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A model-based approach to identifying
and finding the orientation of non-overlapping
parts on a tray has been developed. The part
models contain both exact and fuzzy
descriptions of part features, and are stored in
an object-oriented database. Full
identification of the parts involves several
interacting tasks each of which is handled by a
distinct agent. Using fuzzy information stored
in the model allowed part features that were
essentially at the noise level to be extracted
and used for identification. This was done by
focusing attention on the portion of the part
where the feature must be found if the current

hypothesis of the part ID is correct. In going
from one set of parts to another the only thing
that needs to be changed is the database of
part models. This work is part of an effort in
developing a Vision Advisor System (VAS) that
combines agents and objected-oriented
databases.

INTRODUCTION

The bulkheads of Grumman aircraft,
including the E2C, are assembled-using a
visually guided robot cell, called the Flexible
Assembly System (FAS). Parts are laid out on
a tray with the surface of the part that is to be
attached to the bulkhead against the tray.
Each part has a flange that is perpendicular to

the tray. The robot receives information about
the position and orientation of parts on the tray
from a 2-D vision system which looks directly
down on the tray, located about 6 feet away
from the cameras. This means that the
flanges that the vision system must locate are
viewed edge on. FAS uses the coordinates
supplied by the 2-D system to move a robot
arm to the designated pickup point on a part
which is always located on the flange. Once
the arm is in position, the part is picked up at
the pickup point. A 3-D camera with very
limited range is used to find the positional error
between a marker hole on the part and a
reference hole on the gripper. Correcting this
error allows the robot to determine the position

of the part on the gripper accurately for
placement on the bulkhead. After the part is
placed against the bulkhead, the robot rivets it
in place.

The Vision Advisory System (VAS)
reported in this paper concerns the
identification of parts and the location of their
flanges using tray images such as the one
shown in Fig. 1. Our goal is to make VAS an
autonomous visual recognition system where
the only change needed when the robot begins
work on a new part set is a database
describing the new parts. VAS is currently in
the evaluation stage. It runs on a Macintosh
2fx connected via NFS to a Sun computer
which runs the old 2-D vision system. Thus, it

operates on the existing FAS manufacturing
system, in parallel to the older, less-than-
satisfactory 2-D vision system. The current
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Fig. 1. A Typical tray Image in which the fiduclal marks in the corners
were found and used to calibrate distance.

role of VAS is to provide "advice" regarding
part identification and flange location to the
existing system so a better decision can be
made with regard to where the part pickup
point is.

SYSTEM CONSTRAINTS

Although the parts never overlap or
even touch one another the problem being
addressed is made difficult by the similarity of
some parts. Often the only difference

between parts is the position of features on
the sides of the parts, such as bumps and
notches. These features can be viewed as
convex or concave imperfections in the
normally smooth and straight sides of the
parts. Since the relative positions of the
flange and the part's features are stored in a
database, finding a feature solve the flange
location task as well as the part ID task. The
previous 2-D vision system, built in the mid-
1980s, used a coarse shape description that
generally ignored these small features. In
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fact, it is the inability of that system to deal
with small features that lead to the the

current upgrade.
Since the robot was already in

production when our task began, we were
constrained to use the components of the
existing system. As a result, the features
(i.e. bumps or notches) that can distinguish
parts or indicate the flange location are only
1-2 pixels in height or depth. Due to their
small size, the precise position and extent of
features on the parts cannot be determined.

In addition to the small features there

are two previously unused sources of
information that could simplify the solution to
the 2-D recognition problem, namely
shadows and context information. In cases
where there is a clear shadow, it is possible
to find the flange on a part even if it has no
features at all. However, due to
assymmetries in the lighting, shadows that
are reliable predictors of the flange in one
orientation cannot be seen at all in others.

Context information, i.e. the part
descriptions in the database and the history
of the current assembly session, can be used
to augment and simplify the recognition
process. For example, the knowledge of
what parts have already been removed from
the tray, can allow a part to be trivially
identified if all of the parts similar to it have
already been removed. The search for a
feature in a small region under the
assumption that some candidate model
corresponds to the true part is also an
example of the use of context information.

Since rule-based reasoning is
relatively expensive in terms of the time it
takes, the system avoids reasoning about
context when possible. In cases where a
sequence of inexpensive image operators
leads to unambiguous results, the system
does not do any additional reasoning.
However, when there is ambiguity the system
is able to reason about a part's ID or flange
location using context information or even to
decide that additional information must be
extracted from the tray image.

The goal of only switching the physical
descriptions of the parts making up the data
set is not possible unless the system has all

the image operators it will ever need. In
particular, it assumes that image operators
exist which allow any two features that can
be found on any part to be distinguished.
This is a not possible when you do not know
what the parts in future sets will look like. To
deal with this type of novelty the system must
be able to "learn" to descriminate the new
features from all existing features. In order to
meet these requirements the system we
propose must be able to do a limited amount
of planning, learning, and high level
representation.

A PROPOSED VISION ARCHITECTURE
COMBINING AGENTS AND OBJECT-
ORIENTED DATABASES

Following Minsky's (15) Society of
Mind paradigm, researchers in a number of
fields have begun proposing agent
architectures. The emerging interest in
Distributed AI (14,1 1,10,1 8) and in distributed

control systems (5) has literally forced
researchers to look at agent architectures of
various types. However, researchers looking
at autonomous systems that have multiple
goals or drives and operate in several
domains have been equally drawn to agents
(1,2,3). The solution to the FAS 2-D vision

problem discussed above requires an
autonomous system carrying several tasks
with several domains in which it must be
knowledgable (i.e. tray images, databases,
robot arm coordinates). This suggested that
the 2-D vision system could be naturally
implemented as an agent architecture with a
set of autonomous agents interacting with
each other and an object-oriented database.
In fact, the agent architecture chosen is a
simplified version of an architecture originally
developed for Automatic Target Recognition
tasks (6). In this paper, we describe the
building blocks being implemented to support
such an architecture. For example the
agents and the object-oriented database are
implemented in CLOS (LISP), while the basic
image operators are written in C. Note that
at present the agents we have implemented
do not have the full capability of the agents
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we envision, since the full support structure
for the agent architecture is still being
implemented.

Agents
The particular agent architecture used

was developed at Grumman (13), and is an
integration of the object-oriented
programming paradigm and expert systems.
Agents are both local experts and objects.
Two basic classes of agents are available in
the architecture: agents that manage a
behavior and agents that plan to satisfy a
goal or drive using a sequence of behaviors.
Since the concepts of behaviors and plans
play a central role in our approach and the
terms are used in such a wide variety of
ways, we provide the following list of
definitions.

° Behaviors are a triple of actions, i.e.
{activation, execution, termination}.
• Routines are control algorithms or a
sequence of mappings between sensations
that correspond to the execution portion of a
behavior.
• A domain is a set of similar environments

(ex. trays 1-5 of the FAS robot cell). In
general, domain is a set of environments that
is "sufficiently similar" to a prototype or a set
of examplars, where both the prototype and
the measure of similarity must be included in
the definition. A routine may have a domain
of validity associated with it.
• A/andmark state is a description of the
relation between the robot and important
objects in the world.
• A p/an is triple of events {recognition of
start state, plan execution, recognition of goal
state}.
• An intention is a sequence of mappings
between landmark states that correspond to
the execution portion of a plan.
• A p/an domain is a set of similar situations
(ex. part in reach on any of trays 1-5 of the
FAS robot cell). Again a meaningful
definition requires a prototype or examplars,
and a measure of similarity must be included
in the definition.

The behavior-managing agents are
concerned with the moment to moment

interaction between an entity and its

environment, and the interpretation of
sensation. The behavior-managing agent
stores a set of routines plus information
about its domain of applicability. In
addition, it must be able to receive and store
information about starting and stopping
states from the planning agents with which it
communicates. It must be able to translate
these states into predictions about the
corresponding sensations which it will
actually detect. Behaviors have been
developed for finding part boundaries, long-
lines on the boundaries, and the bounding
rectangle; and for detecting bumps, dents,
and shadows. A behavior managing agent
for "bump detection in the middle of a part"
would decide when and where the search
should take place, as well as when the
search has succeeded and when it has
failed.

The planning agents are concerned
with "landmark states" and how to move
between them. Each step in a plan must
correspond to the resulting state change that
occurs when a behavior is executed (12).

Planners are incapable of operating in "real-
time" since they do not have access to the
real world through sensations. However, they
may know what sequence of landmark states
they will pass through before they need to
stop planning. The planner stores a set of
intentions plus information about its planning
domain. In addition, it must be able to
receive and store information about the

current states from the planning agents with
which it communicates. It must be able to

compare these states with expected states to
determine if the plan is working. A planning
agent whose intention is to "locate flanges",
would decide what combination of shadows
and features to use in finding the flange and
how to weight them. it would also send
activation and termination states to the
appropriate managing agent.

Agents combat the traditional
brittleness of expert systems, associated with
operating in too large a domain, by having
many task specific behavior-managing
agents that are competent in small domains
and much fewer planning agents that monitor
their applicability and performance. Like
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other objects, agents can communicate by
passing messages and they also have
dedicated communication lines to other
agents. There are also communication lines
to the objects in the object-oriented
database.

The Object-Oriented Database

Model-based vision requires data
bases to store both models and various types
of information obtained from the actual
images. Most of researchers who have
looked at the image database problem have
advocated using object-oriented techniques
even when their specifications are
significantly different (8). The object-oriented
database utilized for VAS must store two

type of information, in addition to the
description of parts (in terms of sensation):
spatial relationship of parts on the tray over
time, and the plans that have successfully
been used to do the major tasks. We have
described elsewhere a high level
representation consisting of the grid map, a
graph of landmark states and a set of part
descriptions that can organize this type of
information (6). The grid map describes a
particular environment and the spatial
relationship of objects within it. In this case,
the environment is a tray and the the
relationships are among the parts, fiducial
marks, and clutter. The grid map is a bird's
eye view constructed from a set of scenes
that shows the relative positions of the
important objects, but little detail of their
internal structure. The graph of landmark
states describes the plans that are valid in a
given environment. The landmark graph is a
network of (state) objects as is a standard AI
semantic net (16). However, the nodes of

the landmark graph are connected to each
other by plans for moving between states,
rather than "ISA, PARTOF, or
PROPERTYOF" links. Note that not all state

nodes in the landmark graph involve
"physical landmarks", some nodes involve
temporary objects and are labelled as such.
These two maps capture the spatial
relationships and the plans learned for

moving around an environment, and have
most of the properties attributed to cognitive
maps in living animals (17,7).

Discrimnation Net
Discrimination nets are a simple AI

technique for classifying objects based on a
set of common properties with two or a small
number of values (4). The use of fuzzy
properties to describe parts makes it possible
to use a discrimination net to classify the part
models in a database. When parts with very
similar sizes and shapes must be identified, it
is important to keep all reasonable
candidates until a final discrimination is

made. The discrimination net does exactly
this. To use the discrimination net one would
make a list of the properties of an image-
object and run them through the net. Each
property is used to pick a direction in the net
until a leaf node is reached and a part ID is
returned. If a leaf node is not reached a
small number of candidates are returned.

The discrimination net actually consists of a
sequence of keys and linked lists. If the list
(SHORT MEDIUM ((BUMP .1)(NOTCH. 0)))
were submitted to the net, the relevant part of
which is illustrated in Fig. 2, then both part
787 and 7101 would be returned. The
decision of which of these parts is being
examined would require looking at rough
feature position or the quantitative measures
of length or width. The issue of setting
model-based matching criteria is a difficult
problem in general (9), but our images have
simple backgrounds and good part
background separation which simplifies
things.
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MEDIUM

(_th)

0 BUMP 1 BUMP

0 NOTCH 0NOTCH

11B1 792 7101 787

Fig. 2. A sample portion of a discrimination
net.

THE CURRENTSYSTEM

There are six major tasks for the 2-D
vision system, i.e. database completion, part
outlining, long-line finding, part ID, flange
location, and the sending of pickup
coordinates to the robot arm. These goals
each have a planning agent associated with
them. Together these agents through their
interactions carry the part ID and flange
location tasks that is the real purpose of the
2-D vision system. Overall processing is
initiated by the operator with a Lisp function
called "run-FAS" which takes a database of

part-models as an argument. The system
then runs till the following midnight when it
reports its results.

When the system first encounters a
new data set the database completion agent
is activated, it moves through each part
model and extracts fuzzy descriptions of the
length, width, and features. This information
is stored in appropriate slots of the part
models. The following is a typical part model
description from the database where the
slots in bold are automatically filled in by
database completion agent:
;;; Part 715
(setq 715

(make-in stance 'part- model
:model-name '715

:home-tray nil
:home-bank nil
:surface-list nil
:center-of-mass nil
:part-length 23.20
:fuzzy-length nil
:part-width 0.631
:len-wid-ratio nil
:fuzzy-width nil
:bump-list '((0.0.625.128)

(6.75 7.39.14)
(13.38 14.06.14)
(20.6321.49.14))

:hook-list nil
:needle-list nil
:notch-list nil
:tail-list nil
:easy-features nil
:grip nil
:flange-height 0.638
:major-flange-bumps nil
:flange-shape 'L
:similar-part-list nil
:action-list nil
:action-code nil
:group *load-g roup*))

This agent then builds a discrimination net for
all parts in the data set and stores them in
the experiment data object. When the
database is complete, it sends a message
which activates the part outlining agent.

The part outlining agent then monitors
a working image directory to see if a tray
image has been captured. It takes a pair of
images to cover the entire tray. The basic
algorithm that the part outlining agent uses
consists of adaptive thresholding,
morphological smoothing, and a boundary
following procedure. The results of this
process are shown in Fig. 3. When the part
outlining agent completes its task it activates
the long-line finding agent.
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Fig. 3. Results of the Part Outlining Task

All of the parts with which we have
worked are long and thin. If parts that do not
have this general shape appear in the
database a new agent that finds their
bounding rectangle will have to be
developed. The long-line finding agent uses
a simplified Hough transform to find
candidate line segments in the outline that
may belong to the long lines. It then uses a
mean square error best fit line on the line
segments that are sufficiently similar. Fig. 4
shows the long-lines found for each part, plus
the bounding rectangle for the long part on
the left. If the long-line agent completes its
task, it activates the part ID agent. Note that
all of the processing up to this point runs
automatically with only basic checks for
failure. All of the information is stored in a

data object called a tray. A partial listing of a
filled tray follows:

Figure 4: The Long-lines Found for the Parts
(Color reversed for clearer graphic display.)

#D(TRAY
TRAY-NAME

"lmages:Shading:N_shortN.8bits"
IMAGE-OBJS

(#562=#D(IMAG E-OBJ
PART-NAME NIL
TRAY-NAME

"lmages:Shading:N_shortN.8bits"
TRAY-COORD-CENTER (199. 294)
PART-AXIS NIL
PART-LENGTH 252.906525
PART-WIDTH 19.008202
LEN-WlD-RATIO NIL
TRAY-COORD-ANGLE 0.0
BUMP-COUNT 0
BUMP-LIST ((NIL NIL NIL)

(NIL NIL NIL))
NOTCH-COUNT 4
NOTCH-LIST ((NIL (((312. 287)

(313. 288)
1.756594313390609))

(((89. 286) (88. 288)
3.1204771710092984)))

((((138. 303)(129. 303)
1.30427164452175))

NIL
(((125. 303)(88. 300)

4.814981468417682))))
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ZOOMABLE NIL
INSIDE-INTENSITY-AVE

((73.0 11.346012 1139)
(85.0 11.083988 910))

INSIDE-GRAD-AVE NIL
OUTSIDE-INTENSITY-AVE

((20.0 4.298134 769)
(26.0 11.714762 994))

LONGEST-LINES (#D(ANGLINE
ANGLE 0.00162448
LN-LENGTH 222.001331
Y-INTER NIL

END1 (312. 285)
END2 (90. 285)
GROUP NIL
)

#D(ANGLINE
ANGLE -0.0124623417
I,N-LENGTH 187.010402

Y-INTER NIL
END1 (313. 302)
END2 (126. 304)
GROUP NIL

))
BOUNDING-RECT ((313. 285)

(313. 302)
(88. 305)
(88. 285)) ...

The oasic approach taken by the part
ID agent is to use the fuzzy discrimination net
describing the gross characteristics of all the
parts in the current database. The part ID
agent takes the information about a part
which was found by outlining and long-line
finding agents and fills in the fuzzy slots for
its image part in the object-oriented

..... .!!:!_

Figure 5: The Part IDs and the Flanges Found (Color reversed for clearer graphic display.)

database. The fuzzy information from the
part in the current tray image is turned into a
list and run through the discrimination net. A
short list of candidate parts is returned.

For example, consider getting the ID
of a part centered at (252. 320) on the tray.
It has no bumps nor notches and its length
5.15 (SHORT)and width 0.75 (FAT). The

44



candidates parts with the correct feature list
are:

((SHORT FAT ((BUMP
(SHORT FAT ((BUMP
(SHORT FAT ((BUMP
(SHORT FAT ((BUMP
(SHORT FAT ((BUMP
(SHORT FAT ((BUMP
(SHORT FAT ((BUMP
(SHORT FAT ((BUMP

0) (NOTCH
0) (NOTCH
0) (NOTCH
0) (NOTCH
0) (NOTCH
0) (NOTCH
0) (NOTCH
0) (NOTCH

0)) PART119)
0)) PARTT0)
0)) PART69)
0)) PART55)
0)) PART49)
0)) PART59)
0)) PART82)
0)) PART81))

The candidates for the object are reduced to
PART55, PART70, and PART59. If a definite
ID cannot be made based on differences in
the length and width, then small features are
sought in particular places. Finally, the
presence of IDed image parts activates the
flange finding agent.

Initially, the flange finding agent
ignores the image part IDs and executes a
shadow finding routine. By setting the
criterion for finding a shadow high we can
force all classifications to be correct or

unkown. If shadowing does not yield an
answer then small features are sought where
they should be based on the part ID. Fig. 5
shows the final IDs and flanges found. All
IDs are correct and five of seven flanges
were found correctly. In the two cases where
the flange was not located correctly, i.e. 749
and 792, VAS reported that it could not find
the flange rather than making an error. Note
that neither part had features, and that
human observers were also unable to locate
those flanges. Of the five flanges found, 743
was located based on its shadow, while the
other four were located based on finding
features.

Each of these agents have
contingency plans that are implemented
when basic algorithms fail in particular ways.
For example, if the part IDer does not come
up with a unique ID, it will send a request to
the database to give it the lengths, widths
and the approximate location of the features
on each of its candidate models. Agents also
communicate indirectly with each other
through the tray and image-objects. Since
everything of use to any of the other agents
is recorded on these objects, agents do not

need to know which agent calculated a piece
of information in order to use it. Thus, an
agent will always check the database to see
if a piece of information that it needs is
available before it tries to extract it directly, or
sends a request to another agent.
Controlling the communication among agents
is one of the major challenges of agent
architectures, and is still being studied for
VAS.

CONCLUSIONS

A model-based approach which uses
fuzzy descriptions of part features for
classification and an object-oriented
database of parts has been developed. A
variety of image processing techniques have
been combined to find the information

needed to do identifcation and flange
location, i.e. length, width, small bumps and
dents, and shadows on the parts. It was
possible to decompose the overall task into a
set of modular tasks that interact and fail in
specific ways. An agent architecture has
been developed that takes advantage of the
modularity in this multi-task and multi-
environment domain. The success of a
vision architecture initially developed for a
wholely different application, i.e. automatic
target recognition give us hope that the agent
approach to autonomous vision problems is a
general one.

One final point is that with better
cameras and lighting many of the problems
that proved very stuborn in VAS would never
have come up. However, good design is
hard to do when the scope of the problems
the system will face are not known in
advance.
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