
N94-30556

AIAA-94-1205-CP
w

A STREAMLINED SOFTWARE ENVIRONMENT FOR _0-_3
SITUATED SKILLS

Sophia T. Yu, Marc G. Slack and David P. Miller

The MITRE Washington AI Technical Center, Mail Stop Z401

7525 Colshire Drive, McLean, Virginia 22102-3481

syu or slack or dmiller @starbase.mitre.org (703) 883-7738

l"

Abstract

This paper documents a powerful set of software "

tools used for developing situated skills. These
situated skills form the reactive level of a three-tiered

intelligent agent architecture under development at

the MITRE Corporation. The architecture is designed
to allow these skills to be manipulated by a task

level engine which is monitoring the current situation

and selecting skills necessary for the current task.
The idea is to coordinate the dynamic activations
and deactivations of these situated skills in order to

configure the reactive layer for the task at hand.
The heart of the skills environment is a data flow

mechanism which pipelines the currently active skills

for execution. A front end graphical interface serves

as a debugging facility during skill development and

testing. We are able to integrate skills developed in

different languages into the skills environment. The

power of the skills environment lies in the amount of

time it saves for the programmer to develop code for

the reactive layer of a robot.

1 Introduction

Within the short history of robotics research, many

different approaches have been proposed for creating

the intelligent component of an autonomous entity.

The majority of them were considered unsatisfactory

for developing an R2-D2-1ike robot. For instance,

the traditional school of thought, grounded on real-

world modeling and planning, was criticized for the

discrepancy between the real-world and the computer

model. Although more recent approaches based on
simple reactivity algorithms produced surprisingly

intelligent appearing robot behaviors [2], many argue

that these robots are incapable of complex tasks [9].

Despite the absence of an R2-D2 legacy, the

two approaches lay the foundation for a middle

ground approach. This approach incorporates both
a deliberative and a reactive component. Most people

Copyright © 1993 American Institute of Aeronautics and
Astronautics, Inc. All rights reserved.

will agree that an architecture that includes both

components seems to be a sensible way to build
the robot brain. After all, human beings appear

to have both reactive and deliberative faculties [5].

Deliberation allows the robot to make plans and

predictions, and reactivity allows the robot to respond

effectively to uncertainties. However, the tough

question is how to put together a system with both
a deliberative and reactive component?

A number of systems of this nature have been

proposed and tested. Rosenschien and Kaelbling

developed the situated automata theory for robot

control [6]. The authors describe a system which

would allow high-level description of the environment
to be translated into situation appropriate low-level
control activities. Arkin's AURA builds an accurate

global model of the world and passes this information

to a vector summing control layer [1]. Payton and
Rosenblatt's architecture has four layers: task-level

planning, global path planning, local path planning,

and reflexive control [8]. The first three layers are

equivalent to a traditional planning layer. The fourth

layer consists of numerous reactive experts whose
influence on the actuators is arbitrated by a central

module. Erann Gat proposes a three-tiered architec-

ture ATLANTIS [4]. In this architecture, a sequencing

layer integrates and pipelines the deliberative and the
reactive functions, which ultimately control the robot.

The MITRE autonomous systems laboratory also

participates in the pursuit of an intelligent robot

system characterized by deliberation and reactivity

[10]. Our system is similar to an architecture originally

proposed by Firby [3] and further developed by

Gat [4]. The MITRE intelligent agent architecture

(MIAA) consists of three interacting layers. The
deliberative layer makes high-level decisions which

require reasoning about resource and time constraints.

The reactive layer consists of situated skills that react
to the situation at hand. Finally, a sequencer which

acts as a temporal and syntactic differential between

233



thereactiveanddeliberativelayers,decomposesplan-
ningstructuresinto the appropriateactivationsand
deactivationsoftherobot'sskills(SeeFigure1).

The designof the three-tieredarchitectureis
basedon twoimportantconcepts:heterogeneityand
asynchrony.Thesystemis heterogeneousin that it
is composedof componentsthat arestructurallydif-
ferent,e.g.,time-consumingdecision-makingmodules
versusinstantresponsereactivemodules.Thesystem
isasynchronousin that deliberative,sequencing,and
reactivemodulesareexecutedin parallelandcom-
municatingto eachothervia asynchronousmessage
events.Thisguaranteesthatreactivemodulesrespond
tothesituationat handinatimelyfashionandthatan
adequateamountoftimeisallocatedfor deliberative
processes.

Thispaperdescribesthedesignofanenvironment
for constructingsituatedskills(thetermappearsin
[10]) whichform the lowestlayerof MIAA. The
environmentmustestablishcommunicationchannels
with thesequencerinorderto acceptcommandsfrom
thedeliberativelayer.Theenvironmentmustalsobe
ableto streamlinetheskillssothateachskillprovides
a timelyresponsefor givensensordata. Moreover,
theenvironmentmustprovideameansforintegrating
theindividualskillsintoadynamicallyreconfigurable
libraryof roboticskills.

In this paper,we shall answerexplicitlythree
questionsin sequentialorder. What are the nec-
essaryrequirementsfor engineeringa desirableskill
developmentenvironment?Howis theenvironment
implemented?Finally,whydoesthe implemented
skillsenvironmentconstituteavaluablesetoftools?

2 Requirements

There are two sets of requirements for engineering a
desirable software environment for the situated skills.

The first set of requirements address the specifications

for an infrastructure capable of controlling skills.

The second set of requirements focus on software

engineering related issues. This second set of require-

ments is especially important since robotic systems are

becoming increasingly complex, raising information
management as a central issue.

In order to better understand the first set of re-

quirements, it is necessary to examine what is required

of the reactive layer separately from the rest of the

architecture or more accurately from the sequencing
layer. The main function of the sequencing layer is

to provide runtime situation-driven execution [3]; its
job is to transform a set of partially ordered plan

steps from the deliberative layer into the necessary

set of skill activations and deactivations to accomplish

the high level plan for the current situation. To

achieve this, the reactive layer must accommodate

the demands of the sequencing layer. For example,
the reactive layer must provide perceptual information

continuously and without delay. In addition, the

reactive layer must provide a mechanism that allows

the sequencing layer to tailor the behavior of a skill
according to different situations.

The skills environment divides naturally into two

main parts: a skill library and a mechanism which

pipelines the s_i]ls and interfaces with the sequencer.

The skill library provides the basic functionality of

the instantiated autonomous agent. Skills include not

only the computational elements of perception but the
interfaces with the robot's hardware. This latter fea-

ture provides a mechanism for the interchangeability

of physical devices and portability of the architecture.
Each skill also provides conditional mechanisms which

allow the sequencer to adapt to the situations at hand.
Finally, each individual skill provides control switches
for activation and deactivation.

A number of temporal and dependency require-

ments dictate the design of the mechanism used

to control the skills. First, all components of the

architecture must have access to relevant perceptual

information and have the capability to control system
actuators. Secondly, the perceptual information

should be available continuously and that at every

instance in time, actuation commands are assigned

to external actuators for given sensor data. Thirdly,
there should be an asynchronous and distributed

execution of skills. In other words, it should be

possible to execute skills in parallel as long as there

is no contention of resources among the parallel skills.

Lastly, unlike the deliberative functions, these situated

skills should have low-commit and fast response time

since real-time performance is fiecessary.

The second set of requirements for the skills

environment is derived from the vantage point of

a good software engineering project. One of the

main goals of a good software project is to increase

the number of users of the program. The design
strategy taken is to encapsulate the details of the

skills environment, therefore those without knowledge

of the architecture should be able to program skills

tailored to the domain of their robot. Another design
requirement taken into consideration is the reuse of

old software written in different languages. The

implementation phase for configuring a robot can be

substantially cut if existing code can be reused as

part of the skills library and thus integrated into

the overall control paradigm. This requirement can

be satisfied by implementing standard encapsulations

234



Planning

Sequencing (Mgmo ) [] /"°"- -El Com.,ere.

.ct,ve Or e. J
Primitive __ I H I Active

--,, _-r,4.P._jtive
Interrupted _ _.. -..-_ ---.

Waiting _ =. _. ""- ... _. __._

Task Agenda ---.. _.. " -..,_,---.. j []I611_ [][]

Reactivity

Figure 1: The flow of information through MIAA.

and interfaces for skills. In addition, there should be

support mechanisms to facilitate the painful process

of debugging. Lastly, it should be easy for users

of the skills system to activate and deactivate skills

manually, so that skills can be debugged and tested in

isolation prior to their integration into the rest of the
architecture.

3 Structure

This section discusses the design of the skills envi-

ronment. We took an object oriented approach in

designing the skills environment. Essentially, the skills

environment is composed of two classes of structures:

skill and skill manager. Each class is associated with

objects and functions, and two instances of a class
have access to the same class objects and functions.

We will discuss the two classes of skills by focusing on

their associated objects and functions.

3.1 Skills

The skills object class defines a set of structures which

support the reactive modules. These structures serve
as encapsulations of the reactive modules, to provide

a standard interface to all of the reactive modules.

Additionally, this interface includes structures for

textual or graphical display of parameters, parameter

logging and debugging purposes.

The objects for the skill class are the common

data structures among every reactive module. For

example, the input and output data structures of
reactive modules are objects. A good portion of

objects are used to support the scheduling of skill

operations. There are also objects which are used for

interfacing the skills with the sequencer. A priority
slot is also available for resolving conflicts among skills
in contention for resources. In addition, memory

locations are allocated for recording parameter values

and for displaying information associated with a skill.

A skill's parameters are important data objects

which deserve special attention. Each skill has its

own unique set of parameters. These parameters

are singled out because they play an important role

in bringing about situation-driven execution. These

parameters are used and modified by the sequencing

layer to tailor the behavior of a skill to the situation
at hand. For instance, the sequencing layer may

235



increasethepriorityvalueof askillto giveit temporal
precedenceoverotherskills. Anotherexampleof a
skillparameteris thesafe-distanceparameterin the
runawayskill. Whenaninstantiatedrobotencounters
anobstacle-denseregion,thesequencermaydecideto
decreasethevalueof thesafe-distanceparameter
sothai fleerobotisableto passthroughtheobstacle
region,then restorethe parameterlaterwhenthe
robotisoutofthecongestedregion.

Becauseeachskillwillgenerallyhaveadifferentset
of inputsandoutputs,therearenumerousfunctions
that areautomaticallygeneratedby theskill object
classwhena specificskill is instantiated.Thisallows
the environmentto beskill independentand frees
the skill designerfrom the concernsof interfacing
theskill to theotherskillsin theskill library. The
designermustonlybeconcernedwith the inputand
outputrequirementsandthenecessarycomputation;
all interfacingissuesareautomaticallyhandledbythe
developmentenvironment.

Theskill classis furthercategorizedinto twosets
of skills,thosewhicharepurelycomputational(or
cskills)and thosewhichinterfacewith devices(or
dskills).

3.1.1 Cskills

Cskills are skills which obtain their inputs from other

skills and perform a computational transform on the
inputs and pass the transformed values to other

skills. Cskills can be operated either synchronously or
asynchronously. In the synchronous case, a cskill will

run its computational transform whenever it is given

a new set of inputs, blocking until the computation
has completed and a new set of outputs has been

generated. In the asynchronous case, the cskill will

continuously perform its transform on the currently

available inputs and will respond immediately (like

dskills) with the latest answer. The asynchronous

cskills are especially useful when cskills are being

executed on a distributed computer network.

3.1.2 Dskills

A dskill serves as an interface to a physical device (see

Figure 2). This interface brings actuation commands

to and obtains sensory data from the physical device.
Rather than performing a computational transform

on the inputs of the skill, a dskiii buffers its inputs

and provides a mechanism for sending those inputs to
a device. A dskill will also buffer the latest sensor

readings from the device. These sensor readings are
provided as the users output from the dskill. The

reason behind the creation of a separate skill class is to

Input:
activation
commands

Dskill _m,,-)
"_ Ouput:

Sensory data/
Physical device 1

//JJ
Environment

Figure 2: Information flow of a dskill.

provide the developer with mechanisms for handling
the delay in communications associated with device

drivers. Thus a dskill will always respond immediately
and will not block for communications events as device

interfacing is handled in a separate asynchronous

process.

3.2 Skill Manager

Instances of the skill manager class are responsible
for the timely activation and deactivation of reactive

modules. They provide inter-skill communications as

well as communications with the sequencing layer.

The paradigm used for scheduling the execution of the
skills is a data flow mechanism.

3.2.1 Data Flow

The objects of the skill manager class are mainly

data structures supporting the data flow mechanism.
For instance, there are allocations that store a list
of instantiated dskills and cskills. A slot is reserved

for counting the number of cycles the data flow
mechanism has executed. There is also a state slot

which regulates the sequence of function invocation in

a cycle. In addition, there are data structures that

keep track of the activation and deactivation requests

made by the sequencing system.

There are two critical functions central in un-

derstanding the workings of the data flow. : They

are do-periodic-step and update-record. The

do-periodic-step is the driving function behind

the data flow. Once this function is invoked,

an infinite loop starts. During each cycle of the
loop, two functions are called in sequential order:

236



do-next-skill, and cleanup. The first function

creates an environment for the executing the set of

activated skills, and the last function destroys the

environment created preparing it for the next cycle.

The order in which the individual skills are ex-

ecuted during a cycle depends essentially on input
readiness. The update-record function is instrumental

in preparing for the readiness of skills. Every time a

skill produces an output, the update-record function

checks these output data structures against the input
data structures to skills yet to be executed. If

there is at least a partial match in data structure,
the update-record function avails the matched data

structures to the yet to be executed skills. When all

the inputs to a skill are available to it, the skill is

ready and is executed the next time that the skill is
considered for execution.

3.2.2 External Control

For the system to be of use there must be a mechanism

for determining which set of skills should be active at

any moment of time or the overhead of this paradigm

is wasted as one could have simply hacked up a large

C file to provide the necessary utility. However,

as mentioned earlier, there are different syntax and
semantics required to construct the different levels

of abstraction necessary for constructing autonomous

agents. In our system, the sequencing layer is assumed
to handle the process of activation and deactivation

of skills. The reason for handling skill activity in the

sequencing layer is that the sequencer is maintaining
an explicit representation of the robot's current

situation (e.g., navigating down a hall, opening a door,

etc.). It is beyond the scope of any individual skill

in the currently active network of skills to be able
to interpret the context and decide how the current

sensor information should be interpreted with respect
to the current task.

To support the use of a sequencer, the skill

manager maintains an asynchronous communications

link through which requests are made. The skill

manager handles not only requests for activation
and deactivation of skills, but also requests for state

monitoring, parameterization, and value queries. The

ability of the reactive layer to take initiate monitoring
events is critical to any multi-layered architecture

as the sequencer knows which information is critical

to the task yet the skill level represents the only

location where high frequency information can be

captured. For example, the sequencing system could

setup a monitor asking the skill manager to send an
asynchronous event back when the robot's front sonar

reads less than 10 inches. Because the sequencing and

skill layers of the architecture operate in parallel, such

information is too transient for the sequencing layer to

capture directly yet there is insufficient information

in the skill layer to determine that the information
means that the robot has reached the ticket counter.

In a similar fashion, the skill manager also allows the

sequencer to make direct queries of the state of the

skills in the reactive layer, thus allowing the sequencer

to obtain instantaneous primitive value readings (e.g.,

is barcode 3 currently visible?). Lastly, the skill

manager allows the sequencer to set the parameters
of individual skills. This allows the skills to be

dynamically configured for the situation at hand.

4 Implementation
The current skills development and execution environ-

ment is implemented within the Macintosh operating
system. The structures discussed in the last section

are implemented with the Common Lisp Object
System (CLOS) application for two reasons. First,

it is easy to realize the object oriented features

of the skills environment; the CLOS package has

constructs that accommodate class objects, functions,

and instantiations. Secondly, the CLOS package has

an easy to program graphics package. The graphics

package is used to allow the skills programmer to
control the operations of the skills environment with

ease. The graphical interface is implemented mainly

for debugging purposes. The next paragraph explains
the implementation of the graphical interface in more
detail.

Since there are two classes of structures, two types

of graphical interface were designed and implemented:

one for activating the individual skills and one for

activating the data flow mechanism. The graphical

interface for the skills class has mouse-clicking buttons

for activation, parameter logging, and textual display.

In addition, it has optional buttons for changing the
values of skill parameters. The graphical interface for

the skill manager class has a button for activating the
data flow mechanism and a variable set of buttons for

individually activating the set of instantiated skills.
Note that these graphical interfaces are objects of

the skill and skill manager class. These buttons of

the graphical interface allow the skills programmer to
activate a skill or a set of skills and to observe runtime
execution results.

To utilize the environment, the job of a skills
programmer is fairly simple since most of the inter-

skill communication and graphical interfacing issues
are handled by the generic skill object. To implement

a skill, the skills programmer needs to specify only

237



threethings:input,output,andcomputationalbody.
Thesethreeitemsmustbeproperlyplacedinto the
templateprovidedbythestructureswithin theskills
class.

Theskillsenvironmentissetupinawayto permit
the implementationof a multilingualskillslibrary.
This is possiblefor two reasons.Theencapsulated
andmodulardesignoftheskillsenvironmentkeepsthe
differencesamongskillswithin theskillsthemselves,
whiletheuniformandstandardfeaturesof theskills
environmentprovidesadirectwayforcommunications
amongthedisparateskills.Wehaveimplementedskill
constructionfacilitiesto allowaprogrammertocreate
skillswrittenfromC,C++, Pascal,Assembler,LISP,
andREX[7].Toprogramaskill in a languageother
thanLISPrequiresslightlymorework.In additionto
specifyingthethreethingsinadifferentlanguage,the
inputandoutputdatastructuresmustbespecifiedin
LISPsothat memoryallocationsaremadeproperly
in theskillsenvironment.

The implementedskillsare fairlyeasyto debug
with the helpof thegraphicsinterface.Todebuga
skill,the first stepis to instantiatethat skill. Next,
theusermaywantto changethe valuesof theskill
parametersto the desiredvaluesby clickingon the
parameterbutton(s).Pressingtheactivationbutton
will start the executionof the skill. The useris
ableto view the runtimeparametersof individual
skillsbyclickingonbuttonsonthegraphicalinterface
window.Clickingonthe show data button invokes a

corresponding window which is capable of displaying

text. The show input and show output buttons forces

the input and output of skills to be displayed on the

secondary window, and the verbose button allows the

display of any print statements generated internally to
the user's skill. In order to debug a skill within the

context of a set of skills, it is necessary to activate thc

data flow mechanism. The first step in this process is
to instantiate a set of needed skills. The next step

is to instantiate a skill manager for pipelining the

instantiated skills. Pressing the run button on the skill

manager window will start the data ftow mechanism.
Runtime results of activated skills can be viewed on

the secondary windows of the instantiated skills.

5 A Valuable Set of Tools

The power of the skills environment lies in the
amount of time it saves for the skills programmer.

During virtually every stage of the skills development

cycle, time is conserved. For instance, learning time

is shortened. The programmer does not need to

have extensive knowledge of the skills environment

to program a skill and integrate it into the skills

environment. The details of the skills environment

are encapsulated; the object-oriented constructs of the
skills environment essentially provide templates for

programming and instantiating reactive modules.

Moreover, programming time is significantly re-

duced in two ways. First, the skills programmer

does not need to worry about interfacing with other
skills or other components of the architecture. Recall,

the programmer needs to specify only three things

to program a skill. Secondly, the skills environment
allows the reuse of existing code. This capability

is valuable since rewriting code such as the robot's

inverse kinematics is a task one would like to do only

once,

In addition, debugging time is decreased. As

mentioned in the last section, there are a number of

debugging facilities available. The graphic interface
allows the easy operation of these facilities. Also,

the modular decomposition of the skills allow the

individual skills to be debugged in isolation or in the
context of other skills.

The maintenance of the skills library also becomes

less time-consuming. Modifying the skill library to

adapt to the changing capabilities of the instantiated

autonomous agent is quite straightforward. Since

the interface to physical devices is encapsulated in

dskills, adding, deleting, or replacing dskills is all that
is needed to adapt to a change in physical devices.

The components of the rest of the skills environment
remain unaltered.

6 Proposed Experiment

Before concluding the paper, we relate our experience

of programming a set of skills for our proposed

experiment with MIAA. We offer this to demonstrate
the time conserving way of programming skills. The

proposed experiment is for our Denning robot which

must deliver a message to our department head.

The robot wakes up in its humble abode: the

autonomous systems laboratory in the basement of the

building. It wanders around the laboratory, avoiding

obstacles and looking for a door to exit. Once the

door is found, it exits the door. Since our department
head's office is on the fourth floor, the robot must find
the elevator first. It directs itself to the elevator using

a combination of hallway following, door detection
and intersection detection. Once the elevator doors

are found, the robot pushes the elevator button and
waits for the elevator. When the elevator comes it

must determine which of the four elevator cars actually

arrived. Upon entering the elevator the robot must

push the button for the fourth floor. When the
elevator stops on the correct floor, the robot exits.

238



It directsitselfdownthecorridorto thedepartment
head'sofficeanddeliversthemessage.

The set of behaviorsdescribedabovecan be
accomplishedwithastandardsetofsituatedskillsand
aspecializedsetof taskspecificskills.Someexamples
from the standardsetareobstacleavoidance,wall
following,wandering,object tracking,and object
homing. An examplefromthespecializedskill set
isa modulethat allowstherobotto pushanelevator
button.

As an exampleof howthesequencercoordinates
thesituatedskillsto bringaboutthesetofbehaviors
describedaboveconsiderthe task of exitingthe
autonomoussystemslaboratory.Fiveskillsarekeyin
creatingthisbehavior:obstacleavoidance,wandering,
barcodetracking,locatingthe positionof thedoor,
andpositionhoming. A barcodeis placedin the
vicinity of the doorsothat the robot canreliably
recognizethedoor'sgenerallocation.Thesequencer
first activateswandering,obstacleavoidance,and
barcodetracking,sothat the robotwandersaround
the laboratory,avoidingobstaclesand lookingfor
the barcodeassociatedwith the door. Oncethe
locationof the barcodeis found, the sequencer
activatesthe barcodehomingmodule,commanding
the robotto movein front of the barcode.Finally,
afterthe robotmovesto the vicinity of the door,
thesequenceractivatesa modulethat computesthe
necessarypositioncluesforisolatingthedooropening
anddrivingtherobotthroughthedoor.

Fromthissimpleexample,youcanseetheutilityof
beingableto activateanddeactivateskillsdepending
on whichaspectof the overalltask the robot is
currentlyworkingon. Forexample,it makeslittle
senseto spendvaluablecomputationtimeidentifying
the dooropeninguntil the robot is in the vicinity
of thedoor. Wearecollectingmetricalinformation,
to provideevidenceof the utility of the explicit
sequencingof skillsversestheimplicitsequencingof
skillstypicalof moreadhocreactivetechniques.It
is ourhypothesisthat asthesizeoftheclassoftasks
withinagivendomainincreasestheutility oftakinga
morestructuredandengineeredapproachto design
of roboticintelligencewill clearlywin out overthe
"purely"reactivetechniques.

7 Final Words

The skills environment is a powerful technology for a

number of reasons. It abstracts the skill developer

from the details of communications protocols and

graphical user interface issues which the environment

provides. A person writing code for a sequencer
has only to concern themselves with which skills

are needed and can ignore all of the inter-skill

communications issues as these are handled by the

data flow mechanism of the skill manager. We believe

that by providing methodology to the creation and use
of reactive modules that the work in reactive control

of robots can move out of the ad hoc creation of task-

specific demonstrations into the world of assisting in
the solution of real-world problems.

References

[1] R.C. Arkin. Integrating behavioral, perceptual,
and world knowledge in reactive navigation. In-

ternational Journal of Robotics and Autonomous

Systems, 6(1-2):105-122, 1990.

[2] R. A. Brooks. A robust layered control system
for a mobile robot. IEEE Journal of Robotics

and Automation, 2(1):14-23, March 1986.

[3] R. J. Firby. Adaptive Execution in Complex
Dynamic Worlds. PhD thesis, Yale University

Department of Computer Science, January 1989.

see Technical Report 672.

[4] E. Gat. Reliable Goal-Directed Reactive Control
of Autonomous Mobile Robots. PhD thesis,

Virginia Polytechnic Institute Department of

Computer Science, April 1991.

[5] P.N. Johnson-Laird. Mental models in cognitive
science. Perspectives on cognitive science, pages

147-191, 1981.

[6] L. Kaelbling and S. Rosenschein. Action and
planning in embeded agents. Robotics and

Autonomous Systems, 6:35-48, 1990.

[7] L. P. Kaelbling. Rex: A symbolic language for the
design of parallel implementation of embedded
systems. In Proceedings of the AIAA Conference

on Computers in Aerospace, 1987.

[8] D. W. Payton. An architecture for reflexive
autonomous vehicle control. In Proceedings of the

IEEE International Conference on Robotics and

Automation, pages 1838-1845, April 1986.

[9] M. G. Slack. Situationally Driven Local Nav-

igation for Mobile Robots. Department of

computer science, Virginia Polytechnic Institute,
April 1990. also published as Jet Propulsion

Laboratory Publication 90-17.

[10] M. G. Slack. Sequencing formally defined reac-
tions for robotic activity: Integrating RAPS and

GAPPS. In Proceedings of the SPIE Conference

on Sensor Fusion, November 1992.

239


