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ABSTRACT

This paper describes the sensor technology and associated electronics of a monitor designed to

detect the onset of a seizure disorder called status epilepticus. It is a condition that affects approximately

3-5 percent of those individuals suffering from epilepsy. This form of epilepsy does not follow the
typical cycle of start-peak-end. The convulsions continue until medically interrupted and are life

threatening. The mortality rate is high without prompt medical treatment at a suitable facility. The paper
describes the details of a monitor design that provides an inexpensive solution to the needs of those

responsible for the care of individuals afflicted with this disorder. The monitor has been designed as a

cooperative research and development effort involving the United States Army Armament Research,

Development, and Engineering Center's Benet Laboratories (Benet) and the Cerebral Palsy Center for the

Disabled (Center), in association with the Department of Neurology at Albany Medical College (AMC).

Benet has delivered a working prototype of the device for field testing, in collaboration with Albany

Medical College. The Center has identified several children in need of special monitoring and has agreed
to pursue commercialization of the device.

EPILEPSY

Epilepsy is a disorder of the brain characterized by recurring seizures, in which there are

uncontrolled electrical discharges of brain cells [1]. Epilepsy may arise from a very small area of

damaged brain tissue, or from the entire brain. There may be no apparent brain damage, or damage
limited to an area so small it cannot be detected. Therefore, in nearly one-half the cases, the cause of
epilepsy is not known.

There are several types of seizures associated with epilepsy, the most common of which are

generalized tonic-clonic (grand real), absence, (petit mal), complex partial (psychomotor), and

elementary partial (focal motor). Each seizure type can be characterized by various symptoms.
However, the seizures are generally not life threatening, lasting at most up to three minutes. The

exception is status epilepticus, also called continuous seizure state. This is the occurrence of repetitive or

continuous seizures and affects approximately 3-5 percent of those individuals suffering from epilepsy. It

can exist with all types of seizures and may result in irreversible brain damage or death without prompt
medical treatment.

THE PROBLEM

We were requested to develop a device that could detect the onset of status epilepticus in a child

during sleeping hours. The seizures begin as complex partial and progress to generalized tonic-clonic.

The early stages of the seizures are characterized by a loss of conciousness during which there are minor,
barely perceptible tremors. The monitor was to supplement the ineffectual periodic observation of the
child by the parents.

A SOLUTION

A motion sensor has been designed with nearly omnidirectional response that can detect the

'hard shiver' activity characteristic of complex partial seizures. The sensor is small and inexpensive to

produce since it detects without measuring. It is less responsive to casual and temporary body motion
(rolling over, etc.) than to the activity of the tremors. Electronics provide further filtering to the sensor
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signals to ensure consistent results at all orientations. Quasi-continuous activity for a finite period of
time is used as an indication of seizure activity. Although the monitor is designed to ignore occasional

movements not indicative of a seizure, false alarms will occur. Therefore, sensitivity adjustments have

been included. If the alarm criterion is satisfied, a radio frequency signal is transmitted every 30 seconds
to a compatible receiver that activates/deactivates any desired alarm mechanism.

The sensor, electronics, and commercially available, FCC compliant (HBW74A) transmitter arc

packaged in a small, lightweight, plastic housing that is easily attached to a child (figures la and lb). An

on/off switch is recessed in the side. A 120V, 60hz, alarm mechanism (light, radio, etc.) is plugged into a
compatible receiver 'trained' to the transmitter signal. Although a number of devices may be used

simultaneously, total power requirements should not exceed 600 Watts. The receiver is then plugged into
a wall outlet within 20 feet of the monitor. The transmitter/receiver should be tested (manual button at
the top of the monitor) to ensure the signal is properly received. The monitor is then attached to the child
and powered on.

TECHNICAL DETAILS

The Sensor

The sensing element is an intermittent switch consisting of a small, electrically conductive

sphere which is able to move within the confines of a small hollow cylinder with closed ends (figure 2).
The sphere is stainless steel and has been chemically treated (Marble's Reagent) to enhance surface

roughness. The wail of the cylinder is conductive as are the end plates each of which are separated from

the cylinder wall by an insulator. The end plates are electrically connected and form one pole of the

switch. The cylinder wall is the other pole. When the sphere is in contact with either of the end plates
and the cylinder wall, the switch is mechanically closed. However, depending on the presence of oxides

and/or surface roughness, the contact resistance may be quite high and the switch may or may not be
electrically closed. The important feature is that even small motions of the switch cause the bail to roll.

The mechanically closed position (sphere in contact with the cylindrical surface B and one of the end

caps A) is the only stable position of the sphere, so most rolling occurs in this position. As the sphere
rolls, electrical contact with the wall is intermittent due to the variations in contact resistance The

surfaces have been tapered to improve the probability of a weighted contact. Figure 3 shows typical
sensor response characteristic of the complex partial seizures to be detected. No attempt has been made

to optimize the taper or utilize curved surfaces since the design of figure 2 has proved to be satisfactory.

23_,lr, t,lxzzim

A schematic of the monitor electronics is given in figure 4. The electronics are based on an 8-

bit RISC CMOS EPROM microcontroller [2]. The microcontroller is designed to operate between 3 and

6 volts from DC to 20Mhz. High speed is not required so the microcontroller operates at a low voltage (4
VDC) and low clock speed (75khz) to conserve power. Power is derived from the 12 volt power source

of the transmitter. A Maxim MAX874 low-dropout, precision voltage reference is utilized to supply the
4 volts to our circuitry. This voltage reference was selected because of its low quiescent current (10 la.A)

and dropout (200mV) voltage. The MAX874 sources or sinks up to 400 IxA at supply voltages ranging
from 4.3 VDC to 20 VDC. Nominal current draw of the circuit (including 12 volt passive transmitter

operation) is 25 IxA when the processor is in a quiescent mode and 85 _ during oscillation. When

activated, the transmitter draws 5 mA. Although there are many influencing factors, the useful battery
life of an Eveready A23 12 volt alkaline battery or equivalent is estimated to be 2 months if the device is
used every night for 9 hours.

With the exception of the 20 pF crystal tank capacitors, all capacitors (loo0 pF) are for

decoupling. The 262k feedback resistor in the oscillator circuit is required to prevent over driving the

crystal. The 100k resistor eliminates spurious oscillations and reduces standby current drain. Battery
voltage is dropped by a voltage divider network and periodically monitored by an on-chip A/D converter

at pin 17. Pull-down resistors at terminals 9-12 define the default logic settings for the jumpers. The
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jumpers may be used to disable the battery test (J1), increase the monitor sensitivity (J2), decrease the
sensitivity (J3), and enable debug mode for diagnostics (J4). The diagnostic information is transmitted

through a serial link at output port 2. Data is transmitted at 150 baud (6.7 msec pulses) with one start bit,
8 data bits, and 2 stop bits. A 1488 or similar protocol converter must be used to ensure RS232

compatibility (figure 5a). Information on jumper configurations, battery voltage, and pulse count are

provided (figure 5b). A 9155 VIVIOS power FET driven by microcontroUer output port 1 simultaneously
switches the transmitter and alarm LED. The sensor is monitored at terminal 13.

450 lines of microcontroller code define the system operation. Upon power-up, interrupts are all

disabled and the input/output port definitions established. The A/D converter characteristics are defined,
but the converter is disabled to conserve power. The jumpers arc monitored and the system initialized

after which the processor goes into a power saving quiescent mode. Although a watchdog timer is

available that is capable of resetting the system every 2.5 seconds, it was disabled to conserve power.
Excessive current draw occurs while the processor forces the crystal tank circuit into oscillation at lower

frequencies. Approximately 500 msec are required to achieve stable oscillation, with a 230 _ peak

current draw. In fact, contrary to the claims of the manufacturer, reliable start-up at 32 khz was

unattainable, particularly with the SOIC (surface moun0 package. While in the quiescent mode, the

oscillator is disabled until it receives an interrupt indicating a signal change from the sensor. At this

point a real time clock/counter CRTCC) is enabled and the interrupt vectors redefined to mask all
interrupts except those from the internal clock/counter. Signal transitions are measured at 100 msec
intervals to minimize sensitivity variations resulting from different sensor orientations. After

approximately 35 seconds of multiple RTCC interrupts, the processor compares the acquired data with
that of a threshold value defined by the jumper configurations and measures the battery voltage. If the

activity or battery voltage do not warrant an alarm, the processor returns to the power saving mode. If
either the battery voltage is too low (9 volts) or the activity exceeds the threshold, the processor toggles

the receiver with a 500 msec pulse through the VMOS power transistor. For the transmitter/receiver

control modules selected, pulse widths under 400 msec were unreliable and those in excess of 700 msec

could cycle the receiver two times (i.e. no noticeable effect). The signal is retransmitted every 30
seconds until reset, which turn the alarm on and off periodically. This ensures the device attached to the

receiver will be activated in the event an alarm condition occurs before the receiver is set. This also

reduces the risk of an alarm signal being completely masked. The LED in series with the transmitter is

used as a local alarm by transmitting 25 msec bursts (3 percent duty cycle) between the 500 msec. pulses.

This is enough to flash the LED but not activate the receiver.

RESULTS

The monitor has only recently been turned over to the Center for the Disabled for preliminary

testing. It is a replacement for an earlier design that provided much needed data. Many of the
enhancements were made based on recommendations by the parents of the afflicted child. We believe

the new design corrects all of deficiencies of the earlier model, but anticipate the need for refinements as

the testing proceeds.
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Fig_Lre 4. Monitor Schematics

all resistance values in ohms

all capacitance values in pF
unless otherwise specified

Q1 = 9155 VMOS power FET

jumper settings
J1 = battery test enable

J2 = debug enable
J3 = increase sensitivity
J4 - decrease sensitivity
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Figure 5a. Monitor-DTE Interface
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Figure 5b. Sample Diagnostic Output

175




