it is
desirable to include techniques which produce different types of impairments in the reconstructed
images. Our purpose is to see how well the measures are able to describe image distortions of
unsimilar nature. As we shall discuss later, the four codes in Table 2 serve this purpose.

The information about the three test images that we used can be seen in Table 3. Lenna and

Fingerprint are in the set of the National Imagery Format Test Images. The third image, hurricane
Gilbert, was obtained from the U.S. Navy.

Table 3 Test Images

Image Source Size(bytesxbytes) Hxel Length(bits) Spatial Frequency

Lerma N1TF 512x512 8 14.07

Gilbert US Navy 512x512 8 31.25

Fingerprint NITF 512x512 8 59.37
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The spatial frequency for a given image is defined as follows [3]:

Consider an MxN image, where M = number of rows and N = number of columns.The row and
column frequencies are given by

Row_ Freq = _ [F(j,k)- F(j,k - 1)] 2

j=O k=l

and

Column_Freq = _ [F(j,k)- F(j- l,k)] 2

k=O j=l

The total frequency is then

Spatial frequency = _(Row_Freq) 2 + (Column_Freq) 2.

This definition of frequency in the spatial domain indicates the overall activity level in an image.

3. Performance Of Quality Measures

The gray scale image data set was obtained by coding and decoding the three test images with the
compression codes listed in Table 2. For each test image, seven different compression ratios were
selected for degradation. They range from 10:1 to 70:1 with an increment of about 10. (Our
original intention was to use the ratios 10:1, 20:1, 30:1, 40:1, 50:1, 60:1, and 70:1, but because of
the inflexibility in using the JPEG parameter, we ended up with some different ratios.)

The photographic samples of the degraded images were first subjectively evaluated in an office
environment by ten observers who were chosen from the graduate students and faculty having
some background in image compression. They were asked to rank the images in two ways:
Within each technique and between the four techniques for a fixed compression ratio. The mean

rating of the group for an evaluation was computed by

10 IO

R =(__, Sknk)/(__, n=),
k=l k=l

where Sk = the score corresponding to the kth rating, nk = the number of observers with this
rating, and 10 = the number of grades in the scale. No limits were imposed on viewing time or
distance for the observers.

Table 4 shows the correlation between the numerical objective quality measure_ and the subjective
evaluation. As a measure of the extent of the linear relationship, the Pearsoff product-moment
correlation coefficient (r) was used. The possible values of r are between -1 and +1; the closer r is
to -1 or +1, the better the correlation is.

The coefficient values in Part (a) of Table 4 indicate that the quality measures can be put into three

groups according to their performance:
Group I: AD, SC
Group II: NK, CQ, LMSE, MD
Group III: WD, PMSE, IF, NAE, NMSE, Lp.
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Table4. (a) Correlation coefficients for each technique

I._nna

Measure/Code

AD

SC

NK

cQ
LMSE
MD

WD

PMSE

IF

NAE

NAE0/3 )

NMSE
NMSE(1/3)

 a SE(HVS)
L1

L2

L2(1/3)

 (HVS)

JPEG
0.528

0.561

0.479

0.480

-0.980

-0.964

-0.995

-0.999

0.999

-0.997

-0.996

-0.972

-0.999

-0.999

-1.000

-0.997

-0.994

-0.995

-0.988
-0.991

EPIC

-0.154

-0.117

0.865

0.865

-0.794

-0.984

-0.993

-0.996

0.996

-0.996
-0.996
-0.977

-0.996
-0.997
-0.998
-0.996
-0.993
-0.993

-0.990
-0.991

0.864

-0.988

0.996

0.996

-0.752

-0.883

-0.954

-0.991
0.991

-0.970
-0.969
-0.925
-0.991
-0.989
-0.995
-0.970

-0.966
-0.965

-0.969
-0.961

SLPQ
0.984

-0.971
0.979
0.979

-0.803
-0.941
-0.970
-0.990
0.990

-0.973
-0.972
-0.940
-0.990

-0.989
-0.996
-0.973
-0.969
-0.968
-0.975
-0.964

(2) Gilbert
Measure/Code

AD

SC
i

NK

cq
LMSE

MD

WD
PMSE

IF

NAE

NAE(1/3)
NAE(I-IVS)
NMSE

NMSE(1/3)

NMSE(HVS)
L1

L2

L2(1/3)

L (nvs)

JPEG

0.747
-0.243

0.768

0.768

-0.869

-0.828

-0.960

-0.979

0.979

-0.967

-0.842

-0.941
-0.979

-0.717

-0.988

-0.967

-0.961

-0.754

-0.964

-0.948

EPIC

-0.527

-0.936

0.981

0.981

-0.800

-0.929

-0.960

-0.986

0.986

-0.975

-0.987

-0.941

-0.986

-0.992

-0.989

-0.975

-0.965

-0.985
-0.968

-0.960

0.820

-0.987

0.984

0.984

-0.809

-0.853

-0.958

-0.981

0.981

-0.975

-0.974

-0.961

-0.981

-0.978

-0.998

-0.975
-0.962

-0.959
-0.985

_0.946

SLPQ
0.969

-0.930

0.936
0.936

-0.727

-0.687

-0.923

-0.943

0.943

-0.939

-0.945

-0.914

-0.943

-0.958
-0.967

-0.939

-0.917

-0.934

-0.941

-0.890
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(3) Fingerprint
Measure/Code

AD

SC

NK

MD

WD

PMSE

IF

NAE

NAF41/3 )

NAE(HVS)
NMSE

JPEG
0.803

0.325

0.895

0.895

-0.906

-0.417

-0.962

-0.989

0.989

-0.975

-0.974

-0.948

-0.989

NMSE0/3 
t,rMS trvs3
L1
1.2

L2(1/3)

 (nvs)

-0.988
-0.991

-0.975

-0.975
-0.974

-0.968

-0.975

EPIC

-0.101

-0.846
0.975

'0.975

-0.962

-0.956

-0.992

-0.999
0.999

-0.994

-0.993

-0.987

-0.999

-0.995

-0.996

-0.994

-0.995
-0.993

-0.997

-0.996

tt, Pq
0.926

-0.955

0.958

0.958

-0.737

-0.540

-0.938

-0.962

0.962

-0.956
-0.954

-0.936

-0.962

-0.959

-0.966

-0.956

-0.947

-0.943

-0.946

-0.934

SLP(_
0.880

-0.935
0.944

0.944

-0.812

-0.402

-0.934

-0.953

0.953

-0.946

-0.939

-0.925

-0.953

-0.934
-0.954

-0.946
-0.937

-0.920

-0.930

-0.925

Table 4. Ca) Correlation coefficients across techniques

(1) Lenna
Measure/Ratio

AD

SC

NK

cq
LMSE

MD

WD

PMSE

69:1

-0.470

0.863

-0.834

-0.834

0.231

0.033

-0.914
,, ,, •

0.I88

59:1

-0.498

0.716

-0.705

-0.705

0.i63

0.564

-0.221

0.533

52:1

-0.051

0.863

-0.834

-0.834

-0.010

0.332

-0.097

0.360

42:1

-0.558

0.626

-0.675

-0.675

0.203

0.541
0.519

0.671

30:1

0.875

0.683

-0.582

-0.582

-0.720

-0.380

-0.254

-0.085

20:1

0.260
-0.780

0.858

0.858
-0.471

-0.958

-0.792

-0.893

10:1

-0.656

0.364

-0.455

-0.455

0.950
0.681

0.941

0.929
IF -0.161 -0.520 -0.349 -0.666 0.087

NAE -0.805 -0.295 -0.133 0.534 -0.015

NAE(I/3) -0.790 -0.417 -0.302 0.434 -0.017

NAE(HVS) 0.454 0.527 .....0.270 0.531 -0.272
NMSE 0.161 0.520 0.349 0.666 -0.087

NMSE(I/3) -0.627 -0.342 -0.349 0.384 -0.119

NMSF_HVS) 0.589 _ 0.664 0.397 0.629 -0.202
LI -0.805 -0.295 -0.133 0.534 -0.015

L2 0.164 0.503 0.332 0.651 -0.086

JL2(1/3) -0.607 -0.313 -0.326 0.370 -0.123
L2(HVS) 0.553 0.632 0.373 0.604 -0.187

0.461 0.627 0.401 0.670 -0.139

0.892

-0.862

-0.858

-0-828

-0.892

-0.879

-0.879

-0.862

-0.884
-0.867

-0.864

-0.893

-0.928

0.915

0.915

0.874

0.928

0.928

0.909

0.915

0.932

0.934

0.894

0.938
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(2) Gilbert
Measure/Ratio

AD

SC

NK

cQ
LMSE

MD

!WD
PMSE
IF

NAE

NAE(1/3)

NAE VS)
NMSE
NMSE(I/3)

NMSE(HVS)
L1

L2

L2(1/3)
L2(HVS)
L3

69:1

-0.015

-0.883

0.871

0.871

0.532

-0.762

-0.048

-0.517

0.517

-0.140
0.772

-0.941

-0.517
0.560

-0.967

-0.140

-0.539

0.584

-0.965
-0.787

59:1

0.968

0.466

-0.654

-0.654

-0.600

0.881

0.871

0.953

-0.953

0.947
0.990

-0.961

0.953

0.993

-0.952

0.947

0.954

0.999

-0.950
0.984

52:1

0.664

-0.494

0.617

0.617

0.171

-0.935

0.132

-0.700

0.700

-0.011
o.93 

-0.962

-0.700

0.961

-0.973

-0.011
iJ

-0.712

0.935

-0.967
:0.918

42:1

0.913

-0.641

0.728

_0.728

-0.112

-0.891

-0.365

-0.688
0.688

-0.318
0.087

-0.896

-0.688

0.118

-0.908

-0.318

-0.693

0.084

-0.896
-0.904

30:1

0.835

-0.552

0.636

0.636

-0.403

-0.761

-0.480

-0.788

0.788

-0.374
0.977

-0.834

-0.788

0.982

-0.843

-0.373
-0.786

0.974

-0.832
-0.941

20:1

0.896

-07897
0.760

....0.760

'0.125

-0.255

-0.639

-0.866

0.866

-0.628
-0.174

-0.854

-0.866

-0.076

-0.885

-0.628

-0.868

-0.110

-0.878

-0.893

10:1

0.661

-0.739

0.741

0.741

0.673

0.458

-0.616

-0.753

0.753

-0.759

-0.007

-0.835

-0.753

0.071

-0.895

-0.759

-0.754

0.057

-0.881

-0.391

Measure/Ratio 69:1 59:1 52:1 42:1 30:1 20:1 10:1
AD -0.871 0.878 -0.930 0.135 0.345 -0.093 -0.656

SC -0.946 -0.925 -0.975 -0.960 -0.903 -0.953 -0.887
i

NK 0.979 0.930 0.982 0.971 0.924 0.966 0.920

CQ 0.979 0.930 0.982 0.971 0.924 0.966 0.920
LMSE 0.804 -0.437 -0.592 0.208 0.014 0.002 0.232

MD 0.735 0_9_/7 0.999 0.309 0.573 -0.412 0.574

WD 0.057 -0.126 -0.976 -0.881 "-'0'._i 8 -0.993 -0.930

PMSE -0.185 0.916 -0.920 -0.983 -0.981 -0.989 -0.966
IF 0.185 -0.916 0.920 .... 0.983 0.981 0.989 0.966

NAE -0.304 1.000 -0.970 -0.999 -0.992 -0.989 -0.964

NAE(I/3) -0.553 -0.024 -0.913 -0.994 -0.982 -0.980 -0.974

NAE(HVS) -0.888 -0.404 -0.959 -0.977 -0.986 -0.946 '0.866
NMSE -0.185 0.916 -0.920 -0.983 -0.981 -0.989 -0.966

NMSE(I/3) -0.826 -0.791 -0.923 -0.986 -0.969 -0.976 -0.968

NMSE(HVS) -0.894 -0.442 -0.986 -0.983 -0.979 -0.961 -0.902
L1 -0.304 1.000 -0.970 -0.999 -0.992 -0.989 -0.964

L2 -0.192 0.914 -0.921 -0.984 -0.983 -0.990 -0.964

L2(1/3) -0.830 -0.792 -0.926 -0.987 -0.972 -0.974 -0.96 _/ "'

L2(HVS) -0.896 -0.440 -0.988 -0.985 -0.983 -0.962 -0.892
L3 -0.195 0.862 -0.544 -0.960 -0.960 -0.988 -0.974

The measures in Group I cannot be reliably used with all techniques as the sign of the correlation
coefficient does not remain the same. Group II measures are consistent, but nevertheless have
poor correlation with the observers' response for some of the techniques. Among the useful
measures in Group m, NMSE_VS) is the best one for all the test images. Except for a single
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case, the incorporation of the HVS into NMSE makes the correlation slightly stronger. For the
other two measures NAE and I.,2, however, there is no such improvement. (In fact, the visual
model has an adverse effect on NAE.) The results reported in [4] and [5] support our conclusion
that the HVS model does not always improve the correlation, and when it does, the gain is small.
The nonlinear falter (.)1/3 on the other hand, seems to have a random behavior, but usually leads to
a weaker correlation. As IF is defined in terms of NMSE, the results for these two measures are
identical. It has been found that PMSE establishes the same relationship as well.

Part (b) of Table 4 is rather disappointing, and the information that can be extracted is limited. As
the compression ratio is increased, the measures perform much poorer. This observation is not
surprising because different techniques introduce different types of degradation into the
reconstructed images. Since the metrics combine all the pixel differences between two given
images into a single number, one cannot expect to know much about the annoyance experienced by
the human observer. In our experiments, for instance, although JPEG was the code for which the
errors were always the smallest, the observers found the file effect very objectionable in Lenna, yet
favored blockiness in the higher frequency images Gilbert and Fingerprint.

To the best of our knowledge, histograms and Hosaka plots are the only two image quality
measures that are graphical. Before we evaluate their performance, a specification of the type of
impairment caused by the techniques is needed. Because of space limitation, the results for only
the first test image will be discussed here. Four degraded versions of Lenna for the highest
compression ratio (69:1) are given in Figure 1. The original image is also included for a
comparison. The major types of degradation in the images are blockiness with JPEG, blurriness
with EPIC, both fuzziness and blockiness with RLPQ, and fuzziness with SLPQ (The term
fuzziness is used in the sense of equal amount of blurriness over the entire image).

A histogram of the compression error is constructed by plotting the number of times a specific
value occurs in the difference image versus the value itself. Typically, it looks like a Gaussian
curve; the more it resembles a spike at x=0, the greater the fidelity of the reconstructed image. The
seven histograms in Figure 2 were obtained using JPEG. They clearly depict the increase in _e
amount of blockiness as the compression ratio goes up. The concentration of low intensity pixeis
for the lowest ratio is gradually reduced and the distribution becomes more uniform. Our
experience has shown that histograms may also be used to specify different types of degradation in
images. In Figure 3, the histograms with low intensity pixel concentrations are associated with
RLPQ and SLPQ, and they are in contrast with those corresponding to JPEG and EPIC. The
uniform fuzziness over the entire image, it is understood, leads to a spiky histogram.
Nevertheless, the similarity between the histograms in each pair makes it difficult to distinguish
between the artifacts involved.

To construct a Hosaka plot, or an h-plot, we measure a number of features of the reconstructed
image and compare these with the corresponding features in the original image [6]. The difference
between the two feature vectors generates a vector error measure, which, unlike scalar quantities,
allows for a description of not only the amount, but also the type of degradation. In the process,
the original image is first segmented into blocks whose variance is less than some specified
threshold. These blocks are then grouped together to form a number of classes which depend on
the size of the blocks. Two features are computed for each class in both the original and the
reconstructed images. One of them is related to the mean intensity values and the'other is the mean
standard deviation. The h-plot is constructed by plotting the errors in the corresponding featmes in
polar coordinates. The radius denotes the feature error, the left and right half planes contain the
vectors associated with standard deviations and means, respectively.

It is reported in [6] that when noise is added to an image, the area of the h-plot is proportional to
the image quality, but the structure of the diagram depends on the type of distortion. If an image is
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blurred, on the other hand, the pattern on the right side of the diagram remains f'Lxed and increases
in magnitude as the blurring increases while the left side is much less predictable.

The h-plots in Figure 4 were obtained using Lenna for all compression techniques and ratios. In
each diagram, the length of a radius is 2.75 units. The blockiness is reflected on the right side of
h-plots, whereas, the effect of blurriness can be traced on the left, By a simple comparison, we are
able to see the way each code reduces the fidelity of the image. One can even learn how the
distortion is distributed in the reconstructed images by looking at the relative lengths of the
components along the axes. For example, it is evident that JPEG preserves the high frequency
components (the feathers) of the image, whereas RLPQ induces uniform blockiness. Such
information is extremely helpful considering the sensitivity of the human observer to the location of
the image error. For the construction of the h-plots in Figure 4, the two parameters, the initial
block size N and the variance threshold 1", were chosen as 16 and 10, respectively, as in Hosaka's
or FmTelle's work [6]. For high compression ratios, the h-plots for JPEG and RLPQ indicate that
it may be worth trying larger values for these parameters.

4. Conclusions

The results of an evaluation concerning the usefulness of a number of objective quality measures
for grayscale image compression have been presented. It is understood that although a group of

numerical measures can reliably be used to specify the magnitude of degradation in reconstructed
images for a given compression technique, an evaluation across different techniques is not
possible. Thisis because a single scalar value cannot be used to describe a variety of impairments.
A simple analogy would be the futility in comparing apples with oranges. The two graphical
measures, however, are fairly succe_ful in specifying the type of degradation. Hosaka plots, in
particular, provide a good indication of how images are degraded. A combination of numerical and
graphical measures may prove more useful in judging image quality. There is also a need for the
development of new graphical measures with superior judgment capabilities. Further research in
these areas is now ongoing.
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Future space-based, remote sensing systems will have data transmission requirements that
exceed available downlinks, necessitating the use of lossy compression techniques for multispec-

tral data. In this paper, we describe several algorithms for lossy compression of multispectral

data which combine spectral decorrelation techniques with an adaptive, wavelet-based, image

compression algorithm to exploit both spectral and spatial correlation. We compare the perfor-
mance of several different spectral decorrelation techniques, including wavelet transformation in

the spectral dimension. The performance of each technique is evaluated at compression ratios

ranging from 4:1 to 16:1. Performance measures used are visual examination, conventional dis-

tortion measures, and multispectral classification results. We also introduce a family of distor-

tion metrics that are designed to quantify and predict the effect of compression artifacts on multi-

spectral classification of the reconstructed data.

1. Introduction

In space-based, remote sensing systems, the limited ability to transmit sensor data to the

ground places a major constraint on system feasibility. Available relay systems and direct down-

link capabilities are not scaled to the data-transmission requirements for wide-area, high-resolu-
tion remote sensing systems envisioned for sensor systems of the year 2000 and beyond. Assum-

ing data rates on the order of gigabits/sec for an advanced multispectral remote sensor system

and a 600Mbps ATDRSS relay link, compression ratios on the order of 5-15:1 are required to

transmit sensor output in real time. Since lossless compression techniques are not expected to

achieve average compression ratios greater than 2.5:1, there is clearly a need to develop lossy

compression techniques for multispectral data.

Previous work in the area of lossy multispectral compression has investigated a variety of

different techniques. Baker and Tse 1 evaluated the performance of predictive coding, transform

coding, and several vector quantization (VQ) techniques. In this work, only spectral correlations

were exploited. The majority of other VQ techniques reported use VQ to exploit spatial correla-

tions, and use predictive techniques (linear 2, nonlinear3, feature 4, and polynomial 5) to exploit

spectral correlations. In the wavelet transform-based techniques that have been reported6, 7, a

Karhunen-Loeuve (KLT) 8 transform or an approximation to it is performed prior to wavelet

transformation to remove spectral redundancy in the data.

In this work, we use the wavelet transform in combination with several spectral decorre-

lation techniques to exploit both spectral and spatial correlation. Although the KLT is the opti-

mum transform for the removal of spectral redundancy, it has historically been considered too

computationally complex for real-time, on-board spacecraft implementation. In a previous pa-

per 9, we studied the performance of several prediction schemes to remove spectral redundancy.

In this paper we examine the use of the wavelet transform to remove both spectral and spatial re-
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dundancy. Both the prediction schemes and wavelet transform techniques are amenable to real-
time implementation.

In addition, of greatest importance for multispectral remote sensing systems is the re-

quirement that the compression process minimize the degradation of spatial and spectral fidelity

to ensure that data exploitation is not compromised. Therefore, evaluation of lossy multispectral

data compression techniques should include data exploitation simulations. However, comparison

of exploitation performance is time consuming and is often impractical for compression algo-
rithm development or parameter optimization. Conventional distortion measures (such as MSE

or SNR) are not application sensitive and often do not accurately measure the effect of distor-

tions on data exploitation. What is desired are quantitative degradation measures for exploitation

algorithm performance characterization and prediction.

To address the need for meaningful image quality metrics, we introduce a set of metrics

designed to quantify and predict the effect of compression artifacts on the performance of multi-
spectral classification algorithms. These metrics, known as the Spectral Covariance Measures,

are derived from the covariance matrices of the original, decompressed, and/or residual

muitispectral images. The goal of such metrics is to provide consistent predictive relationships

between the quantitative distortion measure and a given application, such as Maximum

Likelihood Multispectral Classification. Results are provided for the most promising of these
measures, known as the Sum Delta Covariance Measure.

We simulate the performance of each compression algorithm on four multispectral (MS)

images at compression ratios ranging from 4:1 to 16:1. An MS image consists of 8 co-registered

512x512 images, each representing a spectral band ranging from the Visible (Band 1) to the Near

IR (Band 8). Performance measures used to evaluate the decompressed imagery are visual ex-
amination, conventional distortion measures (Mean Square Error), the Sum Delta Covariance

Measure, and the results of Maximum Likelihood multispectral classification. We use these

measures to determine the best spectral decorrelation technique, and to evaluate how well the

Sum Delta Covariance Measure predicts multispectral classification performance.

The major contributions of this paper are simulation and performance evaluation of sev-

eral different spectral decorrelation techniques, and preliminary results on the correlation be-

tween the Sum Delta Covariance Measure and Maximum Likelihood multispectral classification
performance.

2. Compression Algqrithm Description

A block diagram of the compression algorithms evaluated in this paper is shown in Fig. 1.
The compression algorithms consist of a spectral decorrelation stage, a wavelet transformation

stage, a rate allocation stage, a quantization stage, and an entropy coder stage. Each of these

stages is described below.

2.1 Soectral Decorrelation Stage

We evaluated six different spectral decorrelation techniques: 1) Spatial-only (i.e., no

spectral decorrelation), 2) Karhunen-Loeuve transform (KLT), 3) Prediction with Two Reference
Bands, 4) Band-to-band successive subtraction, 5) One dimensional wavelet transformation, and

6) Three dimensional wavelet transformation. In the Spatial-only technique, no spectral de-

correlation is performed. Our purpose in evaluating this technique is to determine how much

compression improvement (as measured by image quality and exploitability) can be obtained by
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Fig. 1 Block Diagram of The Multispectral Compression Algorithms.

exploiting band-to-band spectral correlation. We also included the KLT in our evaluations so

that its performance could be used as a reference to evaluate the performance of the other

spectral decorrelation techniques.

Techniques 3 and 4 are differential schemes, in which the pixel values of a spectral band

are replaced by the difference between the pixel values of the band and a predicted pixel value.
In both schemes, the predicted value is obtained by using the value of a pixel at the same loca-

tion, but in a different spectral band (known as the reference band). The motivation for these

techniques is that because of spectral correlation, the predicted pixel value should be a reason-
able estimate of the actual pixel value. The resulting differential band will have a lower entropy

than the original band and will, therefore, be easier to compress. In the Two Reference Band ap-

proach (Technique 3), the predicted values for Bands 1, 2, and 4-6 are obtained by using the val-
ues of Band 3, and for Band 8, the predicted values are those of Band 7. In this technique, the

values of the reference bands (Bands 3 and 7) are not changed. In the Successive subtraction ap-

proach (Technique 4), the reference band is just the next adjacent spectral band. For example,
the reference band for Band 8 is Band 7, the reference band for Band 7 is Band 6, etc.. In this

technique, the pixel values of Band 1 are not changed. To improve the performance of these two
techniques, a normalization is performed prior to subtraction: the mean of each band is sub-
tracted and the band variances are made identical by multiplication by a scaling factor.

In Techniques 5 and 6, we use the wavelet transform as a spectral decorrelation tech-

nique. In Technique 5, we perform a one dimensional wavelet transform on each multispectral

pixel, prior to performing a two dimensional wavelet transform on each decorrelated band. In
Technique 6, we perform a three dimensional wavelet transform to simultaneously remove both

spectral and spatial redundancy. In both techniques, the wavelet filters used in the spectral
dimension are the Haar (or Daubechies 1) filters. We use these filters because their

implementation requires only two filter taps, which, with 8 spectral bands, permits a three level
transform in the spectral dimension. As in the prediction schemes described above, prior to

performing the wavelet transform, we subtract the mean of each spectral band and make the
variances of the bands equal - in this case equal to the maximum variance of the bands.

All of the spectral decorrelation techniques mentioned above are reversible - the original

pixel values can be obtained from the spectrally decorrelated values. With the possible exception
of the KLT, these techniques are also amenable to real-time implementation since they involve

relatively few computations per multispectral pixel.

2,2 Wavelet Transformation Stage
After the spectral decorrelation stage (except in Technique 6 above), we apply a two-

dimensional discrete wavelet transform (DWT) to the decorrelated spectral bands to reduce
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pixel-to-pixel spatialredundancy.The wavelettransformis asubbanddecomposition,in whicha
bankof bandpassfilters splitsan imageinto anumberof separate,spatialfrequencycomponents,
called subbands.The motivation for this decompositionis that the subbandscanbe encoded
moreefficiently thantheoriginal image. Typically, differentbit ratesandevendifferent coding
techniquesare usedfor each subbandto take advantageof the statistical propertiesof the
subbandandto controlor shapethecodingerrorsin anoptimal fashion.

Waveletsarearecentlydevelopedclassof subbandfilters in which theimpulseresponse
of thefilters areorthogonalto oneanotherandareall scaledversionsof a singlefunctionknown
asthewavelet. Thesubbandsproducedby thetransformhavegoodredundancyremovalproper-
ties, areorientationspecific, andcontainmultiresolutioninformationon both the location and
scaleof features,particularly edgesor discontinuitiesin the image10. The ability to efficiently
representimagefeatures(particularlyedges)is oneof thereasonsthat wavelet-basedcompres-
sion schemesprovidereconstructedimageswith goodvisualquality. The 2DDWT usedin this
paperis equivalentto apyramidsubbanddecomposition,wherethebandwidthsof thesubbands
arerelatedby powersof twoandrepresentanoctave-basedfrequencydecomposition.Thetrans-
form is implementedusingtwo finite impulseresponsefilters which areappliedrecursivelyto
the lowestfrequencysubband10. In this paper,the2D wavelettransformationstageconsistsof a
6-levelDWT, usingtheDaubechies9-7biorthogonal,linearphasefiltersI 1. Symmetricedgere-
flectionis usedto avoidthe introductionof discontinuitiesdueto imageboundaries12.

In our implementation of a three dimensional wavelet transform, we use the Haar filter in

the spectral dimension and the Daubechies 9-7 biorthogonal filters in the spatial dimensions,
with symmetric edge reflection at the data boundaries in all three dimensions. The 3D transform

consists of 6 levels: 3 levels performed on all three dimensions, and 3 levels performed only on
the spatial dimensions.

2.3 Rate Allocation Stage,

The purpose of the rate allocation stage is to select the rate (in bits/coefficient) of the
wavelet subbands so that the desired compression ratio is achieved with minimum distortion in

the reconstructed images. The general approach is to allocate higher rates to subbands that con-
tain more information. Subbands allocated higher rates will be quantized with less distortion or

error (the difference between the coefficient value and its quantized value). In a previous paper 9,
we examined the performance of four different rate allocation techniques. In three of these

techniques, rate allocation is performed in two stages. In the first stage which occurs after spec-
tral decorrelation, rate is allocated among the decorrelated bands in the spatial domain. The

decorrelated bands are then treated as separate, independent images in the second stage, which

allocates rate among the different wavelet subbands. In the fourth technique, all of the spectral

bands are treated as a single dataset and rate allocation is performed in a single stage after spec-

tral decorrelation and wavelet transformation. Our simulation results indicate that the fourth ap-
proach has the best performance. Use of any of the two stage rate allocation techniques results in
significantly poorer performance. Thus, we use the single stage technique exclusively in this
analysis.

After spectral decorrelation and wavelet transformation, we determine a bit rate/subband
using the following formula which allocates rate based on the variance of the subband:
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R'=O+½1°g2/: s _ I/N , (1)

where Ri is the allocated rate for subband i, ff_ is the variance of subband i, e is the desired

average rate for the dataset, S is the number of subbands, Nk is the number of coefficients in

subband k, and N is the total number of coefficients in the dataset (equal to the number of bands

times the number of pixels in the band). For spectral decorrelation Techniques 1-5, the number

of subbands S is equal to 152 (8 spectral bands times 19 subbands/spectral band) and for

Technique 6, the number of subbands is 31.

Eq. 1 is the rate allocation formula found in [13] that we have modified to account for the
different sizes of the wavelet subbands. One problem with this formula is that if the variance of

a subband is too small compared to the geometric mean of all of the subband variances, then this

formula will result in a negative rate for the subband. In this case, we remove from Eq. 1 those

subbands allocated a negative rate in the previous calculation and recalculate the Ri. This process

generally requires at most 2-3 iterations to converge. The subbands that have been removed are
not coded. All of the coefficient values in these subbands are set to zero.

2.40uantization Stage
The quantization stage consists of two parts: stepsize selection and uniform quantization.

The purpose of the stepsize selection process is to determine a quantizer stepsize for each sub-

band so that the quantized subband will be entropy coded at the allocated bit rate. We use a

search algorithm that iteratively selects a stepsize, quantizes the subband, and then measures the
first order entropy of the quantized subband to determine if the quantized subband meets its allo-
cated rate, which indicates the suitability of the selected quantizer stepsize. After a stepsize is

selected for each subband, the wavelet coefficients of the subband are quantized by dividing the

coefficient value by the stepsize and rounding to the nearest integer.

Currently the iterative search algorithm used to determine quantizer stepsize is too com-

putationally intensive for real-time implementation. A future effort is to replace the iterative

search algorithm with a table lookup approach, developed through training, that selects quantizer

stepsize based on the desired rate and variance of the subband.

2,5 Entropy Coding Stage
In the entropy coding stage the quantized wavelet coefficients are mapped into a set of

variable-length code words. More frequently used values are mapped to short length code words

and less frequently used values to long code words. Compression is achieved because the aver-

age number of bits to represent the output codewords is less than the average number of bits used

to represent the quantized wavelet coefficients.

Our entropy coder is a hybrid that combines two well known techniques: the Rice

coder 14 and an arithmetic coder 15. We use these two techniques in a complementary fashion.

The Rice coder works well on short sequences and on sequences that have a first order entropy

greater than 2bits/symbol. The arithmetic coder works well on long sequences that have low first

order entropies (i.e., < 2bits/symbol). In coding each subband, we select the technique based on
the size of the subband and its allocated bit rate. Performance simulations of this hybrid entropy
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coder demonstratecoding efficiencies within 5-10% of information theoretical performance

(based on first order entropy), which is significantly better than the performance of either tech-
nique alone.

.2.6 Algorithm Summary_

In Table 1, we list the different compression algorithms evaluated in this paper. For each
algorithm in the table, we indicate the spectral decorrelation technique that is used. We also as-

sign to each technique a short alpha-numeric symbol that we use to identify the specific tech-
nique in the graphs and tables of this paper.

Algorithm Symbol

Spatial-only
KLT

Spectral Decorrelation Technique
None

Karhunen-Loeuve Transform

PRED 1 Two Reference Band Predictor

PRED2 Successive Subtraction Predictor

WV 1D 1D Wavelet Transform

WV3D 3D Wavelet Transform

Table 1. Multispectral Compression Algorithms

3. P¢rforman¢¢ Measures and Methodology

The goal of the compression schemes studied in this paper is to achieve a desired com-

pression ratio with minimum distortion in the reconstructed MS image. One of the most com-

mon criteria used to measure distortion is the Mean Square Error (MSE):

N_ N

Ms - ' EZ(x,,
NNn i=1 i=, - (2)

where N is the number of pixels in the spectral band, N B is the number of spectral bands in the

dataset, X o is the original pixel value of pixel j in Band i and ,_,j is the pixel value after com-

pression and decompression. We also measure the MSE for individual spectral bands. To calcu-

late the MSE/band, we use an equation similar to Eq. 2, except that the summation is only over
the pixels in the band.

Another criteria that we use to evaluate performance is a visual comparison between the

reconstructed and original spectral bands of the MS images. We also viewed error images of the

individual bands to study the types of errors introduced. The error images are constructed by

taking the difference between the original and the reconstructed image and then scaling the errors
to be in the range of 0-255 for display.

3.1 Spectral Cov_trionc¢: M¢a_urgs

As a parallel effort to compression algorithm development and evaluation, we are inves-

tigating application specific distortion metrics. The objective of such a metric is to provide a
predictive mapping between metric value and the change in performance of specific data ex-

ploitation applications after any process which introduces distortion to data, such as lossy com-

pression. If such a relationship can be identified consistently between the metric and the applica-

tion, then it will only be necessary to compute the metric to predict how the distortion process

will affect the application. Ideally, such a metric should be straightforward to calculate and is
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particularlyusefulif it correlateswell to severalapplications(albeitperhapsvia different predic-

tive relationships).

For multispectral applications we have developed and investigated a set of measures

called Spectral Covariance Measures. These measures are derived from the spectral covariance
matrices of the original, decompressed and/or residual images. Design of these metrics is moti-

vated by the fact that spectral principal components are the basis of many spectral feature extrac-

tors and that spectral covariance describes the degree of linear correlation between bands. An ad-
ditional motivation is that some common classifiers, such as Mahalanobis Distance and Maxi-

mum Likelihood Classifiers, explicitly rely on spectral covariance to perform classification. We

have investigated whether predictive relationships exist between these metrics and Maximum

Likelihood Classifier performance. The most promising of the metrics, with respect to Multi-

spectral Classification, is called the Sum Delta Covariance (SDC) metric. The SDC metric is

computed as follows:

SDC = _lCov_originalii - Cov_compressed,il, (3)

4/

where all covariances are normalized. In this work we compare how well MSE and the SDC

measure predict multispectral classifier performance.

3.2 Multisp¢ctral Classification Methodology
The fourth criteria used to evaluate the performance of the compression algorithms is to

compare how well the compressed/decompressed imagery can be classified compared to the

original multispectral (MS) images. A signature database defines the statistical characteristics of

the proposed classes and is generated via training with representative MS data. The signature

database is subsequently used by the MS classifier in conjunction with a decision rule to classify

MS pixels. In general training may be supervised or unsupervised. For this study, unsupervised

training is performed, due to lack of available ground truth. Both training and MS Classification

are performed within the ERDAS GIS (Geographic Information Systems) and Image Processing

environment. Unsupervised training is performed by the ISODATA clustering algorithm, and

actual MS classification is performed using a Maximum Likelihood Decision Rule. Visual
examination and measured signature divergence are used to iteratively edit and merge signatures

derived from the original training images, yielding the final signature database.

In general we would like to use as much training data as possible to develop the signature
databases, however for this effort we have a limited set of calibrated, registered MS images rep-

resenting the spectral bands of immediate interest (Visible to Near IR). Specifically, this analy-

sis is based upon 4 calibrated, co-registered MS images: 2 from each of 2 MS bandsets. These
datasets are referred to as Airfield 1, Airfield 2, Urban 1 and Urban 2. Thus two signature

databases are required for this analysis - one for each bandset. Eight spectralbands from each

image were used. For this initial work, all eight bands were used for MS Classification. Future
tasks will identify band subsets best suited for specific classification schemes and perforrr[ com-

pression and exploitability analysis on these selected band subsets.

Each original MS image contains approximately 1000 X 700 MS pixels. For compres-

sion analysis, a 512X512 MS subimage was extracted from each image. The original (1000 X

700) images were used for classifier training. Thus each MS bandset's signature database is de-

rived from two 1000 X 700 MS images. The image calibration data is used to "radiance normal-
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ize" thedataprior to training,suchthatwithin anMS bandset,themappingfrom digital count to
radianceis consistent.

In order to evaluatethe impactof severalcompressionalgorithmson MS classification,
eachof thenormalizeduncompressed512X512 MS imagesis submittedto the MS Classifier,
usingtheappropriatesignaturedatabase.Thisclassificationis treatedas"truth" andbecomesthe
basisfor comparingclassificationresultsaftercompression.Datacompressionis performedon
imagerywhich hasnot beenradiancenormalized,becauseraw sensordatawhich is input to an
on-boardcompressoris typically unnormalized.After reconstruction,thecompressedMS image
is normalizedusingthe samecalibrationandnormalizationfactorswhich havebee_applied,to
thecorrespondinguncompressedMS image. This datais thensubmittedto the MS Classifier,
using the appropriate signaturedatabase. The numberof correctly classified pixels after
compressionis computed,yieldingthepercentcorrectclassificationresults.This is donefor each
compressionalgorithm,ateachcompressionratio, for each512X512image.

4. $imulatiqn R¢_ult_

4.1 Comoression Algorithm Performance

In Fig. 2 we compare the performance of the different spectral decorrelation techniques.

In these two graphs, we display Mean Square Error as a function of compression ratio. Fig. 2a
contains the results for dataset Airfield 1 and Fig. 2b contains the results for dataset Urban 1.

From both of these graphs, it is clear that the KLT spectral decorrelation technique results in the
best (i.e., lowest MSE) performance. For both datasets, the performance of the Two Reference

Band technique and the 1D wavelet technique are comparable and have performance close to that

of the KLT technique. For the Airfield 1 dataset, the performance of the Successive Subtraction

technique and 3D wavelet technique are comparable and are better than not exploiting spectral
decorrelation (the Spatial-only approach). However, in the Urban 1 dataset, the Successive

Subtraction technique is actually worse than the Spatial-only approach, while the 3D wavelet

technique still results in better performance.

]i -&-KLT i i i ,,-?i
.]i _ PRED1 i i i,." i/ _i --CI- PRED1 i i i i
-I', -i- PRED2 i i .,i'" il -F PRED2 i i i i

_ 15-q!-- <>- WVID ! ..............!-.,'"i ............._/ _ 15-I i.... O- WVID i...............i..............:..............i

_! -.- WV3D i ,k'" _ if _ 41 -_- WV3D i ! i i]! Spatlal-onlyi,,-'! i / 1 :i "_'" Spatlal'Onlyi

t ! i .s i i ,, i . _ .-'"i i __ -" "" :
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Fig. 2. Comparison of Different Spectral Decorrelation Techniques.
(a) Dataset Airfield I and (b) Dataset Urban 1.
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Fig. 3. Multispectral Classification Results.
(a) Dataset Airfield 1 and (b) Dataset Urban 1.
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In Fig. 3 we show the results of performing multispectral classification on the recon-

structed MS images. In both Figs. 3a and 3b, we display the percentage of MS pixels that are

correctly classified as a function of compression ratio. As in Fig. 2, the KLT spectral decorrela-

tion technique results in the best performance for both datasets. For dataset Airfield 1, the pre-
diction schemes have similar classification performance, and both prediction techniques perform
better than either the 1D or 3D wavelet-based techniques, which is a different relative perfor-

mance ranking than the ranking obtained by comparing MSE performance. For dataset Urban l,

the classification performance of the ID wavelet technique is almost as good as the KLT and

significantly better than the prediction techniques or the 3D wavelet technique.

The relatively poor performance of the three dimensional wavelet transform approach

may be due to the fact that there is a significantly smaller number of subbands (approximately a
factor 5) in this approach than in any of the other approaches. The smaller number of subbands
means that the subbands are larger than inthe other approaches and, therefore, the bit rate

allocation and quantization are more coarse. In other words, because the other techniques group
the transform coefficients into a larger number of smaller groups, there is more flexibility in rate

allocation and quantizer design. This additional flexibility translates into better performance.

4,2 Sum Delta Covariance vs. MSE Metric Performance Comparison
Because multispectral classification is applied to radiance normalized data, all MSE val-

ues used for metric evaluation are computed after radiance normalization of original and com-

pressed imagery. Similarly, SDC is computed from radiance normalized data. Fig. 4 illustrates
SDC vs. CR and MSE vs. CR for each compression algorithm for Airfield 1. When compared to

Fig. 3a we see that neither SDC nor MSE consistently corresponds to the relative performance of

the compression algorithms (as defined by classification accuracy).

In order to assess whether SDC shows promise as the basis of a predictive metric of clas-

sification accuracy, we have examined the correlation of both SDC and MSE to classification
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Fig.5. (a) SDC vs. Classification and (b) MSE vs. Classification for Airfield 1

(c) SDC vs. Classification and (d) MSE vs. Classification for Urban 1

accuracy. This is illustrated in Fig. 5 for each of the individual images. In these and the follow-

ing figures, results are derived from 11 wavelet-based compression algorithms, including the six

algorithms described in this paper and five algorithms described in a previous paper 9. For any

given image, SDC has only a slightly higher linear correlation to classification accuracy than
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MSE. More importanthowever,is whatoccurswhenthis correlationis examinedover all im-

ages from both bandsets, as is illustrated in Fig. 6. When analyzed over both bandsets SDC has a

notably higher correlation to classification accuracy than MSE. It appears that SDC is less sen-
sitive than MSE to scene, sensor, and spectral variations. Thus it is possible that a refinement of

the SDC measure will provide a useful predictive measure of classification accuracy.
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Fig. 6. (a) SDC vs. Classification for Airfield 1, Airfield 2, Urban I and Urban 2
(b) SDC vs. Classification for Airfield 1, Airfield 2, Urban 1 and Urban 2

In this paper, we have evaluated the performance of a number of wavelet-based multi-

spectral compression algorithms. All of the algorithms use the wavelet transform to reduce

pixel-to-pixel spatial redundancy. The difference in the compression algorithms lies in the tech-
niques used to reduce band-to-band spectral correlation. Simulations of each of the compression

algorithms was performed on four 8-band multispectral images at four different compression ra-
tios. Visual examination, Mean Square Error, the Sum Delta Covariance Measure, and the results

of multispectral classification of the decompressed images were the criteria used to evaluate the

performance of the different algorithms.

As expected, the results of the simulations indicate that the Karhunen-Loeuve transform
is the best spectral decorrelation technique. Good performance is obtained with either a one di-

mensional spectral wavelet transform or a simple prediction scheme in which the pixel values of
one of two bands is used to predict the pixel values in the remaining spectral bands. The perfor-

mance of the three dimensional wavelet transform and that of the Successive subtraction predic-

tion scheme were, in general, better than not exploiting spectral redundancy, but were signifi-

cantly poorer than the other spectral decorrelation techniques.

We have implemented and evaluated a spectral covariance based metric called the Sum
Delta Covariance. This metric correlated to multispectral classification accuracy more strongly

than MSE and appears to be less sensitive than MSE to scene, sensor, and spectral variations.
Thus this measure shows promise as the basis of a metric which can be used to predict

multispectral classification .accuracy.

In future directions of this research, we will concentrate on three areas: 1) development

of improved compression algorithms, 2) an examination of sensor systems issues and their im-
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pacton compressionalgorithmdesignandperformance,and3) developmentof improvedcom-
pressionevaluationtechniques. Our focus in developingbettercompressionalgorithms is to
evaluatedifferentquantizationschemes.For eachprocessingstagewewill tunealgorithmicpa-
rametersandapproachesfor real-timeon-boardspacecraftimplementation.Sensorsystemsis-
suesthatwe planto investigatearetheeffectson compressionperformancedue to spectralband
misregistrationanddetectornonuniformities. In the areaof compressionevaluationtechniques,
we plan to refine our classificationtechniques,the spectralcovariancemeasures,and develop
otherapplication-specificimagequalitymeasures.
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.I) INTRODUCTION

In spaceborne remote sensing, the amount of data collected has substantially increased in

the last years. In the same time, the ability to store or transmit it has not increased as fast, so that

there is a growing interest in developing compression schemes that could provide both higher

compression ratios and lower encoding/decoding errors. In the case of the spaceborne Synthetic

Aperture Radar (SAR) earth observation system developped by the French Space Agency

(CNES), the volume of data to be processed is planned to exceed on-board storage capacities or

telecommunication link. The objective of this paper is twofold:

data.

- to present various ¢ompression schemes adapted to SAR data
- to define a set of evaluation criteria and cmnpare the algorithms oil SAR

In this paper, we review two classical methods of SAR data compression and propose

novel approaches based on Fourier Transforms and spectrutn coding.

II) DESCRIPTION OF ALGORITHMS

a) Block Adaptive Quantizer

The first algorithm presented in tiffs paper is the Block Adaptive Quantizer (BAQ)

which was first proposed for the Magellan mission to Venus ([1 ]). This method encodes data into

2 bits in the following way: one bit is the sign bit, the other indicates the signal level. The signal-

level bit indicates whether the signal is above or below a nns dependant threshold S:

x(n) = "1 1" it'x < S

x(n)="10" ifx E_.-S,0]

x(n) ="00" if x e[0,S]

"01x(n)= " ifx>S
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In tile decoding process, tile signal y(n) is reconstructed as follows:

y(n) = (sign). ot.S if magnitude bit=0

y(n) = (sign). _.S if magnitude bit=l

The parameters _ 13,S are chosen so as to minimize the encoding-decoding error:

j0 LE = (x- CLS)2.p(x) dx + (x- 13S)2.p(x) dx

where p(x) is the probability density function (pd0 of the data. In the case of SAP, data,

one can assume a normal distribution N(0, Cr2). By setting S;=k O, it can be shown that the optimal

choise kopt of k is given by the minimizer of the following function:

J(k) 1 (1- e-k2/2) 2= - _ -k2

2 n.erf(k/1_) n.erfc(k/1_-)

The optimal values of Oq13are given by:

ocopt = f2"_. ( 1- e -k_p#2)

kopt.q-ff.erf(kopd_)

13opt _ _/"}'.e-1<2,,,,/2

kopt.q-ff-.er fc(kopt/_)

Therefore, BAQ consists of the following steps:

1) select N samples

2) estimate O from these samples

3) encode each sample as indicated above

Tile estimation of t3 fiom the samples is not a direct estimation: it uses a mapping fi'om

the rms value to the average magnitude of the data ([I J): this method avoids multiplications and is
therefore more attractive from an on-board point of view.

b) Block Floating Point Quantizer

The BFPQ method was proposed originally by Joo and Held ([2]) for tile Magellan

mission. As for BAQ, BFPQ uses results on gausian signals quantization: it is known ([3]) that

for a k-bit uniform quantizer, the,-e exists an optimal value O_pt that minimizes the quantization
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andsaturation noise. The principle of BFPQ is to adapt the rms level of data to this optimal

value while decreasing the number of quantization bits. If x(i) denotes the original m-bit

quantized signal, the compressed signal y(i) is obtained by a simple division:

y(i) = x(i____)
C

The constant C is determined using the fact that:

i) y(i) Should be quantized on k bits

ii) the rms ofy is optimal

Then, it is straigtforward to show that C is given by:

C= 2°x

(2 k - 1). _opto k

where (Ix is the rms level of input data. The BFPQ encoding scheme consists of the following

steps:

1) acquire N samples x(i) i=l ..N

2) estimate

3) calculate C

4) divide the original data by C

There exists numerous versions of this algorithm that can simplify it:

i) CYxcan be estimated either directly either using the mapping method

ii) C is rounded to the nearest power of 2: this enables the division to become a

simple bit shift

An interesting implementation of the algorithm is to establish a direct mapping of O'x to

C's nearest power of 2. In this case, BFPQ can be resumed by:

1) acquire N sarnples

2) estimate the average magnitude

3) read in a table the corresponding value of the scaling factor

This version requires only simple operations on integers and can be directly implemented

on board.

c) FFT

In this section, we propose a generalisation of the popular Discrete Cosine

Transform method of image compression ([4]) to the case of SAR data. As a matter of fact, DCT

concerns real data and can not be applied directly to SAR data, which, by definition, is complex.

We then propose to replace the Discrete Cosine Transform by a 2D Fast Fourier Transform

(FFT), the compression scheme being now modeled by tile following figure:
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FFT Quantization
Coding _,_a encoded

Figure 1: Block Diagram of l,TaT"based SAl¢ data compres:s'ion

The original image is first partitioned into NxN pixel blocks and each block is

independently transformed using the 2D Fourier Transform. The entropy of the transformed data

is then estimated and the spectrum is quantized using 8 bits of resolution: given the original

entropy, the quantization factor is chosen so that the entropy after quantization exactly matches

the desired output bit rate. It is therefore supposed that the quantization process is optimal. Data

is then coded using a loseless encoding algorithm (for instance, l-luflhlan codes): since coding is

supposed to be error free, it has not been simulated in this study: As can be seen, tile algorithm

used gives the optimal performance that can be acheived by this kind of method It is to be noted

that all the computations needed for this method were run using a floating point arithmetic, tile

analysis of errors due to fixed point implementation being beyond tile scope of this study.

d) Presumming

The knowledge of some features of tile radar signal suggests a more sensitive way to

reduce the data flow in the spectral domain In the range direction, the signal is shaped by the

chirp generation which results in the spectral signature shown in ligure 2:

2.0

].5

].0-

0.5-

0.0,

Figm'e 2: range spectral signatm'e
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The signaloutsidethe "top hat" shapeis noiseand does not needencoding.In the azimuth
direction, the signalis shapedby the antennapatternonceit hasbeeqaliasedby the sampling
phenomenon.Figure3 showsanactualazimuthspectrumand,in dottedline, the actualshapeof
the antennapattern once turned from the standardangular representationto the spectral
representation.This spectral representationcannot be achievedin the real world due to
unsufficientpulserate of the instrument.As a result, the outermost contribution of the antenna

pattern is aliased in the actual spectrum. The signal can then be modelled into three parts :
- a white noise floor WN

- a useful radar signal RS

- a ambiguous radar signal AS

4.5

\
- As ,¢ ...._j

1.,-X , ./! --.::::::::.q

,.o-- '7--7-'----!
,,¢ ,

0.5--[- ...... ." ."- ..... L._ L2"_.-r. ..... - ..........

WN

0.0 ]',, : :.I ' '' ,1_

l;'igure 3." azinltdh speclrunt

The latter causes "ghosts" in the radar images, also called ambiguities, and should be

eliminated. Standard compression schemes cannot make out a useful signal such as RS and an

ambiguous signal AS since they have the same structure. It is also obvious that the signal to noise

ratio is systematically greater in the central part of the spectrum.

The idea of presumming [5] is therefore to have a supervised coding of the 2D Fourier

transform of the image. There would be no coding of the range region outside the useful signal

(which results in a moderate saving of 20% or so). The coding i,a the azimuth spectrum would

apply only to the central part where the signal to noise ratio is the highest. The loss of signal

would amount to the vertically striped surfaces of figure 3, and the useful signal to the

horizontally striped surface (the presommation span PS represented in figure 3 is just an

illustration, not an actual value).

Presumming could easily achieve a factor of two in data compression with a minimal

signal loss and an imprownent of the quality due to the elimination of most of the ambiguous

signal. This is true regardless of any further encoding of the conserved data.
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I!1) EVALUATION CRITERIA

a) SAR data

In order to evaluate the performances of the different algorithms, a set of criteria

were developped for both SAR data and SAR image. In the following, we suppose an image of
width LX and height LY and note z(ij) (resp. z'(i,j)) the pixel of the itn raw and thej th column of

the original (resp encoded-decoded) data. Tile following criteria are considered for SAR data:

Mean Square Error (MSE): MSE - --
l I,Y i.X 2

Z Zlz(i. j)- z'(i, J)l
LX LY i=l j=_

Maximum error:
= max[Iz(i'j)- z'(i'j)l]' F .5i j

Phase Mean Square Error:
l I ,Y I .X 2

MSE_, ,Y---,Zl0(i,J)-qb (,J)]
LX LY i=l j=l

Peak Signal to Quantization Noise Ratio:
PSQNR=lO.loglmax(lz(i'J)12)lLMSE

Average Signal to Quantization Noisc Ratio: ASQNR = 10.log(

1 1,5" l.X 2

ZZlz(i,j)
LX. LY i=l .i=t

/VISE

b) SAR image

An image acquired by ERS1 over southwest France in september 1991 was used as a

testbed for the methods described in this paper. The image features ocean surl,ace, homogencous

areas of forested or agricultural surfaces, highly contrasted areas such as the city of Bordcaux and

some individual objects which are corner reflectors (two corner rcflcctors wcrc placcd in low

backscatter regions) and which were shown to behave as corner reflectors (point targets).

A number of radar image quality criteria [6], which exceed the scope of this paper, were

computed in addition to more standard data compression criteria, we may cite
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- range or azimuth resolution

- integrated sidelobe ratio

- ambiguous target ratio
- standard deviation/mean ratio over homogenous areas

More details about the results of this study are available in [7].

V) APPLICATION

The four above described methods were applied to an image provided from ERS1 and

representing the scene of Cazaux (France). The original data had the following characteristics:

* data precision: 5 bits per I and Q sample

* data type: unsigned byte

* data range: [0,31]

* data entropy: approximately 4,7 bits

* data properties: approximately Gaussian distributed with mean and rms:
m = 15.31866 +j 15.37417

o = 6.733508 + j 6.706872

* signal size: 10240 lines x 5616 complex samples
For all the methods, the image was partitioned into 128x 128 blocks and each block was

independently compressed and decompressed. Tile encoded/decoded data was then compared to

original data by means of the above described criteria. The programs were written in Ansi C and

run on a Sparc IPX station. The following tables show the SAR data evaluation criteria:

Criterion

mean

rms

MSE

BAQ

15.51 +j15.56

6.94 +j6.92

9.758

BFPQ(5,2)

15.23 +ji5.27

4.67 +j4.64

19.625

vrr(s,2)

15.32 +j15.37

6.86 +j6.83

7.044

PRE(5,2)

15.32+j15.37

qt-"6.4 j6.._86

12.8

Ema x 6.4 1

MSE, 1.13E-1 1.17

PSQNR(dB)

ASQNR(dB)

17.2

9.7

14.165

6.67

9.487 14.56

6.65E-1 8.36E-I

18.615

11.12

16.02

8.53

1bble I." SAR data evaluation criteria.fi)r 2 bit compression
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Criterion

mean

BFPQ(5,3)

15.31 +j 15.35

FFT(S,3)

15.32 +j 15.37

PRE(5,3)

15.32 +j 15.37

PRE(5,3)

no coding

15.32 +j 15.37

rms 5.7 +j 5.7 6.76 +j 6.74 5.23 +j 5.22 5.89 +j 5.88

MSE 5.28 1.85 9.957 19.048

Emax 1 5.385 13.93 17.09

MSE, 7.1 IE-1 3.573E-1 7.41E-1 9.547E- 1

PSQNR(dB) 19.87 24.42 17,11 14.294

ASQNR(dB) 12.37 16.92 9.62 6.8

Table 11."SAR data evaluation criteria for 3 bit compression

Concerning SAR data, it seems that the FFT provides either for 2 or 3 bits the best

results. Nevertheless, in the case of 2 bit compression, BAQ is shown to perform nearly as well as

FFT: more, the computational requirements for BAQ are very inferior compared to FFT.

Consequently, for a 2 bit compression scheme, BAQ seems to provide the best trade-off between

performance and complexity. In the case of 3 bit compression, it is more difficult to establish a

hierarchy between the methods: if FFT is shown to have the best performances, this algorithm is

more complicated than BAQ, BFPQ and Presumming with no coding.

The major conclusions of SAR image criteria [7] could be itemized below :

- all algorithms produce errors on the phase of image pixel,

- FFT algorithm reproduces images better than the other algorithms,

- Presumming algorithm is a very interesting algorithm : its performance is very
near to FFT (its complexity is lower),

- BFPQ (5,3) and BAQ (5,2) are however very similar to FFT in terms of image
quality for a city.

The images before and after compression-decompression can be found at the end of the

paper.



V) CONCLUSION

We have presented in this paper four compression algorithms for raw SAR data. These

algorithms have been deveiopped in C language on a SUN station. Their performances have been

studied and compared through image quality criteria, data criteria and complexity criteria on data

supplied from ERS-1. The choice of the best algorithm (specially for space on-board application)

is indeed a trade-offbetween performance and complexity.
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Figure 5. Image after 2 bit compression and decompression
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Figure 6." Image after 3 bit compression and decompression
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Abstract

We present a perceptually-based approach for compressing synthetic aperture radar (SAR) im-

agery. Key components of the approach are a multiresolution wavelet transform, a bit allocation

mask based on an empirical human visual system (HVS) model, and hybrid scalar/vector quantiza-

tion. Specifically, wavelet shrinkage techniques are used to segregate wavelet transform coefficients

into three components: local means, edges, and texture. Each of these three components is then
quantized separately according to a perceptually-based bit allocation scheme. Wavelet coefficients

associated with local means and edges are quantized using high-rate scalar quantization while
texture information is quantized using low-rate vector quantization.

We assess the impact of the perceptually-based multiresolntion compression algorithm on vi-

sual image quality, impulse response, and texture properties for fine-resolution magnitude-detected

SAR imagery and find excellent image quality at bit rates at or above 1 bpp along with graceful
performance degradation at rates below 1 bpp.

1 Overview

We present a perceptually-based compression algorithm along with a preliminary evaluation

of its performance on fine-resolution synthetic aperture radar (SAR) imagery. Properties of

the algorithm are: (i) spatial adaptability to accommodate both the large dynamic ranges

and unique image textures seen in SAR imagery, and (ii) the use of perceptually-based

design criteria to optimize image quality rather than mean-squared error. Key components

of the approach are a multiresolution wavelet transform, a bit allocation method based on

an empirical human visual system (HVS) model, and hybrid scalar/vector quantization.

A consistent motivation for the multiresolution decomposition is its conceptual similarity

to scene decompositions performed by the human visual system, which set the stage for

application of simple, effective HVS bit allocation schemes. Our algorithm is similar in

spirit to the wavelet coding techniques described in [1, 7, il, 16] and the subband coding
techniques in [14, 15]. The main distinction between our approach and others is the use

of a fixed-weight perceptually-based bit allocation scheme that accounts for both the large

dynamic range and texture patterns (speckle) present in SAR imagery.

Wavelet shrinkage techniques [6] are used to segregate wavelet transform coefficients into

three components: local means, edges, and texture. Each of these three components is then

quantized separately according to a perceptually-based bit allocation scheme. Because edges

and low frequency information are perceptually most important [13], wavelet coefficients

associated with local means and edges are quantized using high-rate scalar quantization

1This work supported in part under internal ERIM funding.
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while texture information is quantized using low-rate vector quantization. A minimum rate

constraint is set for the local mean and edge components so that essential image content is

preserved even at bit rates as low as 1/8 bpp.

The perceptually-based bit allocation scheme is implemented by applying a bit-allocation

weighting table to the wavelet transform coefficients. Our approach uses a fixed table rather

thaia the weighted mean-squared error approach reported in [14]; in the latter reference, a

data-dependent bit allocation table was used, in which each subband weight was scaled by

the standard deviation of that subband. Based on empirical evidence collected to date, we

find that fixed-weight bit allocation may be more appropriate for SAR imagery.

The remainder of the paper is organized as follows. Section 2 contains a heuristic dis-

cussion of SAR image characteristics. We describe the compression algorithm in Section 3.

Preliminary results, in terms of qualitative perceptual quality and image quality measures

are presented in Section 4.

2 SAR Image Characteristics

SAR imagery is often characterized by a large dynamic range and a characteristic texture,

typically referred to as "speckle." As a result, SAR imagery typically has a large data entropy

and is often much more difficult to compress than optical or computer-generated imagery.

Specifically, electromagnetic scattering properties of man-made objects and natural terrain

yield two characteristic features present in typical fine-resolution SAR imagery, specular

glints or flashes and speckle. Specular returns appear as bright points or edges and typically

arise from the radar returns from man-made objects, such as buildings and vehicles, and

discrete clutter, such as tree trunks or rocks. Figure 1 shows a fine-resolution SAR image

of part of a golf course. Present in the image are point-like specular returns from three

trihedral reflectors along with edge-like returns from the roofs of two buildings.

Speckle is caused by diffuse scattering from surfaces that are rough compared to the

wavelength of the radar [8]. Radar returns from natural terrain are often modeled as having

a Rayleigh distribution with a parameter dependent on the mean terrain reflectivity. In

Figure 1 one can see the edge between two different types of vegetated terrain.

Image analysts who work with fine resolution SAR imagery focus both on the image

patterns caused by specular returns from man-made objects as well as the image texture

caused by diffuse returns from natural terrain. In particular, the analyst may be required to

perform object recognition, in which case the contextual Information provided by the highly

textured natural terrain may be just as important as the radar signature of a man-made

object. Therefore, in order to preserve the analyst's ability to interpret the imagery, it is

important that both the edges and image texture are preserved. The approach we take is

to separate the image into its specular and diffuse components and encode each separately

using a perceptually-based bit allocation scheme.

2.1 Multiresolution Decomposition and Wavelet Shrinkage

A simple, nonparametric approach for extracting the edge information from imagery is to

use wavelet shrinkage [6]. Donoho and Johnstone have shown that the wavelet transforms
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Figure 1" ADTS SARimageof agolf course.Specularreturnscanbeseenfrom
calibrationtrihedralsandbuildings,while naturalterrainyeildsdiffuse returns(e.g.,
speckle).
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of a broad classof functions, including piecewise-continuousfunctions, havea compactrep-
resentation in the wavelet transform domain. On the other hand, an orthogonal discrete
wavelet transform applied to white noiseyields white noisehaving the samespectral den-
sity as before. Donoho and Johnstoneproposea simple schemefor extracting smoothand
piecewise-continuoussignalsfrom white noise: take the wavelet transform of the sampled
noisy signal and apply a soft threshold to removesmall wavelet transform coefficientsthat
are likely to be noise.

In our context the speckle,or imagetexture in a SAR image, canbe viewedasa nearly
spatially-white but nonstationary noiseprocess,while the edges,or specular returns, can
be viewed as smooth or piecewisecontinuousfunctions. Figure 2 showsa multiresolution
waveletdecompositionof the farm scenealongwith its decompositioninto threecomponents:
local means,edges,and texture.

This decomposition is accomplishedas follows. The four coefficient Daubechiesfilter
[5] is usedto perform a two-dimensionalmultiresolution waveletdecompositionof the SAR
imagery. (Previous empirical evidencehasshownthat short-lengthwavelet filters arebetter
than longer length filters for preservingpoints and edgesin SAR imagery [18].) We usethe
decompositionspecifiedby Mallat [12]to separatethe imagecontentaccordingto spatial fre-
quencyand orientation. Throughout the remainderof the paperwewill usethe terminology
of [12] and refer to subsetsof the 2-D wavelet transform as "detail" images.The local means

portion of our decomposition corresponds to the "coarse detail," or lowest resolution detail

image. The edges component consists of all wavelet coeffÉcients exceeding the soft threshold

or wavelet coefficient shrinkage operation [6]. Finally, the texture component is all of the

remaining small coefficients.

3 SAR Image Compression

We use the decomposition shown in Figure 2 as the basis for our compression algorithm.

Figure 3 shows a schematic representation of the algorithm, which consists of four stages: a

multiresolution wavelet transform (followed by gain normalization of the wavelet coefficients

within each detail image), wavelet shrinkage to separate the image data into local means,

edges, and textures, perceptually-based bit allocation based on a human visual system model

(I|VS), and a hybrid scalar/vector quantization operation.

After the 2-D wavelet decomposition has been performed, the coefficients of each detail

image in the wavelet decomposition are gain normalized. Gain normalization allows the same

vector quantizer to be used for multiple levels of the wavelet decomposition, and increases

the efficiency of the vector quantizer. These normalization factors must be transmitted as

side information.

Quantization bits are allocated to the wavelet coefficients according to human visual

sensitivities to spatial frequency and spatial orientation, and according to whether the coef-

ficients are edges, local means, or texture. The coefficients corresponding to the local means

are allotted more bits than the texture coefficients. Moreover, a minimum rate is set for the

edge coefficients so that when the overall data rate decreases, the edge coefficients are quan-

tized and transmitted while the texture coefficients may not be transmitted at all. However,

when the data rate is high, both edge and texture coefficients are allocated bits based upon

96



Multiresolution Wavelet Decomposition of a Magnitude-Detected

SAR Image Into Three Sources:

Original Local Means

Edges Texture

Figure 2: Decomposition of the ADTS image into local means, edges, texture

components
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scalar/vector quantizer with perceptuallybased bit allocation'
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perceptual sensitivity to spatial frequencyand spatial orientation.
The bit allocation to spatial frequencyand orientation differs from other HVS bit alloca-

tion methodsin that it is completely independentof the statistics of the waveletcoefficients
in eachband. In other words,bits are allocatedbasedsolelyon human visual system sensi-
tivities rather than uponenergyor mean-squarederror considerations.The spatial frequency
weights that are usedfor bit allocation are derived from equationsdevelopedfor subband
coding [14], which are basedupon human contrast sensitivity data acquiredby Campbell
and Robson [2]. The equation used for bit allocation to eachlevel of the multiresolution
decompositionis given by:

1B(k) = B,o,+ logs (1)

where B(k) is the average number of bits allocated to detail image k, Btot is the overall

average bit rate, WHys(k) is the human visual system weight obtained from the equation

of Perkins and Lookabaugh [14], A(k) is the relative area of detail image k, and a_v s is a

weighted geometric mean of the squared WHys(k).

Vector quantizers (VQs) for 2 × 2 texture blocks were combined with adaptive scalar quan-

tizers for edges and local means in a hybrid quantization scheme. The VQs we used were

tree-structured variable-rate VQs [9] that were pruned using the optimal pruning algorithm

of [4]. To maximize performance of the texture VQs, separate codebooks were created for the

vertical, horizontal and diagonal texture components. As mentioned earlier, the edges and

local means were quantized using high rate uniform scalar quantizers, while edge locations

were coded using an error-resistant binary source coding technique [3]. The scalar quan-

tizer step size was adapted in each detail image with dynamic range and wavelet shrinkage

thresholds. Finally, the vector and scalar quantized coefficients were entropy coded.

4 An Example

The perceptual compression algorithm described above was applied to detected SAR imagery

(remapped to 8 bpp) obtained from Lincoln Laboratory's Advanced Detection Technology

Sensor (ADTS) System [10]. The resolution of this imagery is one foot in both the range and

azimuth dimensions. Parameters for the HVS bit allocation and wavelet shrinkage threshold

were determined by the viewing geometry, subjective evaluations, and available bit budget.

Figure 4 shows compressed versions of the farm scene at rates of 1, 1/2, and 1/4 bits

per pixel (bpp). The visual quality of the SAR imagery compressed with the perceptual

algorithm is excellent at moderate compression ratios (e.g. 8:1). As the compression ratio

increases, the image quality degrades gracefully with minimal smearing of the edges and

points. Even at very high compression ratios (e.g. 64:1), the images are recognizable. Also,

there are no blockiness artifacts like those that are characteristic of the current version of

the JPEG DCT algorithm [17] at rates below 1 bpp.

Finally, Figures 5 and 6 show plots of the measured impulse response (IPR) 3dB widths

and image texture, as measured by coefficient of variation, for three different compression

rates, 1, 1/2, and 1/4 bpp. Figure 5 contains a summary of several IPR measurements

extracted from calibration trihedral signatures within the ATDS imagery. Both the mean
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Perceptually-Based Multiresolution Compression of

Magnitude-Detected SAR Imagery

Original (8 bpp) Compressed to 1 bpp (8:1)

Compressed to 0.5 bpp (16:1) Compressed to 0.25 bpp' (32:1)

Figure 4: ADTS image compressed to 1, 1/2, and 1/4 bpp
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IPR measurements in range and azimuth, along with 95% confidence bounds are plotted.

What one can observe is that, on average, the IPRs only degrade from an original sampling

rate of 1.3 samples per IPR to roughly 1.5 samples per IPR at a compression rate of 32:1

(i.e., 0.25 bpp). On the other hand, the variability of the IPR measurements increases

dramatically as the data rate decreases.

Figure 6 shows a plot of the inverse coefficient of variation (mean divided by standard

deviation deviation) for a number of local measurements of terrain. Both the mean and upper

and lower 95% confidence bounds are plotted for measurements taken over 144 different

15x15 pixel regions containing natural terrain. What we see is that as the data rate is

decreased from 8 bpp (no compression) to 0.25 bpp, there is a loss of texture as measured

by the increases in the inverse coefficient of variation. At 1 bpp there is a 26% increase

in as compared to the original 8 bpp image, however, we observe no significant perceptual

degradation. At 0.25 bpp, there is a 66% increase in the inverse coefficient of variation and

noticeable smoothing of the image texture.

5 Summary

Tile perceptually-based multiresolution SAR compression algorithm presented here consists

of a wavelet multiresolution decomposition followed by wavelet shrinkage, perceptually-based

bit allocation, and hybrid scalar/vector quantization. An important feature that makes this

particular approach appropriate for SAR imagery is the use of spatially-adaptive edge detec-

tion, via wavelet shrinkage techniques, to separate the image into three components: local

means, edges, and texture. Each of these three components is then quantized separately us-

ing perceptual bit allocation mask. Based on preliminary results, we find that the algorithm

provides excellent image quality at rates at or above 1 bpp and degrades gracefully below 1

bpp.
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Abstract

The Embedded Zerotree Wavelet (EZW) algorithm has proven to be an extremely

efficient and flexible compression algorithm for low bit rate image coding [4]-[6]. The

embedding algorithm attempts to order the bits in the bit streazn in numerical impor-

tance and thus, a given code contains all lower rate encodings of the same algorithm.
Thus, precise bit rate control is achievable and a target rate or distortion metric can

be met exactly. Furthermore, the technique is fully image adaptive.

An algorithm for multispectral image compression which combines the spectral

redundancy removal properties of the image-dependent Karhunen-Loeve Transform

(KLT), with the efficiency, controllability and adaptivity of the Embedded Zerotree

Wavelet algorithm is presented. Results are shown which illustrate the advantage of
jointly encoding spectral components using the KLT and EZW.

1 Introduction

Multispectral image compression presents a set of new challenges in the area of image

compression. In their raw form, multispectral images constitute a tremendous amount of

data, and compression is essential for efficient data access, storage, and transmission of

this class of imagery. Because there is also a large degree of interband correlation, there

is potential for extremely high data compression without a large sacrifice in image quality,

both subjectively and numerically.

In prior work described in [2], an image dependent Karhunen-Loeve Transform (KLT)

was used to decorrelate a set of seven-band Landsat Thematic Mapper (TM) images prior to

compression using a wavelet/subband coder. In the current work, the same image dependent

KLT is used, but the compression engine that follows the KLT is replaced by a multiband

implementation of the Embedded Zerotree Wavelet (EZW) algorithm. The EZW algorithm

is a new compression algorithm that attempts to order the bits in the bit stream in numerical

importance [4] - [6]. Because of the coarse to fine nature of the EZW algorithm, application

to multiband images such as color or multispectral imagery involves simply including the

additional wavelet coefficients for each band in the scanning used in EZW. This process is
explained in more detail in Section 3.
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2 Karhunen-Loeve Transform

There is typically a tremendous amount of interband correlation present in Landsat Tbi

images since the sensors axe co-located and the spectral weighting functions have some over-

lap. An effective way of exploiting this correlation is to compute the image-dependent KLT

[2]. This involves performing an eigenvalue decomposition on the interband correlation ma-

trix, and projecting the images, pixel-by-pixel, onto the orthonormal basis functions defined

by the eigenvectors. The resulting principal component images each correspond to a differ-

ent eigenvector. The amount of compression attainable depends on the eigenvalue spread,

where a larger spread implies a higher coding gain. Once the interband correlation has been

removed via the KLT, the resulting bands can be jointly encoded using the multiband EZW

algorithm described in the next section.

Note that there is some overhead associated with the KLT that must be transmitted. In

the results discussed below, the 7 means for each original band and the 49 elements of the

eigenvector matrix are represented as 32-bit floating-point numbers for a fixed overhead of

1792 (56 × 32) bits. While this precision is probably unnecessary for large images, for example

512 × 512, this overhead represents less than 0.007 bits per pixel. A larger drawback of the

KLT approach is the computational burden in computing the KLT at the encoder. As dis-

cussed in [2], a fixed sub-optimal transformation, perhaps based on physical considerations,

may be more practical at the cost of reduced coding gain. Alternatively, an intermediate

compromise is to compute the KLT using data from the low frequency subbands of the

wavelet transform for each original spectral component.

In addition to using the KLT for removal of spectral decomposition, Maxkas and Reif

have also applied a histogram equalization technique to equalize the probability densities

of the original bands [3]. Although this technique appears useful for visualization, the non-

linearity effectively changes the gray scale units and amplifies the components with low

spectral energy. As a result, joint bit allocation leads to unequal distortions distributed

across the bands, causing the spectral components with the least energy to be encoded with

the highest fidelity. Since EZW performs joint compression of all of the spectral components,

unless the images are specifically compressed for visualization, histogram equalization would

probably be inappropriate if uniform numerical distortion metrics are used.

3 Embedded Zerotree Wavelet Algorithm Description

3.1 Discrete Wavelet Transform

Each component is first transformed spatially using a discrete wavelet transform. The dis-

crete wavelet transform used in this paper is identical to a hierarchical subband system,

where the subbands are logarithmically spaced in frequency and represent an octave-band

decomposition. This particular configuration has also been called a QMF-pyramid [1].

To begin the decomposition, the image is decomposed into four subbands by cascad-

ing horizontal and vertical two-channel critically sampled filterbanks. The filters used in

the decomposition are scaled so that the squares of the filter coefficients sum to one. This

normalization is important so that coefficients in all subbands can be compared to the

same thresholds for the purpose of measuring numerical significance, since each coefficient is

treated as a distinct, potentially important piece of data regardless of its scale. If orthogonal
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wavelets are used, the resulting decomposition represents a unitary transformation. In prac-

tice, 9-tap symmetric QMF filters such as those in Adelson, et. al. [1] have been found to be

effective. Note that for these QMF filters, the low-pass and high-pass filters in the filterbank

are orthogonal, but these filters are only nearly orthogonal to their even-integer translates.

However, for coding purposes, the discrete wavelet transform generated from these filters

can be treated as unitary since the deviation from unitary is negligible compared to the
quantization error.

After the first scale of the decomposition, to tile the entire image in each subband,

each coefficient represents a spatial area corresponding to approximately a 2 x 2 area of

the original picture. To tile the 2-D frequency domain, the low frequencies represent a

bandwidth in each dimension approximately corresponding to 0 < ]w] < _, whereas the high

frequencies represent the band from _ < ]oa] < 7r. To obtain the next coarser scale of wavelet

coefficients, the lowest frequency subband is further decomposed and critically sampled.

The process continues until some final scale is reached. Note that at each scale, there are 3

subbands. The remaining lowest frequency subband is a representation of the information

at all coarser scales. Note also that for each coarser scale, the coefficients represent a larger
spatial area of the image but a narrower band of frequencies.

3.2 Successive-Approximation

To perform the embedded coding, successive-approximation quantization (SAQ) is applied.

As will be seen, SAQ is related to bit-plane encoding of the magnitudes. Given an amplitude

threshold T, a wavelet coefficient z is said to be insignificant with respect to T if Ixl < T.

The SAQ sequentially applies a sequence of thresholds To,..., Tlv-i to determine significance,

where the thresholds are chosen so that Ti = Ti-l/2. The initial threshold To is chosen so

that Izjl < 2T0 for all transform coefficients zj.

During the encoding (and decoding), two separate lists of coordinates of wavelet coeffi-

cients are maintained. At any point in the process, the dominant list contains the coordinates

of those coefficients that have not yet been found to be significant in the same relative or-

der as the initial scan. This scan is such that the subbands are ordered, and within each

subband, the set of coefficients are ordered. The subordinate list contains the magnitudes

of those coefficients that have been found to be significant. For each threshold, each list is
scanned once.

3.3 The Dominant Pass: Zerotree Coding of Significance Maps

During a dominant pass, coefficients with coordinates on the dominant list, i.e. those that

have not yet been found to be significant, are compared to the threshold T/ to determine

their significance, and if significant, their sign is also recorded. A map indicating the result

of a binary (significant or insignificant) or a ternary (positive significant, negative significant

or insignificant) decision is called a significance map. This significance map for the dominant

pass is encoded using zerotree coding as outlined below.

A parent-child relationship can be defined between wavelet coefficients at different scales

corresponding to the same location. With the exception of the highest frequency subbands,

every coefficient at a given scale can be related to a set of coefficients at the next finer

107



LLatlt L_

\
LH2 \HH2

L \

Figure 1: Parent-Child Dependencies of Subbands. Note that the arrow points from the

subband of the parents to the subband of the children. The lowest frequency subband is

the top left, and the highest frequency subband is at the bottom right. Also shown is a

wavelet tree consisting of all of the descendents of a single coefficient in subband HH3.

The coefficient in HH3 is a zerotree root if it is insignificant and all of its descendants are

insignificant.

scale of similar orientation. The coefficient at the coarse scale will be called the parent, and

all coefficients corresponding to the same spatial location at the next finer scale of similar

orientation will be called children. The parent-child dependencies are shown in Fig. 1. With

the exception of the lowest frequency subband, all parents have four children. For the lowest

frequency subband, the parent-child relationship is defined such that each parent has three

children, one in each suband at the same scale.

The scanning of the coefficients processed during a dominant pass is performed in such a

way that no child is scanned before its parent. For an N-scale pyramid, the scan begins at

the lowest frequency subband, denoted as LLN, and scans subbands LHN, HLN, and HHN,

at which point it moves on to scale N - 1, etc. Note that each coefficient within a given

subband is considered before the scan moves to the next subband.

Given a threshold level Ti to determine whether or not a coefficient is significant, a

coefficient z is said to be an element of a zerotree if it is insignificant and all of its descendants

are also insignificant. A coefficient is said to be a zerotree root for a threshold Ti if 1) the

coefficient is insignificant, 2) the coefficient is not the descendant of a previously found

zerotree root for Ti, i.e. it is not predictably insignificant from the disco,very of a zerotree

root at a coarser scale, and 3) all of its descendants are insignificant.

During the scanning of the coefficients during a dominant pass, each coefficient that

is not predictably insignificant is encoded with a symbol from the four symbol alphabet:

1) zerotree root, 2) isolated zero, 3) positive significant, and 4) negative significant, where

an isolated zero implies that the coefficient under consideration is insignificant but has a

significant descendant. The string of symbols is then encoded using a multi-level adaptive

arithmetic coder such as in Witten, et. al [7]. Each time a coefficient is encoded as significant,
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(positive or negative), its magnitude is appendedto the subordinate list. Also note that
oncea coefficientis determinedto be significant, for the purposeof determining if oneof its
ancestorsis a zerotreeon future dominant passes,its value is treated as zeroso as not to
prevent a zerotreeoccurrenceon future dominant passes.

3.4 The Subordinate Pass: Refinement of Significant Coefficients

A dominant pass is followed by a subordinate pass in which all coefficients on the subordinate

list are scanned and the specifications of the magnitudes available to the decoder are refined

to an additional bit of precision. More specifically, during a subordinate pass, the width of

the effective quantizer step size, which defines an uncertainty interval for the true magnitude

of the coefficient, is cut in half. For each magnitude on the subordinate list, this refinement

can be encoded using a binary alphabet with a 'T' symbol indicating that the true value

falls in the upper half of the old uncertainty interval and a "0" symbol indicating the lower

half. The string of symbols from this binary alphabet that is generated during a subordinate

pass is then entropy coded. Note that prior to this refinement, the width of the uncertainty

region is exactly equal to the current threshold. After the completion of a subordinate pass

the magnitudes on the subordinate list are sorted in decreasing magnitude, to the extent

that the decoder has the information to perform the same sortl

3.5 Embedded Coding

The process continues to alternate between dominant passes and subordinate passes where

the threshold is halved before each dominant pass. (In principle one could divide by other

factors than 2. This factor of 2 was chosen here because it has nice interpretations in terms

of bit plane encoding and numerical precision in a familiar base 2, and good coding results

were obtained).

In the decoding operation, each decoded symbol, both during a dominant and a subordi-

nate pass, refines and reduces the width of the uncertainty interval in which the true value of

the coefficient (or coefficients, in the case of a zerotree root) may occur. The reconstruction

value used can be anywhere in that uncertainty interval. For minimum mean-square error

distortion, one could use the centroid of the uncertainty region using some model for the

PDF of the coefficients. However, a practical approach is to simply use the center of the

uncertainty interval as the reconstruction value.

The encoding stops when some target stopping condition is met, such as when the bit

budget is exhausted. The encoding can cease at any time and the resulting bit stream

contains all lower rate encodings. Note that if the bit stream is truncated at an arbitrary

point, there may be bits at the end of the code that do not decode to a valid symbol since

a codeword has been truncated. In that case, these bits do not reduce the width of an

uncertainty interval or any distortion function. In fact, it is very likely that the first L bits

of the bit stream will produce exactly the same image as the first L + 1 bits which occurs if

the additional bit is insufficient to complete the decoding of another symbol. Nevertheless,

terminating the decoding of an embedded bit stream at a specific point in the bit stream

produces exactly the same image would have resulted had that point been the initial target

rate. This ability to cease encoding or decoding anywhere is extremely useful in systems
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that are either rate-constrained or distortion-constrained. A side benefit of the technique is

that an operational rate vs. distortion plot for the algorithm can be computed on-line.

Compression is achieved both by eliminating a large number of predictably insignificant

coefficients _rom consideration through zerotree coding, and by adaptively arithmetic coding

a string of symbols from a small alphabet. Note that the small size of the alphabet poses

a tremendous advantage for an adaptive coder. Since all possible events usually occur with

easily measurable frequency, an adaptation algorithm with a short memory can learn quickly

and constantly track changing symbol probabilities. This adaptivity accounts for some of

the effectiveness of the overall algorithm. Contrast this with the case of a large alphabet, as

is the case in algorithms that don't use successive approximation. In that case, it takes many

events before an extremely unlikely symbol occurs, and there are usually very many unlikely

symbols. Furthermore, the probability estimates for rare events in a large alphabet are

fairly unreliable because images are typically statistically non-stationary and local symbol

probabilities change from region to region. Thus, the advantage of a small alphabet in an

adaptive coder is that no coding capacity is wasted accounting for the possible occurrence

of a large number of rare events.

3.6 Multiband EZW

Extension of the EZW algorithm to handle multispectral imagery is accomplished by simply

including the wavelet transform of each principal component in the scan of the dominant

pass. The scanning begins on the lowest frequency subband of the wavelet transform of

the principal component corresponding to the largest eigenvalue. This entire component is

scanned at a given threshold after which the scanning continues for each component in order

of decreasing eigenvalue. Thus, a dominant pass for a given threshold involves scanning the

transforms of all of the components at the same significance level. Although each component

is scanned independently during a dominant pass, the magnitudes of significant coefficients

are all placed on the same subordinate list. As a consequence, the refinement of significant

coefficients on a subordinate pass makes no distinction as to which component a coefficient

originated from. Although statistically the components corresponding to small eigenvalues

contain little energy, if there are wavelet coefficients of these components that are large, bits

will automatically be allocated to correctly represent their significance.

4 Experimental Results

The same Landsat 5 TM images of Kuwait that were used in [2] were again used in this

new study. In addition, experiments were run using the Landsat images of Washington, D.C.

All images were obtained from the USGS EROS Data Center (Sioux Falls, SD). As explained

in [2], the Landsat TM data was produced by 7 sensors, where each sensor generates one

band of imagery data. Bands 1 to 3 correspond to visible spectra, Band 4 to near IR spectra,

Bands 5 and 7 to mid IR spectra, and Band fi to thermal spectra. The instantaneous field

of view (IFOV) for all sensors is about 30×30 m, except for Band 6, which has an IFOV of

120× 120 m. All images are of size 512×512 pixels at 8 bits/pixel.

The sequence of steps for this new method of compressing multispectral data that were

followed in this study are:
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Figure 2: Block Diagram of KLT-EZW Encoder

1. Calculate then subtract the mean from each spectral band.

2. Calculate then apply KLT across all spectral bands to transform into principal com-

ponents.

3. Compress principal components to target bit rate using the multispectral EZW algo-
rithm.

4. Transmit means and eigenvectors as overhead.

5. Decompress bitstream using the multispectral EZW algorithm to recover the principal

components.

6. Apply inverse KLT to transform principal components back into spectral bands.

7. Add mean to each band; reconstructed spectral bands result.

A block diagram of the encoder portion of the multispectral compression system is given in

Fig. 2.

To evaluate the effectiveness of the new compression scheme, the mean square error

between each original spectral band image and its reconstruction was calculated. These

errors were then summed over all 7 bands. The totals are given in Table 1 for the Kuwait

data under the heading Principal Components and subheading new method and in Table 2 for

the Washington data under the heading Principal Components. The results reported in [2]

are also included in Table 1 under the subheading old method. The bit rates shown in the

table are the same as those reported in [2]. In that earlier study, the degree of compression

was controlled by the specification of the quantizer bin sizes. Rate control was not used, and

the bit rate of the encoded bitstream was just a consequence of the bin sizes. In the new
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Table 1: Mean SquareError Results for Compression of Kuwait Images.

Original Bands Principal Components

bits/pizel old method new method old method new method

2.51 40.02 31.63 N/A 14.13

1.55 N/A 52.04 25.11 20.24

1.06 73.82 62.45 N/A 29.16

0.73 N/A 83.71 47.96 38.28

Table 2: Mean Square Error Results for Compression of Washington Images.

bits/pixel

4.0

2.0

1.0

0.5

Original Bands

42.72

81.18

113.89

152.54

Principal Components

28.51

51.92

77.38

113.94

method, any desired bit rate can be met exactly; there is no need for explicit rate control.

Thus, the mean square error results of the new method can be compared directly to those

of the old method because the compression could be done to the same bit rates.

Experiments were also done to assess the performance of the multispectral EZW alg6-

rithm without first computing the principal components. The mean square errors of the

resulting compressed images are given in the tables under the heading Original Bands.

As can be seen in the table, the new method gives significantly better performance than

the old method, both when the principal components are not used and when they are. Even

more significant is the improvement obtained by making use of the principal components.

Thus, there are gains due to the multispectral EZW algorithm itself as well as gains due to

transforming the imagery into its principal components.

5 Conclusion

Spectral decorrelation using an image dependent KLT followed by compression using

the multiband EZW algorithm is an effective way to jointly encode the spectral bands of

multispectral images. In contrast to the independent coding of the principal component

images that was used in [2], the EZW algorithm jointly optimizes the bit allocation uniformly

across all of the bands. Furthermore, the embedding and adaptivity features inherent in EZW

allow precise rate control and eliminate the need to train the coder for a particular class of

imagery.
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ABSTRACT

We evaluate two vector quantizer designs for compression of multispectral imagery and their impact

on terrain categorization performance. The mean-squared error (MSE) and classification perfor-

mance of the two quantizers are compared, and it is shown that a simple two-stage design minimizing

MSE subject to a constraint on classification performance has a significantly better classification

performance than a standard MSE-based tree-structured vector quantizer followed by maximum-

likelihood classification. This improvement in classification performance is obtained with minimal

loss in MSE performance. Our results show that it is advantageous to tailor compression algorithm

designs to the required data exploitation tasks. Applications of joint compression/classification

include compression for the archival or transmission of Landsat imagery that is later used for land

utility surveys and/or radiometric analysis.

1 Introduction

The vast majority of vector quantizer (VQ) design algorithms presume the use of mean-

squared error (MSE) as a metric. The shortcomings of MSE on perceptual quality in im-

age coding are well known. In this paper, we show that MSE-based quantization severely

degrades the performance of M-ary classification algorithms following compression and de-

compression. Appropriate design criteria for the joint compression and classification problem

should include some combination of MSE and Bayes risk. In the context of multispectral

imagery, MSE is a reasonable criterion for quantizers that are designed to preserve the root

mean-squared (RMS) radiometric accuracy of the imagery. Bayes risk, on the other hand,

is appropriate for designs that optimize terrain categorization performance, since it directly

relates to classification performance.

We explore two vector quantizer designs, an independent design and a joint design. The

independent design uses a standard MSE-based tree-structured vector quantizer (TSVQ)

followed by a maximum-likelihood classifier that optimizes probability of correct classification

1This work supported in part under internal ERIM funding.
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[5]. The joint design, on the other hand, optimizes MSE performance subject to a constraint

on classification performance. For this latter design, a two-stage quantizer is used [6,7]. The

first quantization stage is a tree-structured classifier (TSC) [1,2] that essentially performs a

coarse quantization of the multispectral pixel feature space. This coarse quantizer is then

refined using a second quantizer that is designed using a MSE criterion. An alternative to

the joint compression/classification problem has recently been proposed by Cosman et. al.

[3].

We present results on the MSE and terrain categorization performance of these two

quantizer designs at various information compression rates for Landsat-4 Thematic Mapper

data collected over Ann Arbor, Michigan are presented. Empirical results indicate that the

joint design provides superior classification performance with minimal MSE degradation.

2 Results

We demonstrate that for MSE-based TSVQ codebook designs having large or even moderate

compression ratios of 8:1 or better, classification performance on compressed imagery is

severly degraded relative to the performance of the classical maximum-likelihood classifier

operating on uncompressed imagery. This performance degradation is due to the fact that

at high compression ratios (that is, low code rates), there is a tendency for classes having

large component variances to mask other classes that have smaller variances--even when the

classes are well separated. This is because the MSE criterion protects against large errors

regardless of the resulting classification performance.

Figure 1 shows a scatter plot from two bands of Landsat-4 multispectral data for a simple

four-class problem; band 5 radiances are plotted against the corresponding band 3 radiances

for four terrain categories: clouds, soil, water and wetlands. Two different algorithms were

used to partition the scatter plot into four regions. The partition selected by an MSE-based

TSVQ is shown in solid lines while the partition selected by a tree-structured classifier is

shown in dashed lines. Also shown in Figure 1 are the corresponding co&words: each data

point falling into a given partition element is represented by the codeword for that partition

element.

In Figure 1, the large-variance class (clouds) is "over coded." In the MSE-based partition,

the soil and wetland classes are not distinguished since they fall into a single partition

element. In this case, compression of the data with the TSVQ wbuld result in a loss of

classification performance. Nonetheless, the four classes are well separated and a classifier

partition can be designed to separate all four classes. Indeed, the classifier partition allows

each of the four terrain categories to be distinguished.

The independent and joint compression/terrain categorization designs were applied to

the six reflective bands from a 185×185 km 2 Landsat-4 frame collected over the southeast

116



Figure 1. Two feature-space partitions for the four-class terrain categorization
example.
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Michigan area. A total of 10 general terrain classes: urban, agricultural, bare soil, range,

deciduous, conifer, water, barren and cloud covered were located and identified by an expe-

rienced image interpreter. Figure 2 shows a quantitative performance comparison between

the independent and joint design approaches. Specifically, Figure 2 shows both the MSE

and classification error rate as a function of the code rate. The classification error rate is

computed with respect to the terrain categorization performance on the original data. The

various curves in Figure 2 show the performance of four VQ designs: the independent design,

and joint designs in which the first stage (i.e., the classifier) is allocated 5, 6, and 8 bits.

The original data rate is 48 bits per pixel (bpp) (i.e., six bands at 8 bits/band/pixel). The

plots show that a substantial rate decrease can be achieved while still retaining the same

classification error rate. In particular, at a 4:1 compression rate, or 12 bpp, the joint scheme

has a 4% RMS radiometric error and a 2% classification error. This should be compared to

the independent scheme which has a slightly lower RMS radiometric error of 0.5%, but a

significantly larger classification error of 25%.

Finally, Figure 3 shows the output of the terrain categorization step after compression

at a 12:1 compression ratio (i.e., a data rate of 4 bits/multispectral pixel). Figure 3a shows

the original classification output. Figure 3b shows the output of the independent compres-

sion/classification design (i.e., the supervised maximum-likelihood classifier operating on

data that has been compressed 12:1 with a MSE-based tree-structured vector quantizer).

Figure 3c shows the output of the joint compression/classification design. In the indepen-

dent design, the water category is classified as a non-category, while many of the other

classes are missing completely. On the other hand, in the joint design much of the original

spatial structure in the classification map is preserved and the classification errors are spa-

tially localized. In fact, when we examined the difference between the joint design output in

Figure 3c and the original classifier output in Figure 3a, we found that approximately 93%

of the classification errors occurred over regions that were 3 × 3 pixels across or smaller.

3 Conclusions

We compared two quantizer designs for the problem of joint compression/terrain categoriza-

tion of multispectral imagery. The first quantizer design was an independent design, consist-

ing of a mean-squared error (MSE) based quantizer design followed by a maximum-likelihood

classifier. The second design was a joint design that employed a two-stage quantizer. The

first stage consisted of a tree-structured classifier that performed a coarse quantization of

the image data. This coarse quantization was then refined using a standard MSE-based

tree-structured quantizer. One can view this two-stage process as one particular approach

to minimizing MSE subject to a constraint on allowable classification error.

We showed that the joint design achieved a significant improvement in classification per-
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Figure 3. Joint compression/terrain categorization examples: (a) Original terrain categorization,

(b) independent compression/classification designs, (c) joint classification/compression design.
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formance with only a minor degradation in MSE performance. This suggests that significant

increases in data exploitation utility can be achieved by modifying compression algorithm

design criteria to include metrics appropriate to the required exploitation tasks. __
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Hyperspectral sensors are electro-optic sensors which typically operate in visible and near

infrared bands. Their characteristic property is the ability to resolve a relatively large number (i.e.,
tens to hundreds) of contiguous spectral bands to produce a detailed profile of the electromagnetic
spectrum. In contrast, multispectral sensors measure relatively few non-contiguous spectral
bands. Like multispectral sensors, hyperspectral sensors are often also imaging sensors,
measuring spectra over an array of spatial resolution cells. The data produced may thus be viewed
as a three dimensional array of samples in which two dimensions correspond to spatial position
and the third to wavelength.

Because they multiply the already large storage/transmission bandwidth requirements of
conventional digital images, hyperspectral sensors generate formidable torrents of data. Their fine
spectral resolution typically results in high redundancy in the spectral dimension, so that
hyperspectral data sets are excellent candidates for compression. Although there have been a
number of studies of compression algorithms for muhispectral data [1,2,3,4], we are not aware of
any published results for hyperspectral data.

In this paper we compare three algorithms for hyperspectral data compression. They were
selected as representatives of three major approaches for extending conventional lossy image
compression techniques to hyperspectral data. The simplest approach treats the data as an
ensemble of images and compresses each image independently, ignoring the correlation between

spectral bands. The second approach transforms the data to decorrelate the spectral bands, and
then compresses the transformed data as a set of independent images. The third approach directly
generalizes two-dimensional transform coding by applying a three-dimensional transform as part
of the usual transform-quantize-entropy code procedure. The algorithms studied all use the

discrete wavelet transform. In the first two cases, a wavelet transform coder (using the algorithm
described in [5]) was used for the two-dimensional compression. The third case used a three
dimensional extension of this same algorithm.

These algorithms were tested on several data sets obtained from the TRW imaging
spectrometer (TRWIS). This sensor provides measurements from 90 uniform width spectral
bands which cover a wavelength range from approximately 400 nm to 800 nm, and is mounted in

a helicopter or small plane. Spectra are obtained simultaneously from a linear array of 256 spatial
resolution cells. Platform motion is utilized to scan this array, thus obtaining spatial samples in a

second spatial dimension. A typical TRWIS data set consists of a 90x256x450 array of one byte
samples.

Although signal to noise ratio (SNR) and related mean square distortion metrics are
convenient and widely used, their relevance to practical utility or perceptual quality is uncertain.
This is of particular concern with respect to hyperspectral data, since the art of interpreting and
utilizing this data is still developing. To supplement SNR measurements for the different

algorithms, we also applied example pixel classification and image segmentation algorithms to the
reconstructed data sets in order to assess the impact of compression losses on automatic data

exploitation. These applications include pixel classification using a k-means algorithm and region
based spectral image segmentation.

Our results showed substantial differences in the performance of the three algorithms. The
spectral decorrelation algorithm produces the best results, but also requires the most
computational effort. The three dimensional wavelet algorithm's performance came in second, but

well ahead of the band independent algorithm. These results clearly demonstrate the importance of
exploiting the spectral redundancy. Spectral decorrelation performs best because the transform is

optimally matched to the data, whereas the wavelet transform is suboptimal but computationally
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more efficient. Interestingly, individual spectral bands displayed as images often look better in the
reconstructed data than the original image, particularly for the spectral decorrelation algorithm.
This is because the compression process in effect filters out sensor noise from the original signal.

Acknowledgments. This research was supported by TRW's Ballistic Missile Division
through -the coordination of Lou Cassel and Joan Lurie. Hyperspectral data and computational
facilities were provided by TRW's Remote Sensing. Center, directed by Stokes Fishburne.

Band-independent Wavelet Compress,on. This algorithm was primarily studied as
a reference point for measuring the gains due to inter band processing. One advantage is that
individual bands can be reconstructed without having to decompress the entire data cube. This is
useful if one knows in advance that only a few spectral bands will be reconstructed from the

compressed data, but not specifically which bands.
The performance of this algorithm of course depends entirely on the algorithm used to

compress the individual bands. We selected the wavelet transform coding algorithm in [5] because
our previous studies had shown its performance to be superior to DCT and DPCM algorithms and
comparable to other wavelet algorithms. This algorithm first computes the discrete wavelet
transform of the image using the Mallat [9] recursion and a Daubechies 4-tap wavelet kernel [8].
The transform is then partitioned into a collection of rectangular blocks, and quantizer bit rates are

optimally assigned to each block using the algorithm described in [6,7]. The quantized
coefficients are Huffman coded, and the side data consisting of the bit rate allocations for each

block is losslessly compressed using the UNIX "compress" utility.
Three Dimensional Wavelet Transform Compression, This algorithm is a

straightforward generalization of the two dimensional algorithm described above. All the
components of the two dimensional algorithm have obvious three dimensional analogs; the major
difficulty is the more complex bookkeeping required to manage three dimensional data. Our
implementation emphasized simplicity and flexibility over efficiency, rely.ing instead on a
powerful workstation (a Sun SPARC 10), plenty of memory, and pauence. However,
hyperspectral data sets are generally large (around 36MB in our examples) and the despite the
algorithm's moderate complexity, processing can be time consuming. We expect that optimizing
the implementation, particularly by improving memory management, would speed computation

significantly, even on fast machines with large memories.
The three dimensional wavelet transform is constructed as a separable extension of the two

dimensional transform, much as the two dimensional transform can be constructed by applying
one dimensional wavelet filter banks over each dimension. Each stage of the separable three
dimensional transform applies one dimensional filter banks successively across the two spatial
dimensions and the spectral dimension. This decomposes the data into seven highpass channels
and one lowpass channel. The seven highpass channels contain oriented edge information (in the
two spatial directions, the spectral direction and the four diagonal combinations of these
directions). Each channel contains one eighth of the original number of samples. Applying this
operation recursively to the lowpass channel produces a series of nested octant decompositions.

We quantize the transform coefficients by partitioning each channel at each scale into
three-dimensional sub-blocks. Within a sub-block, coefficients are quantized with the same
number of bits per sample. Because large magnitude high pass coefficients tend to be sparsely
distributed, many blocks can be quantized at low bit rates while introducing little distortion as a
result. The actual bit allocation is determined using the algorithm described in [6,7]. This

algorithm assumes that the mean square quantizer distortion is an exponential function of the bit
rate times the sample variance of the data. It produces a bit allocation which minimizes the mean

square quantization error subject to a constraint on the maximum average bit rate.
As in the two dimensional algorithm the quantized coefficients are Huffman coded. One

difference is that three dimensional case uses a Lloyd-Max quantizer which is optimized for-each
data set, and Huffman codes are determined based on the actual sample distributions for each bit
rate. The two dimensional algorithm uses a fixed uniform quantizer and fixed Huffman codes

(both optimized for Laplacian statistics). For large hyperspectral data sets, the additional side data
needed to transmit the quantizer coefficients and Huffman code tables is relatively insignificant.
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Thesidedataalsocontainsthequantizerbit rateallocations,andis compressed using the UNIX
"compress" utility.

Band Decorrelation Wavelet Compression. The compression algorithm consists of

the following steps. First we organize the data as a collection of spectral vectors D = {dk.t} ,

where a spectral vector dk, _ consists of all spectral samples corresponding to spatial resolution cell

(k,l). The spectral vectors lie in an n-dimensional Euclidean space, where n is the number of
spectral bands. To each vector in D we then apply an affine transformation

T:dk, 1 _-> T(dk,l) - ek, l, where ek. , has dimension m < n, to produce the transformed data set

C = {c_.t}. This data set is then compressed on a band by band basis using two dimensional

wavelet coding as described above, with one key difference. The band independent algorithm
compresses each spectral band to the same bit rate, but the band decorrelation algorithm varies the
bit rate from plane to plane (subject to an upper bound constraint on the average bit rate). This is
done because the transformation T concentrates most of the energy in a few spectral bands, so that
allocating higher bit rates to these bands (and correspondingly lower rates to lower energy bands)
significantly reduces distortion. The bit allocation is determined by the optimal algorithm
described in [6,7]. This algorithm minimizes distortion assuming that the band compression
algorithm has an exponential bit rate vs. mean square distortion curve with amplitude proportional
to the sum squared in-band energy, and assigns bit rates to bands in proportion to their log-sum-
square energy.

To reconstruct the data, C is reconstructed from the wavelet encoding for each band, and

then the pseudo-inverse transformation T:_:ck.j _ T_(ck.j)= dk._is applied to reconstruct the

original data. Note that distortion is introduced both from the lossy wavelet coding and because
the transform T generally has no true inverse. However, the pseudo-inverse transform spreads
reconstruction errors in C over many spectral bands, making them much less perceptible.
Furthermore, the decorrelation transform is structured to minimize the loss of information due to
its singularity.

Although we use the well known discrete Karhuenen-Loeve transformation (or principle
components analysis) for spectral decorrelation, we feel it is worthwhile to outline a derivation of

this transform from a physical and geometric approach that may be less familiar than the statistical

approach. This approach shows that the transform is optimal in a sense that does not depend on
statistical assumptions that may be hard to justify in practice. It also provides insight into the
effectiveness of this transform for compression.

We assume that the spectra in any given data set are primarily linear combinations of
spectra corresponding to the various materials constituting the scene. Generally, the number
different materials is much less than the number of spectral bands. We therefore expect most of
the spectral vectors to lie in, or close to, a linear subspace whose dimension is much lower than

the dimension of the spectral vectors. If we could find the basis vectors for this space, than we
could produce a lower dimensional approximation by projecting the original spectral vectors onto
this space.

Stated more precisely, given a collection D = {d_,d2,...,dp} of data vectors in a n-

dimensional linear space L, we wish to find a set of m orthonormal n-vectors (with m < n),
spanning a subspace S of L, such that the sum of the squz_red distances between each data vector

in L and its orthogonal projection onto S is minimized. If we define the sample autocovariance

matrix R = _?'fk=_dkd_ it can be shown that the required basis vectors are the unit eigenvectors

{e_ ,ez,...,e,,} corresponding to the m largest eigenvalues of R. Note that the coordinates in S of

the projection any d in L onto S are simply its inner products with the basis vectors,

(erd, re2d,.-.,e_d). Furthermore, any vector c in S with coordinates (cl,...,c,,,) can be
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representedin L asalinearcombinationof thebasisvectorsc = _'_'___ckek • We thus have the

transform T:L ---) S represented by the matrix T whose rows are the (transposed) basis vectors

of S, i.e. T(d) = Td. Furthermore, this transformation has the pseudo-inverse T:_:S --_ L with

T _=(e) = Trc.

Note that in our algorithm, T is determined specifically for each data set, based on the

sample autocovariance R. Some spectral decorrelation algorithms, such as [1] use a fixed T
derived from statistical model that is independent of the actual data. Although this saves

computation, it sacrifices the optimality of the transform. Computing T might appear

burdensome, but for hyperspectral data the effort required to apply T is typically many times the

effort of the eigensystem solution needed tofind T. A more serious objection may be that T
must be sent as side data in order to decompress the data.

As a corollary of the construction of T, it turns out that the eigenvalues of R
corresponding to basis vectors in S equal the sum of squares of the coefficients in the
corresponding "spectral" band of the transformed data set C. The fact is quite useful because these
sum squared band energies are the statistics required to allocate average quantizer bit rates to each
band. This means that these bit allocations be determined before the spectral decorrelation
transform is actually applied. As a result, rows corresponding to zero or near zero bit rates can

simply be dropped from T, significantly reducing the number of operations required to compute
the transform.

Experimental results. We present results for two data sets produced by the TRWIS
sensor. These data sets each contain 90 uniformly spaced and contiguous spectral bands,

spanning a wavelength range of 400 to 800 nm. Within each spectral band, there are 450 raster
lines with 236 samples per line, with eight bit deep samples. They have been calibrated to
compensate for variations in illumination intensity with bandwidth, so that the samples actually

represent estimated percent reflectance. Consequently, one expects sample values between zero
and 100, but because the calibration is with respect to a diffuse white reference reflector, specular
reflections can produce values above 100. Figures 1 and 2 show images from one spectral band in
each of these data sets. The first data set ("houses") shows a residential area with houses and

vegetation. The second data set ("tents") is an aerial view of tents and military vehicles on a sandy

background.
Figure 3 shows plots of peak-signal to noise ratio (PSNR) as a function of compression

ratio for each data set and each algorithm. We define PSNR as the square of maximum sample

value in the original data set divided by the mean squared error between the original and
reconstructed images. The vertical scale in the figure shows PSNR in decibel units. The
horizontal scale shows the ratio of the original file size to the compressed file size. For every

algorithm, the "tents" PSNR is higher than the corresponding PSNR for the "houses", which
reflects the greater compressibility of this image. Other than this uniform vertical shift, the results
for the two data sets are quite similar. Substantial differences between the algorithms are evident.
The PSNR for the 3-D wavelet transform is two to three dB higher than the band independent

algorithm, and in turn the spectral decorrelation PSNR exceeds the 3-D wavelet transform by
about four dB.

Comparisons of spectral band images clearly reflect the differences in the rate-distortion
curves. Figure 4 shows images of the same spectral band from ,original and
compressed/reconstructed versions of the "houses" data set. The band independent algorithm was
used for the top row of images, the 3-D wavelet algorithm for the middle row, and the band
decorrelation algorithm for the bottom row. Within each row, the leftmost image is the original
data, and the three remaining images correspond to increasing compression ratios from left to

right. The spectral decorrelation images are clearly much less distorted than the others. When
viewed on a high quality display, distinguishing the reconstructed spectral decorrelation image
from the original requires close observation, even at the highest compression ratio. In the case of
the 3-D wavelet transform, many of the fine, high contrast details are preserved fairly well, but
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thereis anoticeablelossof textureanddetailin low contrastregions.At thehighestcompression,
theselossesarequite obvious.Thequalityof thebestbandindependentreconstructionappearsto
beaboutequivalentto theworst3-D reconstruction.At thehighestcompression,all detail is lost,
althoughhighcontrastedgesarefairy well preserved.

Examining the spectraldecorrelationimagesrevealssomeinterestingeffects.Although
distortion is almost imperceptible,at the highestcompressionratio therearea few regionsin
which therearesystematicshiftsin thegraylevelsat whichcertainfeaturesin original dataare
reproduced.(E.g.,thesmall,crescentshapeddarkareaimmediatelybelowthehouseat thecenter
left of theimageandacurved,darkareacontainedwithin abright,semi-ellipticalareaat thecenter
of theright edge).Theseareasapparentlycontainmaterialswhosereflectionspectraareoutside
thesubspacespannedbythespectraldecorrelationbasis.Sincethebasisis selectedto optimizea
meansquaredcriterion,smallor infrequentlyoccurringspectratendto bepoorlyrepresented.As
a consequence,in applicationswhereone wishesto detectspectralshapesthat are sparsely
representedin theoriginal image(suchasfinding afew camouflagedtentsin a forest),spectral
decorrelationmayperformpoorlydespiteproducingexcellentmeansquareerrorbasedfiguresof
merit,suchasPSNR.In contrast,thebandindependentand3-Dwaveletalgorithmsappearto be
freeof suchsystematicgraylevelshifts.

This illustrates the point that it is difficult to assessreconstructionquality without
consideringhow the datais to beused.In dealingwith ordinarytwo dimensionalimages,it is
often assumedimplicitly that using the data meansthat a human being looks at it. With
hyperspectraldata,it is muchmore likely that humanvisualprocessingwill be augmentedor
supplantedby automatedprocessing.One might evengo sofar asto view hyperspectraldata
simply asanensembleof onedimensionalspectralsignals,sothattheconceptof an "image"is
irrelevant. In order to comparethedifferent algorithms from this standpoint,we appliedtwo
spectrally basedautomaticprocessingalgorithms to the reconstructeddata. Although these
algorithmsmayhavelimited practicalutility by themselves,theyarepotentialelementsof more
practicalprocessingsystems,andserveasusefulillustrations.

Thefirst algorithmclassifiesspatialresolutioncellseitheras"object" (i.e.,tentor house)
or backgroundcells basedon the shapeof their spectralprofiles throughthe useof a simple
Bayesianclassifierasdescribedin [10]. This approachwaschosenfor its simplicity andeaseof
interpretation.Althoughother,morepowerfulclassifiersexist,wewantedto avoidcloudingthe
compressionevaluationwith questionsabouttheclassifier.Also, thisclassifieris well knownand
waseasilyimplementedthroughtheuseof theKhorosImageProcessingsystem[11].

The classifierwasdesignedin severalsteps.First, the imagewaspreprocessedso that
eachspectrahadunit energy.This wasdonesothattheclassifiermadeits decisionsbasedon the
shapeof the spectrarather thanon the overall intensity andwould work equally well under'
different sceneilluminations. Second,the image was clusteredby the k-meansclustering
algorithmwhich is essentiallytheLloyd-Max vectorquantizer.Clusteringis performedby first
startingwith aninitial setof clustercentersand,ateachiteration,assigningeachdatapoint to the
nearestclustercenterandthenrecomputingtheclustercenters.Boththenumberof clustersand
theinitial setwerechosenby handsothatrepresentativesamplesfrom eachclasswereincluded.
Third, theclusterswere assignedto classesby visually inspectingtheimage.Theresult of the
classifierdesignwas,for eachdataset,a setof clustersfor eachclassandstatistics(meanand
covariance)for eachcluster.Pixel bypixel classificationisperformedbyfinding theMahalanobis
distanceto eachclustercenter(usingtheclustermeanandcovariance)andfinding theminimum.
Theclasscontainingthisclusterasa memberis theclassassignmentfor thedatapoint.

We appliedtheclassifierto thereconstructeddatasets,andcollectedstatisticsonspatial
cellsthatwereclassifieddifferentlyin theoriginalandreconstructeddatasets.Figure5 showsthe
percentagesof "object" pixels in the original datamisclassifiedin the reconstructeddataasa
function of compressionratio for eachcompressionalgorithm(the linesmarkedwith o's). The
sametrendsseenin the PSNRmeasurementsareevident in this table: spectraldecorrelation
classifiedthemostaccurately,followed by 3-D wavelets,thentheband-independentalgorithm.
Thedifferencesbetweenalgorithmsaredramatic.The3-Dwaveletsalgorithmmissclassifiesabout
half asfrequentlyasthebandindependentalgorithmat similarcompressionratios,andtheworst
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casespectraldecorrelationalgorithm performanceis better than the best casefor the other
algorithms.Figure6 showsmapsof cell classificationsfor theoriginaldatasetsandreconstructed
datasetsat thehighestcompressionratefor eachalgorithm.Figure7 showscorrespondingmaps
of misclassifiedcells. All of thesemapsareat the lowestcompressionratio testedfor each
algorithm.Theseresultsshowthattheclassificationalgorithmis moresensitiveto distortionthat
visualcomparisons.At theserelatively low compressionrates,spectralbandimagedistortionis
notreadily visible.Nonetheless,it inducessignificantclassificationerrors.

The secondexamplealgorithm segmentsa completehyperspectraldatasetinto spatial
regionssuchthatcells within a regionhavesimilar spectralprofiles.The segmentationprocess
comparesthe spectralprofile of thedataat eachspatiallocationto its neighbors;thusboth the
spatialandspectralpropertiesof thedataareimportant.Segmentationsof theoriginalcubeandthe
compressedand uncompressedversionarecompared,bothby visual inspection,andthrougha
measureof differencesbetweentheedgemaps.This measurecombinesdiscrepanciesof two
types: those where a pixel was marked as an edge in the original and not in the
compressed/uncompresseddata, and those where a pixel was marked as an edge in the
compressed/uncompressedandnot in theoriginal. Thetwo typesof "errors"werecombinedto
give afinal measureof edgedetectionerrors,expressedasapercentageof pixelsacrosstheentire
image.While thiserrormeasureis simple,it is sufficientto provideameasureof theamountof
distortionin thespatialandspectralpropertiesof thecube.

Theresultof applyingthespectralsegmentedto the"tents"datacubeis shownin Figure
8. Theboundariesof eachregionof theimageare markedin dark. Theresultingsegmentations
of applying the samealgorithm to the compressed/uncompresseddata sets using the three
compressionalgorithmswith threedifferent compressionratioseacharealsoshownin Figure9.'
Quantitativemeasuresof theedgeerrorsfor eachof thethreeapproaches(atvariouscompression
ratios)are shownfor threedifferentdatasetsin Figure5 (theline labeledwith x's). For all three
cases,thespectraldecorrelationalgorithm producedsegmentationsclosestto theoriginal data,
followedby the threedimensionaltransformapproach.
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Figure 1. Single spectral band image
from "houses" data set.

Figure 2. Single spectral band image
from "tents" data set.
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Figure 4. Examples of reconstructed images. Top row: band independent comlbression,

from left to right: original image, 19:1, 34:1 and 59:1 compression. Middle row: 3-D

wavelet compression, from left to right: original, 21:1, 41 :1 and 92:1 compression. Bottom

row: Spectral decorrelation compression, left to right: original, 60:1, 112:1, 171:1 compression.
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Figure 6. Cell classification maps, "Object" cells shown in white.
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Figure 7. Misclassified cell maps. Incorrectly classified cells shown in white.
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Figure 8. Region boundaries for original "tents" data set.
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Figure 9. Region boundaries for reconstructed data sets. Left column: band

independent algorithm. Middle column: spectral decorrelation algorithm. Right column: 3-D
wavelet transform algortithms. Compression ratios shown to left of each image.
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Abstract

This paper evaluates compression of A VHRR imagery operating in a lossless

or nearly-lossIess mode. Several practical issues are analyzed including:
variability of compression over time and among channels, rate-smoothing

buffer size, multi-spectral preprocessing of data, day/night handling, and

impact on key operational data applications. This analysis is based on a
DPCM algorithm employing the Universal Noiseless Coder, which is a

candidate for inclusion in many future remote sensing systems. It is shown

that compression rates of about 2:1 (daytime) can be achieved with modest

buffer sizes (_<2.5 Mbytes) and a relatively simple multi-spectral preprocessing

step.

Introduction

Incorporation of compression into a real-time remote sensing system adds a number of
complications. Lossless compression, desired by many users, necessarily results in a variable
rate output. A rate smoothing buffer is thus required to interface to systems which require a
fixed rate input such as real-time downlinks and magnetic tape mass storage. Also, since the
possibility of buffer overflow cannot usually be eliminated, some means must be incorporated
to reduce the rate below that achieved by lossless compression in such situations. Coding
delay may also be an issue for real-time downlinks depending on the size of the buffer.

Martin Marietta Astro-Space Division has developed a test-bed consisting of both hardware
and software to investigate such issues. The test-bed consists of: (1) a wide variety of

compression algorithms (including both industry standard algorithms such as the Universal
Noiseless Coder, the Joint Photographic Experts' Group discrete cosine transform algorithm
and internally developed algorithms); (:2) system modeling software such as rate smoothing
buffers; and (3) diagnostic software to characterize compression algorithm performance and
develop appropriate metrics. Most of the compression algorithms are implemented in a
workstation environment. A number of algorithms are implemented on a real-time
programmable signal processor. In this study, the test-bed was applied to investigate lossless
compression of the Advanced Very High Resolution Radiometer (AVHRR) which flies on the
TIROS series of low-altitude weather satellites.

AVHRR Data Set

A data set consisting of real-time AVHRR data acquired from the NOAA 1 1 and 12 satellites
was assembled. The data were received at a High Resolution Picture Transmission (HRPT)

Receiving Station which is part of the Advanced Remote Sensing Laboratory at Martin
Marietta Astro-Space Division in Princeton, New Jersey. Both day and night passes were

1 Current affiliation: Atmospheric and Environmental Research, Inc., 840 Memorial Drive, Cambridge, MA
02139-3794, Phone: 617-547-6207, Fax: 617-661-6479, E-Mail: dhogan@aer.com
2 Address: Martin Marietta Astro-Space Division, MS-410-1B, PO Box 800, Princeton, NJ 08543,
Phone: 609-490-4510, Fax: 609-490-3962, E-Mail: cxm @saturn.astro.ge.com
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assembled consisting of -60 minutes of daytime data and -57 minutes of nighttime data

acquired from the ground station located in Princeton. A typical pass duration was 8-10
minutes. The data set covers a variety of regions and scene complexities, including ocean and
land over latitudes ranging from 25°N to 55°N. Total data set size was about 860 Mbytes --

somewhat greater than the data from one complete orbit.

The uncalibrated HRPT data were used in the analyses that follow. These data are for five

bands (two in the visible/near infrared, one mid-wave infrared and two long-wave infrared)
and have a spatial resolution of about 1. i km at nadir for -2,048 samples per scan line. Each
sample is quantized to 10-bits. The HRPT data stream also contains sensor calibration

samples, spacecraft telemetry data, frame synchronization and other miscellaneous headers,
and data from lower rate sensors. Compression of these other data was not investigated.
Total data rate of the HRPT stream is 666 kbits/s.

Compression Approach

A Differential Pulse Code Modulation (DPCM) coder followed by an entropy coder was used

as illustrated in Figure 1. Both one- and two-dimensional (I-D and 2-D) predictors were
tested. A simple three-point, 1-D predictor was used for most of the results reported here. 1-

D predictors minimize front-end buffering and simplify error propagation control. Entropy
coding was based on the Universal Noiseless Coder (UNC) described by Rice (1991). The
UNC was selected for several reasons: competitive performance when compared to other

entropy coders for the type of data used in this study; anticipated availability in high-speed,
rad-hard chips; and its inclusion in the Consultative Committee for Space Data Systems
(CCSDS) standard for Advanced Orbiting Systems, Networks and Data Links (Yeh, et al,
1992).

5-channel
AVHRR

start valuedata

Spectral
Pre-pro-
cessor r

_ Ouantizer
Predictor*

buffer state

Universal
Noisless

Coder

from
other
DPCM
coders

17Formatter
and Rate
Smoothing
Buffer

Note: * DPCM predictor may alternately feedback to spectral preprocessor as

described in text which would modify diagram (not shown)

Figure 1 DPCM Model Block Diagram

The UNC implementation employed eight of the alternative Rice coders W1,0 through W 1,6

plus the default coder qJ3. In Rice's nomenclature this translates to a coder with values X = 1
and N = 8. No additional coding of the coder identifier was performed. We experimented
with a variety of block sizes (J in Rice's nomenclature) and determined that J = 16 or J=32
were near optimum for most cases. The starting values for the DPCM predictor were

provided only once per scan line.

When operated in a lossless mode the quantizer of Figure 1 is the identity function. A
uniform quantizer was used for lossy operation, as described later.

136



Although most of the experiments described here were performed on Sun SPARC-2 and
SPARC-10 workstations, these algorithms have also been implemented on a real-time

programmable signal processor developed by Martin Marietta built around the Texas
Instrument TMS-320C30 chips. Rates in excess 1.5 Mpixels/s have been demonstrated on a

four-processor version. Such a system may be an alternative to firmware solutions for
moderate rate applications desiring flexibility and reprogramability.

Some special procedures were added for nighttime data. While there is essentially no
information in channels 1 and 2 at night for normal conditions (they measure reflected solar

radiation), it is possible that such data might be of use for unusual circumstances. For this
reason the channels were not completely eliminated in the final formatted product. Rather, at

night the signal level which consists of the zero level plus random noise was replaced by a
fixed value (in this case zero) when the signal is within some range determined by the
expected noise level. This function could be implemented outside the UNC chip. This
method provides a very high compression (>>20:1) for these channels but would still acquire
rare special events at night with negligible impact to the overall performance.

Multi-spectral Preprocessing

It has long been recognized that Spectral correlations among sensor bands can be used to
further improve compression of multispectral data. However, since this decorrelation adds to
the complexity of the system, its marginal benefit must be carefully weighed. In the case of
the AVHRR, this improvement has been found to be small, but perhaps significant in some

applications. Miettienen (1992) using a Discrete Cosine Transform (DCT) spatial compressor
preceded by a Karhunen-Loueve spectral transform (KLT) found an 18% reduction in rate
compared to spatial compression only for a fixed mean squared error (mse) at moderate
compression ratios (8:1 to 15:1) but at low compression ratios and low rose (mse < 1 digital
numbers per band and compression ratio < 6:1), the incremental benefit was less than 8%. As
lossless performance is approached, this benefit is further reduced.

Among AVHRR bands, numbers 4 and 5 have the highest correlation (in excess of 95%).
Both measure thermally emitted radiation in the 10-12 lam window region with most of the

brightness temperature differences (A TB almost always less than 2 K) arising from small
differences in water vapor absorption (for scenes viewing the surface). Thin cirrus (ice)
clouds have been shown to likewise result in a small but significant signature in ATB. The

compression of each channel individually was compared to sending bands 1 through 4 plus
the difference of bands 4-5. For lossless compression, a reduction in data rate of 5.5% was

achieved when averaged over all bands (reduction from 5.25 to 4.96 bits per pixel per band,

bpppb).

The final algorithm also employed the differences of bands 1 and 2 which reduced the rate
another few percent. No spectral preprocessing was applied to band 3 (-3.7 lam) which

responds to both thermally emitted radiation and reflected solar radiation during the day and
shows only modest correlation with the other bands. This is probably due to a combination of
the more complex phenomenology and the excess sensor noise often experienced by this
channel.

An additional modification must be made to allow a lossy mode. One possibility is to

include the spectral preprocessor in the DPCM feedback loop (see Figure 2a). While not
inherently difficult to implement it does add to the complexity of the spectral and spatial
compressor interface. An alternative is to send.both the difference and sum of the bands
(Figure 2b). As any errors introduced by the quantization step are now orthogonal, no
feedback is necessary. The reader will undoubtedly recognize this as the degenerate case of
the KLT for two bands (without the scaling) -- the only KLT which is data independent.
Figure 2c illustrates a five-band orthogonal spectral preprocessor. As long as the KLT

I
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transformvectorsareprestored(i.e., calculatedon theground)andnotcalculatedin real-time,
this presentsonly amodestcomputationalburden.

Thus, it hasbeen found that an optimal five-band spectral transform (i.e., KLT) is not
necessaryto securemost of the advantagefrom spectralcorrelations for a multispectral
compressor.Operatingondifferencesbetweenbands1& 2 and4 & 5 hastheaddedbenefit
that severalof the key applicationsof AVHRR dataemploy thesechanneldifferencesin a
ratherdirectway (e.g.,seasurfacetemperatureandnormalizeddifferencevegetationindex).
This naturallyleadsto methodsfor optimizingthecompressionalgorithmfor userprocessing.

Rate-SmoothingBuffer Sizing

A modelwasdevelopedwhichemulatedthesystemof Figure1.Thefollowing parametersare
specifiedfor the ratesmoothingbuffer: buffer size (in bytes), initial buffer state(percent
full), andfixed output rate. The dayandnight AVHRR datawere thenseparatelyprocessed
by the model. Statisticswere kept for the fraction of time the rate smoothingbuffer was
maintainedin variousstatesof fullness.

Ch #4 "- to DPCM coder A

to DPCM coder B

feedback from coder A predictor (Ch#4)

(similarly for channels 1&2)

(a) Spectral DPCM Preprocessor

Ch#4____ _r toDPCMcoderA
to DPCM coder B

Ch #5 (similarly for channels 1&2)

(b) Orthogonal Spectral Preprocessor

5x5 matrix __
+ mean

Ch #1

Ch #2

Ch #3

Ch #4

Ch #5

mean
remove

matrix

multiply

Y

V

to DPCM
coders A-E

(c) Five-band Orthogonal Spectral Preprocessor

Figure 2 Alternative Spectral Preprocessors
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Figure 3 gives an example of the variable compression ratio (averaged over single AVHRR
scan lines) versus scan line number for a typical pass. The compression variability, ranges

from 6.6 bpp to 4.8 bpp. The very low rates are communication drop-outs experienced by the

receiving station.

Figure 4a shows a histogram of buffer state for the daytime date set with a 2.5 Mbyte buffer
and a 4.9 bpp fixed rate output. The buffer was in an overflow state approximately 1% of the
time. These conditions can be handled by one of several approaches discussed in the next

section. Figure 4b shows a similar histogram for the nighttime data set.
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Next thefixedoutratewasvariedwith afixed buffersize. Figure5aplotsthefractionof data
overflowed in the buffer versusthe fixed output rate for buffer sizesof 1and 2 Mbytes.
Theseresultssuggestthat a buffer sizeof 2 Mbytescorrespondingto about3.5 minutesof
datais sufficientto operatelosslesslyall thetime at a fixedoutput rateof 5.1bpppb. Similar
calculationswith nighttimedata(Figure5b) indicatethat a rateof 3 bpppb (averagedover5
bands)canbeachievedwith a5 Mbyte buffer. A smallerbufferonly increasestheamountof
buffer overflowby a smallamount(<<1%for 1.0Mbyte buffer).
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Figure 5 Buffer Overflow versus Output Rate for Various Buffer Sizes

Graceful Degradation Mode

Rice (1991) describes several methods for adapting the UNC to a lossless mode. The leading
candidates descl:ibed are truncation at the edge of the scan and progressive elimination of Iow
order bits. The former method is reasonable for planetary missions where a camera is
centered on a target of interest (typical of planetary missions for example). It is less

reasonable for a system such as the AVHRR where global coverage and continual monitoring
are desired. In the second method, the elimination of high order bits can be facilitated by an
appropriate ordering of the UNC output stream. This method provides all the data and the

loss can be selectively applied (for example to lower priority regions). A number of
implementation variants are also described such as a zig-zag ordering method which may
offer an advantage for some applications.

For this paper, a third approach is used which provides the rate control feedback through the
quantizer. A uniform quantizer is used which has been shown to provide nearly optimum
performance -- in terms of its rate distortion function -- for a scalar quantizing system using
entropy coding of a memoryless source (Farvardin and Modestino, 1984).

Some trades of rate versus distortion for the uniform quantizer are shown in Figure 6. The

rate is reduced from 5.5 bpppb lossless to 3.8 bpppb with an rose of-0.6 DN 2 (digital
numbers). Thus, significant control of output rate can be achieved with very modest errors
introduced to the data. This distortion plateaus near an rose of 0.5 DN 2 due to the 10-bit

quantization of the data input to the quantizer. By maintaining more bits precision in the
multi-pixel predictor (or preferably in the original sensor data), rounding problems with the
uniform quantizer can be minimized. The rate-distortion curve would then exhibit a more
gradual degradation.
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The proposed rate control method consists of determining a parameter T, the lossless/lossy
buffer fullness threshold, and a function r(S), the quantizer feedback. As long as the buffer
state of fullness S < T, the system operates in a lossless mode. When S > T, the uniform

quantizer is supplied with a divisor determined by r(S). Further experiments are required to
determine the optimal T and r(S). It appears that a linear function will be adequate.

Discussion

A model has been developed for evaluating losslcss compression performance using the
Universal Noiseless Coder and applied to the AVHRR. A variety of system parameters can
be traded using this model such as buffer size, fixed output rate, etc. It has been determined
that a strictly one-dimensional compressor using a 3 point predictor can achieve compression
from the original 10-bit AVHRR data to -5 bits per pixel per band for daytime and -3 bits per
pixel per band for nighttime with buffer sizes less than 2 Mbyte. The results summarized in
Table 1 indicate that even for the nearly-lossless mode, that maximum errors of < 1 DN. The
corresponding mean square errors would be <<1.

Table 1 Lossless and Nearly-Lossless Compression Summary

Mode

Day:
Lossless

Nearly-lossless
Night:

Lossless

Nearly-lossless

Rate (bpp)

5.1
4.9

Buffer (MB)

2.0
1.0

Lossy Fraction*

<1%
-4%

3.0
2.8

2.0
1.0

<1%
-4%

Max. error (DN)**

Notes: * Fraction of time spent is lossy mode
** Estimated maximum error during lossy mode, mse < 0.5

The 1-D compressor described has the advantage that any bit stream errors cannot propagate
beyond the line in which they occur. The maximum coding delay of 3.5 minutes is not
expected to be significant for most situations. A simple sum/difference spectral preprocessor
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appliedto channelsl&2 and4&5 respectivelywasshownto providea smallbut potentially
useful reduction in rate (6-8%) when compared with compressing each channel
independently.

While thesystemparametersabovecanprovidelosslessperformancethevastmajorityof the
time, buffer overflow might still occur. A feedbacksystemto a uniform quantizerwas
recommendedandexamplesof theratedistortionfunctionweregiven. Shoulda fixed output
ratenear the averagelosslessratebe selected,this could provide a fallback mode for rare
circumstanceswhen the buffer overflows,
noise level of the sensor-- the impacton
below thelosslessaverageratebedesired,
DN2canbeachievedwith ratesupto 2 bpp

While silicon implementationsof theUNC
circuitry would berequiredin anyeventto
implementthe quantizer. An alternativeis

Sinceerrorsaresmall -- less than the inherent
dataquality would bevery small. Shoulda rate
theratedistortion function suggeststhat mse< 1
belowthelosslessrate.

areavailable(Yeh,et al, 1992),additionalsupport
performthespectralandspatialpredictionsandto
to employprogrammablesignalprocessors.This

adds considerably to the flexibility of the compressor. Minor and possibly major
modifications to the algorithm could be madeeven during a mission. The UNC hasbeen
testedin sucha systemat Martin Marietta. The programmablesignalprocessorusesfour
TexasInstrumentTMS320C30processorsupplementedby custominterfacechipsto enhance
interprocessorcommunications. The UNC algorithm, using a somewhatsimpler predictor
thandescribedhere,hasbeenbenchmarkedat ratesin excessof 1.5Mpixels/son thissystem.
This is muchgreaterthanthe-60 kpixels/srateat whichtheAVHRR operates.

Futurework will expandthemodelin a numberof ways. Thegracefuldegradationmodewill
be integratedwith the overall model. Ability to analyzethe impactof bit streamerrorswill
alsobe incorporated.Furthermore,radiometricallycritical AVHRR applicationssuchasSea
SurfaceTemperature(SST) and NormalizedDifference Vegetation Index (NDVI) will be
investigated. Additionally, greaterquantitiesof datawill be testedandother multispectral
sensorswill beconsidered.
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