HIGH TEMPERATURE POLYMER DIELECTRIC FILM INSULATION

Robert J. Jones TRW Redondo Beach, California

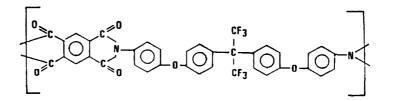
N94-28715

HIGH TEMPERATURE POLYMER DIELECTRIC FILM INSULATION

BACKGROUND

- DUAL USE SYSTEM DRIVERS FOR DEVELOPMENT, QUALIFICATION AND PRODUCTION OF NEXT GENERATION, VERY HIGH TEMPERATURE WIRE INSULATION
 - ENERGY RECOVERY/GENERATION/DISTRIBUTION AND TRANSPORTATION MARKETS (1990's)
 - SUPER CAPACITY/RESPONSE ELECTRONIC COMPUTATION AND TELECOMMUNICATION EQUIPMENT (1990's)
 - HIGH SPEED CIVIL TRANSPORT (NEXT CENTURY)
 - ALL ELECTRIC AIRPLANE (NEXT CENTURY)
- EXAMPLES OF SYSTEM RATIONALE FOR VERY HIGH TEMPERATURE WIRE INSULATION
 - SMALLER, MORE EFFICIENT ELECTRONIC SYSTEMS RUN HOTTER
 - OPERATING ENVIRONMENTS SUCH AS DOWNWELL ARE GETTING MORE THERMALLY SEVERE
 - ACTIVE COOLING SYSTEMS FOR GENERATORS/ALTERNATORS, STORAGE/TRANSMISSION/ DISTRIBUTION SYSTEMS AND BLACK BOXES ARE COSTLY AND EQUATE TO SEVERE WEIGHT PENALTIES
 - SMALLER DIAMETER WIRES MAY BE SUFFICIENT TO CARRY EQUIVALENT POWER

HIGH TEMPERATURE POLYMER DIELECTRIC FILM INSULATION


BACKGROUND (CONTINUED)

- ASSESSMENT OF EMERGING REQUIREMENTS HAS DICTATED THAT 300°C PERFORMANCE IS THE GOAL FOR NEXT GENERATION WIRE INSULATION
 - VERY SIGNIFICANT INCREASE OVER CURRENTLY QUALIFIED POLYIMIDE AND FLUOROPOLYMERS RATED AT 200°C (OR SLIGHTLY ABOVE)
 - EMERGING HIGH TEMPERATURE POLYMER MATERIALS HAVE BEEN SHOWN TO HAVE POTENTIAL FOR PERFORMANCE AT $\geq 300\,^\circ\text{C}$
 - ≥300°C INSULATIONS SHOULD MEET NEW DUAL USE PERFORMANCE REQUIREMENTS WELL INTO NEXT CENTURY
- STATUS OF RECENT OR CURRENT 300°C POLYMERIC WIRE INSULATION ACTIVITY
 - UBE INDUSTRIES OFFERED UPILEX" S FILM, BUT WITHDREW IT FROM THE MARKET IN 1992
 - FOSTER MILLER IS STUDYING LIQUID CRYSTAL POLYMERS
 - 3M IS DEVELOPING FPE POLYMER MATERIAL
 - TRW HAS SHOWN HIGH PROMISE FOR ITS PFPI POLYMERS UNDER USAF SPONSORSHIP (FINAL REPORT WL-TR-91-2105); FURTHER WORK WILL BE CONDUCTED IN RECENTLY AWARDED USAF CONTRACT F33615-93-C-2367

HIGH TEMPERATURE POLYMER DIELECTRIC FILM INSULATION

TRW PFPI AS SUPERIOR 300°C POLYMER CANDIDATES

• REPRESENTATIVE CHEMISTRY

US PATENT NUMBERS 4,111,906; 4,196,277; 4,203,922; 4,880,584

(PFPI POLYMERS WERE INVENTED UNDER NASA LEWIS RESEARCH CENTER SPONSORSHIP IN THE LATE 1970'S)

- VERSATILITY
 - FORMULATIONS CAN BE TAILORED TO MEET PRODUCT USE REQUIREMENTS
 - COATING VARNISH, FILM AND POWDER PRODUCT FORMS CAN BE EMPLOYED TO ADAPT FORMULATIONS TO EXISTING PROCESSING EQUIPMENT FOR CONVERSION TO WIRE INSULATION
 - POLYMERS POSSESS SUPERIOR COMBINATION OF THERMAL/ELECTRICAL/UV, MOISTURE & FLUID RESISTANCE/TRIBOLOGICAL PROPERTIES
 - FILMS ARE AMENABLE TO CERAMIC COATING FOR LEO ATOMIC DXYGEN PROTECTION

HIGH TEMPERATURE POLYMER DIELECTRIC FILM INSULATION

TRW PFPI AS SUPERIOR 300°C POLYMER CANDIDATES (CONTINUED)

• COMPARISON OF PROMISING PFPI FILM PROPERTIES WITH KAPTON[®] (FROM REPORT WL-TR-91-2105)

PROPERTY MEASURED	PROPERTY RESULT*	
	KAPTON FILM	TRW PEPI FILM
ELECTRICAL • DIELECTRIC CONSTANT - AT 25°C - AT 300°C	3.1 2.8	3.1 2.9
 DISSIPATION FACTOR AT 25°C AT 300°C 	0.001 0.063	0.001 0.004
 BREAKDOWN VOLTAGE AT 25°C (V/MIL) AC DC 	7000 11000	6000 12000
LOW TEMPERATURE STABILITY (CRYOGENIC) • EXPOSURE IN LIQUID NITROGEN AND HELIUM	NO EFFECT	NO EFFECT
AIR AGING AT 300°C ● WEIGHT LOSS AFTER 1000 HRS (%)	13.0	4.1
HUMIDITY AGING AT 90°C/100% RH ● WEIGHT LOSS AFTER 1200 HRS (%)	FAILED AFTER 500 HRS	0.4
BASIC SOLUTION (PH, 10) AGING AT 93℃ ● WEIGHT LOSS AFTER 96 HRS (%)	2.6	1.3
ULTRAVIOLET LIGHT AGING AT 25°C • WEIGHT LOSS AFTER 1000 HRS (%)	6.7	1.4

A) ALL PROPERTIES DETERMINED ON 0.001-INCH THICK FILMS

HIGH TEMPERATURE POLYMER DIELECTRIC FILM INSULATION

TRW'S PFPI AS SUPERIOR 300°C POLYMER CANDIDATES (CONTINUED)

• PROMISING BULK POLYMER OR COATING PROPERTIES

PROPERTY TYPE	PROPERTY MEASURED	TEST RESULT
THERMAL	MELTING POINT GLASS TRANSITION TEMPERATURE	≥400°C >300°C
TRIBOLOGICAL	• FRICTION COEFFICIENT	0.3-0.6(RT); 0.1-0.2 (300°C)
	• WEAR RATE	MUCH LOWER THAN TEFLON
COATING ENVIRONMENTAL RESISTANCE	 COATING INTEGRITY AFTER EXPOSURE TO: 	
	- 500 HRS, 343°C	
	- 21 DAYS, 71°C IN MIL-H-5606 Hydraulic Fluid	NO BLISTERING
	- 21 DAYS, 71°C IN MIL-L-7808 JET Engine Oil	OR LOSS OF ADHESION
	- 2000 HRS, 25°C IN 5% s alt spray	

HIGH TEMPERATURE POLYMER DIELECTRIC FILM INSULATION

TRW'S PFPI AS SUPERIOR 300°C POLYMER CANDIDATES (CONTINUED)

- DUAL USE CHALLENGES FOR 1994-1996 TIME FRAME
 - CONTINUING USAF WORK
 - VERIFY PROMISING INITIAL FILM AND COATING PROPERTIES AS A WIRE INSULATION
 - •• DEMONSTRATE A SUPERIOR 300°C ADHESIVE FOR WRAPPED FILM
 - •• ACHIEVE HIGH INSULATION RESISTANCE TO ARCING & TRACKING
 - •• ACHIEVE FACILE FILM WRAP PROCESSABILITY ON EXISTING PLANT EQUIPMENT AND PRODUCE HIGH QUALITY INSULATED WIRE
 - COMMERCIAL PRODUCT DEVELOPMENT
 - QUALIFY AND INTRODUCE PFPI INTO MAGNET WIRE INSULATION, AUTOMOTIVE COMPONENT COATING AND MEDICAL DIAGNOSTIC PRODUCT APPLICATIONS
 - •• MAXIMIZE HIGH VOLUME USE APPLICATIONS TO MINIMIZE FUTURE POLYMER COSTS
- PROPOSED ADAPTATION OF PFPI TO MEET FUTURE NASA 200°C SPACE SYSTEM WIRE INSULATION REQUIREMENTS
 - DETERMINE INITIAL BASELINE WIRE PROPERTIES SPECIFIC TO SPACE APPLICATION ON COATED OR WRAPPED WIRE
 - TAILOR EXISTING 300°C POLYMER CANDIDATE TECHNOLOGY, AS REQUIRED, TO OFFER OPTIMUM 200°C PERFORMANCE; BUILD UPON EURECA SAMPLE TEST RESULTS
 - PRODUCE OPTIMIZED INSULATED WIRE AND PERFORM QUALIFICATION TESTS FOR GENERAL AND MISSION SPECIFIC SPACE APPLICATIONS