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MUSCULAR ACTIVITY AND ITS RELATIONSHIP P97
TO BIOMECHANICS AND HUMAN PERFORMANCE

O Investigator, do not flatter yourself that you know the things nature performs for herself, but
rejoice in Knowing the purpose of those things designed by your own mind.

Leonardo Da Vinci (118)

* - INTRODUCTION
The purpose of this manuscript is to address the issue of muscular activity, human motion,
fitness, and exercise. Human activity is reviewed from the historical perspective as well as from
the basics of muscular contraction, nervous system controls, mechanics, and biomechanical
considerations. In addition attention has been given to some of the principles involved in
developing muscular adaptations through strength development.

Brief descriptions and findings from a few studies are included. These experiments were
conducted in order to investigate muscular adaptation to various exercise regimens. Different
theories of strength development were studied and correlated to daily human movements. All
measurement tools used represent state of the art exercise equipment and movement analysis.

The information presented here is only a small attempt to understand the effects of
exercise and conditioning on Earth with the objective of leading to greater knowledge concem-
ing buman responses during spaceflight.

What makes life from non living objects is movement which is generated and controlled
by biochemical substances. In mammals, the controlled activators are skeletal muscles and this
muscular action is an integral process composed of mechanical, chemical and neurological
processes resulting in voluntary and involuntary motions. The scope of this discussion is limited
to voluntary motion.

HISTORICAL CONSIDERATIONS

The phenomenon of muscular contraction as a prime mover of animal motion has fasci-
nated men for many centuries. In the fifth century B.C., the Hippocratic collection of writings on
medicine and its philosophy, consisted of various treatises of the corpus. It is interesting to note
that in these early Greek works the tendons were confused with nerves (320). Today, confusion
between tendons and nerves no longer exists. However, there is no precise understanding of the
activation of the elastic component of the connective tissue nor their contributions to the total
muscular contraction.

Skeletal muscles usually originate on a skeletal segment, span one or more joints, and
insert onto another bone. Human motion is composed of the coordinated contraction of these
voluntary skeletal muscles. This coordinated movement can be conceptualized as consisting of
several components. One of the most basic structural components is the cell. Within the human
muscular system these cells include bone, muscle, nerve, and brain. Although these four types of
cell make up different appearing structures, they have many common features which all cells
posses, eg. protoplasm, mitochondria, membranes, etc. The cells are the components of each
organ and the organs constitute the system's production of motion. The coordination of these
individual blocks is necessary to create coordinated movement. The movement process, inten-
sity, displacement, speed, and acceleration can be executed by various controlled interactions
between the organs. - - N
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Aristotle (384 to 322 B.C.), considered animal motion to be caused both by the power of
the nerves and with the spirit. He wrote:

The movements of animals may be compared with those of automatic puppets which are set going
on the occasion of a tiny movement, the levers are released, and strike the twisted strings against
one another... Animals have parts of a similar kind, their organs, the sinewy tendons to wit and the
bones; the bones are like the wooden levers in the automation, and the iron; the tendons are like the
strings. for when these are tightened or released movement begins... Now experience shows us that
animals do both possess conatural spirit and derive power from it ... And this spiritappears to stand
to the soul-center or original inarelation analogous to that between the point ina joint which moves,
and thatwhich is unmoved. Now since this center in a joint which moves, and that which is unmoved.
(160).

Circa 1650, Giovanni Alfonso Borelli (75) showed that the muscles act on the limbs with
short lever arms, whereas the part of the body carrying a load utilized a longer lever arm.
Consequently, Borelli concluded that the joints transmitted forces which are several times the
weight of the supported part of the body.

Borelli’s contemporary, Descartes, the mathematician and philosopher, related the muscu-
lar action to the nerve which inserted into them. Descartes believed that “spirts™ entered the
brain, passed into the pores of the substance, and from these pores into the nerves. The “spirits”
of Descartes then had the power to change the shape of the muscles in which these nerves were
inserted and by this means to make all the limbs move.

Today, there are thousands of research articles dealing with understanding of muscular
contraction and many of the mysteries continue to allude investigators. There are more then 600
muscles in the human body. In each movement, even the simplest one, groups of muscles work
together to achieve the voluntary task. The intensity of the muscular action can be controlled by
neural, chemical and biomechanical coordination.

The goal of efficient movement is to accomplish that action with the minimal amount of
energy. For example, an Olympic shotputter tries to throw the longest distance by coordinating
all internal and external forces in order to generate maximum velocity on the shot at the proper
angle with minimal effort. If the movement is not efficient, energy will be wasted in the wrong
direction.

Efficiency of motion obviously incorporates activities within the pervous system. In 1883,
Yale College received eighty thousand dollars to investigate and lecture on the subject of
“Electricity and Matter”. Parts of these lectures were devoted to Charles S. Sherrington (410),
who studied the role of electricity in the human body. In his book, “The Integrative Action of the
Nervous System”, Shemrington wrote that:

in the multicellular animal, especially for the higher reactions which constitute it's behavior as a
social unit in the natural economy, it is the nervous system and its reaction which ‘par excellence’
integrates it, welds it together from its components, and constitutes it from a mere collection of
organs.

According to Sherrington, the integration of the animal organism was obviously not the
result solely of any single agency at work within it, but of several. Thus, Sherrington believed
that the mechanical combination of the unit cells of the individual were not independent but
functioned as a single unit.
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In muscles, this mechanical integration of the organ may produce a single “cord tendon”
by which the tensile stress of myriad contractile cells can be additively concentrated upon a
single place of application. Sherrington measured forces at the muscle rather than extemally as
some subsequent investigators have done.

In addition, Shermrington believed that the integrative action of the nervous system is
different from other bodily systems. He believed that connective tissue was merely intercellular
material and that the circulation system transferred material in mass. On the other hand, the
nervous system worked through living lines of stationary cells along which it “despatches waves
of physico-chemical disturbance, and these act as releasing forces in distant organs where they
finally impinge.” Sherrington described the foundation of reflex activity in the human body and
established the knowledge of the integrative mechanisms of muscular activity.

Figure 1
MUSCULAR ACTIVITY AND ITS RELATIONSHIP TO BIOMECHANICS AND HUMAN PERFORMANCE 3



MUSCLE STRUCTURE :
Leamning about muscular function requires the knowiedge of the structure of muscles
themselves. Muscular structure can be divided into Macroscopics, which relates the muscle
connection to the bones which serve as levers in the different skeletal structure, and Microscop-
ics, which relates the cellular structure and the micro structure of the muscular cell within the
fibril structure.

Macroscopic Structure:

In the 1600’s, Borelli (75) described the macroscopic structure of the muscular system in
his book, “On the Movement of Animals”, and presents an exceptionally detailed description.
Until some of the recent discoveries in the twentieth Century, there were no other works which
provided such detail on muscular function based on mathematical and geometrical relationships.
Borelli observed that muscle fibers do not always run parallel to the force which they transmit.
This bas significant implication for the muscle’s internal biomechanics since the resultant force
depends on the geometrical relationship of the muscle fibers.

Muscular structure is designed to allow movement and the cell itself is a mechanical
structure which causes movement. Borelli (75) stated in his Proposition I'V: “Muscle acts by
coatracting”. His illustrated Table (Figure 1) which present the various structures of muscles is
amazingly accurate particularly when one realizes that the information dates from the 17th
century not the 20th century. His Proposition stated that:

in muscle we see that only the fleshy threads AB, CD, EF and C in the figures 1,2.3 and 4 in Table
I contract when the muscle acts. The tendons at the extremities BH to which the fleshy fibers are
attached do notconiraci but retain their initial length. Consequently, only the fleshy fibers AB, CD,
EF,GH and C exert a force by contracting when they carry considerable weights. The tendons BH
are subjected to a force when moved by the contraction of the fleshy fibers. They undergo this force
like a handle to which the fibers are attached.(75)

Hundreds of years after Borelli's pioneering work, the Nobel laureate, Albert Szeat
Gyorgyi (440) from Hungary, stated that these fleshy parts described in the 17th Century are
made of two types of proteins. Skeletal muscle fibers are elongated cylinders containing several
nuclei, originally belonging to smaller cells known as myoblasts that merge before birth. Since
they are larger than other muscle fibers, many skeletal muscle fibers are visible to the naked eye.
Some, like those in the thigh’s sartorius muscle, are more than a foot in length and some
individual fibers can extend the entire length of the muscle. Usually, however, one end of the
fiber attaches to tendon which is the tough tissue that binds muscle to bone while the other end
attaches to connective tissue in the muscle. - -

Borelli (75) believed that when a muscle contracted moving a bone, it created a spherical
or circular movement as described in his Table I (Figure 2). It is a humbling experience to
realize that, in 1630, Borelli stated what remains as the modern foundation of the relationship of

" bones, as levers, and the muscles to which they are attached:

But, although the movements of the limbs are circular, the position of the center of rotation of the
limbs and bones is not obvious and must be found. If the bones of the limbs were solid lines their
contact would be a point which should be considered as the center of fulcrum. However, since the
bones have some thickness their extremities cannot easily contact and articulate at one point to
rotate about this point of contact. This would be possible if the extremity of one of the bones was
pointed, like the apex of a cone or of a pyramid, and if this tip was attached to the cavity of the
opposite bone which would be immobile. Then the point of contact would be the fulcrum and the
center of rotation. But this would be very inconvenient and fragile. If indeed the ulna ended in a
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conical apex and if this conical extremity of the humerus. such a pointed protuberance could easily
be crushed and broken and the joint could not be linked strongly enough to avoid unsteady contact
at the apex and deviation. Actually. foreseeing and wise nature, to avoid these inconveniences,
created a joint which is easy, safe, stable. resistant, and minimally liable to dislocation. She shaped
the ends of the bones round, one convex, the other concave so that contactdoes not occur at one point
but over a wide area. This avoids crushing and fracture. This does not give a center of rotation but
rather a cylindrical fulcrum over which the bone moves. Any point in which the moving bone rests
overthe immobile boneisnota fixed or stable pointand, therefore, there can be no center of rotation.

Figure 2
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Unfortunately, this explanation from the 17th century has been overlooked by many in our
time. The fact that the external force is measured at different angles and at different moment
arm lengths is significant in interpreting the muscular force. This concept will be discussed
subsequently. Even earlier than Borelli, in the 15th Century, Leonardo Da Viaci (118) wrote:
“You may not be versed in geometrical exposition or in the method of calculating the forces and
energy of the muscles”. Leonardo wamned that simple conclusions based on simple assumptions
could result in erroneous conclusions.

Anotber foundation for muscular activity proposed by Borelli, (Proposition VIII) stated:

It is commonly thought that Nature raises considerable weights by using the machines of the muscles
with a weak moving force.

The magnitude of the vital force of the muscles must be measured. This force sustains,
raises and moves not only an arm or a leg, but the whole animal machine, enabling it even to
dance. Besides the mass of the animal, heavy enough by itself, this, this force carries, pulls and
pushes considerable weights. Aristotle above all dealt with this matter. He did not recognize the
muscles but imagined spirits which pull and push the limbs. This perspicacious author sensibly
remarked how difficult it would be for the huge mass of an elephant to be moved and pushed by
tenuous spirit or wind. He met the difficulty by saying that Nature moves the joints and limbs of
the animal by using very small force. He said that this results from the work of the machine by
which motions initially small soon lead to large and muitiple displacements. Similarly, small
and easy motion of a pole or of the rudder provokes large displacements of the bows and of the
boat. Then he considered the nature of a pole from a mechanical point of view and said that the
operation is carried out by way of a lever. Therefore, it is not surprising that huge weights can be
moved and displaced by a small force. Lucertius used the same example: ‘Using pulleys and
winding-drums it moves many heavy things and the machine raises them with little effort’ (75)

Despite the antiquity of the statement, the facts are correct. Forces measured at the limbs
are related to the muscular force but the relationship is not linear. There is an integration of
neuromuscular activity at the muscular site but it does not have a linear relationship to the
application of force. It is for this reason that repeating an experiment at different limb positions
does not produce the same results in spite of exposure of the segmeants articulations to the same
forces. This calls attention to Borelli Proposition XV which stated:

If two opposite forces are applied at two points of the same lever and have equal moments, sheir
magnitudes are inversely proportional to the distances of their lines of action from the fulcrum
(Table II, Fig.8).

The fulcrum of the lever AB is B. Two opposite forces H and E are applied at points A and
C in such a way that the lever remains immobile. In other words, the moments of the forces are
equal. Their lines of action are AH and CF. Two perpendiculars BI and BF are drawn from the
fulcrum to these lines of action. I claim that the magnitudes E and H are inversely proportional
to the lever arms BI and BF. Two opposite forces D and N are applied at points C and A. Their
lines of action AN and CG are at right angles to the lever BCA. The moment of force D is equal
to the moment of force N, to the moment of force H and that of force E. The ratio of the magni-
tudes D/N is equal to AB/BC. At the end C of the lever BC the fulcrum of which is B, two forces
of equal moments are applied, one D at right angles, the other E obliquely. Therefore the ratio of
the magnitudes of the forces E/D is equal to BC/BF. Hence, exchanging the terms of the
equations, the ratio of the magnitudes E/N is equal to BA/BF. Similarly, the ratio of the magni-
tude of force N pulling at right angles to the magnitude of force H pulling obliquely is equal to
IB/AB. Consequently, exchanging the terms of the equations, the ratio of the magnitudes of the
forces E/N is equal to the ratio of the lever arms IB/BF.
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Borelli was one of the first mathematicians to reduce the laws of motion into objective,
quantifiable relationships. In other words, Borelli was an early pioneering biomechanist. His
explanation of fulcrums and levers demonstrated that muscular forces measured at the point of
application will not produce the same force quantity at the site of insertion.

Human movement, however, is normally more complicated than a single lever. Most
actions involve multiple lever systems with one bone attached to another bone creating a
common angular focal point which moves about another anguiar attachment. These levers are
moved by the interaction among different muscle groups. It would be naive to describe muscular
activity by considering an isolated joint. Such reality was perceived in the 17th Century as
Borelli expressed in his Proposition XVI, which stated (75):

if two opposite forces are applied at the extremities of an angulated balance the fulcrum of which
is at the apex of the angulation and if these two forces have equal moments, their magnirudes are
inversely proportional to the lengths of their lever arms. Reciprocally, if two forces are inversely
proportional o the lengths of their lever arms, their moments are equal (TablelI Figs.9and 10)(75).

Because of the lever structure of the human skeleton, Borelli evaluated the relationship of
muscular force 1o the external force. He found that different positions of the forearm relative to
the upper arm produced different forces applied by the elbow flexors. The various Tables by
Borelli III, IV, V and VI (Figures 3, 4, 5, and 6) illustrates the relationships of muscular forces at
different body parts. One can observe the complexity of mechanical arrangement and should
never forget that these elementary Propositions were proposed in the 17th Century.

In our more modern age, with the advent of sciences and sophisticated instrumentation, it
became possible to examine the anatomical structure of the joints and the muscle.
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Figure 3
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Figure 5
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Figure 6
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Microscopic Structure:

At approximately the same time that Borelli postulated biomechanical descriptions of
motion, a Danish anatomist, Nicholas Stensen, described the motor fibers of the muscles with
such detail that one imagines that he had microscopic abilities. Stensen determined that the
fibers rather than the tendons were responsible for the muscular contraction.

It is now known that skeletal muscle fibers are elongated cylinders containing several
nuclei which developed from cells, known as myoblasts, that merged before birth. In most
skeletal muscles, one end of the fiber is attached to a tendon and this tendon is connected to the
bone. The other end of the muscle is attached to connective tissue in the muscle itself. This
connective tissue, originating in the tendon, spreads into the core of the muscle. However, the
materials of which the muscle and the material consist are different from each other. The muscle
belly is surrounded by a tissue called endomysium, which is a thin sheath of connective tissue.
Another connective tissue is the internal perimysium which bundles the specific muscle into
groups which called fasciculi. These bundles are themselves bound together by another layer of

connective tissue called the external perimysium or epimysium.

These various connective tissue types and the muscle itself constitute the macroscopic
structure of the muscle. However, the dynamics of muscle action is locked within the basic
component, the cell. Each individual fiber is surrounded by a thin plasma membrane called the
sarcolemma. Figure 7 illustrates these structures. The muscle fiber is filled with tiny fibrils,
known as myofibrils, and a jelly-like material called sarcoplasm. Most current scientists agree
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that the fibers contain bundles of fibrils. Each fibril has a diameter of about .5 microns and
comprises the hexagonal array of the protein filaments which are directly responsible for the
contractile process. Figure 8 illustrates the relative dimensions of the sarcomere. When the
fibrils are investigated under the electron microscope, a peculiar structure is evident. In fact,
these myofibrils produce the skeletal muscle’s striations and cause it to appear striped. It was a
seventeenth-century Dutchman, Anton van Leeuwenhoek, who was the first to observe a muscle
fiber's striations utilizing a microscope. He predicted that the mechanism of muscular contrac-
tion would be in these structures. Leeuwenhoek even entertained the possibility that the striped
elements themselves might be enclosed in another membrane and continue into incredibly
smaller and smaller filaments.
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Leeuwenhoek 's speculations were not, however, accurate. The striations caused by the
myofibrils are subdivided to a unique microscopic structure. The striations are optically made by
a dividing band called the Z-line or Z membrane from the German word “Zwischenscheidung™.
When photographed. the Z-lines appear as dark lines (Figure 9). Two Z lines form a unit of the
contractile element and this unit is called a Sarcomere, The Sarcomeres are the basic units of the
muscle’s contraction. Beside the Z membrane are light regions which are called the I bands. A
darker band forms the middle section of the sarcomere and is called the A band. The A band is
composed of lighter bands in the middle and darker bands on either side. The lighter center is
called the H zooe. In the middle of the H zone there is a dark line called the M lipe (Figure 10).

This pattern is repeated throughout the entire length of the fibril.

These striations, then, are due to the composition of the Sarcomeres which are made of
thick filaments composed of the protein myosin and thin filaments formed from the protein
actin. It is the location of the actin and the myosin which results in the appearance of striations,
since the thick filaments originate from the dark regions of the sarcomere and the thin filaments
originate in the light areas. The A band, which is darker, consists mostly of the myosin fila-
meants. These filaments are anchored in the middle of the sarcomere in a line called the M line.
The actin, the thin filaments, are anchored on the other side, which is the Z membranes. On both
sides of the Z membrane, the actin is extended to produce the I band. The thick filaments, the
myosin, do not stretch all the way to the center of the sarcomere and, for this reason, the H zone
appears lighter in color.

In spite of Leeuwenhoek’s discovery of these striations, it was nearly three centuries
before the modem knowledge of muscular contraction was postulated. Until the middle of the
twentieth century, scientists had assumed that when a muscle shortened. its compounents also
shortened. The theory was that the filaments folded or coiled during contraction. With the
invention of electron microscopes and biochemical measuring devices, it became possible to
examine muscle as they had never been seen. These 20th Century investigators found that when
a fiber contracted, the length of its dark A bands remained constant. This means that the thick
filaments, the myosin, do not change their length nor do they contract. However, the two light
regions, the | band and the H zone did shorten when the fiber contracted. More evidence
suggested that the thin filaments, the actin, did not contract per Se. This was evident from the
fact that the Z membrane, where the light actin filaments are anchored, to the H zone where the
actin met in the middle of the sarcomere, did not change during contraction. Figure 11 illustrates
these relationships.

Investigators from both sides of the Atlantic Ocean independently arrived at the same
conclusion, namely that the filaments were actually sliding into each other. M.LT. scientists,
Hugh Huxley and Jean Hanson (275), and Cambridge University researchers, Sir Andrew
Huxley and Rolf Niedergerke (272), announced their findings in 1954. Each group postulated the
Sliding Filament theory which has served the basic framework for other researchers. Still today,
there are many unanswered questions with more mechanisms yet to be discovered. All recently
advanced theories of muscular contraction confirm the likelihood that the actual contractile
process takes place at the junctions between myosin and actin.

The sliding mechanism is triggered by chain of events which must start with the nervous
system. The nerves which terminated near the muscle cell’s membrane, secrete specific chemi-
cals. These peurotransmitters start a wave of electrical activity that spreads through the whole
fiber. This electrical activity, called the “action potential” causes the fiber's membrane to
release calcium ions which initiates the process of contraction. The calcium ions spread through-
out the fiber via a specific structure of tubules, diffuse into the myofibrils, and come into contact
with the fiber’s contractile proteins, the actin and myosin. Two additional types of proteins,
Troponin and Tropomysin, work as a team to circle the thin actin filaments. The calcium
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chemically binds with the troponin and, in a way not yet understood, causes an interaction with
the tropomyosin. The tropomyosin threads shift their hold on the actin filament and, with this
process, reveal locations along the shaft of the actin filament that are receptive to binding with
the myosin filameants. Pairs of rounded extensions, resembling buds are found on these myosin
filaments. Each pair forms the head of a single myosin molecule. These buds form bridges 1o the
actin filaments and, hence, these molecules are called “cross bridges” (Figure 12).
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Figure 12

Cross bridges are crowned with a remarkable substance, adenosine triphosphate, or ATP.

~ The ATP molecule is the bases for generating energy for life. In fact, ATP can be referred to as
the “Molecule of Life”. Reducing the ATP molecule by one phosphate element results in
adenosine diphosphate, or ADP. This molecule is able to release energy responsible for muscular
contractions as well as many more processes in the human body. Looking at this mechanism
from another perspective is that the energy lost in the splitting of the ATP molecule into two
lower energy products, the energy lost in the split is then available for use in the body’s metabo-
lism.

The ATP molecule has a great affinity to the myosin molecules. Therefore, many of the
ATP molecules in the vicinity of the contractile mechanism “choose” to sit on the myosin
filament. The higher the number of ATP molecules, the greater the potential for energy require-
ment during contractions.
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The discovery of the enzyme ATPase by Engelhardt (151) gave new light to the research
on muscle contraction. Engelhardt proposed a possible mechanism of contraction such that ATP,
which is bound in resting muscle to some protein compiex, combines with myosin on stimula-
tion. An as yet unknown process within the myosin is initiated and contraction ensues. During
this process, the ATP molecule becomes dephosphorylated and yields energy for muscular
contraction and ADP, which has a lower affinity for myosin than ATP.

Current theory holds that this “sitting” site of the ATP is comprised of two buds and each
bud has a different function. One bud is made of ATPase which is an enzyme responsible for the
splitting of the ATP molecule. The other bud is attached to the actin with the ATP molecule.
This means that the actin and myosin filaments are “bridged” together with a structure consisting
of the enzyme ATPase and the ATP molecule connected with an electrical bond. The bond, by
itself, has a unique strength to maintained its position. Figure 13 illustrates schematically these

bindings.
Resting Contracted
Sarcomere Sarcomere
A |

Figure 13

Huxley's model (275), although exceedingly successful at the time of its creation, has lost
its attractiveness in the light of more recent experimental evidence. Barany (56) studied the
ATPase activity of myosin and found that the rate limiting factor was the ATP splitting. This
contradicted Huxley's assumption that one of his rate constant, the constant f, was responsible
for the limitation of the reaction rate. Lowey et al. (325) have clearly demonstrated that the side-
pieces emerging from the myosin backbone consist of two identical rods of light-metromyosin
(LMM) which are connected to two pieces of heavy-meromyosin subfragment.

H.E. Huxley (274) provided electron microscopic proof for the existence of structures
linking the myosin and actin molecules. These structures were termed cross-bridges and Huxley
suggested in his paper influenced by works of A.G. Szent-Gyorgyi (440), that these bridges
consisted of the heavy meromyosin parts of the total myosin molecule. This would mean that the
location of the ATPase activity and the site of the contact with actin had been found. This was a
tremendous step forward and all subsequent theories had to take this finding into account.
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Muscular contraction begins when the tropomyosin shifts away from the binding sites on
the actin filaments and the two arms of the myosin filament immediately link with the actin. The
ATPase enzyme splits the ATP, liberating energy which provokes cross bridge actions resulting
in muscular contraction. In muscular contractions, this activity is continuously repeated with the
cross bridges forming and splitting from the actin, causing the actin filament to slide over to the
myosin filament, thus, making the sarcomere smaller. The breaking and reattaching of the actin-
myosin filaments is, currently, the most accepted hypothesis of muscular contraction. Each
sarcomere acts as a distinct unit and the combination of many sarcomeres produces contraction
of the whole muscle which pulls oa the tendon and its associated bone. Hugh Huxley calculated
that the cross bridges would have to execute 50 to 100 cycles per second to accomplish efficient
contraction. Other investigators bave found that, indeed, the muscle ATP utilization support this
rate.

In general, muscular contraction follow the following sequence:

1. The depolarization of the sarcolemma by nervous impulse.

2. The impulse is conducted down the length of the sarcolemma and through the T-
tubules.

3. The calcium ions are released from the Sarcoplasmic Reticulum.

4. The calcium ions bind with troponin which stimulates a release of tropomyosin
causing inhibition.

5. Actin and myosin interact.

6. Activation of ATPase.

7. ATP is broken down and energy is released.

8. Conformational changes occur at the head of the myosin molecule.

9. Cross bridges are formed.

10. Conformational changes occur at the actin-myosin linkage.

11. The muscle shortens.

The amount of linkage between the cross bridges and the actin relates to the amount of
muscular force. The steps listed above allow each sarcomere along the full length of the myofi-
bril to contract. For example, if a muscle is stretched beyond its normal length, there is less
overlap between the actin and the myosin resulting in reduced muscular force. On the other
hand, when the muscle is compressed or over-contracted, the myosin overlaps itself which
reduces muscular force. There appears to be an optimal actin-myosin relationship at which the
amount of cross bridges achieves the highest muscular force per sarcomere. However, force in a
muscle depends on many factors in addition to the internal sarcomere filament arrangement.

The status at the cross bridges were described by Davies in 1963 (121) such that the cross-
bridges were imagined to exist in two different states. In the inactive state, the bridges consist of
extended polypeptide chains with fixed negative charges at their bases. One ATP molecule is
bound to the top of each bridge in a way which results in a negative unit net charge. The
repulsion between the two negative charges, the base and top, keeps the bridge extended. If the
muscle is stimulated, calcium moves from the sarcoplasmic reticulum and one calcium ion then
provides a link between the ATP ion on top of the cross-bridge and the ADP ion situated on the
actin filament. The negative charge on top of the bridge is neutralized, active repulsion no
longer exists, and the extended polypeptide chain transforms into a helix-coil. It is believed that
contraction is produced by this process. Davies’s theory has been challenged by newer studies.
Ebashi and Endo (136) have shown that calcium acts indirectly by combining with the troponin-
tropomyosin complex.

Based on the preceding information concerning the biochemical and cellular understand-
ings and speculations, the author postulates the following:
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Postulate I
Chemical reaction of phosphate molecules result from the splitting of ATP and energy

regeneration of these phosphate molecules occurs in the sarcomere. There is, however, no
relationship between the chemical processes and the direction of any subsequent limb motion.
That is to say, sarcomere activities and the direction of limb movement are independent.
Activation levels depend on many external effects such as motor recruiting, motor programming,
and the interaction of different muscles. However, the elementary unit of muscular function is
the sarcomere and the activity which causes the filament to slide is independent of the external
movement.

The sarcomere is the basic functional unit of muscular contraction. However, other factors
are associated with the activity of contraction. For example, after the motor unit fires in its
motor preprogramming fashion, many sarcomeres contract causing the total fiber to shorten and
pulling various connective tissues both internally and externally to the muscle.

This process can be equated with an engineering model. In its simplest form, the model
would consists of three-components. A simple model would assume linearity for each compo-
nent. However, in real life these components are not linear. There are two models which are
commonly used to describe these relationships: the Voigt model and the Maxwell model Figures
14 and 15. These models incorporate three distinct elements: elastic, serial and parallel, and
damping. Williams and Edwin (473) employed such models in the electronic simulation of frog
muscle responses to pulse trains at various selected frequencies of stimulation.
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Crowe (116) incorporated the Voigt model to study the responses of intrafusal muscle
fibers of mammalian muscle spindles to mechanical stretch and to fusimotor stimulation. In
1969, Green (208) also employed the Voigt version of the three-component model. He recog-
nized the nonlinearity of all the elements involved, thus, accepting the concept that other factors
which were not incorporated must ultimately be included.
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Many more studies were conducted in order to find a model appropriate for muscular
contraction. However, in all cases, the non linearity of the system and the complexity in behav-
ior of muscular contraction preciuded an ideal model which functioned properly under all
conditions.

Bawa et al. (59) presented a model of muscle consisting of linear springs and a dashpot in
parallel with a force generator. This force generator produced a contractile force of constant
magnitude each time a stimulus was received. Immediately afterwards, the force was assumed to
decay exponentially. According to the authors, the predictions of this model were in good
agreement with experimental observations.

Lf the muscle was not stimulated, its intenal tension due to filament binding was small.
Therefore, if a muscle was stretched without neural stimulation, any tension must come from the
elastic structures of connective tissue which are in parallel with the sarcomeres. At the time of
stimulation, the contractile machinery produced tension which was transferred to the endpoints
of the muscle. This transference of forces was through the connective tissue lying in series with
the sarcomeres.

One can appreciate the mechanical complication associated with this structure and transfer
of forces. For example, the system must be described with one type of connective tissue provid-
ing non linear resistance in parallel while another type of connective tissue gives non linear
resistance at the end points of the muscle in series with the force generator mechanism. In
addition to these non linear relationships, the fibrils themselves have specific geometrical
relationships to the line of force which causes the contraction. The tendons, as well, have their
own nonlinear elastic characteristics.

- . The concept associated with the “give in the system” provided by the various connective,
muscular, and other soft tissues is known as compliance. Various locations for compliances were
suggested by various investigators. Jewell & Wilkie (282) suggested various sites. Jewell &
Wilkie and Szent-Gyorgyi (283) suggest that the Z-discs in the sarcomere allow a great deal of
compliance in the muscular structure. Huxley & Simmons (270) propose that there are two
elastic elements with one used as a damper and the other provides compliance for the sarcomere.
They suggests that these elements are within the myosin molecule. Flitney and Hirst (170), and
Morgan (361) provided conclusive evidence that part of the series elastic structure is indeed
located within the cross-bridges. These researchers believe that this part depends on the active
state of the muscle and the degree of filamentary overlap.

These research findings indicate that there are elastic elements within the sarcomere and at
the end point of the fibers where connective tissues connect the muscle to the bone. The impor-
tant factor is that when the sarcomere shortens, there is a short latency during which some
energy is stored within the elastic components of the muscle. After this short latency, the force is
applied at the end points of the muscle and the lever begins moving.

Based on the facts described previously, the author postulates the follows:

Postulate I1
All mechanical movement originates at the sarcomere level. Regardless of the movement
of any external lever, that is, the bone to which the muscle is attached, the specific chemical
reactions within the sarcomere begin the shortening or contracting process. The ATP activity,
the ATPase reaction, and the calcium ion flow are independent of the external lever movement.

activity can only produce contraction. However, bone movement can be either in the direction of
the contraction or, if there is a sufficiently large load to overwhelm the contractile strength of
the sarcomeres, in the direction opposite to the contraction.
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Functional Characteristics and Mechanical Properties of the Muscle:

Skeletal muscle is composed of three distinguishing components: contractile, serial elastic,
and parallel elastic. In addition, the muscle also has a blood supply and functions within a semi
fluid eavironment. Attention will not be given here to the vascular factor.It is comparatively
easy to determine the constants for the paraliel elements of the muscular structure. This can be
done by studying the relaxed muscle.

When considering the elastic elements in parallel, Yamada (479), demonstrated its
characteristics by utilizing stress-strain curves for muscles and fascia. Figure 16 illustrates this
relationship with different muscles having different curves. However, all muscles and fascia
demonstrate non linear relationships. Examination of the curves readily confirms that muscles
are much more compliant than fascia. This observation seems quite reasonable since fascia
consists of connective tissue to transmit forces and for protection whereas muscles are the force
generators. Other investigators, including Jewell & Wilkie (282) and Hefner & Bowen (236),
have found similar results.

This stress-strain relationship demonstrates that beyond a certain stress level, the fascia
will be damaged before the muscle is injured. However, the state of the muscle is the important
factor. When the muscle is in a full contractile state, the stress-strain relationship can be shifted.
Also, a state of muscular fatigue can bias the relationship resulting in an altered reaction to
stress.

Whether a stress-strain relationship can be altered by the forces generated from a com-
bined effort of the sarcomeres alone without external influence is doubtful. That is, it seems
unlikely that muscle strength alone can injure the fascia or the muscle tissue themselves.
However, high levels of force generated by external means due to gravity or to impact as well as
a summation forces originated through movement produced by a combination of levers could
exceed the compliance of the fascia or the muscle resulting in internal damage.

Postulate III

Injury to the skeletal system occurs due to external force which exceeds the maximal
internal force. Under this condition of excessive external force, the stress-strain relationship may
exceed the compliance capability of the connective tissue and, therefore, cause tissue damage.

Examination of the series elastic element in the muscular structure is a more complicated
task. The reason is that the state of the muscle alters the relationships. The biological material of
which the serial elastic component is composed is not different from the parallel elastic material
which consists of elastin and collagen fibers in complex arrangements. A gain, investigators such
as Yamada (479), Wilkie (471), Hill (247), Bahler (52), Joyce & Rack (290) and others have
defined the compliance characteristics of the serial elastic elements of the skeletal muscle. For
example, Yamada (479) found that calcaneal tendon tissue ruptures at extensions exceeding a
value of .1 relative to the tendon’s resting length.

Again, the force generated by the combined sarcomere pool is insufficient to over stress
the serial elastic component of the muscular system. Only an external force generated at the
contact point of the connective tissue by a lever, such as bone on bone or bone and external
object, could transmit a force which would exceed that produced internally. These facts lead to
the Author’s fourth postulate:
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Postulate IV
The muscular system is exposed of two types of forces. The first type is the sum of the

forces generated by the individual sarcomeres. The second type of force is generated from the
lever through serial and parallel elastic connective tissue. The sarcomeres realize this force but
do not contribute to it. The state of the sarcomeres is the determining factor as 1o the response to
this force. If the force is greater then the binding force of the cross bridges, then either the actin
filament will be stretched away from the myosin filaments or internal damage will occur in a
tissue which is weaker then the binding chemical force occurring at the cross bridges level. The
only force generator in the contractile system is the contractile element. The connective tissues,
such as the fascia or the tendon, cannot generate force but can only absorb energy and return it
to the system in a form of elasticity.

The behavioral characteristics of the contractile element is extremely complicated. Some
of the nonlinear factors affecting its force generation capabilities depend on its length, fatigue,
the rate of length change, the degree of stimulation, and its temperature. Each of these factors
affect the level of force that the contractile element can produce. In physiological terms, these
factors can reduce to the active-state function, the filamentary-overlap, and the velocity-
dependence functions.

As was discussed previously, the contractile element produces the force due to the actin-
myosin cross-bridges. Detailed examination reveals that the cross-bridges are part of the myosin
filament, being the heavy-meromyosin subunits projecting out of the light-meromyosin assem-
blage which constitutes the backbone of the myosin filament. The heavy-meromyosin subunits
consist of two rod-like subunits, each of which carries a globular head subunit (325). It is to
these globular heads that the energy-providing ATP molecules are presumed to bind in the
presence of calcium ions and are thought to provide the direct link with the actin filaments.

The internal source of force by the muscle, therefore, is equal to the sum of the forces
produced by all the cross-bridges in one half-sarcomere of the fiber, at any instant of time. Since
it was found that the propagation velocity of the calcium ions moving from the terminal cister-
nae into the sarcoplasm is finite (284), the onset of the contractive cycle of different sets of
cross-bridges along the myosin filament upon stimulation will be successive. This fact was
verified by Huxley and Taylor (271).

It should be remembered that the appearance of force, measured by an external transducer
or calculated from the movement, is not equal to nor does it correlate highly with the intemal
force. One reason is that in living human subjects, it is impossible to know the number of
sarcomeres, fibers, or activation levels within the studied muscle. Another factor is that the
leverage system changes during movement as does the interaction between different segments in
the body. Inertial forces act on each body segment due to the acceleration of the different
segments. Co-activation of antagonistic muscles also plays a major role in producing the net
moment around a particular joint.

The force in the skeletal muscle is generated within the sarcomere and is equal to the sum
of the forces generated by the cross bridges. The force is equal to the sum of the forces produced
by all the cross-bridges in one half-sarcomere of the fiber.

Any attempt to relate the sarcomere force to the force generated by a limb movement will
yield a low correlation since the force measured at the force application point depends on the
lever amm, the amount of antagonistic muscular co-activation, and the inertial forces due to the
movement. The appearance of force on the load arm, such as the hand, wrist, ankle, or at the
joints, such as the elbow, knee, etc, does not correlate highly with the forces generated at the
sarcomere level.
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As early as 1940, Ramsey and Street (396) demonstrated the existence of an internal force
tending to extend the fiber and, therefore, presumably removing whatever tension was developed
by the filaments during contraction (202). These authors also suggested that this internal force
may be attributed to the deformation of the sarcolemma accompanying the increase of the fiber
diameter during shortening. Therefore, the amount of force needed for shontening will be smaller
on the external measuring device than the amount actually generated at the sarcomere level. The
sum of forces generated by the cross bridges is at least 10 times the amount shown on the force
application. The efficiency of the force at the point of external application depends upon the
position of the lever, the position of the body, the technique in executing the movement, and the
utilization of energy derived from other body segments toward the desired movement.

Therefore, the ability to carry a greater load at a particular movement in a specific direc-
tion has no bearing on the ability of a single cross bridge at the sarcomere level to produce more
force. The sarcomere can only contract and is not effected by the direction of limb movement
regardless of the number of cross-bridges which are active at one time.

Training methods were and can be devised to increase the number of active cross bridges
needed for a particular movement which would, therefore, increase the force generated for a
specific action. However, the net force at the application point might not correlate with the
number of cross bridges active at the prime mover muscle.

The number of cross-links formed is a function of the active state of the fiber as well as the
degree of filamentary overlap (202) and, presumably, the velocity of shortening or lengthening
of the contractile element (273). In addition, the average force output of the cross-bridges is
postulated to depend both on the velocity of the interfilamentary movement and on certain
intermolecular forces. These intermolecular forces were shown by Huxley (272) to exhibit a
cyclic behavior the attachment-detachment-reattachment cycle of the cross bridges. Because this
cyclic behavior is asynchronous, individual force fluctuations do not appear externally. Thus, the
average force output of an activated cross-bridge becomes a function of the velocity of the
interfilamentary movement only.

Therefore, the force output of the contractile proteins of a typical muscle fiber is equal to
the average force output of a typical cross-bridge, multiplied by the number of cross-links active
in a half-sarcomere, at any instant of time. As a formula this fact can be illustrated by the
following equation:

F=NE)*AL)*Lh

F is equal to the force output of the contractile proteins of a typical muscle fiber.
N is equal to the total number of cross-bridges present in a half sarcomere, in a
particular state of activation E,

E is equal to the state of activation.

A is equal to the average force output of a typical cross-bridge, at a particular
length L. '

L is equal to the instantaneous length of the sarcomere.

L/t equal to the Length of the sarcomere per unit of time t, which represents the

change in length per unit of time or the velocity of sarcomere contraction.
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It is important to realize that it is very unlikely that external conditions of the force
application on a particular body segment would effect these relationships in most conditions. Of
course, the speed of segment movement and the joint angular changes are directly related to the
speed of sarcomere shortening and, therefore, the factor LA in the sarcomere. If, for example, the
elbow joint were restricted, such as in a isometric contraction, then the sarcomeres would remain
in a state of unchanging length and. in that state, would function according to the formula. If the
elbow joint were free to move, flexing or extending, the sarcomere would produce force regard-
less of the direction of movement according to the equation. In fact, sarcomere performance is
unrelated to direction since there are no sensors of any kind within it to record or detect conse-
quences.

Therefore, the relative number of active cross-links is a function of the active state, the
degree of filamentary overlap, and the velocity of shortening or lengthening of the contractile
element. This means that there is a condition in which the sarcomere length is optimal and the
active state is at maximum stimulation. The sarcomere is in isometric state when this optimal
length does not change. At that point the force output will be maximally. However, this optimal
state is rarely achieved since the number of cross links varies as well as the distortions caused by
the collision between Z-lines and myosin filaments at very short sarcomere lengths and the
overlap of actin filaments at intermediate sarcomere lengths (202). In any case, the force output
of the contractile element is not identical with the force output as observed externally. Clearly,
the force output of the contractile machinery will be reduced by internal resistance, and the
externally observable contractile force will be lowered as well. The parallel elastic connective
tissue is a main factor in this reduction.

Neuromuscular Dynamics:

The active state of the filaments is one of the factors in the force production formula. Hill
(250) reported and defined the active state of the muscle. Hill pictured the active state as some
operational ability of the muscle which abruptly appeared when the muscle was stimulated and
then slowly disappeared when the stimulus ceased. Gonzalez-Serratos (201) described the events
leading to the onset of the contraction with the sequence beginning with the arrival of a nerve
signal at the motor end plate of the fiber and the subsequent propagation of the fiber action
potential along the fiber surface and down the transverse tubular system. The transverse tubular

system which is called the T-system Tocated at the Z-discs, converts the action potential into a

~ depolarization signal which acts across the walls of the tubular network (10,159). Immediately
upon the ammival of the action potential, depolarization of the T-membranes causes the release of
calcium ions from the sarcoplasmic reticulum. This phenomenon is described in detailed by
Inesi (277). At the instance the calcium ions penetrate the membrane, ATP hydrolysis is initiated
and, simultaneously, calcium ions bind to the calcium-binding subunit of the troponin molecule.
This cause the myosin head to bind to an actin monomer which caused the shortening (138,222,
386). Simply, the active state relates to the amount of calcium ions bound to troponin. If the
maximum number of potential interactive sites on the actin filament are made available by the

action of calcium, then the maximal force will be produced by the contractile elements.

It appeared that the number of free calcium ions and the amount of binding is independent
of both the external force requirements and the direction of movement. However, neural pro-
gramming is involve in the recruitment phenomenon to be discussed later.

The amount of calcium ions bound to troponin relates to the amount of contracting
elements which are in an active state. If, for some reason, the stimulus is such that the calcium
ions do not combine with troponin. there will be a less than active state in the contractile
element. In the presence of calcium ions, this binding depends on many factors and one of the
most important is the amount of neural stimulation. The amount of calcium concentration varies
under different conditions and is the “bottle neck” for the contraction mechanism. Without the

24 MUSCULAR ACTIVITY AND ITS RELATIONSHIP TO BIOMECHANICS AND HUMAN PERFORMANCE

Y



process of the binding of the calcium ions to the troponin-tropomyosin complex, there would be
a specific contractile force for a given sarcomere length. This does not occur since the rate of
supply of calcium ions varies depending on the amount released from the sarcoplasmic reticu-
lum. Depolarization of the membrane of the sarcoplasmic reticulum results from the depolariz-
ing potential of the T-tubular system.

There is no research to show that the direction of the lever movement or the amount of
external load in either direction affects a given sarcomere length or the level of calcium ions.
Rather it is the level of electrical stimulation which causes the mobility of calcium ions. With
regards to the electrical signal in the interior of the T-system, it was fouond by Huxley and
Peachey (269) that this is due either to direct conduction of the action potential of the surface
membrane or to an electronic spread of the surface potential down the T-system. This electro-
chemical transmission of the nerve impulse arrives at the motor endplate of the fiber to a
peuromuscular junction and the T-system. These comprise a very complex electrical networks,

At the motor endplate, Eccles (141) reported that in mammalian muscle the nerve stimula-
tion results in liberation of an acetylcholine transmitter substance. Each stimulation liberates a
certain amount of this chemical. The frequency of stimulation varied depending upon the fiber
type and ranged from approximately 100 c/s to about 25 c/s.

Needless to say, these activities do not occur simultaneously and various latencies exists.
For example, the active state of the contractile element reaches its peak in 10 to 12 milliseconds.
The decay of the active state also requires a few milliseconds. Therefore, the dynamics of the
contractile element of a muscle fiber is dependent on velocity and the filamentary overlap.

Force Qutput:

The number of active cross-links in the interfilamentary space and the degree of filamen-
tary overlap are the basic factors which generate force at the fiber. The other factors which
effect the force output is the velocity of movement between the actin and the myosin filaments.
There is virtually no relationship between the velocity of movement and the force production,
however, it should be remembered that only the effect of velocity at the sarcomere level is
important. Velocities of levers involve mechanical relationships and inertial forces are external
factors which can affect the intemnal contractile element forces but cannot alter its physiological
elements.

All these mechanisms contribute to all body motions. When training for improved move-
ment or for enhanced athletic achievement, muscular activity is the predominant factor for
increasing efficiency and optimizing skill.

Muscular Activity in Exercise:
Exercise can be define as physical activity utilized to generate body responses to demands.
Exercise enables the body to adapt to certain demands and, therefore, increase or alter the
performance capabilities.

There are various factors that affect the type of exercise. These are:
1. Speed of exercise
2. Duration of exercise

3. Resistance

The relationships between these factors determine the various adaptation characteristics of
the body’s physiological system.
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Speed/Duration Factor:

The faster the speed, the shorter the time that exercise can be maintained. The slower the
speed of movement, the longer the time the exercise can be performed. Figure 17 illustrates this
effect. For example, sprinting can be performed for a short time, approximately 50 seconds,
while jogging can coatinue for hours.
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Figure 17

Speed/Resistance Factor:
The higher the resistance, the lower the speed of movement and with less resistance, the
movement speed increases. In resistance training, the heavier the load, the slower the movement.
Figure 18 illustrates this relationship. ~ "~ ' o
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Resistance/Duration Factor:
The greater the resistance to movement, the less time the movement can be endured.
Figure 19 illustrates this relationship.
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When combining these factors, one can consider the entity as a three-dimensional figure as
in Figure 20. Exercises closer to the origin are the least strenuous while the further from the
origin, the more difficult the exercise.

If one were to classify exercises for various physiological adaptations, they could be
summarized in Figure 21 which shows that strength exercises, as in resistive training, and
endurance exercises, such as in distance running.

Exercise is the act of performing a physical activity. In order to elicit specific training
characteristics, one must exercise in repeated bouts. Repeated bouts of training will result in
biological adaptations over a period of time. This time can vary from days to years.

Periodically repetitive performances of a sequence of exercises at increasing levels of
intensity can cause physical adaptations. Adaptation takes place due to some unknown “set up”
which occurs within the DNA-RNA protein mechanisms. Protein synthesis takes place during
the training period and results in greater muscular strength and endurance. Subcellular compo-
nents are altered during the training period and it is specific to the type of training regimen. In
resistive training, the adaptations primarily occur in the contractile mechanisms on the myofi-
brillar protein. This results in increased size and number of myofibrils per fiber. On the other
hand, endurance adaptations are observed in the enzymatic capabilities of the metabolic path-
ways. It is important to remember that specific exercises selectively alter specific subcellular
compartments causing varying degrees of exercise capability and selectively altering the training
adaptations. The training adaptations, therefore, are specifically related to the exercising
conditions.
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RESISTIVE EXERCISE
: The relationship between resistance exercises and muscle strength has been known for
centuries. In ancient Greece, Milo, the wrestler, used progressive resistance exercises to improve
his strength. His original method consisted of lifting a calf each day until it reached its full
growth, and this technique provides probably the first example of progressive resistance exer-
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cises. Today, it is well documented in the literature that the size of skeletal muscle is effected by
the amount of muscular activity performed. Increased work by a muscle can cause that muscle to
undergo compensatory growth (hypertrophy) while disuse leads to wasting of the muscle
(atrophy).

This information has stimulated the medical and sports professions, especially coaches and
athletes, to try many combinations and techniques of muscle overload. These attempts to
produce a better means of rehabilitation or a physiological edge in sporting activities have only
scratched the surface of the cellular mechanisms and physiological consequences of muscular
overload.

Muscular strength may be defined as the force a muscie group can exert against a resis-
tance in a maximal effort. In 1948, Delorme (125A) adopted the name “progressive resistance
exercise” for his method of developing muscular strength through the utilization of counter
balances and weight of the extremity with a cable and pulley arrangement and, thus, gave load-
assisting exercises to muscle groups which did not perform antigravity motions. McQueen
(344A) distinguished between exercise regimens for producing muscle hypertrophy and those for
producing muscle power. He concluded that the number of repetitions for each set of exercise
determines the different characteristics of the various training procedures.

Based on evidence presented in these early studies, hundreds of investigations have been
published relative to “techniques for muscular development including isotonic exercises,
isometric exercises eccentric contractions, the Oxford technique, the double and triple progres-
sive super set system, and many others. Each system'’s effectiveness has been supported and
refuted by numerous investigations.

Berger (61A) concluded that 6-7 repetitions three times a week was best for developing
dynamic strength. Research conducted by Steinhause (432A) emphasized the need to increase
the intensity, not the amount of work, in order to develop maximum strength.

In more recent studies pertaining to exercise, Pipes and Wilmore (388A) compared
isokinetic training to isotonic strength training in adult men. According to their findings with
isokinetic contractions at both low and high speeds, the isokinetic training procedure demon-
strated marked superiority over the isotonic methods. In 1972, Anel (29,30,31,32,33,34)
introduced the Dynamic Variable Resistance exercise principles which resulted the variable
resistance exercise equipment. For the first time biomechanical principles were employed in the
design of exercise equipment.

Definitions of Terms:
Due to ambiguity in the literature of certain physiological terms and laboratory procedural
differences, the following terms are defined:

1. Muscular strength: The contractile power of muscles as a result of a single maxi-
mum effort.

2. Muscular endurance: Ability of the muscles to perform work by holding a maxi-
mum contraction for a given length of time or by contmumg to move a submaximal
load to certain level of fatigue.

3. Isometric training: A muscular contraction of total effort but with no visible limb
movement (sometimes called static training).

4. Isotonic training: Raising and lowering a submaximal load, such as a weight, a
given number of times (sometimes called dynamic training).

5. Isokinetic training (Accommodating Resistance): Muscular contraction at a constant
velocity. As the muscle length changes, the resistance alters in a manner which is
directly proportional to the force exerted by the muscle.
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6. Concentric Contraction: An isotonic contraction in which the muscle length
decreases (i.e., the muscle primarily responsible for movement becomes shorter).

7. Ecceatric Coatraction: An isotonic contraction in which the muscle length increases
(i.e., the muscle primarily responsible for movement becomes longer).

8. Muscle Overload: The workload for a muscle or muscle group which is greater than
that to which the muscle is accustomed. .

9. Repetitions: The number of consecutive times a particular movement or exercise is
performed.

10. Repetition Maximum (1RM): The maximum resistance a muscle or muscle group
can overcome in a maximal effort.

11. Sets: The number of groups of repetitions of a particular movement or exercise.

12. Variable Resistance Exercise: As the muscle contracts, the resistance changes in a
predetermined manner (linear, exponentially, or in a user defined manner).

13. Variable Velocity Exercise: As the muscle contracts with maximal or submaximal
tension, the speed of movement changes in a predetermined manner (linear, or
exponentially, etc.)

In most existing exercise equipment today and in the previously cited research, resistive
training was performed with “tools” which lack intelligence. That means the equipment was
“unaware” that a subject was performing an exercise on it. For example, the equipment em-
ployed in the study conducted by Pipes and Wilmore assumed certain velocities on the isokinetic
modality used. However, verification of the speed was impossible since a closed loop feedback
and sensors were not used as they do not exist on the equipment employed. However, with the
advent of miniaturized electronics in computers, it is possible today to join exercise equipment
with the computer’s artificial intelligence. For the first time it is possible for the equipment to
adapt to the user rather than for the user to adapt to the equipment.

Another important consideration in both the design of equipment for resistive exercise and
the performance of an athlete or a busy executive is that the human body relies on prepro-
grammed activity by the central nervous system. This control necessitates exact precision in the
timing and coordination of both the system of muscle contraction and the segmental sequence of
muscular activity. Research has shown that a characteristic pattern of motion is present during
any intentional movement of body segments against resistance. This pattern consists of recipro-
cally organized activity between the agonist and antagonist. These reciprocal activities occur in
consistent temporal relationships with the motion parameters, such as velocity, acceleration, and
forces.

Hellebrandt and Houtz (236A) shed some light on the mechanism of muscle training in an
experimental demonstration of the overload principle. They found that repetition of contractions
which place little stress on the neuromuscular system had little effect on the functional capacity
of the skeletal muscles; however, they found that the amount of work done per unit of time is the
critical variable upon which extension of the limits of performance depends. The speed with
which functional capacity increases suggests that the central nervous system, as well as the
contractile tissue, is an important contributing component of training.

In addition to the control by the nervous system, the human body is composed of linked
segments and rotation of these segments about their anatomical axes is caused by force. Both
muscle and gravitational forces are important in producing these tuming effects which are
fundamental in body movements in all sports and daily living. Pushing, pulling, lifting, kicking,
running, walking, and all human activities are results of rotational motion of the links which are
made of bones. Since force has been considered the most important component of athletic
performance, many exercise equipment manufacturers have developed various types of devices

30 MUSCULAR ACTIVITY AND ITS RELATIONSHIP TO BIOMECHANICS AND HUMAN PERFORMANCE



employing isometrics and isokinetics. When considered as a separate entity, force is only one
factor influencing successful athletic performance. Unfortunately, these isometric and isokinetic
devices inhibit the natural movement patterns of acceleration and deceleration.

The three factors underlying all athletic performance are force, displacement, and duration
of movement. In all motor skills, muscular forces interact to move the body parts through the
activity. The displacement of the body parts and their speed of motion are important in the
coordination of the activity and are also directly related to the forces produced. However, it is
only because of the coatrol provided by the brain that the muscular forces follow any particular
displacement pattern, and without these brain center controls, there would be no skilled athletic
performances. In every planned human motion, the intricate timing of the varying forces is a
critical factor in successful performances.

In any athletic performance, the accurate coordination of the body parts and their veloci-
ties is essential for maximizing performances. This means that the generated muscular forces
must occur at the right time for optimum results. For this reason, the strongest weight lifter
cannot put the shot as far as the experienced shotputter. Although the weight lifter possesses
greater muscular force, he has not trained his brain centers to produce the correct forces at the
appropriate time. -

Because most athletic events are ballistic movements and since the neural control of these
patterns differs from slow controlled movements, it is essential that training routines employ
programmable motions to suit specific movements.

Resistive Exercising Methods:

There is a significant difference between various resistive training methods. When
comparing isotonic and isokinetic exercises, for example, in the isotonic exercises the inertia,
that is, the initial resistance, has to be overcome first and then the execution of the movement
progresses. The weight of the resistance can not be heavier than the maximum strength of the
weakest muscle acting in a particular movement or eise the movement can not be completed.
Consequently the amount of force generated by the muscles during an isotonic contraction does
not maintain maximum tension throughout the entire range of motion. In an isokinetically
loaded muscle, the desired speed af movement occurs almost immediately and the muscle is able
to generate a maximal force under a controlied and specificaily selected speed of contraction.
The use of the isokinetic principle for overloading muscles to attain their maximal power output
bas direct applications in the fields of sport medicine and athletic training. Many rehabilitation
programs utilize isokinetic training to recondition injured limbs to their full range of motion.
The unfortunate drawback to this type of training is that the speed is constant and there are no
athletic activities which are performed at a constant velocity.

In isotonic resistive training, is more than one repetition is to be used, one must use
submaximal overload on the initial contractions in order to complete the required repetitions.
Otherwise, the entire regimen will not be completed due to fatigue. Berger and Hardage (61B)
studied this problem by training two groups of men with 10-RM. One group trained following
the standard Berger Technique while the other group used on repetition maximum for each of
the ten repetitions. This was accomplished by progressively reducing the weight for the next
repetition in a manner which paralleled the fatigue of the muscle. The results showed that the
intensity of the work seemed to be the important factor in strength increases, since the maximal
overload group showed significantly greater strength gains than did the standard 10-RM group.
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Based on these findings it would seem appropriate to assume that a modality which can
adjust the resistance so that it parallels fatigue to allow the maximum RM for each repetition
would be superior to the currently available equipment. Berger accomplished this function by
removing weight from the bar while the subject trained. This is neither the most convenient nor
the most practical method. With the aid of the modem computer, this function can be performed
automatically.

Another drawback with current isotonic types of resistive exercises is that with the aid of
inertia, due to the motion, the resistance changes depending on the acceleration of the weight
and the body segments. In addition, since overload on the muscle changes due to both bi-
omechanical levers and the length tension curve, the muscle can only obtain maximal overload
in a small portion of the range of motion. To overcome this shortcoming in resistive training,
several companies have manufactured strength training devices which have “variable resistance”
mechanisms in them. However, these “variable resistance” systems increase the resistance in a
linear fashion and this linearity does not truly accommodate the individual. When including
inertial forces to the variable resistance mechanism, the accommodating resistance might be
cancelled by the velocity of the movement.

There seem to be unlimited training methods and each system is supported and refuted by
as many “experts”. In the past, the problem of validly evaluating the different modes of exercise
was rendered impossible because of the lack of the proper diagnostic tools. For example, in the
isotonic type of exercise the investigator does not know exactly the muscular effort and the
speed of movement but knows only the weight which bas been lifted When a static weight is
lifted the force of inertia is a significant contribution to the load and cannot be quantified by feel
or observation alope. In the isokinetic mode, the calibration of the velocity is assumed and has
been very poorly verified. The rotation of a dial to a specific location does not guarantee the
accuracy of subsequently generated velocity. In fact, discrepancies as great as 40 percent are
found when vernifying the velocity of the bar.

THE INTELLIGENT EXERCISE MACHINE
In all the previous descriptions of exercise equipment, the user has had to determine the

amount of resistance and the number of repetitions desired. The reason the user made the
choices was, of course, that the exercise equipment itself was inherently incapable of any
intellectual participation. However, with the advent of computers, it became possible to design
exercise equipment with artificial intelligence enabling the computerized machine to select the
best exercise method based on each individual user. Thus, the user need not be an expert in any
biological, physiology, or exercise area since the exercise machine is programmed with informa-
tion from many scientific fields thus, correctly benefiting the different individual users.

The exercise machine described herein is the result of the application of many unique,
innovative features and mechanisms to the long-established fields of resistive exercise or
training for athletics, rehabilitation, and physical fitness. The underlying principle behind these
innovations is that of a computer controlled feedback of servo-mechanism which is able to
maintain any desired pattern of force and motion throughout the range of each exercise, regard-
less of the magnitude or rate of force applied by the person exercising. The advantages of an
intelligent feedback-controlled mechanism over existing resistive exercise mechanisms are
many.

First, all systems which employ weights as the mechanism for resistance have major
drawbacks in four or more areas: (1) biomechanical considerations, (2) inertia, (3) risk of injury,
and (4) unidirectional resistance. The biomechanical considerations are the most important for
exercise equipment and have been previously explained. Inertia is the property of resisting any

change in motion and, because of this property, it requires a greater force to begin moving
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weights than it does to keep them moving in a constant manner. Similarly, when the person
exercising slows his motion at the end of an exercise movement, the weights tend to keep
moving until slowed by gravity. This phenomenon reduces the required force at the end of a
motion sequence. This property becomes especially pronounced as acceleration and deceleration
increase, effectively reducing the useful range of motion of weight-based exercise equipment.
The risk of injury is obvious in weight-based exercise equipment. When weights are raised
during the performance of an exercise, they must be lowered to their original resting position
before the person using the equipment can release the equipment and stop exercising. Injury
could easily result if the weights fell back to their resting position accompanied by the concomi-
tant motion of the bar or the handle attached to the weighits. If the person exercising happened to
lose his grip, or was unable to hold the weights due to exhaustion or imbalance, serious injuries
could and have resulted. Finally, while being raised or lowered, weights of exercise equipment
employing weights offer resistance only in the direction opposite to that of gravity. This resis-
tance can be redirected by pulleys and gears, but still remains unidirectional. In almost every
exercise performed, the muscle or muscles being trained by resistance in one direction are
balanced by a corresponding muscle or muscles that could be trained by resistance in the
opposite direction. With weight-based systems, a different exercise, and often a different
mechanism, are necessary to train these opposing muscles.

Exercise mechanisms which employ springs, torsion bars, and the like are able to over-
come the inertia problem of weight-based mechanisms and can partially overcome the unidirec-
tional force restriction by both expanding and compressing the springs. However, the serious
probiem of safety remains. An additional problem is the fixed, non-linear resistance which is
characteristic of springs and is usually unacceptable to most users of exercise equipment.

The third type of resistive mechanism commonly employed in existing exercise equipment
is that of a hydraulic mechanism. This mechanism is able to overcome the inertial problem of
weights and the safety problem of both weights and springs. With the appropriate selection or
configuration of hydraulic mechanisms, the unidirectional problem can also be overcome.
However, previous applications of the hydraulic principle have demonstrated a serious defi-
ciency that has limited their popularity in resistive training. This deficiency is that of a fixed
(although perhaps preselected) flow rate though the hydraulic system. With a fixed flow rate, it
is a well-established fact that resistance is a function of the velocity of the piston, and in fact,
varies quite rapidly with changes in velocity. It becomes difficult for person exercising to select
a given resistance to train with since he or she is usually constrained to moving either slower or
faster than he would like in order to maintain this resistance. Additionally, at any given moment,
the user is unsure of just what the performing force or velocity actually is. For these reasons,
hydraulic mechanisms have found only limited acceptance among serious users of exercise
equipment.

Feedback Control of Exercise:

The Computerized Exercise Machine possesses several unique advances over other
resistive exercise mechanisms, both fixed and feedback-controlled. The most significant of these
advances is the introduction of a stored-program computer to the feedback loop. The computer,
and its associated collection of unique programs, allows the feedback-controlled resistance to
vary not only with the measured parameters of force and displacement, but additionally, to
modify that feedback loop while the exercise is in progress. This modification can, therefore,
reflect changes in the pattern of exercise over time. The unique program selection can effect
such changes in order to achieve a sequential or patterned progression of resistance for optimum
training effect. The advantage of this capability over previous systems is that the user can select
the overall pattern of exercise and the machine assumes responsibility for changing the precise
force level, speed of movement, and temporal sequence to achieve that pattern.
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Consider the following typical examples of exercises which can be performed on this
machine which would be impossible on any other exercise machine. A user wishes to select a
resistance (weight, in classical terms) starting at 1/2 the body weight, and to have that resistance
increase by 10 percent in each successive repetition, until the user reaches a “sticking point” and
cannot continue. With a classical weight machine, he would have to initially select weights
equal to half his body weight. Then the user would have to stop between each repetition to
change weights, with the probability that he would not be able to select the desired unit of
increase since weights are normalily available in 5,10,25, or 50 pound units only. In addition, the
training effect of the exercise is considerably affected because, while stopping to change
weights, the muscles “recover”. If, with the Isokinetic or other devices, there were a force
readout (which is not included on any of the currently available equipment), the user would have
to watch that readout and match the force pulled with the desired force as it appeared on the
readout. (This is analogous to trying to keep the high performance race “car” on the “road” in
the video arcade games.) This would require more control and concentration than most persons
are capable of especially with the onset of exercise-induced fatigue, With the Computerized
Exercise Machipe, the person’s weight would automatically be determined by baving him
support himself briefly on the exercise bar. Then the computer would select the pattemn of
increasing force, starting at precisely half the body weight, and increasing the resistance by just
10 percent after each repetition until it detected that the user could no longer move the bar. At
this point, it would report the final force level, the number of repetitious, and, if desired, the
progress the user had made since the last exercise session.

A second example is that of a user desiring to exercise with a constant force or a pre-
determined force pattem (i.e. non-linear force through the range of motion). In addition, at the
point in the range of motion where his speed is the lowest (the weakest point), the user may want
the bar to “lock™ for three seconds so that strength could be enhanced through isometric rather
than isotonic exercise. After the three second isometric contraction, the motion would be
allowed to continue through the next cycle until this sticking point would again be encountered.
Experts in various professions believe that such an exercise is a vast improvement over conven-
tional resistive training for developing strength at a person’s weakest points. Yet it would be
impossible for this exercise to be performed on any other exercise machine known to exist. Not
only can the proposed exercise system perform this pattern of exercise, but during and after the
exercise it can display the level of strength at the “sticking point” and how this compares both to
previous strength levels and to the strength over the entire range of motion. In addition, the
programs are then able to adjust ensuing exercise sessions to select the proper range of forces to
continue to build strength based on the progress to date. All of this is accomplished without the
user having to remember or reenter any data.

As can be seen from the previously cited review of resistive exercise methods, it would
seem that the future will rely increasingly on computerized exercise modalities for training and
rehabilitation. Current research revealed significantly greater progress in muscular strength for
the subjects who trained on the Computerized Exercise Machine. In addition, more efficient and
less time-consuming workouts as well as fewer injuries and higher motivation are possible which
can produce improved results. The Computerized Exercise Machine is programmed for several
training modes. One mode is diagnostic for determining the individual’s range of movement as
well as the force and speed exerted through that range of movement. On a color CRT, the user
can see the force and the velocity curves or print a copy of the display. A second training mode
controls a predetermined resistance which can be set in several ways - linear, exponential, user
defined and an “ideal” curve. A third mode allows setting “sticking points”, or isometric
contractions, at any points through the range of movement. The fourth training mode can set a
“fatigue level” to which the user exercises until reaching that level. The fifth mode is a power
and endurance training which controls the amount of work performed. Another exercise mode is
variable velocity training. In this type, the velocity can be predetermined in many possible
fashions which also allows the user to exercise in an isokinetic mode. The amount of resistance
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can be set as a function of the forces exerted by the user for each repetition. The computer
“senses” the changes of forces throughout the range of movement and makes the appropriate
adjustments in order to accommodate the user. The Computerized Exercise Machine has many
other features which are fully programmable and allow tremendous flexibility for the user.

Some of the capabilities of the Computerized Exercise Machine were studied in several
research projects performed at the Coto Research Center at Coto de Caza, California. One study
was designed to compare the Computerized Exercise Machine to other existing equipment. The
study examined the effect of similar training regimens, using several types of training equip-
meant, on the development of muscular strength. The results of the study demonstrated superior-
ity of the Computerized Exercise Machine over the other types of equipment. The study con-
cluded that the Computerized Exercise Machine was more effective in developing muscular
strength. It seems that the Computerized Exercise Machine allows adaptation to the maximum
effort of the muscular contraction. In addition the interactive feature of the machine permitted
maximum motivation for the user and there was a significant carry over effect to other exercise
modalities and other independent athletic skills from training on the Computerized Exercise
Machine.

Another study was designed to examine the effect of resistive training on limb velocity.
The subjects were tested on the maximum speed they could lift a 32 pound load, and in addition,
how fast they could lift loads of 40 and 70 percent of their maximum. Again, the results revealed
a significant rate of improvement of the Computerized Exercise Machine users over the other
training modalities.

A study was designed to determine the aerobic adaptation to work and fatigue training
modes on the computerized Exercise Machine and to compare those effects to the aerobic
adaptation of running/jogging. The running group trained three times per week for 40 to 50
minutes of jogging and punning. The Computerized Exercise Machine groups were trained in
power/work mode or in a fatigue mode. The results of the Study revealed that, for the same
amount of time devoted for exercise, the Computerized Exercise Machine users improved their
aerobic capacity by almost 20 percent while the runners improved only 12 percent. The Compu-
terized Exercise Machine users also significantly improved in strength/power and local muscular
endurance.

From these results, it can be concluded that the Computerized Exercise Machine is more
effective than the other modalities tested for several reasons. The subjects could constantly
interact with the machine and receive immediate feedback about their effort. While exercising,
the subjects were motivated by the interactive results which reported the average and maximum
force produced as well as the velocity associated with the movement. During each session, a
comparison to previous sessions was displayed on the CRT, a feature that constantly motivated
the subjects to work harder. This motivation contributed to the stimulation for the Computerized
Exercise groups to work at their maximum effort. Unlike other modalities, the subjects were not
restricted to the range where biomechanically the limb would be at a disadvantage and would
have to stop exercising. On the Computerized Exercise Machine, at this point, the intelligence of
the machine reduced the resistance and allowed the subject to complete the set at his maximum
effort. The Computerized Exercise Machine opens a new dimension in the area of training,
rehabilitation, and research.

NEUROMUSCULAR INTEGRATION
In order to understand the computational abilities of the brain, it is necessary to understand
something of the basic structure and function of the neuronal substrata. Early descriptions of
brain models considered the brain as a randomly connected network of binary neurons. In fact,
the brain is highly structured and far from random connections with the peurons functioning as
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both analog and digital computing devices. The neurons in the brain are arranged in quite
regular patterns and are grouped in functional divisions. Precise and regular mappings exist from
the sensory organs to the sensory processing regions of the cortex, as well as from the motor
centers to the muscles of various parts of the body. Somehow the neurons from one area know
how to locate and establish contact with neurons in other quite distant areas.

The unit of the brain structure is the neuron. It is a living entity, that is, a cell like all the
other cells in the body. The neuron, however, is specialized for information processing. Each
peuron is shaped by its surroundings, by the composition of the chemical bath in which it swims,
by the hormones it detects, by the electrical and chemical fields and gradients it experiences
during its growth and maturing, and by the nature and timing of the electrical impulses and
chemical transmitters produced in its vicinity as a result of activity of other neuroas.

The peuron can be compared, in simplified terms, to a “gate” in a digital computer or to an
operational amplifier in an analog device. Any movement executed by the body must start with
the neuron. Neurons have four basic parts: a cell body, a set of dendrites, an axon, and a set of
terminal buttons. Neuronal information is transmitted to the action site through the axon.
However, the axon does not transmit the information as a DC or AC current but in pulses with
certain frequencies. All the pulses which are transmitted have approximately the same height
and the same duration. In digital computers electronics, these would be considered as binary bits
and are analogous to “1”s and “0"'s. A pulse is transmitted on the axon whenever the analog
voltage in the cell body exceeds a certain threshold voltage value. Using electronic terms, this is
an “action potential” which initially generates a pulse. After the pulse occurs, the voltage in the
cell body of the nerve retumns to the initial base line value. In electronics terms, the nerve acts
like a Schmitt trigger.

The cell body interacts with the axon from the preceding neuron at the synapse. The
synapse can transmit in only one direction and, therefore, acts like a diode. The synapse is an
electrical gate, or valve, whose resistance to the flow of current is controlled by the receipt of
transmitter chemicals from the axon buttons of other neurons.

Communication of information across synapses is one-way and flows from the terminal
buttons of one neuron to the dendrites or cell body of anotber neuron. The presence of the
transmitter causes an electrical current to flow in the synapse of the receiving neuron. This
current may be either positive or negative, depending on the type of transmitter chemical
released. As a general rule, a particular neuron releases only one type of transmitter chemical,
Thus, neurons can be classified as either excitatory, causing positive current to flow in receiving
neurons, or inhibitory causing negative currents to flow. There is a synaptic receptor for every
axon button. Thus, there are two types of synaptic receptor sites: excitatory and inhibitory. A
single receiving neuron may have both excitatory and inhibitory inputs. Communication of
information across synapses is one-way, flowing from the terminal buttons of one neuron to the
dendrites or cell body of another neuron.

It is interesting to note that the voltage in the cell body is an analog signal and represents
an algebraic sum of the inputs. This means that many small low voltage signals, which by
themselves would not have an effect, may sum algebraically to produce a quantity sufficienty
large to activate the nerve. When all the input signals on the cell body exceed the threshold, a
pulse is initiated down the axon and, it is said, that the neuron has fired. In other words, the
neuron has digital inputs which are converted into analog values. These values are processed
algebraically in an analog fashion. The arithmetic result is then reconverted into a digital form
for transmission. The neuron can behave in different ways depending on the level and frequen-
cies of the incoming signals. For example, activation may require several equaily weighted
inputs in order to reach the firing threshold. This type of response is analogous to an “AND"
gate. A different type of response is that any of several inputs can drive the cell past the firing
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threshold; this is analogous to an “OR” gate. A third possibility is that some signals may be
subtracted from the sum. This allows both inhibitory and excitatory inputs providing the neuron
with characteristics of both “AND™ and “OR" gates. Since the individual cell can have thou-
sands of inputs, one can appreciate the nearly infinite possibilities. Thus, the cell must integrate,
differentiate, and process other functions through feedback and analog operations.

Interaction of inputs from different axons is called “spatial summation” and interaction of
sequential pulses on the same axon is referred to as “temporal summation”. In other words, the
signals from the neurons can be evaluated by the brain as "what”, “where”, and “how much”.
Once the neuron has computed its result, this information is transmitted to its destination which
could be another neuron, a muscle, or a gland. Transmission is not a simple problem because the
signal voitage is small, less than a tenth of a volt, and the distance may be quite far. The action
potential allows the signal voltage of the neuron to be transmitted over long distances by
encoding it as string of pulses. This means that the choice of a particular axon specifies “what”
and “where’’. The amount of frequency indicates “how much”. This system enables the nervous
system to select which muscle to use and how much resistance to create. If a person wants to
flex his or her elbow with a certain load held in the hand, the brain must direct the signal
through the axons to the proper muscles activate the correct number of fibrils. If the elbow is
flexed first, then the summation of signals activates enough sarcomeres to allow the proper
muscles to flex the elbow. Once the elbow is extended if the person wants to lower the weight,
the summation signal in the brain must calculate the level of contraction necessary to execute
the task including computations needed for the gravitational effects which are an integral part of
the movement. The net moment around the elbow must consider also the required stabilization
between the extensors and flexors and the geometrical orientation of the limbs active in this
movement. This ability of the nervous system allows large numerical quantities to be processed
with what might be called a temporal byte or the integration, over a brief time period, of a single
input line. Thus, the brain structure receiving the information can determine the type and
location of the stimulation with a spatial byte, which is a place code allowing determination of
the set of active lines, and the intensity of the stimulation with a temporal byte or frequeacy
code.

All muscular activities utilize a basic unit on contraction which consists of spatial and
temporal dimensions. Independent sets of information can be encoded in these two dimensions
and they can then interact in the receiving structure in a way determined by physical and
chemical properties of the cell’s membrane. The spatial aspect of the code is essentially digital
information and the temporal aspect of the code is essentially analog information, although it is
encoded in the frequency of digital pulses.

A simple explanation of these physiological parameters would be impossible. Even
mathematical treatments of this sequence represented in various models incur great difficulties.
The number of degrees of freedom exceeds the number of simultaneous equations required to
quantify all the possibilities. However, logical and experimental results may provide logical
conclusions although inconclusive and possibly erroneous. (Remember the statement at the
beginning of this article by Leonardo Da Vinci?)

A very important property of the neuron is that many inhibitory inputs are received and

processed as well. The total of these inhibitory signals causes the voltage across the neuronal
membrane to move away from the firing threshold. This action cancels the combined action of
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all the positive inputs. It is also possible to have a negative synapse which negates only a
specific input. This type of signal called presynaptic inhibition.

In addition, the speed of transmission along the axon plays an important role in controlling
and processing of the motor nervous system. The speed of the transmission of pulses down the
axon can vary over a wide range although it is always the same in any given axon. This means
that high speed axons can move data quickly, but low speed axons may be employed as delay
lines. Because axons can have branches coming off at any point, delay lines may be introduced.
A greater amount of depolarization at the neuron will cause a higher frequency. A lesser amount
will cause a lower frequency. Thus, analog voltage in the cell body can be converted into a
series of pulses at a particular frequency.

Signal encoding by action potentials unfortunately introduces noise into the information
channel. This is because the action potential is a discreet event as is the pulse spacing between
action potentials. The encoding of a continuous voltage as a string of pulses forms a noise signal.
The brain overcomes this noise by redundancy. This information repetition utilizes many
neurons transmitting the same message, each encoded slightly differently, so that the average of
a large number of neurons produces the accuracy needed for precise control. This redundancy
also provides improved reliability which is important in a structure in which approximately ten
thousand neurons die every day due to disease, injury, or old age.

It is beyond the scope of this article to provide an indepth discussion of the complexity of
the nervous system in creating muscular contraction. However, in general, the basic architecture
of the system is hierarchical. Each of the major functions of the system is partially organized at
cach level of the system instead of having particular levels devoted to specific functions.

The most obvious partitions of the central nervous system divide it into three levels. At the
lowest level is the spinal cord, above that is the brain stem, and finally at the top is the forebrain.

At the lowest levels, there are a multitude of relatively simple processing elements doing
similar jobs. At the higher levels, there are a few very complex and powerful processing ele-
ments defining system tasks and priorities and organizing the activities of the lower levels to
achieve the goals.

O the input side, the lowest levels gather raw data, which is then progressively abstracted,
sorted, and refined at each stage according to general guidelines which may be either hard-wired
or determined at higher levels. The highest levels then receive abstract symbolic information
about the general state of the environment rather than discreet bits of information. Therefore, in
order to flex the elbow joint, the higher center recognize the flex and extend movement rather
then how many sarcomeres are involved in each of the movements. The output functions begin
at the highest levels which determine general goals and strategies and transmit these to the lower
levels. The lower levels, in tum, send information about desired actions and timing to the lowest

levels for execution.

One of the most important signal from the lower centers is the proprioceptive sensor
mechanisms in the muscle spindle organ, shown in Figures 22, 22a, and 22b. The output of the
spindle sensor travels to the spinal cord where it enters through the dorsal roots and terminates
with excitatory synapses on the dendrites of the alpha motor neurons as shown in Figure 23.
When the gamma neuron fires at a rate gl, it shortens the ends of the spindle to a length I(gl). If
the muscle bundle attached to the spindle is stretched by more than an amount L(g!), the spindle
will fire, sending a signal to the motor neuron that controls the muscle bundle commanding it to
resist further stretching.
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Thus, the gamma neuron can determine the point at which the stretch resists further
movement. The result is that the limb moves to a position set by the firing rate on the gamma
motor neuron. The gamma neuron, muscle spindle, and motor neuron thus comprise a position
servo. A specific firing rate on the gamma neuron tends to produce a particular length of a
muscle and, hence, a unique angular position of the joint. Figures 24 and 24a shows a schematic
diagram of the computing modules involved in the gamma position servo. The position com-
mand enters the motor output module and generates a particular firing rate on a gamma neuron.
The gamma peuron sends its indication of what the spindle length should be to the sensory
spindle where it becomes an expected position. The spindle compares the actual position with
the expected, emits an error signal which is sent to the motor output module as an excitatory
feedback signal. The motor output module, whose output is the alpha motor neuron, then uses
this feedback together with input from other motor centers to compute its output signal which it
encodes as a firing rate to the muscles.
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Some of the other motor center inputs come from commands to and feedback from other
limbs. The rest of the other inputs come from higher motor ceaters such as the pyramidal fibers
from the motor cortex; extrapyramidal fibers come from the red nucleus, the substantia nigra,
subthalamic nucleus, and the vestibular nucleus. All of these synapse directly on the motor
neurons. These various inputs essentially command the motor neurons to fire at a particular rate
which produce a specific force or rate of contraction of the muscles. This is represented in
Figures 25 and 25a.

In addition to the spindles that measure the amount of stretch in the muscles, there are the
Golgi tendon organs that measure the tension in the tendons. Axon fibers from the Golgi tendon
organs enter the dorsal roots and make excitatory synapses on interneurons. These interneurons
thea make inhibitory synapses on the motor neurons. The overall effect is to limit the force
exerted by the muscie preventing excessive stress from tearing the muscles or tendons. When
tension in the tendon organs approaches the danger level, they fire vigorously causing an
immediate relaxation of the muscle. Thus, signals from the tendon organs provide the motor
output module with the information necessary for controlling the force level in the tendons.
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It is thought local sensory input and commands from higher in the motor system that the
gain in the inhibitory portion of the tendon organ loop is modulated. If the inhibitory signal is
equal to the difference between the commanded and the observed tension, the motor neuron will
increase its firing rate whenever the tension falls below the commanded value. Correspondingly,
the motor neuron will reduce its firing rate when the tension rises above the commanded value.
The result is that the force in the muscle is servoed to the commanded value.

There are also sensing organs in the joints which measure the position and rate of motion
of the joints in addition to the muscle spindies and the Golgi tendon organs. For every sensory
input there are specific nerves for each of the different sensations or signals. This nervous
system feature has been called the “law of specific nerve energies” or “place encoding.” For
example, the brain must know the amount of tension on a particular muscle and the position of
the joint at that particular angle. If the motor signal is to reduce the angle or flex the joint, the
motor system in the brain must know if this task has been accomplished. If the joint center
indicates that the limb is moving in the direction opposite to what was required, adjustments
must be made. (Attention to such adjustments will be discussed relative to a series of experi-
ments later in this article.)

As a general rule, the intensity of sensory input is encoded by the rate of firing such that
each percent increase of stimulus intensity tends to cause an increase in the firing rate by a fixed
amount. This leads to a logarithmic or power law relationship between stimulus intensity and
firing rate. This is called the Weber-Fechner Law after the two investigators who first carefully
measured the effect as shown in Figure 26.

Thus, at each level of nervous system control, there are a number of relatively independent
processing elements performing their own jobs in parallel and exchanging information with
levels above, below, and laterally. Therefore, any large scale or voluntary task is not processed
in a single brain center. Rather, different aspects of the task will be handled by different portions
of the functional subsystems within the physical system. For example, consider the case of
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lifting a load by flexing the elbow. There will be continuous computing of forces based on limb
positions or velocities requested by higher levels. The brain provides such a processor for each
fiber of each muscle and it instructive to examine their approaches to the problem solution
involved.

Voluntary limb movements such as this example of elbow flexion necessitates adjustments
to be performed quickly and control of the system is made by anticipation of events. This is one
of the major principles of the neuromuscular system, the principle of organization. The theory of
the principle of organization is that the higher level structures control the lower, not by turning
them on when needed, but rather by inhibiting their actions except as desired. Consider running
as an example. In running, the muscles involved in plantar and dorsal flexion of the foot which
will quickly come into contact with the ground, are fully activated before the impact. In this
way, there is force anticipation to absorb the impact. Another example can be found in long
jumping. In the analysis we performed on the world's best long jumpers, the results showed that
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the man who jumped farther than 8 meters did not use the foot flexors and extensors as driving
forces but as blocking forces. This technique enabled the utilization of inertial forces which are
much greater than the muscie could generate even though limb muscle contraction was evident
prior to takeoff.

The lowest level of the central nervous system is the spinal cord and it is the major route
for input and output for the brain. Most of the sensory input from the body and most of the
output to the muscles passes through this structure.

The higher centers, including the medulla, the mesencephalon, the thalamus, the bypo-
thalamus, and others, will not be discussed. However, their complexity of regulation and coatrol
is an integral part in muscular output. It is interesting to note, however, that the actual physio-
logical mechanisms which are controlled directly by the brain are of only two types: the muscles
and the glands. These are the only effector organs to which the brain is connected and, thus, you
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0 Root Root
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Figure 27
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may only contract a muscle and release glandular secretions. The remaining range of physical
behavior is only a combination of these two.

Figure 27 provides simplified illustration of the interaction between the high level and the
low level controllers. This system govems the servomechanism of muscular contraction.

When it comes to muscular control, there are two fundamental techniques which the brain
uses to control muscular contractions. The first mechanism is to equip each level of decision
making with subprocessors which accept the commands from higher levels as well as accounting
for the inputs from local feedback and environmeantal information sensors. In this fashion, a
descending “pyramid” of processors is defined which can accept very general directives and
execute them in the presence of varying loads, stresses, and other perturbations. This kind of
input and output control is used for multimodal processes, such as maintaining balance while
walking on uneven terrain. However, this type of control is inappropriate for executing deliber-
ate, volitional, higher level goals such as instructing the arm to flex with load beld in the hand.

The second technique which the brain utilizes to control muscular contractions applies to
the operation of higher level systems which generate output strategies in relation to behavioral
goals. These are the categories of output tasks which use informational input rather than the type
of geperated behavior. The operation of the motor command chain depends upon certain sensory
inputs which provide feedback and status information for moment-to-moment operations. The
basic required and supplied information relates to the joint angle, muscle loading, and muscle
extension or stretch. Various organols at the lower levels of control translate these quantities into
neural impulses which are processed by the higher levels of control for the next sequence of
instructions by neural transmission.

The functional aspect of muscle control is the motor unit. All skeletal muscle fibers are
innervated by the neuron. There are thousands of direct and indirect neural connections to the
cell body of the motor neuron, but once an impulse is generated this motor neuron determines
the final neural output through which movemeant is controlled.

All motor neurons transmit impulses from the spinal cord to the muscle fibers they
innervate. When the impulse arrives at this point, all of the muscle fibers of the specific motor
unit contract. However, motor units differ with regard to speed, force, and endurance. Figure 28
illustrates these differences.

Different populations of motor units account for the speed with which the muscle can react
to a stimulus. There are both fast twitch and slow twitch muscle fibers. When considering force
production and force-yielding capacity, the force yielding capacity of a motor unit depends on
the number of muscle fiber per motor unit, the fiber size, and the type of myofibrils in the
particular motor unit.

In different movements, no one type of motor unit is used exclusively. Normally, the
requirements for a particular movement will preferentially select slow and fast twitch units in
different proportions depending on the movement and the skill desired.

In most cases, muscles work in opposing pairs, that is, one muscle group opens or extends
a joint and the other group closes or flexes it. Figure 28 illustrates this kind of arrangement.
Local control of this system resides in the spinal cord and it is called the lower motor neuron
system. This organization controls the individual fibers of each muscle through input to the
motor units that control a varying number of muscular fibers. The organization of the lower
motor neuron pool accepts and reconciles commands from a multitude of other systems all of
which desire control of the muscle in question.
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The degree of contraction of the muscle is proportional to the output pulse frequency of
the lower motor neuron system. The higher the frequency, the stronger the contraction. In the
situation presented in Figure 28, it is apparent that both the extensors and flexors cannot be
affected by the lower motor neuron to the same level of intensity simultaneously. There must be
a programmable mechanism so that the flexors do not work in opposition to the extensors.
Therefore, one group of muscles must be relaxed while the other is active. In addition to the
local control system, previously mentioned, there are higher centers of reflex action so the motor
system can enact corrective action via other muscles and limbs for the redistribution of weight,
1o counteract shifts in the center of gravity, etc.

Higher level inputs to the Lower Motor Neuron system may request a variety of actions,
such as holding a particular position, moving to a specified position, or moving with a particular
velocity. These requests are integrated into the lower motor neuron system according to the
following structure. The Lower Motor Neuron system (LMN) attached to the extensor muscle
has two functions. One function is to deal with high level instructions while the muscle tension
compensates for an external load. The second function is to process information from the muscle
itself via the muscle spindle that sends information via the gamma motor neuron. Because the S
fiber is mechanically attached to the rest of the muscle, it is passively stretched or relaxed as a
result of the neuronal inputs or external forces which extend or contract the main muscle.
However, the S fiber's bias, or ambient contractility, is set by its own “private line” input signals
from neuron G. The neural component of these stretch receptors is attached to the S fiber, and
when this is stretched, the neuron fires at a rate proportional to the degree of stretch.
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From a motor integration view, the whole hierarchical motor output system uses a tempo-
ral frequency coded as well as analog information derived from the stretch receptors to specify
the degree or quantity of an action. In addition, the set of all of the descending input lines to the
numerous LMN systems constitutes a spatial byte, or place code, which is essentially digital in
character and in which the specified lines select the set of LMN systems which are addressed.
This arrangement allows determination of the nature of the movement to be performed, but not
its speed, force, or direction.

Figure 29 illustrates some attempts to explain the effect of the higher center on the lower
motor neuron pools. Arbib (18) tried to relate the higher center to the control of flexors and
extensors system around a particular joint as shown in Figure 29.

Figure 29
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Experiments with rapid movement illustrated a high level of control for a pair of muscles.
Studies of isotonic movements, which more correctly should be referred to as “ballistic” or
“variable resistance” movements, have shown that muscle activation occupied only a small
portion of the movement. In addition, the duration of the activation in an isotonic movement
does not seem to be related to the extent of the motion. There is an initial burst of acceleration as
the agonist contracts and the antagonist muscle relaxes, an intervening quiet period, followed by
a final burst of deceleration as the antagonist contracts. Bizzi (73), experimenting with eye
movements, revealed a system in which the initial movement was triggered by an agonist burst
and antagonist silence. This activity continued until the end of the movement triggered a return
of both muscles to the resting activation level appropriate to the new position.

Braitenberg and Onesto proposed a network for converting space into time by providing
that the position of an input would determine the time of the output. This “open loop” system
revealed a preset signal in the nervous system which resulted in specific position adjustments.
However, the question remained as to how the brain “knows” the joint angle in a cognitive
sense. Experiments revealed that the brain processed the angle as a quality and encoded it in
terms of which neurons fired. Specific receptors fire at higher frequencies at particular angies.
Thus, for each joint angle, there were “assigned” receptors responsible for each specific angle.
When the higher center transmitted a command to flex the elbow, for example, feedback
information returned from the joint receptors as ascending signals to the higher center for
processing and adjusting to the continuous tuning signals to the flexors to contract.

The extent of the kinesthetic receptors’ tuning curves suggests that fine discriminations of
angle must be made. This is accomplished by establishing “angle detectors’ throughout the
process of selective inhibitory and excitatory convergence to produce a pattern of activity in a
population of inputs which corresponds to the desired action. Activity by any single angle would
activate several broadly tuned receptors to varying degrees and not activate others at all. The
relative activities could define the angle as finely as desired simply by pulling more of the
broadly tuned detectors.

When a body segment is given a signal to move, the agonists muscles are fired to start the
contraction. At the same time, the antagonists muscles also receive also a signal of lesser
magnitude. Because the activity by the antagonists is smaller, they were believed to be relaxed
or inactive. However, it has been found by many investigators that the antagonist functions as a
joint stabilizer and, therefore, movement is a product of the net moment around a particular
joint. A “burst” of agonist EMG stimulates the required muscular activity to accelerate the
segment and this burst of EMG activity is followed by a silent period. The antagonistic activity
has reported. This classic illustration of EMG patterning in a ballistic movement utilizing
agonist and antagonist muscles is shown in Figure 31.

It is apparent that the brain defines its perceptual qualities so that the nature of the quality
is encoded in active cells and the rate of their firing determines the “goodness of fit” between
the stimulus and the desired action. The encoding process at the receptors achieves higher
intensities with increased firing rates.

A situation to address concemns the rate of firing when the resultant movement is opposite
to feedback signal loop such as in a maximal eccentric contraction. For example, the contractile
direction may be flexion but the external load exceeds the muscular force in that direction. In
this situation, the different joint receptor outputs do not match the required or the anticipated
signal. The neural and muscular mechanisms and the various effects have not as yet been
investigated.
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Types of Muscular Contractions:

When muscles contract, the limbs may appear to move in different ways. One type of
motion is a static contraction, known as an isometric type of contraction. Another type of
contraction is a shortening or dynamic contraction which is called an isotonic contraction.
Dynamic contractions are accompanied by muscle shortening and by limb movement.

Dynamic contractions can exhibit two types of motion. One activity is a concentric
contraction in which the joint angle between the two bones becomes smaller as the muscular
tension is developed. The other action is an eccentric contractions in which, as the muscles
contract, the joint angle between the bones increases.

These two types of dynamic contractions exhibit various characteristics and produce a
level of confusion. It was thought that a person could generate more force with an eccentric
contraction then with a concentric one. Many studies have focused on this point, however, to
date, there has been only confusion and disagreement with the results. To adequately investigate
this phenomenon, the following areas must receive consideration:

1. Physiological

2. Neuromuscular

3. Biomechanical

4. Skill and Technique

The physiological characteristics of muscular contraction have been previously discussed.
The interactions among the remaining factors, the biomechanics, neuromuscular control, and the
level of preprogrammed skill and technique are essential if one is to determine the source of the
causes and the discrepancies in force measurements.

Komi (307), a notable researcher in the area of muscular function, concluded his research
findings with the following statement: “It would be an overstatement to conclude that the
available scientific information guarantees full understanding of the factors involved in produc-
tion of force and speed by human skeletal muscle.” Such sentiment was probably aroused by the
fact that, in skilled activities, the muscle does not behave in a manner that is logically explained.
For example, Komi observed that the greatest EMG activity occurred before the force require-
ment. The level of force was greater in the eccentric phase as compared to the concentric phase.
The concentric contractions appeared to be less efficient with minimal energy production as
compared to the eccentric contraction.

It appear to the author of this manuscript that some of the findings resulted from not
amalgamating the total complex of requirements needed to generate force. For example,
sufficient time must be allowed for the flow of calcium ions to interact with the cross bridges.
Time is also necessary for neuromuscular integration and for the entire system to generate the
required potentiations. All the biochemical processes require some activation time. Thus,
muscular contractile activation must start before an impact occurs such as in running or walking.
These actions must be preprogrammed to allow a sophisticated timing mechanism to initiate a
chain reaction of events.

The level of performance is dependent on the integrative prograinming of the nervous
system, the status of the biochemical state of the skeletal muscle, and the biomechanics of the
muscles, joints, levers, and external physics affecting the body.

When a limb moves, a sophisticated chain of events occurs before, during, and after the

movement is completed. The fineness of control depends upon the number of motor nerve units
per muscle fiber (207). The more neurons, the finer the ability to maneuver, as in the case of the
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muscles that operate the eye. When there are fewer motor nerve units involved, the action
becomes less fine or precise. The individual muscle fibers that make up a muscle contract and
relax in an elaborate synchronization. Consider the operations required of the human eye and
arm. Bye muscles must operate with great speed and precision in quickly orienting the eyeball
close or distant focusing as well as tracking. At the same time, the eye muscle does not have to
contend with such external demands as lifting weight. The fine control needed in eye movement
calls for a high innervation ratio (the ratio of the number of neurons with axons terminating on
the outer membrane of muscle cells to the number of cells in the muscle). For eye muscle, the
innervation ratio is about one to three, which means that the axon terminals of a single motor
neuron release their chemical transmitter to no more than three individual muscle cells.

Figure 31

In contrast to this high innervation ratio, the axon terminals of a single motor neuron that
inpervates a limb muscle, such as the biceps of the arm, may deliver a chemical transmitter to
hundreds of muscle fibers. The muscle may, therefore, have a low ratio of one to many hun-
dreds. As a result, the output of the motor unit in limb muscle is correspondingly coarse.

One of the most elementary movemeants for humans is walking (113,139, 245). It seems as
if all mammals and other land animals are bom with the ability to walk and run. In experiments
with babies between four and six weeks of age, it was found that these infants start to walk when
supported, raised to a standing position, and placed on a treadmill. It seems that a baby at this
early age possesses and can utilize the built-in walking mechanism with which it was endowed
by its genes. The nerve cells controlling the mechanism come from the spinal cord.

Consider one of the most common activities in modern civilization, handwriting, and the
execution of one’s own signature. Whenever John Smith signs his name, it always looks the
same (or enough to be so recognizable) and different from what any other person can write, even
if trying to sign the name of John Smith. Even if Mr. Smith uses chalk and signs his name on a
blackboard, the signature appears the same though he used different muscles than those em-
ployed when writing on paper. The individuality remains.

In this complex handwriting movement, there is a preprogrammed control mechanism.
Optimum performance depends on the control efficiency. It does not matter how strong the
muscles are or the efficiency of the metabolism. The control of these processes is the most
important factor. Most people believe the brain is primarily used for thinking, yet research
shows it to be first and foremost a control system. Although, very complex, the task of handwrit-
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ing incorporates all of the required componeats: neurological, biomechanical, and biochemical.
To begin a handwriting analysis, it should be remembered that there are many ways to move the
joints in order to accomplish the task. However, for any given function there seems to be a best
way to code the information and receive the quickest response from the system. Therefore, the
way in which we activate the muscles and the bones in order to perform any volitional task will

- greatly affect the amount of computation that is required to assure smooth operation of joints
and easy interaction of the organism with the world.

’ BIOMECHANICS

Biomechanics is an integration of the two disciplines of biology, “bio”, and physics,
“mechanics”. It recognizes that all bodies on earth, animate and inanimate, are affected in the
same way by gravity and provides a better understanding of performance. In other words, a
bridge, a car, a baseball player, or a horse must all adhere to the laws of mechanics. The addi-
tional factors which must be included to more accurately assess motion for the biological entities
include such things as bone capacity, neuromuscular coordination, and physiological attributes.
From the understanding of each component will come greater appreciation of the integrated
result that is called biomechanics.

Da Vinci (118) once observed that while drops of rain are in fact independent of one
another, they appear to the human eye as “continuous threads descending” from the clouds, and
that therein lies the truth of how the eye “preserves the impression of moving things which it
sees.” Therein also lies the visual distortion that allows us to see motion pictures. Because of the
properties of the human eye and the visual system, a series of separate images on film becomes a
smoothly flowing image when projected onto a screen at a certain speed - a movie. Movement of
the human body is, also, a series of separate, individual actions. They begin with minute
electrochemical processes infinitely swifter and more complicated than any set of film images
traveling at 24 frames, or 1.5 feet, per second. Our muscles are thin strands of fibers which,
when inactive, have all the strength of jelly. But they contract or relax because of these electro-
chemical reactions. The result is movement of the body with a fluidity that defies even the
sharpest eyes to distinguish the separate actions. For instance, the simplest of human move-
meats, such as crooking a finger or raising an eyebrow, involves a complex of neuromuscular
happenings that cannot be duplicated by artificial means. In fact, the best robot still moves in
jerks and stops when compared to the subtle, flowing pace of a human (207).

Man fathoms the nature of things by tracking their motion. All motion follows mechanical
principles. Like machines he makes, man is a set of levers whose movements copy the geometry
of classical mechanics. These levers are powered by muscles, whose actions can be as simple as
their characters are compiex. Each of the more than six hundred muscles is abundantly supplied
with nerves which link the muscles to the brain and spinal cord and which often follow laby-

- rinthian circuits, humming with signals, to control the ebb and flow of muscular energy. Many
muscles must work harmoniously together in order to perform even the simplest task (115).

It is biomechanics that seeks to understand how these neuromuscular events occur and to
analyze a series which the naked eye only dimly sees and the mind often fails to comprehend.
Biomechanics is a science that depends upon the known facts of biology, physics and, to a lesser
exteat, chemistry. It can be called the study of the structure and function of biological systems
by the methods of mechanics. To reap the rich rewards of the more satisfying, fulfilling life
which this science can offer, a through understanding of both the “bio” and the “mechanics” of
biomechanics must be gained.

The “bio” part of Biomechanics has been covered at length in the beginning portions of
this paper. Therefore, attention will be directed at the second half of the word, the “mechanics”.
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THE MECHANICS
The second balf of the science of biomechanics concerns itself with the physical laws that
can be applied to the human body, the “mechanical” consideration. Unlike the “bio” portion,
which is affected by biological structure, anatomy, physiology, genetics, nutrition, activities and
environment, the mechanics portion is governed by mechanical laws which are universal tenets
throughout the Earth.

The Italian scientist, Galileo Galilei (1564-1642), found experimentally that different balls
of different weights roll down an inclined plane at the same rate (43) If the plane were tipped
more sharply, the balls would roll more rapidly, but all the balls would increase their rate of
movement similarly; in the end, all would cover the same distance in the same time. This means
that freely falling bodies fall through equal distances in equal times, regardless of their weight.
In other words, a beavy body will not fall more rapidly than a light body. The importance of the
falling masses experiment lies in understanding acceleration.

Galileo determined that the distance traversed by a body rolling down an inclined plane
grows greater and greater in successive equal time intervals. This means that the rate of speed is
changing. Acceleration is precisely the change in rate of speed or, in more correct terms,
velocity. In the falling masses example, each second the velocity of the mass increased by the
same amount for this particular time interval. Such a change in velocity with time is called
acceleration. On Earth, the acceleration of free falling bodies is a constant of 32 feet per second
per second.

" It was absolutely necessary to understand acceleration in order for the English scientist, Sir
Isaac Newton (1642-1727), to formulate the laws of motion (409). As stated by the Newtonian
law, acceleration produced by a particular force acting on a body is directly proportional to the
magnitude of the force and inversely proportional to the mass of the body. In other words, the
greater the acceleration, the greater the force and, if the mass is greater for the same force, the
acceleration will be reduced. From a practical point of view, the greater the mass or the weight
of an object, the greater the force necessary to accelerate the object. Also, to produce a greater
acceleration with a given mass, a greater force is required.

The importance of discussing acceleration and forces lies in the fact that movement has to
start with force. It is impossible to begin movement without applying force, whether it is
external force, such as gravity, or an intemnal force, such as muscular. For example, the force
applied to a hockey puck on the ice will create an acceleration and sets the puck moving faster
and faster as long as the force is applied. The length of time that force is applied on the puck is
important. The muscular forces needed to swing the stick and skate down the ice are also forces
requiring consideration.

In measuring external and intemal forces acting on the body, the mechanical models can
be classified as static or dynamic. The static models are simpler since no forces due to move-
ment occur.

For example, consider a static model with a person standing motionless holding an iron
weight in his hand, like in the shot-put event, and assumed that the shot bas a 10-kg mass. In this
case, the forces acting on the shot is vertical. The gravitational attraction of the earth creates the
weight of the mass, and its magnitude is proportional to the mass by the gravitational factor
which is the gravitational acceleration in meters per second per second. In other words, the
weight of the shot is equal to the mass of the shot times the gravitational acceleration.
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Weight equal"to
Mass times Gravitational Acceleration

One should bear in mind that forces are vector quantities and, therefore, have a magnitude,
a direction, a line of action, and a point of application. In Figure 32, the magnitude of the force
is 10 kg times 9.8067 meter per second per second, or 98 Newtons. Newtons represents the force
rather than the mass which is represented by the weight of the load which is 10 kg. Since the
gravitational acceleration is 9.8067 meter per second per second, then the product of these two
numbers yield 98 Newtons. Since it is a static analysis without motion, the direction of the force
is vertically down and the line of action is vertical. The point of application of the gravitational
force is at the center of the mass.

S A ﬁ
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+ 113 Newtons
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98 Newtons : of Force
-_________’
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Figure 32
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In Figure 32, the load is stationary since the person holding the shotput is motionless.
Therefore, the downward force has to be cancelled by an opposite and equal upward force. The
force, in this situation, is provided by the hand supporting the mass or shot. The upward force
cancels the downward force and the load is said 1o be in equilibrium. The opposite force is
called a reactive force and it is designated in Figure 1a as “R”. Since the forces act along the
same line of action, no rotation occurs at the wrist, elbow, or shoulder joints.

This example can be described using the Engineering analytic concept which is called a
Free-Body-Diagram. In a free body diagram, a graphical representation is given with the
magnitude of forces. In this example, the system is in equilibrium so the summation of forces
must be equal to zero.

Summation of forces equal to 0

That means:
The force in the down direction is equal 10 -98 Newtons. The reason for the negativesign is toindicate
the downward direction.

The force in the upward direction is equal to positive 98 Newtons since it pushes upward against the
gravitational pull. Therefore:

-98 Newtons plus 98 Newtons equal to 0

From this simple equation, it can be determined that the hand has to apply 98 Newton of
force in order to keep the shot from falling down.

A more complicated problem is to calculate the static force at the elbow. For this calcula-
tion, the length, weight, and the center of mass location of the forearm must be known. Calcula-
tions using this information will yield the forces at the elbow joint which resist, or are exerted
against, the combined weight forces of the load, the forearm, and the hand. If the forearm and
hand segment are assumed to weigh 15 Newtons, then the combined effect at the elbow joint
will be:

.98 Newtons -15 Newtons plus the counter force at the elbow equal to zero
(-98N -15N +R elbow = 0)

That means that:

the resultant force R at the elbow is equal to 98N + 15N or 113 Newton in the positive direction or
upward to order to cancel the force of the shot, the forearm, and hand which are in the negative or
downward direction. R

In the above example, the forearm and the hand were considered as one segment for
simplicity. A more through analysis would divide this segment into two segments consisting of
the hand segment with its center of mass location and the forearm with its center of mass
location.

Where, then, does the force at the elbow joint come from to counteract the weight of the
shot with the forearm and hand segment. The answer is that this reactive force is generated by
the muscles around the elbow joint with some additional force provided by the ligaments and
connective tissue around the eibow joint.
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In mechanics, one must consider not only the force(s) but also the product of force and
time which is called an impulse. For a given mass, a given impulse will result in a particular
velocity. The beavier the object, the greater the impulse needed to achieve the same velocity.
From that it is obvious that velocity and mass are related to each other and, in fact, the product
of mass and velocity is referred to in physics as momentum. This law of momentum is most
important in contact sports where different masses collide at different velocities. This law is
what allows a smaller football player with greater velocity to block a heavier football player
with lesser velocity.

In a hockey game, the puck which possesses a certain mass and is speeding across the ice
at a given velocity has momentum equal to its mass times its velocity. If along its travels another
hockey puck of the same mass moving at the same speed, but in the opposite direction, collides
with it, they will then come to an instant stop. One momentum was canceled by the other. This
principle of conservation of momentum is an important component in the game of billiards
where solid balls hit others at different velocities.

In running and jumping activities, the forward force applied to the body depends on the
force the foot applied to the ground and the amount of time that this force was applied. In other
words, the product of the two or the impulse will determine the energy applied to the perform-
ance. The combination of greater velocity, magnitude of force, and time of contact with the
ground are the essential factors which determine the speed of an athlete along the horizontal or
vertical direction.

Consideration of these linear movements, where objects displace all their dimensions at
the same rate are important in biomechanical considerations. However, the anatomy of the
human body dictates that the parts move primarily in a rotational fashion. A good example for
understanding rotational movement is the wheel in which the center remains stationary while the
other parts move around it.

Understanding rotational movement necessitates appreciation of torque. A force that gives
rise to rotational movement is called a torque. The amount of torque or, as it is also called,
moment, depends on the force and its distance from the center of the rotational object. The
product of force and distance is equal to torque.

The examples considered thus far have assumed translational motion such as when the
forces around the elbow joint react to forces across a line of direction in a particular plane.
However, these forces do not stop the segment tendency to rotate around the joint, thus, creating
or counteracting a rotational motion. The force on the hand and forearm joint create a moment
around the elbow joint forcing it to rotate about its joint. Moments of force are very significant
around the body joints since the human structure consists of long bones and, the further the force
applied to these long segments, the greater is the moment around the joints of the body.

The Moment of Force around a joint is equal to the product of a force and the perpendicu-
lar distance from its line of action to the point of rotation. In Figure 1a, the moment around the
elbow joint is equal to the perpendicular distance of the elbow joint center to the line of force
which represents the vector of force from the center of the mass at the hand designated as F1
times the combined static force calculated before as 113 Newtons. That means:

Distance from Elbow to Line of force (L2) times 113
Newtons or 25 Centimeters times 113 Newtons equal to
2825 Newton-Centimeters
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Moments, like forces, are vectors and, therefore, direction about a point of rotation as well
as magnitude must be considered.

In the previous example, we considered the static equilibrium of forces which are called
the first condition of equilibrium. When considering the equations for moments of force, the
second condition of equilibrium is assumed which states that the sum of the moments around a
joint in static analysis is equal to zero. This means that:

The perpendicular distance from the elbow joint to the center of mass of the forearm (L3 ) times the
weight of the forearm which is the moment due to the forearm and hand segment combine must be
added to the moment due to the load at that hand. This moment is equal to the perpendicular distance
from the elbow joint 10 the line of force from the load designated as L2 times the weight of the load.
These combine moments must be equal to the counter moment by the elbow flexors muscles
designated as Me. In equation form it looks like:

(L3ix-WhH+(L2x-WL) + (Me) =0

From this equation, it is possible to calculate that static moment about the elbow joint as:

[Me=(L3IxWD +(LZx WL) |

This means that the Moment around the elbow is equal to the combined moments due to
the load and the weight of the forearm with the hand. To describe this example numerically, the
weight of the shot is assumed to be 10 kg. which is approximately 98 Newtons of downward
force. The force due to the weight of the forearm and hand are assumed to be |5 Newtons. The
distances of the center of mass of the forearm which is the distance from the elbow joint center
is assumed to be 17 centimeters. The perpendicular distances to the lines of force were calcu-
lated as follows:

The perpendicular distance from the elbow joint center to the line of force from the center
of mass of the forearm is calculated by the product of the cosine of the elbow angle times 17
Centimeters which yield approximately 15 centimeters and the perpendicular distance from the
elbow joint center to the line of force of the mass at the hand was calculated from the total
forearm and hand length times the cosine of the elbow angle and was found to be approximately
25 centimeters. Using this information, it is possible to calculate the moment around the elbow
joint as:

«(15¢cm x 15N) + -(25cm x 98N) + Me =0 therefore:
Me = 2675 Newton-Centimeters.

This is the value that the muscles around the elbow joint niust éxert to keep the arm from
rotating due to gravitational force.

The impontance of the concepts presented thus far is that there are two types of forces
acting on the joint in a static analysis. The translational force affects the tendency to move in the
same line of action of the force. The second effect is the moment or the torque that tends to
rotate the segments about the supporting joints. To combat the first effect, the joint has to
counteract the translational force with tensile forces in ligaments and muscles to hold the joint
together as well as the shearing and compressive forces which also act on the joint contact
surfaces This is why a business man can develop “tennis elbow” by holding briefcase in his hand
since the tensile force at the joint may cause micro tears in the ligaments and connective tissues
at the elbow joint.

58 MUSCULAR ACTIVITY AND ITS RELATIONSHIP TO BIOMECHANICS AND HUMAN PERFORMANCE



wr

On the other hand, the rotational moment is a function of the strength of the muscle to
move or rotate the joint. When a person plays tennis, the muscles move the racket as a result of
muscular contractions. At the same time, ligaments and tendons react to the shearing forces.
These shearing forces. which occur during the movement and the impact, can create forces
which could result in tissue injury and, therefore, create problems in and around the Jjoint.

Thus far. consideration has been limited to analysis of forces around one segment consist-
ing of the hand and forearm. The problem becomes more complicated when additional segments
are considered. It is possible to treat each segment separately and then add the effects of the
previous segments to the present segment. In this way, a kinetic chain from one segment to the
attached segment is created. The analysis begins at the point of application of the external load
and proceeds in sequence, solving the equilibrium equations for each body segment, until
reaching the segment that supponts the body, which is usually the feet.

To analyze the forces on the upper-arm, all of the external forces and moments operating
on the arm must be considered. In this case, the weight of the upper arm and the resultant elbow
force and moment caused by the weight of the forearm and hand link must be considered. In this
way, it is possible to calculate the static equilibrium equations at the shoulder which result in a
reactive force Rs and a moment Ms for the person analyzed.

The principle of momentum that applied to linear movement also applies to rotational
movement, and the conservation of angular momentum is one of the key principles in athletic
performance. Angular momentum is a function of the mass and the rotational acceleration as
well as the square of the distance from the center of rotation. In rotational motion, therefore, the
quantity of mass times the square of the distance from the center of rotation is analogous to mass
alone in linear motion.

These basic physical concepts are essential to the understanding of human movement and
the principles of physical performance. The fact that it is harder to bold a weight further from
the center portion of the body is related to torque. The fact that a ballet dancer on her toes and a
figure skater on ice can generate high rotational speed is because both performers are affected by
the conservation of angular momenwum.

The product of a turning body’s moment of inertia and its angular velocity is called its
angular momentum. According to the law of conservation of angular momentum, a turning body
isolated from external forces will have a constant angular momentum; that is to say, the product
of moment of inertia and angular velocity about the axis of rotation is constant. If, for example,
a man is standing on a revolving turntable without friction, he may increase his resistance to
turning threefold by stretching his arms sideways (Figure 33). By the same token, if a man
rotating on the same frictionless tumtable pulls his hands toward his body, the rotational velocity
will increase threefold because the moment of inertia has decreased.

A figure skater makes use of these laws on ice. At first, as rapid a spin as possible is
produced with arms extended. The arms are then brought down, and the body spins on the point
of one skate with remarkable velocity. The same principle allow throwers, such as discus
throwers or shotputters, to generate higher speed across the circle of throwing.

These various laws of motion are critical when applied to the muscles and bones of the
body. Muscles and bones constitute a form of basic tool, the lever. To understand the application
of motion, therefore, we must first understand the use of the lever.

The combination of muscle and bone forms a lever system which is one of the most basic
mechanical systems for performing work. A lever is a machine by which force applied at one
point does work at another. Each joint in the human body is the fulcrum of a particular lever.
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Figure 33

There are different types of lever systems and the human body uses all types. The forces on the
different levers are applied by the muscular system. It must be remembered that muscles do all
of their work by contraction or shortening. Activity occurs because the muscles contract or pull
the various booes, or levers.

Muscles, like many other components of our anatomy, operate in pairs known as “ag-
onists” and “antagonist”. Bending the arm at the elbow, for example, requires the biceps to
contract while the extensors, the triceps, relax. In order to stop this bending motion, the biceps
must stop contracting at the appropriate time and the triceps begin contracting in order to slow
and subsequently stop the action. The neural coordination of this system was previously dis-
cussed in the “bio” section. It is the bones which constitute the levers employed in the mechani-
cal properties of motion.

Physics has divided levers into three classes (348) In the first of these, the force is applied
at ope end of the lever and the resistance to be overcome or the work to be done lies at the other
end. The fulcrum, or pivotal point, lies between. Two children bouncing up and down on a
playground teeter totter exemplify a class one lever.

In the second class, the force is applied at one end but the resistance is located above the
pivot or fulcrum. A crow bar undemeath a tree stump is an example of class two leverage.
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Figure 34

The third type has the force exerted between the pivot point and the resistance, and this is
the common lever system within the human body. When you lift a weight with your arm, the
pivot is the elbow joint, the force is exerted between your elbow and your hand by your biceps
muscle, and the weight in your hand is the resistance (Figure 34).

A lever may either increase the amount of work that can be done with a given input of
force or it may cause the work to be done at a faster rate than the application of the force.
Archimedes once bragged that he could move the world if given a long enough lever (43). To
perform the feat, Archimedes would have used a second class lever with his fulcrum very close
to the Earth while he himself would have dangled on his elongated lever somewhere deep in
outer space.
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The concept to be mastered is that a mechanical advantage is gained with use of a lever,
the amount of force is multiplied many times over to produce greater output at the other end.
This is true if the fulcrum is situated closer to where the force is to be applied than to where the
force is executed. If the reverse is true, and the fulcrum is nearer to the point where the force is
executed than to the point of force application (a third class lever), then the result is a mechani-
cal disadvantage.

For humans, the fulcrum usually falls closer to the point where the force is executed or
initiated than to where it is applied, or where the work is done. The biceps attaches to the radius
bone quite close to the elbow. Therefore, to lift a one pound weight with your hand, your biceps
operates at a mechanical disadvantage of approximately seven to one. That is to Lift one pound
requires a force of seven pounds.

However, the same principle that governs mechanical advantage and disadvantage has its
compensations. The hand at the end of the lever of the arm will move seven times faster than the
point where the biceps attaches to the radius. It is easily seen that only a slight movement
upward of the forearm near the elbow, causes the hand to move several inches during the same
time interval. Obviously, the hand traveled considerably faster than the elbow.

For most human joints, the length of the lever does not produce a mechanical advantage.
None the less, there is still more potential for production of speed if the human levers are longer.
The knees are particularly vulnerable to injury not only because of their limited range, but
because, in some instances, the whole body becomes one long lever applying its force at the
knees. A situation to illustrate this point is on the ski slopes. If the boot does not release when
the shear forces are excessive, the long skis and the body can create an exaggerated and destruc-
tive lever ultimately resulting in injury.

While Archimedes required a very long lever to move a very large ball (the Earth),
Hannibal needed a shorter lever to throw large balls from his catapult. Individuals concerned
with much smaller spheres, such as golf and baseball, can still apply more force to the object or
their intentions with a longer lever. Golfers should play with the longest clubs they can com-
fortably manage, as should batters in baseball.

However, the longer the lever, the less fine the control and the greater the requirement for
muscular force. Thus, the putter, the club most concerned with a deft, accurate stroke, is the
shortest in the bag. Many good golfers further reduce the potential margin for error by shorten-
ing up on the putter and holding it lower on the shaft.

In addition to some of the important components of mechanics, it is also essential to
understand the other laws of motion. Newton neatly encapsulated these laws of motion into three
principles. The first law states that an object remains at rest until some force acts upon it. If the
object is already in motion, it continues at a constant speed unless some outside force is brought
to bear. In other words, until the levers of foot and leg are applied to a soccer ball, it remains at
rest on the ground. Once having been kicked, however, the ball will continue to roll at a constant
rate until it is acted upon by the outside force of friction, from ground or air, or contact from
another system of levers in the form of an opposing soccer player.

When two or more forces act upon an object, the subsequent force is known by physicists
as the resultant force. If Player A kicks a soccer ball due north simultaneously with Player B's
kick of the same ball due west, the ball will travel northwest along a path that will be determined
by which athlete delivered the most force. The route taken by the ball and its velocity is the
resultant force supplied by Players A and B.
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Newton declared that the main task of mechanics was to learn about forces from observed
motions. The physics behind movement is related to the law of momentum, which is part of
Newton’s second law. Momentum is a concept that consists of velocity multiplied by the mass of
the moving object. Momentum, in terms of physics, is distinguished from force, which is defined
as mass multiplied by acceleration, or the rate of change in velocity. Alteration of momentum,
or a change in motion, declared Newton, is govemed by the force brought to bear upon the
object, which then follows the straight line in which the force acts (Figure 35),
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Figure 35

Coansider the problem of a man leaping over a small puddle. He runs towards the puddle
creating many forces including horizontal opes. As he nears the water, the central nervous
system, the movement coordinator, orders the muscles the feet and legs to contract generating a
vertical force for the jump. The height depends upon the ability to generate enough force to
temporarily exceed gravitional force. If the man weighs 150 pounds and produces only 140
pounds of vertical force, he will have wet feet. Once airborne, he can no longer add any force to
the jump. The force of momentum, the velocity at takeoff multiplied by the man’s weight, must
be enough to overcome the demands of gravity in order to jump over, not in, the puddle. The
vertical force combines with the horizontal force for the leap. That is to say, the body does not
travel in either a purely vertical direction or continue to move in a direction solely horizontal.
Rather the path becomes a combination of horizontal and vertical forces, a direction that
physicists call a resultant.
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The third law of Newton was that for every force that acted upon an object, the object
itself exerted an equal and opposite amount of force. When you kick a ball with your bare. foot,
the painful sensation in your big toe confirms Sir Isaac’s third law. The recoil of a fired rifle is
also an example of equal and opposite reactions. A car striking a bridge abutment at 60 miles per
hour is demolished while one that nudges the wall at 5 miles per hour remains intact. The wreck
is an example of a much greater degree of equal and opposite force.

Another principle affecting your body is derived partly from theories of Einstein. An oid
bedroom farce joke uses the punch line, “Everybody’s got to be someplace,” and Albert Einstein
said that energy can neither be created nor destroyed. In other words, energy or a visible
manifestation of it in the form of force also always must “be someplace.”

This means that when one generates a force by swiveling his back, and then suddenly tries
to stop the movement of the back, the force developed in the trunk of the body does not simply
disappear. It must go someplace. The secret to efficient use of a body for work or sport, for
fitness or injury prevention, depends to a great extent on where these forces go or how well they
are exploited.

In the human body, the bones, or levers, move in a rotational manner. These angular
movements create linear movement for the total body. The same laws that govern linear motion
also govern angular motion. The only difference is that the length of the lever also plays an
important part. If the body begins a rotation, it will continue to turn on its axis until the move-
ment is altered by either a change in body position or the application of some other force.
Consider the previous example of the ice skater and imagine that this skater begins a spin with
the arms abducted or outstretched, building up angular momentum by the maneuver. If this
athlete suddenly drops the arms to the side, the velocity of the spin will increase because the
momentum that was initially generated is constantly maintained around the axis. The change in
the arms’ distance from the center of the body transfers this angular momentum to the body
itself.

Angular momentum can be redistributed throughout the body. When a long jumper leaves
the ground, he or she is propeiled forward and angular momentum is developed. Unless that
momentum can be redirected, however, the jumper will land flat on his or ber face. Such a
disaster is prevented by transferring some of the angular momentum to the arms, which explains
the wild flailing exhibited by long jumpers.

Angular momentum can be expressed in terms of two other important parameters of
rotation: angular velocity and momeant of inertia. Angular velocity is represeated by the body’s
rotational speed and direction. For example, if a diver performs a forward double somersault in
one second, the magnitude of his average angular velocity is two revolutions per second.

The moment of inertia of a body about an axis is the body’s tendency to resist changes in
angular velocity about that axis. It is obvious that massive and extended bodies have a larger
moment of inertia than do lighter and smaller ones. In fact, the contribution of each particle or
segment in a body to the total moment of inertia about an axis is equal to the mass of the
segment times the square of its distance from the axis of rotation. For example, a typical diver
with this body straight and his arms at his sides has a moment of inertia of 14 kilograms times
meters squared about his somersaulting axis, but a moment of inertia of only one kilogram times
meters squared about his twisting axis.

Angular momentum is the product between the angular velocity and the moment of inertia
about a specific axis. In the case of the diver, that will be the sum of angular velocities around
the two axis and the moment of inertia around these axis.
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The analogy between angular momentum (momeant of inertia times angular velocity) and
linear momentum (mass times linear velocity) is not perfect. The reason is that the body can
change its body segment lengths while performing angular movement, such as the diver straight-
ening from a tuck position into a straight body. That changes the moment of inertia about his
somersaulting axis. In linear momentum, this does not occur.

Any mechanical phenomenon created by the human body must be initiated by the energy
produced by the skeletal muscies. This energy allows the movement of a body segment in
rotational fashion to create movement. The faster the movement the more powerful is the
motion:

There are some limitations to any analogy between power created by muscles and that
produced by an engine. An engine will be rated as having a certain amount of horsepower,
meaning that it will produce a specific amount of work each second that it is in operation. It will
lift or push a number of pounds a certain distance. We can measure sustained human effonts the
same way. A woman pedaling a bicycle can be rated for the horsepower she produces in trans-
porting her weight and that of the bike over a certain distance within a certain amount of time.
This type of power rating is valid for a rhythmic and sustained amount of force. But it does not
serve as a useful description for impulsive actions.

Consider for a moment what happens when one fires a rifle with the barrel pointed straight
up into the sky. Most of the power to speed the bullet on its way is produced before the bullet is
actually moving. Because of the confines of the rifle barrel, there may be some power added as
the explosive charge pushes toward the muzzle behind the bullet. There is no way to accurately
compute a value for the amount of horsepower generated. The force is not constant and gravity
and friction constantly alter the velocity.

The same is true for an impuisive action by a human, such as in a high jump. It may be
said that one jumper will actually generate more force than another jumper, but still not leap as
high, because of a failure to coordinate all of the force into as large a single impulse. The key
measurement, therefore, is not how much “horsepower” was developed as the athlete sprinted to
the launching point and then hurled himself into the air, but only the amount of ultimate ballistic
muscle force that was generated for the actual liftoff.

Another factor necessary to understand movement is appreciation of the classification of
mechanical energy, which is defined as the capacity to perform work. Kinetic energy is that
which the body possesses by virtue of its motion. During the motion of the windup of a pitch, the
arms of the baseball pitcher contain kinetic energy. Potential energy consists of that which owes
its existence to the position of the body. A diver at the edge of the platform possesses a certain
amount of potential energy through the imminent application of gravity.

Sometimes the types of energy can be totally separate aspects of a movement. For ex-
ample, the instant that a person begins to rise from a trampoline, the kinetic energy begins to
diminish while the potential energy increases. At the highest point of the maneuver, the instant
of zero velocity when the gymnast is neither ascending nor descending, the kinetic energy is
zero and the potential energy is at its maximum. During the descent, the potential energy in
effect is transformed to kinetic energy. At the deepest penetration of the trampoline bed, the
strain energy reaches its maximum.

These mechanical, physical precepts are useful in the analysis of human movement
because they permit examination of the forms of energy, forces, directions, or speeds that
comprise an activity. Quantification can also assist in determining the most efficient use of
effort, that is, the optimum way to do something.
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THE BIOMECHANICS
Quantification of an action, regardless of whether for evaluative purposes or to attempt

optimization, can be accomplisbed through biomechanical analysis. Biomechanical assessments
normally begin with the quantification of the kinematic portion. This is usually accomplished by
utilizing high speed cinematography or videography which allows careful scrutiny of even the
fastest movements of humans or other animals, such as dogs, cats, horses, etc. The films or
videos are traced and the resulting data stored in a computer which calculates the results by
applying the principles of physics and mechanical engineering. Tables and graphs can then be
generated which give a precise profile of what actually occurred during the execution of the
movement. The researcher then carefully examines this output in order to understanding the
motion and, in the case of an athlete for example, to determine which patterns are most impor-
tant in distinguishing championship from average performances.

Biomechanics is a science stll in its adolescence with many discoveries yet to be made.
Hand analysis of high speed films is a slow and tedious process, and it is only recently that the
computer has been hamessed to make the process more efficient. Development of this technol-
ogy in the United States has meant that many complex analyses can be executed in a relatively
short time.

In the past, athletic achievement depended mainly on the individual’s talent, although skill
was often enhanced or ruined by existing facilities, equipment and, undeniably, coaches.
Athletes with superior genetic compositions who successfully interacted with the available
facilities dominated the list of world records. Continual improvement of equipment and tech-
niques has complemented raw talent.

However, with the advent of new measuremeant tools and knowledge in the field of sport
science, athletic achievement has attained a new dimension. The athletic teams of the United
States, which for years had dominated amateur sports, were no longer the leaders. Countries
such as those of Eastern Europe and Cuba, which have relatively small populations, have
achieved a spectacular level of success in athletic events. Current evidence suggests this trend
may continue through the remainder of the 1980s and 1990s. Such domination stems from the
application of science to the realm of athletic performance.

Modem coaches can use biomechanical means to optimize the human body in each event.
Since the human body obeys the same physical laws as all other earthly objects, the laws of
motion govem its performance. In order to throw, run or jump, physical laws must be obeyed. It
is impossible to throw the shot 20 meters if the shot velocity and angle of release do not attain
certain values. These values do not differ for different athletes, since for each particular shot
velocity there is one specific optimal angle.

For the jumper to leap 8 meters, it is necessary to produce certain forces on the ground in
order to propel the body with a specific reaction force at a particular angle. This force is unique,
and it is impossible to cover the same distance with only a fraction of the force since gravita-
tional pull acts uniformly regardless of the jumper.

The concept to be reemphasized here is that all bodies, athletes, implements or machines,
are affected by and must adhere to the laws of motion. The science of biomechanics specifically
deals with motion of the body and the resultant forces. A number of scientists have long recog-
nized these facts of force and motion and their relationship to humans. But the kind of equip-
ment that could measure and analyze the motion and forces involved was lacking and, thus,

impeded further research.
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The field of biomechanics can be divided to Kinematics, which describes the motion of the
body and its segments without reference to the forces that cause the motion, and Kinetics, which
describes the forces which caused the movement. The Kinematic parameters includes linear and
angular displacement, velocity, and acceleration. The kinetic parameters include the external
and intemnal forces acting upon the body segments.

In order to measure the kinematic and kinetic parameters, it is necessary to make a few
assumptions. If it were possible to disassemble and reassemble the human body like other
machipes, then it would simplify and make the measurements more accuracy. However, this is
obviously impossible. Therefore, some of the measurements are derived from cadaver and
additional assumptions are made upon the linkages of the human body. This is not different from
any other field involved with living bodies. In the field of physiology, for example, many
assumptions are made on the ability of the body to consume oxygen. In the conversion of energy
measurements from external measurements to internal measurements, many reasonable assump-
tions are made. In determining the composition of different muscles and their classification into
fast and slow twitch muscles, many assumptions are made concemning the chemical staining
methods and the counting methods. Of course all statistical methods, which are the bases for
most behavioral research, utilize assumptions about the normality of the populations and the
distributions of the data samples.

Therefore, to view the human as a machine made of links is an oversimplification but it is
possible to create a humanoid model as a representation of the body made of rigid segments. In
this way, it is possible to facilitate quantitative analysis of the movement. The links which
represent the body’s limbs are a series of interconnected rigid segments which demonstrate
independent motion. :

To more accurately facilitate the above mentioned system, it is important to realize that
there are different body types. It is clear that body differences in shape occur between ages,
sexes, and within individuals. The field which deals with different body shapes is the field of
Anthropometry.

Anthropometry is the science that deals with the measure of size, weight, and proportions
of the human body (96). Anthropometric data is fundamental to biomechanics because some of
the assumptions made in the calculation of movement parameters made based on its data. In
performing a biomechanical analysis of any movement, the human body is considered to be a
system of mechanical links with each link of known physical size and shape given by anthro-
pometric measurement.

After adapting the anthropometric measurements to the different body segments, the next
assumption is that this link system is connected at identifiable joints. Since the body landmarks
or the body segments are covered by muscle, fat and skin tissues, it is sometimes difficult to
identify joints such as the hips and shoulders. However, with the aid of statistical and numerical
methods it is possible to filter some of the errors.

This field of anthropometry has made tremendous contributions by dissecting cadavers and
measuring the location of joint centers. Some of the pioneers are Braune and Fischer (81),
Dempster (126), and Snyder, Chaffin, and Schulz (419). From the cinematographical data, it is
possible also to use tracing methods which connect the intersection of the long axis line of the
segments during movement. Some of the landmarks used in the field of biomechanics are
illustrated in Figure 36.

In addition to landmarks required for biomechanical tracing, it is important to predict the
segment mass and location of the center of the mass. Body-segment mass and volume are related
to the deasity of the segment. From the field of Anthropometry, these measurements were
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determined by immersing cadaver body segments in water and measuring the volume of the

water displaced. From the equation of:

AVERAGE DENSITY IN MASS PER UNIT VOLUME EQUAL TO THE MASS OF THE BODY
SEGMENT DEVIATE BY THE VOLUME OF THE WATER DISPLACED.

(D=M/YV)
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The values for the different body segments are available in various biomechanical text
books.

In addition to the segment weight and its volume, the distribution of the mass within the
segment is necessary in order to compute the kinetic information. From this distribution of the
mass, it is possible to calculate the location where the gravitational effect on the segment occurs.
In other words, where the segment can be considered to be in its gravitational balance so that if
opne were to hang the segment at this point, it would be in balance regardless of the orientation of
the segment in space. This point is known as the mass center or the center of gravity of the
segment.

There are a few methods to calculate the segment center of gravity. One method involves
the distribution of forces by allowing a person to be suspended between two force platforms and
calculating the change in vertical forces by moving various segment to different angles. Another
method involves submersion of the segment in water. Regardless of the method used, there
exists a sufficient data base from various investigations which have calculated the center of mass
for different segments for different populations.

Knowledge of the center of gravity location of each segment and its weight and length
allow the calculation of the static force and torque at each body joint for a given posture.
However, in athletic performances and in normal human life, we are seldom concemed with
static posture. More realistic are the dynamic performances where the forces due to the motion
in addition to the forces due to gravity act upon the body.

For these dynamic analysis of the human body, it is necessary to know the inertial property
of the segment. This property is referred to as the Moment of Inertia. The formula which
describes the momeat of inertia considers the following:

MOMENT OF INERTIA OF THE SEGMENT IS EQUAL TO
THE MASS OF THE SEGMENT TIMES THE
SQUARE OF THE PERPENDICULAR DISTANCE FROM A GIVEN AXIS.

[I=MXRXR]|

There are different methods for calculating the Moment of Inertia of the individual body
segments and these methods are described in various Biomechanics text books.

It is important also to calculate the location at the body segment where the moment of
INERTIA effect the segment. This point is called the Radius of Gyration.

THE RADIUS OF GYRATION IS EQUAL TO:
THE SQUARE ROOT OF THEMOMENT OF INERTIA DIVIDED BYTHE MASS OF THE

SEGMENT

According to Drillis and Contini (134), the radius of gyration is “the distance from the axis
of rotation to an assumed point where the concentrated total mass of the body would have the
same moment of inertia as it does in its original distributed state”. This information is necessary
to quantify the dynamics of human motion in conjunction with other parameters.

Another important contributor to biomechanical analysis was the National Aeronautics and
Space Agency which have also made detailed measurements of human body composition, the
relative mass for segments such as arms, legs and hands, given the overall height and weight of
the individual. The specifications may not be exactly accurate for each individual, but they are
close enough to humans in general for the purposes of even the most exacting scientists.
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It should be remembered that all of these estimated parameters are used in calculating the
dynamic forces rather than merely describing movement in qualitative terms. These parameters
are available in numerous sources and the normal analysis of human movement does not require
the individual calculation of all of these parameters. The information resides in tables and charts
which can be accessed at will. The normal analysis of movement relies on this information in the
same way that physiologists depend on the tables presenting characteristics of different gasses
and their coefficients at various temperatures and pressures.

Without a computer to store information, retrieve it, and perform the myriad computations,
such calculations can place the scientist in an impossible position. But before a computer can
perform its job, whether it is to guide a robot, print a check or retrieve a space vehicle, it needs a
program, that is, a sequence of instructions which tell it how and what to do.

Programming a computer involves hundreds and, at times, thousands of hours of work. But
once the instructions have been fed into the computer, it will automatically execute the bundreds
of steps without any need to restock the computer with further instructions, and the execution
will only take a few seconds. The beauty of a computer is that it can play the great game of
“what if?”. In sports, one could ask, “What if I hold the shot down here and then whirl in this
fashion?” The computer will calculate the distance the shot will travel, applying the amount of
force developed in previous analysis. Through use of the computer, then, biomechanics can
write equations and construct models which will result in optimal performances.

Another critical element is the camera which can be either a high speed movie or suffi-
ciently fast video system. It provides sequences of the body in motion. Knowing the speed with
which film or video tape travels through the camera allows calculation of the velocity and
acceleration of body segments using its joints as points of reference. For example, if the shutter
speed on the camera is 200 frames per second, one can identify the location of the right knee at
the start of a sprint, and then compare the position of the right knee in frame 20 of the film,
thereby leaming how far the right knee has moved in one tenth of a second. The data can be
further utilized to determine velocity, acceleration and, with some additional information, even
the forces involved. The forces can be calculated by measuring the length of the leg, for ex-
ample, from knee to ankle, and by using the NASA specifications, determine the mass of that
segment as well as determining the center of gravity. Using these values, quite reasonable
estimates of the exact forces and torques around the joint center can be calculated.

Along with analyses based upon films taken during actual events, highly sensitive force
plates have been developed for precise impact measurements. These allow controlled laboratory
testing of forces, such as when an object like the human foot strikes the plate during a sprint or
the vertical component of 2 monkey leaping from the plate onto a table. The plate is capable of
recording three different components of forces: vertical, horizontal, sideways or lateral, as well
as the moment or torque.

Any kind of athletic movement or work action which can be photographed with a high
speed motion picture or video camera can be fed into the computer. Forces can be plotted for
each segment of the body as the accelerations and lengths of the segments are measured. The
maximum amount of force that can be generated using a particular approach in an activity can
be calculated (19). For instance, it is feasible to calculate how high a jumper might go if he
changed from his customary form of the roll to the flop style, assuming he was able to generate
the same amount of force for the flop as he did for the roll. Analysis have shown that the flop
happens to be a more efficient use of forces for athletes who do not possess extremely powerful
legs.
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It is important to remember that because of both gross and subtle variations in the peu-
romuscular system of each human, the biomechanical actions of individuals are as unique as
their fingerprints. The shades of difference from one person to another are, in fact, great enough
to permit the development of a foolproof method for guaranteeing a signature. A person could
file his or her signature in a computer bank. The information in the computer would contain not
only the shapes of the letters, but the amount of force the individual applied to every loop, line
and curve. With this device, a buyer in a store need only sign the chit on a force plate or use a
pen with a force sensitive transducer which transmitted the information directly to the computer.
The patterns of force would be compared instantly and, if not the same, the new one would be
rejected.

Similarly, detection of variations or errors in human movement has always been one of the
most difficult problems facing coaches, trainers and physicians in athletic situations. If the error
detection is inaccurate or non-specific, the quality of correction will be poor. Failure to recog-
nize the causes of error stems from an inadequate understanding of the mechanisms of human
motion. Impacts in sports, automobile accidents, falls, and other movements involving forces
can be accurately quantified through biomechanical applications.

The designer of protective equipment for sports, such as hockey and football, must have an
understanding of biomechanics since it is necessary to comprehend before the equipment is
designed how the human head reacts to impact forces or how a skier’s leg reacts to twisting
forces. The forces produced by the human body cause a change in acceleration or speed. The
change might involve the entire body, as in sprint starting, skating, or volleyball (in a vertical
jump to block). It may also be a body segment or combination of segments, as with a boxer’s
upper arm and forearm, a golfer’s arms, or a soccer player's thighs and lower legs. Through use
of biomechanical analysis, it is now possible to scientifically detect errors which are beyond the
visual capabilities of the human eye.

When the muscle contracts and there is a change in limb position, work is performed.
When time is required to perform the physical work, then units of power measurement are
employed, since the rate of work is power. In human performance, striving for excellence on the
athletic field or in recreation, it is important to be able to sum the forces exented on the varnious
joints. This principle is called the summation of joint forces.

For example, in swinging the golf club in the drive, the amount of force exerted by the
club on the golf ball depends on how much of the forces totaled by the body actually reach the
club. If there is any loss of force due to bad timing, the golf club head will not move at the same
velocity. Any violation of the principle of summation of joint forces can result in too small a
force being exerted by the golf club.

Another important biomechanical principle is that of continuity of joint forces. This is
illustrated by the fact that not only must the golfer use all body joints efficiently, but he must
also time their use so that the motion begins at the larger segment (such as the thigh), and then
continues and is overlapped by motion of the hip and trunk. There must be no pauses in the flow
of motion from the legs to the trunk and to the club. It must be continuous. A violation of this
principle not only results in too small a force, but also in bad timing and a poor “feel” on the
golf club.

Because club speed is determined by the force applied and the length of time of force

application, the best combination of force application should be determined — a large force in a
short time or a small force for a longer time.
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There is an optimal combination for each activity. The size of the force multiplied by its
time of application is called “impulse” and it is actually this force/time combination which
produces the golf club velocity. Therefore, the impulse in any activity should be determined to
result in optimum efficiency. Although compromises in the size of force and duration of applica-
tion often have to be made in sport to achieve an optimum combination, one such combination
to be avoided is a small force applied for a short time.

The size of the force an athlete can produce is determined by his or ber ability to comply
with the principles of summation and continuity of joint forces. In the absence of measuring
devices, assessing whether the force application time is as great as possible presents yet another
problem. In general, if each joint has gone through a complete range of motion, one can be
assured that the maximum time available has been used.

It was previously pointed out that not only must the range of motion of the joint be
complete, but the joint must straighten fast and the combined joint motion be continuous. The
concept of the combined effect of force and duration of application in producing speed changes
is called the principle of impulse. Violation of this principle causes further errors in perform-
ance.

Direction of force application is another important principle. Not only is the direction of
the application of force to the golf club vital, but, in addition, from the club head to the golf ball.
In an optimal situation, the force is exactly 90 degrees to the club and the club head hits the ball
exactly at its center. However, some deviation is at times necessary if the flight of the ball has to
be changed in a predetermined pattern. Incorrect direction of force can be disastrous in events
such as gymnastics and diving. A good technique implies that the principle of direction of force
was followed

A final principle is the summation of body segment speeds. Especially in any throwing,
kicking and striking events, it is important to obtain as high a hand, foot, stick blade, racket
head, or club head speed as possible at the instant of impact or release. The speed of last
segment in the chain is built by adding the individual speeds of all the preceding segments with
appropriate iming. If any of the segments contribute low or negative values, the resultant
measured for the last segment will be less than optimum. This principle is similar to summation
of joint forces and is closely related to it.

To summarize, any motion to seek optimum should obey the principles of summation of
joint forces, continuity of joint forces, impulse, and the direction of joint forces. Through the use
of biomechanics, all of these principles can be quantified and optimized so that better and safer
results will be obtained.
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EXPERIMENTAL STUDIES

METHODS

To evaluate the behavior of some of the factors previously discussed, the author admini-
stered a series of experiments. The experiments were conducted with a small sample as these
preliminary studies were intended as pilot projects only. Sophisticated measuring devices were
utilized to quantify displacements, velocities, accelerations, forces, and EMG activities in single
and mult joint movements. The equipment is described in Appendix A, B, and C.

Subjects:

Ten subjects, 8 males and 2 females, ranging in age from 25 to 51 years took part in the
study. They were healthy, active, and regularly participate in fitness exercises. Subject training
programs generally consist of jogging 3 to 7 miles 3 to 5 times weekly and engaging in resis-
tance exercises 2 1o 5 times weekly.

Exercise:

To activate the elbow flexors and extensors concentrically and eccentrically, the subjects
stood holding the bar of a computerized exercise device. The position used was the same
position in which the Subject had performed the curl exercise with the elbow in full extention
initially, then flexed to approximately 135 degrees, and then extended to the start position. The
Subject was not restrained and the technique did not differ from the method used during the
preceding two years of training on the equipment. Therefore, learning had previously been
accounted for and would not contaminate the study.

Equipment:

The computerized exercise devise used in the present study is described in the Appendices.
Its validity and reliability have been tested and presented. One of the unique features of these
experiments was that a sophisticated programmable servo valve was utilized to control the speed
of the mechanical member held by the hand. All the forces were measured with a pressure
transducer and processed by the computer in real time. Special calibration procedures were used
and described in Appendix A. Positions, velocities, and accelerations were measured and
calculated simultaneously. EMG activity at the elbow flexors (biceps motor point) and at the
elbow extensors (long head of the triceps) were measured simultaneously with the other parame-
ters. Other parameters which were measured were forces for various muscular contractions,
EMG activity during various motions against resistance, and various physiological parameters
representing muscular contractions.

Different velocities were set for the concentric and eccentric contractions. Concentric
contractions were performed by each subject as he or she tried to move the resistance bar as fast
as possible while the bar motion was restricted to a specific velocity. For the eccentric contrac-
tion, an external force was applied on the mechanical bar to a level that exceeded the subject’s
ability to resist it. Since the bar was moving down at a specific velocity, the eccentric phase was
restricted to that velocity and, therefore, could not damage the subject’s arm. Each subject was
encouraged to try as hard as possible to stop the bar from moving down throughout the specific
range of motion. The range was set at 125 degrees for the elbow joint and 25 degrees for the
axes of rotation of the machine.

Experimental Conditions:

The experimental design consisted of three basic conditions. In Condition One, the
subjects performed concentric contractions in both directions, flexion and extension. In Condi-
tion Two, the subject flexed his elbow concentrically and extension was done eccentrically with
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RESULTS

a super-maximal force when the subject could not resist the extension at a specific velocity. In
Condition Three, the subject was subjected to a sub-maximal force during the eccentric exten-
sion of his elbow. In other words, the subject could resist the force of extension but could allow
the elbow to extend.

Condition One - Concentric contractions:

In this phase, the subjects were required to exert concentric contractions for both flexion
and extension at various velocities. Figure 37 illustrates the force curve for flexion and exten-
sion. The displacement curve illustrates the flexion, passive delay where the subject was pausing
between actions, and then the extension phase. In the same Figure, the associated EMG signals
for the flexor and extensor muscles can be observed. During the flexion phase, the biceps
generated high EMG activity while the triceps produced less EMG activity. However, it is
important to note that EMG activity was present in both antagonistic muscles. To determine
whether this was due to an artifact or “crosstalk”, EMG activity was measured in a resting
position with the anm motionless on a table. Figure 37 illustrates the EMG secured in a resting
condition. Comparison of the EMG activity during an exercise and during a passive, motionless
situation revealed that the EMG activity was significantly higher during exercise than at rest. It
should be noted that the EMG electrodes were not removed or displaced at any time.

Force, Position, andAEIG of the —Taovce
flezxors and estensors of the elbow

Sec +—Position

«—En:g— 1

{+—Eng-2
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Figure 37
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Figure 37 also illustrates that in the tricep’s concentric phase, the muscle began firing, as
indicated by the elevated EMG activity, despite the fact that the movement had not started. This
phenomenon has been well documented by other investigators (70,72, 73) It can also be seen
that during the concentric extension, the biceps muscie produced EMG activity as well.

In addition, it was found that during the flexion phase, the triceps showed elevated EMG
activity before the end of movement. This phenomenon is well documented (223,305,306,
307,308) and illustrates the anticipatory effort needed to decelerate the segment to a resting
position. Therefore, while the biceps fired the most at the beginning of the movement, the EMG
activity lessened near the end of the movement. Although the triceps showed significant activity
during the beginning of the movement, it demonstrated higher activity near the end of the
movement.

Figure 37 illustrates the time relationship between the forces, displacements, and EMG
activity. While each subject produced unique results, the general pattern displayed is like that
shown in Figure 37 which represeats one of a specific subject’s trials.

Figure 38 illustrates typical displacement and force curves. The elbow was flexed concen-
trically and produced a force at maximum flexion of 25 degrees on the bar corresponding to 125
degrees at the elbow joint. Then the force dropped to zero with a delay at that maximum angle.
Approximately one second later, the subject extended his elbow utilizing the elbow extensors
(triceps) in a concentric phase for the extensors. This type of exercise is called a “double
concentric exercise’.
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Figure 38
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Figure 37 illustrates typical force, displacement and EMG curves obtained simultaneously
in the double concentric exercise. It can be observed that the elbow flexors (biceps) became
active before any displacement or force was produced. At that point, maximal EMG activity was
observed at the flexors. At the same time, some EMG activity was recorded from the extensors
indicating co-contraction. Before the end of the movement, more EMG activity was observed at
the extensors apparently in anticipation of cessation of movement by the flexors. Also, the
flexors reduced the level of firing indicated by a lower EMG activity before the end of the
movement. When the muscle was in the delay phase before the extension portion of the exercise,
the flexor force dropped to zero and both the extensor and flexor EMG activity decreased
significantly. Approximately 50 milliseconds before the extension phase began, the extensor
EMG increased significantly indicating potentiation or firing of the motor units of the extensors.
This phenomenon has been reported in the literature and is referred to as the electro-mechanical
delay. The level increased when the extensor force reached a peak. The flexor EMG activity
indicated co-contraction in this phase as well.

In this phase of the study, the subjects were exposed to concentric contractions at various
velocities in both flexion and extension directions. It is significant to note that for both concen-
tric activities, the agonist and the antagonist worked in a coordinated pattern. That is, when the
biceps was the prime mover, the triceps, as the antagonistic muscle, was active; when the triceps
was the prime mover, the biceps, which functioned as the antagonist, was active as well.

Condition Two - Supermaximal Concentric Eccentric Contractions:

In the eccentric phase, a supermaximal external force was applied to the bar which was
moved at a specific speed under servo valve control. The subject initially raised the bar (elbow
flexion) in a concentric fashion. During the second part of the exercise, elbow extension, the
subject tried to resist the downward movement of the bar until the position was returned to the

origin.
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Figure 39 presents a typical force curve throughout the range of movement. Figure 40
shows the force and displacement curves as well as the corresponding EMG curves from the
flexors and extensors of the elbow in the concentric and eccentric phases.

When a subject applies muscular force to an external device, a few factors must be
considered. The first factor is the pattern of velocity. In this situation, the movement began ate
“0" velocity, accelerated to the assigned velocity, and the equipment recorded the velocity of the
mechanical bar. This is a very important factor since much of the previous research reported in
the literature was conducted with isokinetic type equipment which did not report the instantane-
ous velocity throughout the range of movement but rather yieided an average quantity. This
means that at an assigned velocity of 100 degrees per second beginning from a point of zero
velocity, the investigators would be unable to determine the time it took to reach the designated
velocity and at what point the segment returned to “0" velocity.

This limitation was overcome in the present experiment by selecting a different measure-
ment device. Examination of Figure 41 illustrates a control curve with the velocity programmed
to be 25 degrees per second in the flexion direction and 125 degrees per second in the extension
phase. As can be seen, the subject needed approximately 5 degrees before reaching the selected
velocity of 25 degrees per second and the subject never attained the 125 degrees per second
during the extension phase.

Controlled velocity curves with data throughout the range of motion were recorded in the
present set of studies. In addition to the velocity curve data, a second factor which must be
considered is the acceleration pattern. In other words, consideration must be given to the
amount of acceleration needed to achieve the required speed. When acceleration occurs, there
are inertial forces affecting the movement. Even if the subject does not reach the assigned
velocity, force is created by the muscle and is related directly to the level of acceleration. In
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Figure 41, although the subject did not reached the velocity assigned during the extension phase,
a force curve was calculated. It can be seen in the flexion phase that the velocity was reached
and, therefore, the force level was measured to approximately 50 pounds. In the downward
direction, due to acceleration of the bar, a force of approximately 25 pounds was achieved
during the acceleration phase and then dropped to 0 during the deceleration phase.

The ability to report displacements, velocities, and accelerations throughout the range of
movement is essential for the correlation of test results. For instance, two different subjects
exercising under the same condition may yield different force curves results due to the pattern of
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100 In eccentric phase velocity set to 125 deg/sec
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Figure 41

their movement. Figure 41 shows different force curves resulting from different levels of
acceleration with the same assigned condition of 25 degrees per second in the flexion and 125
degrees per second in the extension phases. Obviously, EMG activity will vary significantly
depending upon these conditions. Figure 42 illustrates that in a high speed exercise, it takes
time to reach the assigned velocity as it cannot be attained instantaneously.

Condition Three - Submaximal Concentric Eccentric Contractions:

In this procedure, the subjects flexed the elbow concentrically to maximum flexion,
paused approximately one second at the end of the range, and then the machine applied a
submaximal force to extend the subject’s arm so that the elbow extended. The subject tried to
resist this extension against the active force of the machine. The machine mechanism moved the
bar at a given velocity at a very high force, thus, preventing the subject from stopping the bar’s
movement. Since the velocity was controlled at a given speed, the subject was able to sustain the
movement without injury. As in the previous study, the machines mechanism used was provid-
ing limited force to prevent injury. In the present study, the force applied was to exceed the
ability of the subject to resist it by at least 500 percent. The only safeguard against injury was
the fact that the bar moved at manageable velocities.
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Figure 39 illustrates the concentric phase followed by the eccentric phase. The concentric
phase by the flexors illustrates the same typical results as previously observed. In the eccentric
phase, Figure 40 illustrates the displacement curve as well as the EMG activity of the flexors
and the extensors. One can observe that in both the concentric and the eccentric phases, the
flexors and extensors demonstrate EMG activity. As expected, the flexors demonstrate higher
activity. It is interesting to note that during the passive rest phase, the extensors EMG shifted
above the base line. Also, at the onset of extension, the extensors exhibited a sharp negative
spike. This may indicate the result of a pre-stretch reflex which augmented the antagonistic
muscle, the extensors, at the beginning of the eccentric contraction.

Figure 43 illustrates a typical concentric eccentric combination utilized in this experiment.
The force curves, the displacements, and the EMG activities are presented. One of the goals of
this experiment was to determine if the firing characteristics of the extensors and/or the flexors
change during the concentric and/or eccentric phases. A typical result is presented in Figure 44.
A fast Fourier Transformation revealed that the frequency characteristic of the EMG signal did
not change for the same muscle group during the concentric and eccentric contractions. How-
ever, the amplitude of the EMG signal did vary. Amplitude is referred to as “power” and the
power of the EMG activity measured in the current study did change. Higher power signals were
observed during the eccentric contractions.

A third factor to consider provides information about the EMG activity and this is known
as the “value reset integration”. A value reset integration provides insight into the relationships
of the EMG activity between the two phases of contractions. A specific level of EMG activity
was set in this study as 100 millivolt seconds for the value reset integration. The reason for the
selection of this type of integration was to determine if the activity level changed during the
time of contraction for the concentric and eccentric phases.

Figure 45 illustrates a typical concentric and eccentric contraction with the associated
displacement, raw EMG and value reset integration for the flexor and extensor muscles. As can
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be seen in this Figure and, in general for all cases, the flexors were more active during the
concentric phase as indicated by the shorter time required to reach a particular EMG level of
activity indicated by the area under the integral curves. In the eccentric phase, the value integra-
tion of the flexors muscles shows even more activity as indicated by the smaller time interval to
reach the chosen value for the reset integration of the EMG activity. However, the extensors
muscles indicated less activity to reach the selected level of EMG activity as revealed by the
longer base line. This phenomenon was repeated in most of the super maximal eccentric contrac-
tion trials. When measuring the same parameters during sub-maximal eccentric contractions, the
extensor activity did not change significanuy but the flexors showed less activity.

DISCUSSION

The present studies show that during dynamic contractions, whether concentric or eccen-
tric, there is a control mechanism which simultaneously regulates the amount of EMG firing in
the flexors and extensors. The level of activity appears to be regulated by some higher level
neural control program. The net effect is responsible for the level of force produced in each
movement.

It seems that there are differences between maximal and submaximal eccentric contrac-
tions. In the maximal eccentric contraction, where the extemnal force was significantly greater
than that generated by the muscle, a regulator mechanism was initiated so that the activity level
of the antagonistic reduced, thus, enabling the agonist to perform in a more efficient manner.
That is to say, the antagonistic effect was reduced in order to allow better “net” activity by the
agonist. By reducing some of the antagonistic muscle activity, the agonist force produced a
greater net moment. However, if the individual continues to try to overcome a large externally
applied force, the net force may reach a level where internal injury to the tissue occurs. This
situation can only occur in an eccentric condition.
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When the eccentric contraction was sub-maximal, the antagonistic activity was not
effected. In that situation, the elongation of the agonist muscle was achieved by “progressive
relaxation” as the number of motor units firing decreased as indicated by the level of EMG and
the force associated with this type of contraction.

It appears that eccentric contractions should be classified as two types. In both cases, the
agonist is elongated during a dynamic contraction. In the case with a super-maximal external
resistance, the regulatory mechanism of the agonist-antagonist relationship “turns off”’ or reduces
some of the antagonistic activity allowing the agonist to exert a greater net moment. In the case
of the sub-maximal eccentric contractions, the relationship of force production is changed by
simply “turning off”” some of the agonist muscle and progressively relaxing the amount of
agonistic activity and allowing the limb to extend.

When examinating activities, such as walking and running, it appeared that the body
tended to use progressive relaxation to achieve the proper level of shock absorption and gait
efficiency. However, in a task involving jumping from a height in excess of 3 feet, it seemed
that this mecbanism gradually changed to a maximum eccentric contraction. An activity such as
high jumping would probably incorporate both types depending on the intensity of contraction
and external resistance.

Application to Training:
The literature is filled with contradictory findings concerning the muscular strength level
which can be achieved with both methods of training, eg. conceatric and eccentric. There seems
to be a “carry over” effect regardliess of the system of training whether concentric, eccentric, or a
combination of the two.

Based on the literature and the experimental findings presented here, this author believes
that for efficient and safe training, exercise should be done concentrically. This assures neu-
romuscular regulation of the desired movement. If one elects to train eccentricaily, these
exercises should be performed only at super-maximal contraction levels which will produce a
higher net moment. Any level lower then the super-maximal will result oaly in progressive
relaxation of the agonist muscle. A complete training regimen should include exercises with the
body weight utilized in a way that mobilizes the parallel and serial connective tissues to absorb
elastic energy and to maintain a full range of motion for each joint. These types of exercise
necessitate eccentric contractions at some level; however, at 2 maximal resistance level, the risk
of injury increases significantly.

Training should always include the natural movements of the human body. The body will
not gain maximum benefit with training on mechanical machines which cannot reproduce the
number of degrees of freedom the body requires for movement. Therefore, a healthy exercise
program should include running, jumping, gymnastics, calisthenics, swimming, and rhythmic
activities. These essential programs can be supplemented with exercise machines which,
preferable, possess artificial intelligence to evaluate and coordinate the program.

In the particular situation of microgravity, in order to simulate “natural” resistance to the
body, only a machine can perform adequately to stimulate the desired responses in an “artificial”
environment. An exercise device properly designed should be able to accommodate the
limitations of microgravity, since the body can be restrained in its environment and can execute
activities providing high resistance extemnally thereby simulating exercise in 1-G condition.

Needless to say, more research is needed to determine the ideal training conditions for

people to achieve the most efficient fitness level for performing specific activities on earth and
in microgravity conditions.
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