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ARTIFICIAL NEURAL NETWORK -

MICROWAVE VISION

Microwave Vision (MV), a concept originally

developed in 1985 [1]could play a significant role

in the solution to robotic vision problems.

Originally our Microwave Vision concept was

based on a pattern matching approach employing

computer based stored replica correlation

processing. Artificial Neural Network (ANN)

processor technology offers an attractive
alternative to the correlation processing

approach, namely the ability to learn and to adapt

to changing environments. This paper describes
the Microwave Vision concept, some initial

ANN-MV experiments, and the design of an

ANN-MV system that has led to a second patent
disclosure in the robotic vision field [2].

MICROWAVE VISION CONCEPT

Microwave Vision is similar to a bistatic

radar system: Electromagnetic waves are
radiated into the observation space, the reflected

signals are received and processed to yield range

and bearing to the object. Typically radars

radiate pulsed RF signals. MV is instead based

on the measurement and processing of a

distinctive set of spectral lines. Similar to some

'=high resolution radars, MV identifies the object by
the spectral character of the reflected returns.
_MV differs from bistatic radar systems in two

_important aspects: 1) MV signals span much

_larger radio frequency bandwidths and 2) MV

systems operate in the "near field" of the object.

Precise position information and accurate object
identification is achievable when operating at

short ranges over very wide frequency ranges.

The spectra returned from different objects

become more distinct by using an illumination

spectrum that spans the natural electromagnetic
resonance of these objects. For example,

identification of a 10 cm tall object is based on

signals containing frequencies in the

neighborhood of 3 GHz. Figures 1,2and3

demonstrate a simple version of the MV concept.

One dipole transmits and the second receives a
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Figure 1. Six cm Tall Equiangular Wedge and Dipole Array Geometry
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Six cm Cube and Dipole Array Geometry
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set of 10 spectral frequencies, evenly
distributed between 2 GHz and 6 GHz. The

reflected signals, as measured by the current

on the second dipole, are strongly dependent

on the particular object illuminated as shown

by comparing the spectrums shown in

Figure 3. Here, real and imaginary spectral

components of the RF signal, reflected from

the 6 cm tall equiangular wedge, and those

reflected from the 6 cm cube are displayed.

The two objects are clearly distinguishable

through the contrast of their respective

spectral returns.
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Figure 3(b). Receive Current Level (Real
Part) Cube (solid line), Wedge (dashed line)

The original MV concept was based on

the correlation of measured spectral patterns

with patterns "measured" from previous

calibrations. During these early experiments
the Correlation Coefficient R was recorded as

a function of the water depth in a coffee cup.

When the cup was full, the correlation to a

previously recorded full cup spectral pattern

was equal to unity. As the water depth was

reduced, the spectrum responses changed,

reducing the correlation value from unity to a

minimum of 0.25 when the cup was

completely empty. This simple experiment
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clearly demonstrated that the MV correlation

process can yield information that is difficult to

acquire with purely optical systems. The original

correlation process was effective, but the

trainable ANN processing technique has many

additional advantages.

Artificial neural networks are ideal for use in

an MV system, because unlike a computer or

signal processor they are not programmed in the

classical sense, but are instead trained using in

this case, the MV spectrum measurements as the

training stimulii.

ANN-MV PROOF OF CONCEPT SYSTEM

Our experimental ANN-MV system, shown

in Figure 4, was trained to guide a simple robotic

hand to a position that encloses the object. This

system, used transmit and receive antennas
mounted on the robotic hand to excite and

receive reflected signals from simple objects. A

center Vivaldi antenna sequentially transmitted a

set of discrete signals that were received by the

two outer antennas that form a pair of fingers on

the robotic hand. Two sets of measurements are

needed to resolve the signals reflected from the

illuminated object. Each measurement set is
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recorded when the HP measurement channel is

sequentially connected to one of the outer

antennas. Object location measurements contain

the sum of two sets of spectrums, the spectrum of

the signal directly transmitted from antenna to

antenna plus the desired signal spectrum that

represents the signal radiated to the object of
interest and reflected into an outer antenna. The

reflected signal spectrum of interest is obtained

by subtracting an initially measured baseline

spectrum, a spectrum which was recorded when

the object was absent. The resultant reflected

signal is then inserted into the first layer of the

ANN system.

Artificial neural network processing, as used

in ANN-MV, is based on training the connecting

weights between an input layer, a hidden layer
and the output layer of an i80170 Intel Processor.

Other ANN processing algorithms or processing

techniques could have been investigated, but the

availability of the Intel Chip and the relative ease

of back propagation training [3] led to early

experiments using the unit.

Many ANN based system applications are

plagued with preprocessing problems associated

with the generation of input vectors significant to
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Figur_ 4. Schematic of Experimental ANN-MV System
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the resolution problem. Microwave Vision affords

a natural set of input vectors, i.e., those real and

imaginary parts of the spectral lines reflected from

the object and recorded at the receive antennas,

as shown in Figure 3. As mentioned previously,

the spectral lines should encompass the natural

electromagnetic resonant frequency of the
unknown objects.

The signals are weighted and summed at

both the middle ANN layer and the output ANN

layer. Rudimentary training process would be the

task of forcing the output of an artificial output

neuron (K) to be high when the input vectors

correspond to reflections from object (K) but low

for reflections from all other objects. This

particular problem is a relatively easy ANN-MV

task for many categories of objects. The robotic

vision problem is significantly more complex since
the robot needs to also measure the location and

orientation of the object.

Our original ANN-MV task was to locate and

move the hand to a soft drink can that was

randomly located within a 50 cm radius/90 °

quadrant field of view. Most of the experiments

were conducted by connecting the input layer

containing 32 artificial neurons to middle layer

consisting of 32 neurons and an output layer

consisting of two neurons. The back propagation

training algorithm was tasked to generate two

outputs having patterns given by:

Your(1) = Range • Cos({))

_'out(2) = Range • Sin(e) EQ-1

Guidance to the hand was then given by a

pair of simple calculations based on these two

outputs. A complete set of input training vectors

was obtained by sequentially positioning the can

to 77 locations, every 15 degrees from -45 to +45
and 10 cm to 30 cm in 2 cm increments. At each

location an (I) and a (Q) value was recorded for

each of 16 frequencies between 2 GHz and

4 GHz. Exceedingly long, several hours, on chip

training times were observed. Large robotic hand

guidance errors were also measured unless the

can was located very close to a training location.

Subsequent tests showed that the input vectors

changed markedly for small changes in can

locations. These changes can be attributed to

the phase rate of change with respect to

centimeter changes in distance. At 3 GHz, a

2.5 cm range increase creates a two-way path

change of 5 cm equivalent to 180 electrical

degrees. This change dictates a training set

based on differential ranges of approximate
0.5 cm.

Experiments with the initial ANN-MV

processing technique demonstrated significant
deficiencies in object location accuracies. These

deficiencies were primarily caused by large input

vector phase changes associated with distance

changes normal to equal range contours, relative

to the transmitter and receiver phase centers.

This led to a system design that exploits "this"

effect by sequentially preprocessing the input

data as it is inserted into the ANN input layer.

Initial investigations show that this preprocessing

concept reduces the training time and sharply

reduces residual training errors.

Object location algorithms are based on the

intersection of equal time delay, elliptical

contours. The transmit and right finger receive

antenna are located at the foci of one set of

elliptical contours, the transmit and left finger
receive antenna are at the foci of the second set

of elliptical contours. Figure 5 shows a pair of

contours for two time delay paths from the center
Vivaldi antenna to the Vivaldi antenna located on

the right side of the hand. Each contour

represents a particular time delay and therefore

all object training positions along this contour can

be operated on by the same set of phase

unwrapping vectors. This phase unwrapping

concept is the frequency equivalent of time

domain range gating which is so effective in

conventional radar systems.
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Figure 5. ANN-MV Elliptical Contours

Robotic control is based on two ANN Intel

processors. The first processor receives inputs
based on measurements between center antenna

and the right finger antenna. Inputs to the second

processor are based on center antenna to left

finger antenna measurements. Each ANN

processor performs identical operations which is

to calculate and identify the contour having the

highest probability of containing the object.

A set of 32 complex spectral responses are

calculated by measuring the signal transmitted

from the center antenna reflected from an

unknown object and received by the antenna

mounted on the right finger. As with the initial

system, these spectral values are obtained by

subtracting an object absent baseline spectrum

from the total measured spectrum. The reflected

spectral components are sequentially phase

unwrapped and sequentially input to the first ANN

layer. A unique set of phase unwrapping vectors
are calculated for each contour within the object

field. The exact number of independent contours

is based on size of the field and the illumination

frequencies.

Each object is represented by a set of

output neurons which have previously been

trained to identify the object and the location

contour. Output neurons are observed as the first

set of input vectors are sequentially unwrapped

and input to the first ANN processor. The correct

output neuron should go high when the input

vectors are incremented to the delay associated

with the contour containing the object.

The second ANN processor is served with

its set measurement vectors and the outputs

observed as the measurement vectors are

unwrapped and input. Again, an output neuron

should go high at the delay corresponding to the
contour that intersects the object. The

intersection of the two elliptical contours having

high output states identifies the location of the

object. One contour is calculated by the first ANN

processor, the second contour is calculated by

the second ANN processor.

Back-propagation training is an iterative

gradient algorithm designed to minimize the mean

square error between the actual output of a

multilayer feed-forward perceptron and the

desired output. This technique requires a

differentiable function that is non-linear, which for

the Intel i80170 chip is the conventional sigmoid

function. The training of either of the processors,

for a field containing a single object will be

described. This training starts by initializing the

ANN processor weights to small random values.

The next step is to calculate the output of this

processor using the spectrum values measured at
the start of a contour and unwrapped for it's

delay. The weights are adjusted to minimize the
error, (output - desired output) 2 by a recursive

algorithm that adjusts the weights by starting at

the output nodes and working back through the

hidden layer. This process is iterated through

many cycles as spectrums recorded along all

elliptical contours are sequentially input. The

process is stopped when the residual is within

predetermined acceptable limits. Figure 6 is a

simplified sketch of the desired output function.

The output neuron designed to identify the

contour C(L) should be high for any of the

unwrapped input spectrums recorded when the

object was located on or near this particular

contour. Connections shown in Figure6are

limited to those connected to the first perceptron

of the hidden layer.
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Figure 6. ANN Training Pattern

A modification to a probability based DF

emitter location algorithm, is used to estimate the

location of and object. Histories of all previous

estimations provide increasingly accurate joint

probability location estimations as additional

measurements are performed.

rising ridge in the direction normal to the contour

containing the object when these contours are

approached from the side nearest the robotic
hand.

Conceptual probability surface densities

generated for a cube located in front of robotic

hand mounted array is shown below in Figures

7(a), 7(b) and 7(c). Figure 7(a) shows an

unnormalized theoretical probability density

surface based on the elliptical contours

associated with the center-right antenna pair.

This depiction demonstrates the start of the

process used to locate an object, such as the

cube shown in Figure 7(a). Figure 7(b) shows the
surface associated with the center-left antenna

pair. Figure 7(c) is joint probability density

surface generated by the product of the surfaces

shown in (a) and (b).

A high neuron output representing a

particular elliptical contour indicates that there is a

high degree of probability that the object is on or
near this contour. T_isprobabiilty is represen_ecl _ simpie object.

by a surface density that has unity height along

the contour and has the conventional gaussian

shaped pattern in directions normal to this
surface.

Conventional radar range equations predict

measurement accuracies that are inversely

proportional to range to the fourth power. This

range effect is included in our object location

estimations by using standard deviations given

by:

(_ ( r ) = o minrange[

A short series of tests were conducted to

verify the ANN-MV concept. The proof of concept

was based on the second training and processing

method. These tests used the experimental

system shown in the schematic, Figure 4, to

record process and move a robotic hand toward a

The final goal of these

experiments was to accurately move the robotic

hand into a position that would permit the

grasping of a small object. The robotic fingers on

the simPle hand was not moveable so this next
step in the general solution to robotic problems

could not be demonstrated.

range ]4
min range

EQ-4

This increase in sigma at longer ranges

produces a probability surface that has a rapidly

Several key indicators, each pointing to

successful experiments, were observed as the

experimental process proceeded. The first of

these was the ease of Intel i80170 ETANN chip

training. The i80170 chip can be trained in two

distinct ways. The slow direct way is to train with

the chip-in-the-loop. We used a second faster

way that records a typical on chip sigmoid

function, then places this function into an external

program that emulates the chip and trains with a

procedure identified as off-line learning.
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Probability density surface Right elliptical equal time delay contour

Figure 7(a). Surface and Contour Based on Center to Right Antenna Measurements

'%,

Probability density surface Left elliptical equal time delay contour

Figure 7(b). Surface and Contour Based on Center to Left Antenna Measurements

Joint probability density surface Left/Right elliptical equal time delay contours

Figure 7(c). Surface and Contours Based on Previous Two Sets of Measurements
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An alternate is to learn off-line, then

download these neuron weights, and then follow

with the more accurate chip-in-the-loop learning.

The off-line learning process produced accurate

guidance commands when used in conjunction

with our second unwrapped vector input

technique. Chip-in-the-loop training was not

required. A strong indicator of robust robotic

operation was the ability of the hand to follow a

can that was moved between processing steps.

A HP 8510 network analyzer was used to

measure the reflected signals at sixteen uniformly

spaced frequencies between 2 GHz and 6 GHz.

Probability density surfaces were computed by

the Vectra PC using outputs generated by the two

ANN chips. The maximum of the product of these

surfaces identifies the location of the object,

which for this set of experiments was the

coordinates of an aluminum soda can. Figure 8

shows the product probability estimate based on

calculations generated as the robotic hand

progressed from its (0., 0.) starting location. The

final pair of contours were based on artificial

neural network output processed microwave

spectrums recorded at a hand location of 7.3 cm,

18.1 cm). The sharp peak at (8 cm, 28 cm) is

within approximately 2 cm of the correct location.
When the robotic hand moves to this location, it is

in very close to the desired location. Subsequent

moves of an articulated hand could accurately

close on this cylindrical object.

CONCLUSIONS

The techniques describe herein provide the

first stage in the solution to many robotic vision

problems. The next stage, that of providing

objects coordinates and subsequent movements

for grasping, a difficult problem for optical vision

systems, should be a fairly simple problem for
Microwave Vision-Artificial Neural Network

processing. Here, the robots fingers are in the

electrical near field of the object where

increasingly accurate microwave measurements

can be performed. The Range 4problemno

longer applies. At this point the elliptical contour

technique will be discarded and it is anticipated

that full cross spectrum ANN training commands

will be applied. In the simplest sense, as the

antennas on the robotic fingers approach the

object, their radiation will be blocked, generating

a clear signal that the fingers are ready to touch

the object. Obviously the MV-ANN system will
not look for this condition, instead the ANN

processor will have been trained to output a

signal that indicates that the hand has "CLOSED
ON THE OBJECT".
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