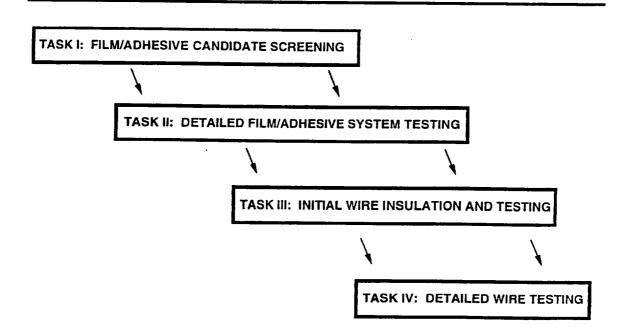
440349 8P

ROBUST 300 °C WIRE INSULATION SYSTEM


N94-28699

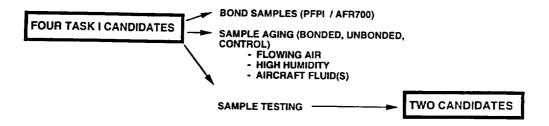
John G. Nairus U.S. Air Force Wright Patterson Air Force Base, Ohio

OBJECTIVE

IDENTIFY, DEVELOP AND DEMONSTRATE AN OPTIMUM WIRE INSULATION SYSTEM CAPABLE OF CONTINUOUS OPERATION AT 300°C WHICH POSSESSES A COMBINATION OF SUPERIOR ELECTRICAL (AC OR DC), MECHANICAL, AND PHYSICAL PROPERTIES OVER KAPTON^R DERIVED INSULATIONS DESCRIBED IN MIL-W-81381 AND THOSE HYBRID CONSTRUCTIONS IDENTIFIED IN AIR FORCE CONTRACT F33615-89-C-5606 COMMONLY KNOWN AS TKT CONSTRUCTIONS.

APPROACH

FILM/ADHESIVE CANDIDATE SCREENING


DESIGN OF EXPERIMENTS (DOX) APPROACH FOR CANDIDATE SELECTION

- MINIMUM OF SIX CANDIDATES
- CAST FILM CANDIDATES
- DETERMINE KEY ELECTRICAL AND MECHANICAL PROPERTIES

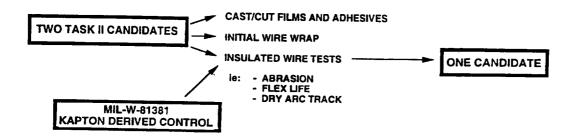
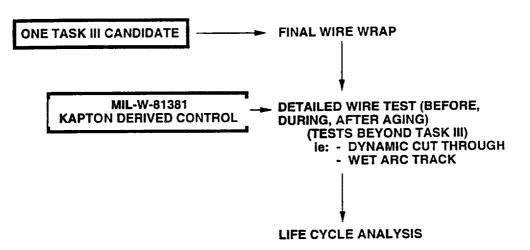

TASK I PROPERTIES

TABLE I: PROPOSED TASK I SCREENING PROPERTIES TO BE DETERMINED	
Property to be Determined	Method of Determination
Electrical	
Dielectric Constant at 400 Hz and 1000 Hz at RT, 280°C, and 300°C	ASTM D-150
Dissipation Factor at conditions stated above	ASTM D-150
Breakdown Voltage (AC at 60 Hz and DC) at RT, 280°C, and 300°C	ASTM D-149
Arc Tracking at RT	ASTM-495-84
Mechanical	
Tensile strength, elongation to break, and modulus at RT, 280°C, and 300°C	ASTM D-882-64T
Lap shear tensile strengths at RT, 280°C, and 300°C	Modification to above tensile method
Dynamic work loss (tan delta)	Rheometrics dynamic analyzer from < -100°C to + 500°C


DETAILED FILM/ADHESIVE SYSTEM TESTING

INITIAL WIRE INSULATION AND TEST

DETAILED WIRE TESTING

NASA ENVIRONMENTS

PRESSURIZED MODULE

 PROPOSED MATERIAL HAS SUCCESSFULLY COMPLETED LONG TERM AGING TESTS IN OXYGEN IN PREVIOUS AF PROGRAM

TRANS-ATMOSPHERIC VEHICLE

- PROPOSED MATERIAL HAS SUCCESSFULLY COMPLETED VACUUM, UV AGING, AND TEMPERATURE TESTS IN PREVIOUS AF PROGRAM
- HAVE NOT DONE COMBINED TESTS (ie: PLASMA EFFECTS)

LUNAR AND MARTIAN

- POLYIMIDES KNOWN FOR RADIATION RESISTANCE

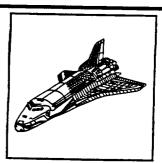
LEO/GEO

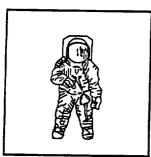
- WL HAS SPACE TESTED FILM SAMPLES WHICH ARE BEING DELIVERED FOR TEST AND ANALYSIS

ADDITIONAL NOTES

- PROPOSED SYSTEM SHOULD NOT BE AFFECTED BY GRAVITY
- EXISTING POLYIMIDE TECHNOLOGY ALREADY EXCEEDS LIFETIME REQUIREMENTS
- 160 VDC SHOULD BE FEASIBLE BASED ON BDV TESTS

NASA APPROACH

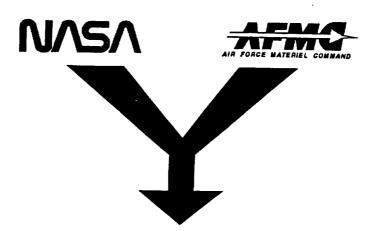



TASK I: NASA OPERATIONAL ENVIRONMENTS

TASK II: INSULATION TEST AND ANALYSIS

TASK III: WIRING SYSTEMS TECHNOLOGY

TASK IV: MANAGEMENT PLANNING



CONCLUSIONS

OPPORTUNITIES EXIST FOR COOPERATIVE NASA/AIR FORCE EFFORTS

- INSULATION CONTRACT IS FLEXIBLE BUT ALREADY ADDRESSES NASA CONCERNS/ISSUES

- GENERIC AIR FORCE ELECTRICAL LOAD MANAGEMENT TECHNOLOGY IS APPLICABLE

WIRING APPLICATIONS AND STANDARDS

PRECEDING PAGE BLANK NOT FILMED