

NASA Contractor Report 4585 DOT/FAA/CT-94/02

Drop Size Distributions and Related Properties of Fog for Five Locations Measured From Aircraft

J. Allen Zak ViGYAN, Inc. • Hampton, Virginia

National Aeronautics and Space Administration Langley Research Center • Hampton, Virginia 23681-0001 Prepared for Langley Research Center under Contract NAS1-19341

April 1994

=

•

.

.

•

TABLE OF CONTENTS

Abreviations and Acronymsiv Summary
1. Introduction
2. Instrumentation 2 a. Description 2 b. Calibration and Quality Control 3 c. Error Sources 3
3. Procedures
4. Results4a. Vandenberg AFB, CA5b. Arcata, CA7c. Santa Maria, CA9d. Worcester, MA9e. Huntington, WV11
5. Comparisons with Other Measurements 12
6. Summary and Conclusion 13
7. References
Appendix A

PRESENCE PAGE BLANK NOT FILMER

-

•

ABREVIATIONS AND ACRONYMS

AGL	<u>A</u> bove <u>G</u> round <u>L</u> evel
CAT-I	Category I instrument landing system
d	Diameter of water drops
DH	Decision Height
FAA	Federal Aviation Administration
FLAPIR	<u>Forward Looking Infrared and Lidar Atmospheric Propagation in the IR</u> experiment
FSSP	Forward Scattering Spectrometer Probe
GMT	<u>G</u> reenwich <u>M</u> ean <u>T</u> ime
ILS	Instrument Landing System
LWC	Liquid Water Content
MMW	<u>M</u> ili <u>m</u> eter <u>W</u> ave
MVR	<u>M</u> edian <u>V</u> olume <u>R</u> adius
NA	Not available
n	Number concentration
Nt	Total number concentration, total number of particles
OAP	Optical Array Probe
PMS	<u>P</u> article <u>M</u> easuring <u>S</u> ystem, Inc.
R	Range
r	Radius of water drops
RVR	<u>R</u> unway <u>V</u> isual <u>R</u> ange
vis	Visibility
х	Obscuration

iv

Drop Size Distributions and Related Properties of Fog for Five Locations Measured from Aircraft

SUMMARY

A Gulfstream II Aircraft was equipped with a wing pod-mounted Forward Scattering Spectrometer Probe (FSSP-100) and an Optical Array Probe (OAP 200X or 200Y) during flight tests completed as part of the FAA/DoD/Industry Synthetic Vision Technology Demonstration Program. Flights were made to 27 airports to look at various meterological and runway conditions. Among these flights were approaches to Vandenberg AFB, CA. Arcata, CA, Santa Maria, CA, Worcester, MA and Huntington, WV during August and September 1992 in fog. The aircraft made repeated descents on a three degree glide slope from the top of the fog to the surface or near the runway surface. Number concentrations of particles from 1 to 300 μ m or from 1 to 4500 μ m diameter were collected each second, averaged into 10 meter altitude intervals, and shown in three dimensional plots of altitude vs. concentration vs. size. The West Coast advection fogs had the highest concentration of large drops, with median volume radius of 6-11 μ m (outside of drizzle). There was typically a maximum number density for drops of 4-8 μ m diameter in the lower altitudes and of 12 to 20 μ m drops at higher altitudes. There were changes in the 10 to 15 minute periods between approaches of all fogs at all altitudes, but the general properties of relative maximum concentration, liquid water content (LWC) and median volume radius (MVR) at a given altitude changed least. Liquid water contents were high (0.3 to 0.7 g m⁻³) for all the advection fogs and increased with height. There was a shift toward larger particles at higher altitudes. Dissipating or mature fogs contained more large drops. The frontal fog at Worcester, MA was unique in that rain was falling into the low level stratus at first. Measurements in the one radiation fog were limited to 20 m altitudes and higher due to operational constraints. The largest drops and number concentrations were in the lower 50 m, and like the advection fogs, 8-11 μ m drops had maximum concentration. These measurements compare favorably with others in gross properties but each fog is unique in many ways.

1. Introduction

Fog data presented in this paper were collected as part of the Synthetic Vision Technology Demonstration Program. This program was a government-industry effort led by the Federal Aviation Administration (FAA) to determine the feasibility of a combination of technologies to enable aircraft landing, takeoff, taxi and ground operations in very low visibilities. An image available from millimeter wave and infrared sensors was projected on a heads up display together with altitude, airspeed, velocity vector, glide slope, heading and other information for the pilot. A more complete description of this project is available in Burgess et al. (1992), Horne et al. (1992), and the Synthetic Vision final report to be released by the FAA shortly (Burgess et al. 1993).

Particle size data were collected to aid in understanding the performance of candidate Synthetic Vision Sensors. The drop size distributions were used to assess attenuation by scattering and absorption which are proportional to the cross sectional area of the particles and liquid water content (particle volume) respectively. The slant path drop size measurements through the stratus cloud, along the identical path as the sensors allowed a fundamental understanding of atmospheric effects and verification of theoretical predictions (Burgess and Hayes 1992). Preliminary results are discussed in Horne et al. (1992).

The purpose of this report is to present and discuss the microphysical properties of the fogs encountered and their variation in time and space from the top of the stratus to the surface. Another objective is to compare this data with other published data and with physical models of fog properties to determine similarities and differences. Sources of potential errors are presented and possible impacts discussed.

2. Instrumentation

a. Description

A Gulfstream II twin engine executive jet was modified to permit all particle size sensors to be suspended in pods from both sides of the wing (Fig. 1). This configuration provided the location of least disturbed air. For flights in fog, a Particle Measuring Systems, Inc. (PMS) forward scattering spectrometer probe (FSSP-100) leased from and operated by JTD Environmental Services, Inc., was mounted on one side of the wing, and an optical array probe (OAP 200X or 200Y) on the other depending on whether that day's mission was to look for fog or rain. Characteristics of these sensors are shown in Table 1. The theory and operation of the FSSP-100 and OAP sensors as well as a detailed description of the probes can be found in Baumgardner (1984), Baumgardner et al. (1984), and Knowlenberg (1970). Briefly, the FSSP measures light scattered by a thin (0.2 mm dia.) laser in a sampling tube. A droplet crossing the beam produces a pulse in optical diodes whose amplitude is proportional to the drop diameter, index of refraction, laser beam wavelength, power, and solid angle over which the scattered light is collected. The OAP operation is based on shadows produced by precipitation-size particles (0.1 to 4.5 mm) passing through a laser light source. In this case a linear array of photo detectors comprise the size measuring grid.

For aircraft flights to Vandenberg AFB, CA and Arcata, CA, the OAP-200X accompanied the FSSP-100. At Santa Maria, CA, Worcester, MA, and Huntington, WV, flights were conducted with the OAP 200Y as the second sensor. Fog (or haze) droplets less than two μ m diameter, were not measured. Complementing the PMS probes were a resistive temperature device from Rosemont, Inc., and a Johnston-Williams hot wire LWC sensor. Liquid water content discussed in this report, however, was calculated independently from the particle size distributions.

b. Calibration and Quality Control

The FSSP-100 was calibrated by JTD personnel prior to each mission by using standard size glass beads: $3-9 \mu m$, $10-15 \mu m$, $15-25 \mu m$, $25-35 \mu m$ and $35-45 \mu m$. A water spray check ensured probe function. A description of the glass bead process is presented in Hovenac and Lock (1993). Since the index of refraction of glass beads is different from water, glass beads of one diameter are used to simulate scattering of water droplets of another diameter. This relationship is captured in a set of calibration curves where scattered power as a function of droplet diameter is calculated for water drops using Mie scattering theory.

The OAP sensors were calibrated using glass rods rotated by a motor and a spray check in a similar manner to FSSP calibration. A JTD technician was a part of the aircrew on each mission and monitored sensor performance through real-time printed data. Post flight, the recorded data was reviewed prior to final processing.

c. Error sources

Despite calibration and quality control, there are certain errors recognized and reported by many investigators inherent in the instrumentation, optics, sampling and sizing. Corrections for sampling errors were made in the first few size bins according to manufacturer's recommendation. Other errors result from fogging of the optics (Brenguier 1993) but were not present in these data due to the low altitude of these flights. More accurate MIE scattering calculations in the calibration curves is shown by Hovenac (1993) to improve results for particles greater than 10 μ m. These new curves were not available, but would not alter the data reported here due to the small number count in the large size bins. Errors can result from coincidence and dead-time losses, as described by Baumgardner and Dye (1985). Particle concentrations are underestimated when two or more drops are co-resident in the beam or when particles pass through during an electronic delay following each detected particle. These errors can be 15% for concentrations greater than 500 cm³ which were rarely observed above the 2 μ m dia. minimum size radius in our FSSP-100 configuration. Finally, there is an error due to the

sampling rate (1 sec), small optical area (0.35 mm²), and low number counts in the upper channels of each sensor. This error, as discussed in the result section, underestimates the number of drops per cm³ if only one sensor is used. Concentrations of 10^{-2} and below per cm³ can be missed in the upper 3-4 bins of the FSSP-100. All these errors were considered when estimating the sizing accuracy of \pm one range bin for each probe.

3. Procedures

FAA approval was obtained prior to aircraft approaches in fog conditions below CAT-I minimums. For the West Coast locations, there was considerable coordination with airfield managers, air traffic controllers, and weather and maintenance personnel prior to operations at their airfields. In some cases, these approaches and landings were made in conditions below the published minimums but within the special approval envelope for the experimental category aircraft capable of providing the runway image to the pilot. All approaches in fog reported in this paper were made on a nominal CAT I instrument landing system (ILS) three degree glide slope following published procedures. This scenario and the distances applicable are shown in Fig. 2. Drop size data were collected, monitored, and stored from the time of cloud penetration, as indicated by the measurement of liquid water from the Johnston Williams LWC probe, until touchdown or the beginning of a go-around. The data were reduced and processed by JTD into particle concentrations according to PMS published procedures using airspeed and known sensor aperture. Output was the number of particles per cubic meter in each of 30 size bins (15 for each probe). Data were available at one-second intervals as shown in Fig. 3. One second corresponds to 70 meters in slant path distance through the cloud and four meters vertical distance at typical approach speeds. These one-second observations were averaged into 10 meter height intervals using barometric and radar altitudes. Typically, 2-3 seconds worth of data were collected in a 10 meter vertical interval. All data at and below the 10 m altitude interval were averaged and applied to that interval. The lowest altitude achieved often contained 10 or more one-second observations due to the touch and go, landing, and go-around occupying more time at the lowest altitude. The number of seconds in each 10 m altitude is shown in the Appendix.

4. Results

Droplet spectra have been shown in a number of ways. One common form used here is the function n(r) where n(r)dr is the number of droplets per unit volume in the radius interval (r, r+dr). The function $r^3 n(r)$ is also calculated since $4/3 \pi r^3 n(r) dr$ is the contribution of drops in dr to the LWC or water volume. The summation over all size bins is the total water volume which would have to be penetrated by any sensor on board the aircraft. The LWC contributes the most to millimeter-wave attenuation in the small drops of the fogs. The median volume radius is a parameter that divides the LWC in half for a given altitude and is calculated for all data collected. This parameter, together with the total number of particles (Nt) (per cm³) at that altitude represent the gross properties of the fogs (stratus) as a function of height. Finally, the cross-sectional area of particles $(\pi r^2 n(r)dr)$ integrated over all dr is sometimes shown since it primarily affects the scattering part of attenuation for electromagnetic waves. Scattering efficiency is greatest when the wavelength of the sensor equals the drop size and is significant for drops larger than the wavelength.

Because the number concentrations can span eight orders of magnitude, the logarithm of number concentration is shown. A zero number count is converted to zero in the plots. Unfortunately, the logarithm plots hide much of the interesting characteristics of the drop size distribution, so the basic number concentration in each size bin for the larger concentrations are also shown. When data from both sensors on board the aircraft are combined in the plots, the concentration is divided by the bin size (3, 20 or 300 μ m) for a fair comparison. All the basic data and primary parameters are shown in the appendix. Plots of combined FSSP and OAP data should show 30 bins or 28 bins. The midpoint diameter is labeled on the axis. For the OAP 200X, there is an overlap in the first two channels. In order to preserve the time resolution of the 3 μ m bins, the first two OAP 200X bins were not used in the plots or parameter calculations.

For each location where flights were made into fog, three-dimensional plots of number concentration vs. altitude vs. size bin are presented. The data are discussed as a vertical profile even though 3800 m of horizontal distance was traversed on the 3 degree glide slope from an altitude of 200 m. Also, each approach took anywhere from approximately a minute to more than 5 minutes, depending on starting altitude (determined by cloud top at all places except Worcester, MA). Most of the fogs encountered were mature advection fogs which were sampled from their most intense (with respect to minimum surface visibility) phase to various stages of dissipation. The West Coast fogs formed over the ocean where ample large salt condensation nuclei exist. The drop sizes measured are large but change with time and altitude. A series of charts will show the time evolution and vertical variation of microphysical properties for each location. A summary of flights and associated surface weather observations (in standard airways code) are shown in Table 2. Times are rounded to the nearest minute. These flights are discussed in the following sections.

a. Vandenberg AFB, CA

Vandenberg AFB is located 220 km northwest of Los Angeles on the north end of Point Arguello. A surface wind from the NW will produce on-shore flow. Runway 12-30 is 112 m above sea level. The NW end is just 5 km from the Pacific Ocean. On August 27, 1992 there was a very weak surface pressure gradient NW to SE. Fog over the cold water moved inland the previous evening and by 1455 G mT was producing a 100 ft. ceiling (vertical visibility into the obstruction) and prevailing visibility of 1/8 statute miles. Typical of these fogs was a strong temperature increase with height (inversion) to the top of the stratus (Fig. 4). Surface conditions changed during the 45 minutes of the data collection which began at 1500 G mT. Both the temperature and dew point increased at the surface during the hour from 1455 to 1555 G mT from 54/53 F to 57/57 F. The visibility improved slightly from 1/8 to 3/16 mile. Surface wind was 3 m s⁻¹ or less from the NW. The top of the stratus changed from 190 m at 1500 G mT to 250 m at 1556 G mT, but the ceiling remained 100 ft obscured at the surface.

Both the FSSP-100 and OAP-200X recorded particle sizes during each approach which lasted about 1 minute. There were 7 approaches as shown in Table 2 but the first approach was a high altitude go-around, and the data were not used. In all plots that follow each mark on the altitude axis corresponds to a 10 meter interval from the top to the bottom of the approach, even if space does not allow printing all the values. The same is true for the drop size labels. The first bin midpoint is always $3.5 \,\mu m$ representing the 2-5 μm diameter range. The last entry on the drop size axis will either be 45.5 for the FSSP-100 data alone, or 300 for OAP-200X and 4500 for OAP-200Y. Thoughout this report, data for more than one approach are shown such as in Fig. 5 where three approaches are shown as a time sequence about 10 minutes apart.

Particle concentrations increase with altitude for most particle sizes but not consistently (Fig. 5). During the first two approaches, there was a pronounced peak in concentration (200 cm⁻³) of 5-8 μ m dia. drops at 180 m altitude. By 1556 (Approach -7) concentrations increased in the middle of the cloud (100 to 160 m). In the last 3 approaches, a bimodal distribution is apparent but not as pronounced as in other fogs. There is a peak in concentration near the surface for smaller drops and at high altitudes for larger drops. Drops as large as 25 μ m have concentrations of tens per cm³ but drops up to 160 μ m diameter have been counted by the OAP-200X. These drops have concentrations of a few hundred per m³ (Fig. 6). Note that the logarithm plot shows the complete spectrum where the characteristic log-normal shape is apparent although the detail is obscured.

The change in concentration with time at a fixed altitude is shown in Fig. 7 for 20 m and 80 m respectively. There is an increase at first then a decrease later for the smallest particles at the 20 m level but an increase in concentrations of all sizes at 80 m.

The LWC increased with height, reaching 0.7 g m³ in the first approach at 100 m altitude, but the maximum varied greatly from approach to approach as different parts of the cloud were sampled just 10 minutes apart (Fig. 8). In subsequent approaches the maximum LWC varied between 0.3 and 0.7 g m⁻³ near the top 1/3 of the cloud. The median volume radius was highest (11 μ m) in the lower part of the stratus at first but varied between 6 and 10 μ m at 80 to 120 m altitude thereafter. The total number of particles (NE) counted in all size bins increased slightly with both time and height (Fig. 9).

Discussion:

The Vandenberg case represented a pristine marine fog with little overland trajectory to influence drop sizes via increased condensation nuclei. Although drops less than 2 μ m in dia. could not be measured, some authors claim that it is unlikely that the aircraft sensors would have encountered the 10³ to 10⁴ per cm³ number concentrations of these haze droplets of inland fogs (Hudson 1978). The bimodal nature of fogs has been noted by others (Pinnick et al. 1978, Pilie et al. 1975 and Rogers and Yau 1988) and will be shown repeatedly at other locations discussed later. The cause has been postulated to be the mixing of dry air at the top causing more rapid evaporation of the smaller drops there coupled with regeneration through condensation and advection of the smaller drops near the surface. However, there is considerable non homogeneity as indicated by changes in the number concentration during the 10 minutes between observations in different parts of the cloud. Even the differences of fog characteristics in horizontal distances of hundreds of meters can be significant as indicated by runway visual range (RVR) measurements concurrently at different ends of a runway and for different runways at the same airport. For this fog absorption of millimeter wave energy was greatest due to the high LWC. Scattering by these large drops will and did influence both the optical and 3-5 μ m IR sensor carried on all flights. This fog and all fogs encountered were opaque to the eye and IR through its entire volume. There is significant IR attenuation due to water vapor absorption and inherent low thermal contrast of the scene as well.

b. Arcata, CA

Arcata is a small town in Northern California about 115 km south of the Oregon border. The airport is about 10 km north of the city adjacent to the Pacific coast. The elevation of the field is 66 m with an increase in height of 12 m from the sea end to inland end of the runway. Much higher terrain is east and south of the airport. There is a 46 m embankment at the end of runway 32. Fog is a frequent summertime occurrence owing to the proximity of the cold ocean water and frequent sea to land air movement. On August 28, 1992 there was a weak on-shore pressure gradient. Surface winds were less than 3 m s⁻¹. Fog moved inland the previous evening and was at its worst (minimum surface visibility) during the time of the first approach, 1520 G mT. At this time the ceiling was zero with prevailing visibility 1/8 mile and RVR 600 ft. Temperature/dewpoint was 49/49 but rose to 51/51 by the 8th approach at 1652 G mT. At 1600 the ceiling lifted to 100 ft. and visibility improved to 3/8 mi. RVR varied between 600 and 1400 ft. until 1650 G mT when it rose to 1200 to 5000 ft. During the last two approaches, 1817 and 1828 G mT, the ceiling lifted to 300 ft. and visibility rose to 1 1/4 miles indicating significant dissipation. The top of the fog/stratus rose from 100 m at first to over 300 m by the end of the approach sequences. On 8 of the 10 approaches, the aircraft descended to the surface of the runway by special permission.

Drop size distributions are shown in Fig. 10 and in greater detail for the larger concentrations in Fig. 11. Note that there were drops as large as $180 \,\mu$ m, although their number densities were on the order of a few tens per cubic meter per μ m as in the Vandenberg fog. Due to small collection area, short dwell time, and few particles in the 38 to 47 μ m region, there are often no particles counted, yet drops are present in these sizes as shown by the anomalous gap in Fig. 12. The omission of particle counts in this size region affected gross properties by 2.0% or less.

As in the Vandenberg data the multimodal nature of the number densities can be seen in Fig. 11. As the stratus grows in vertical extent from 100 m to 200 m over 30 minutes, the number concentrations in bin 4 (11-13 μ m) increase to 43 cm⁻³ per μ m in the top 60 m of the cloud, whereas the concentration of smaller drops (2-5 μ m) continue to peak in the lowest 40 m. The number count falls off rapidly, changing by 2 orders of magnitude by 17-20 μ m dia. sizes. In Fig. 11b (approach 6) the number of intermediate (bin 2, 3) drops and large drops have increased from 15 to 50/cm³/ μ m in an hour. The larger drops, on the other hand, extend to lower altitudes but their number densities change little in the top 30 m of the cloud. This trend continues through 1652 G mT where the peak number density of 78 cm⁻³ per μ m is reached at 230 m, 60 m from cloud top. The last two approaches, 1816 and 1828 G mT (Fig. 13), were conducted in a rapidly dissipating stage when the ceiling rose to 300 ft. and tops became more irregular. Also, the particle densities of all drops decreased in the lowest 100 m of the fog. The change in number concentration with time at the 20, 80 and 160 m altitudes is shown in Fig. 14.

There appears to be a cycle of increase in concentrations at first then a decrease about every 30 min for the first 7 approaches. The temperature inversion is still pronounced (Fig. 15) for all approaches. The LWC increases with height from 0.05 to 0.25 g m^{-3} to within 30 m of the cloud top and increases with time reaching nearly 0.6 g m⁻³ by 1652 G mT (Fig. 16). As the fog begins to dissipate, the LWC decreased to a maximum of 0.45 g m⁻³ at 1828 G mT (Fig. 28). The median volume radius, on the other hand, also shown in Fig. 16, remained nearly constant at 4-6 μ m. The only difference was in the lowest 10 m of the fog where the MVR approached drizzle drop size (100 μ m) for some of the approaches. There was drizzle reported by the pilots. Finally, as indicated in the number density plots and Fig. 17, the Nt of particles in all size bins increases with altitude in the first 40 m then begins an erratic decline.

Discussion:

The Arcata fog is similar to Vandenberg where nuclei from ground and industrial sources have not had much influence. The LWC, while less than Vandenberg, is still relatively high and in the top half of the cloud. That, coupled with the median volume radius in the 4-6 μ m range, will present difficulties for sensors whose wavelengths are less than 12 μ m due to scattering. Absorption of millimeter wave energy will be noticed, especially for the higher frequencies (94 GHZ and above), when looking through the

entire cloud LWC volume. At Category I decision height, 200 ft (60 m), 2/3 of the liquid is above the path, but the drops still remain relatively large. By the dissipation stage, this cloud becomes more like a stratocumulus.

c. Santa Maria, CA

Santa Maria is 22 km Northeast of Vandenberg AFB, CA. It is 18 km from the Pacific, further inland than the previous locations. Like the other advection fog situations, the low level flow was from the NW where there is relatively flat terrain to the coast. The airport elevation is 79 m. Although the humidity was 100%, the fog was nearing a dissipation stage more so than the others. In the 20 minutes between approach 1 and 3 (approach 2 data is missing), the ceiling changed from 100 ft. obscured to 200 ft. overcast and the visibility changed from 1/4 mile to 3/8 mile. The second sensor available for this flight was a rain probe (OAP 200Y) which did not contribute to the knowledge of fog microphysics, since there was no rain. The discussion will be limited to data from the FSSP-100 sensor.

The drop size spectrum (Fig. 18) is very similar to those of Vandenberg and Arcata. The maximum number concentration reached about 170 cm⁻³ near the top of the fog; but unlike the previous fogs, the intermediate drop sizes (11-14 μ m) had this large number concentration (Fig. 19). Here there is a trimodal case; a lower peak concentration for 2-5 μ m drops, mid level peak for 8-11 and 11-14 μ m drops and high altitude peak of the biggest drops with significant (1 cm⁻³ or above) number counts of 14-20 μ m size drops. The temperature increase with height was about the same magnitude as at the other locations (Fig. 20). The LWC of 0.1 to 0.4 g m⁻³ was also very similar with higher values near the top of the cloud (Fig. 21). The median volume radius was slightly more erratic but still showed an increase in the lowest 50 m of the fog which indicates the contribution of the smaller number concentration of the large drops. Total number of particles (350-400 cm⁻³) is also nearly the same as the other advection fogs (Fig. 22).

Discussion:

With addition of more varied condensation nuclei farther inland, there should be a larger number of the smaller drops, but this was not observed. Some broadening of the spectrum is apparent at mid levels of the cloud, but this may be due to the fog nearing more a dissipation stage. Attenuation characteristics for visible up to radar frequencies should be similar to those discussed previously.

d. Worcester, MA

Worcester is located 73 km west south west of Boston's Logan Airport. The remains of tropical storm Danielle were located over Northern NJ and moving NE. This storm, coupled with high pressure over Maine, produced a NE flow of 4-5 m s⁻¹. There

was a warm front across New York state to the south. There was wide spread stratus, fog and rain north of this front with ceilings about 100-200 ft. and prevailing visibilities 1/4 to 3/4 miles in light rain and fog. During all the approaches to Worcester, the sky condition was 100 ft. obscured. There were layered clouds above the low stratus so no definite cloud top and no inversion existed; therefore, the beginning of data collection was somewhat arbitrary. Attempts were made to begin the data collection when encountering the lowest cloud layer. During the last two approaches, the rain changed to drizzle. Rain rates of 1-3 mm/hr were calculated from the drop size distribution for the lowest 80 m of cloud in the first 5 approaches. Rain rates were significantly less for the last 3 approaches.

Fig. 23 shows the broadened drop size spectrum at all altitude with number concentrations as high as $10^3/\text{m}^3$ even at 300 μ m drop size. The negative numbers result from the normalization for size bins (dividing by 300 in this case) where number counts are less than 300 m⁻³. From the shape of the FSSP-100 drop size spectrum (Fig. 24) the fog part of the cloud system extended to about 200 m. The spectrum is more sharply peaked in the 5-8 μ m size region in the middle of the stratus where number counts reached 280 per cm³ compared to 60 for Arcata. The tri-modal nature is still evident with low altitude peaks of the smallest drops measured (3-5 μ m) and a peak of drops 11 to 17 μ m at high altitudes in addition to the sharp peak in mid levels of 5-8 μ m drops. The approaches in the late afternoon (Fig. 25, 26) revealed a similar spectrum shape, but there appear to be two regions of low stratus; one from 20 m to 200 m and another from 200 to 340 m. Number concentrations are similar in both regions.

Liquid water content is influenced by the rain drops (Fig. 27). At 1723 G mT the rain influenced the areas where fog drop contributions were small (≤ 0.05 g m⁻³). At 1734 and 1745 G mT rain drops contributed 80% of the LWC near 300 m altitude. At 1755 G mT the most significant contribution is at 240 and 120 m. There was also a significant contribution for all approaches near the surface. The range of LWC, 0.1 to 0.4 g m⁻³, is similar to the advection fogs of the West Coast. By late afternoon the LWC came predonimately from fog drops and drizzle (Fig. 28). The median volume radius also shown in Fig. 27 shows the significant effect of the rain drops near the top and bottom of the clouds. The total number of drops (Fig. 29) is equivalent to that of the other fogs despite the increase in the number of big drops (with very low number concentrations).

Discussion:

This situation of rain and fog with ceilings below CAT-I minimums is not uncommon in overrunning warm frontal fogs of mid latitudes. The most serious consequence is the effect of the rain on millimeter wave sensor performance. Even rain rates of a few mm/hr can attenuate tens of db/km of the radar signal (Battan 1959) such that the image of the runway is lost above CAT-I decision height. Backscatter becomes an increasing problem with rain of any significant drop size since it is proportional to the sixth power of the average drop diameter. The return signal from the rain could obliterate any signal from the ground. The same adverse effects discussed earlier for IR wavelengths would apply here as well. If the rain increases at the expense of the fog, then optical visibility might be adequate for aircraft operation below the clouds.

e. Huntington, WV

At Huntington, data were collected on the only inland radiation-type fog, but it was so shallow (though optically and IR dense) that the aircraft had trouble getting into the fog due to operational constraints of airfield minimums. There were six approaches with data for the lowest layer (10 m) only available for one. The Huntington airport is in NW West Virginia, near the Ohio border, and adjacent to the Ohio River and some of its tributaries. The presence of the water undoubtedly influenced the formation of and properties of the fog. There was a weak ridge of high pressure over State College, PA. A cold front had passed through the area the previous day. The surface winds were very light with clear skies, all the ingredients necessary for fog. Fog formed in the early morning hours and by the time of the first approach (1147 G mT) the ceiling was 100 ft. obscured with zero prevailing visibility. By 1155 9/10 of the sky was obscured, but there was no ceiling even though the prevailing visibility was just 1/16 mile. These conditions prevailed through the last approach at 1247 G mT. Only the fog data from the FSSP sensor will be discussed. The cloud top rose from about 100 m to 160 m before the cloud began to evaporate. Data were collected only for the first two approaches within 20 m of the ground where the highest concentration of particles were found. The other approaches terminated at 40 m or above.

There were significant numbers of drops with sizes up to 17-20 μ m and 10⁴ particles per m³ as large as 45 μ m (Fig. 30). It is likely that larger numbers of smaller haze drops (< 1 μ m radius) existed in this fog but could not be measured. The number concentrations observed during the first two approaches were maximum at 5-8 μ m at the lowest altitude. The details for higher number concentrations are shown in Fig. 31 for the first three approaches.

Liquid water content was very low until 1235 G mT when values of 0.13 g m⁻³ (Fig. 32) were calculated from the observed drop distribution. In later aircraft approaches, the LWC always peaked at the lowest altitude corresponding to the high number concentrations; however, the lowest altitude on several of the approaches was halfway into the shallow cloud. The median volume radius remained quite large (5-8 μ m) within 50 m of the ground (Fig. 32). Temperature was nearly constant at 12 C through the top 3/4 of the cloud. The total number concentration (Fig. 33) reached a maximum of 170 per cm³ at 40 m for approach 2. Had there been a capability to measure smaller drops, this count would most likely have been much higher.

Discussion:

The high numbers of relatively large drops (5-8 μ m) was surprising for this shallow inland radiation fog. This fog, like all the others, was opaque to the optical (visible) and IR (3-5 μ m) spectrum but presented no problems for the imaging radar. It is unlikely that an IR sensor of longer wavelength would have been any more effective due to scattering associated with the significant number counts of 10-16 μ m diameter drops close to the ground.

5. Comparisons with Other Measurements

Microphysical parameters reported in the literature are highly dependent on the type of fog, the airmass in which it is embedded (supersaturation, temperature, humidity, condensation nuclei available, turbulence), time period of measurements, measurement technique, altitude of measurements, and stage of fog development. Prior to the 1970's, fog drop sizes were measured by impaction techniques (Piele 1975, Prokh 1974, Garland 1971, and Goodman 1977), by collection on spiderwebs (Arnulf et al. 1957), by early light scattering (Elridge 1961) and by Nephelometers (Dickerson et al. 1975). These measurements had significant limitations apart from the other factors influencing the measurements. For example, the impaction techniques required laborious, time consuming microscopic counting of craters made by drops. The smallest drops that could be reliably measured were on the order of 2 μ m (Rhinehart, 1969). Corrections were needed for collection efficiencies and in the conversion to droplet concentration. Although still subject to errors and corrections for collection efficiency, the light scattering instruments of the 70's, 80's, and 90's offer near real-time measurement and effective calibration with known particle sizes when done carefully.

Results of previous fog data collection activity are summarized in Table 3. There have been several concerted international and multi-agency cooperative projects to measure fundamental properties of fogs. Some of these prior to the Synthetic Vision Program were Forward Looking Infrared and Lidar Atmospheric Propagation in the IR (FLAPIR) experiment (Koenig 1991), FOG-82 (Meyer et al. 1986), Meppin-80 (Lindberg et al. 1984), Po Valley (Fuzzi et al. 1992) and Graffenwohr (Pinnick et al. 1978). Note that the instrumentation used, drop size range and type of fog are shown. In several cases many observations taken at different times and locations were grouped together and the average for the entire grouping is presented.

The number concentration is a function of instrumentation bin size which in some cases was not reported (indicated as not available (NA) in the table). A reasonable assumption is that the values given are "per micrometer" unless indicated. From Table 3, the higher number counts in the submicron region are due most likely to haze particles. The maximum drop concentration for the size region, 3-20 μ m, for both advection and radiation fogs range from 10's to 300 per cm³. For radiation fogs, however, there are concentrations in the 10³ range at μ m size and below.

The range of LWC maxima is from 0.1 to 0.4 g m⁻³ for advection fogs and 0.1 to 0.7 g m⁻³ for radiation fogs although there is great variability due to stage of development/ dissipation and altitude of the measurements. The "typical" characteristics of both types of fogs are shown by Kocmond et al. (1969) in Table 4. Up to five stages of development have been identified for radiation fogs. Each has identifiable fog characteristics (Juisto et al. 1983). The Synthetic Vision data show the variability of fog parameters in marine advection fogs as they begin to dissipate. Also, the vertical variation of parameters is even more pronounced than horizontal changes or time changes in most fogs. The measurements of LWC reported in this paper were as high as 0.7 g m^{-3} in advection fogs with frequent values of 0.2 to 0.5 compared with the 0.17 value in Table 4.

The other drop size characteristics measured during the Synthetic Vision Technology Demonstration program are consistent with previous measurements. These are the only measurements made in fog showing drop size characteristics with both a vertical and a time dimension along the path of a landing aircraft.

6. Summary and Conclusion

Sequential 1-2 minute penetrations of the fog repeated every 10-20 minutes for about an hour reveal some consistency with respect to general characteristics and gross features such as LWC and MVR. The differences due to natural variability within the fog cloud are readily apparent as are the changes in a dissipating fog. All fogs contain number concentrations of tens to hundreds of drops per cm³ per micrometer in the range of drop sizes from 2-25 μ m diameter.

The advection fogs were found to contain number concentrations of 10^{-2} cm⁻³ per micrometer for drops above 45 μ m in many cases. The rain falling through the fog at Worcester, MA affected the fog drop spectrum; although it, too, when viewed alone showed many of the characteristics noted in number counts vs. drop size of marine advection fogs. There were multimodal tendencies in nearly all the fogs which tended to spread the spectrum when viewed over many altitudes. The one radiation fog encountered exhibited drops larger than expected although there are similar measurements of large drops in radiation fogs (Gerber 1991, Meyer et al. 1986). The variation of general fog characteristics with altitude and time is shown in Table 5.

The text book description of marine stratus clouds and their microphysical properties is the following: the mean droplet size increases with height, the spectrum is narrow due to growth of particles by condensation rather than coalescence, liquid water contents generally increase with height varying between 0.05 and 0.25 g m⁻³, and the droplet concentration does not increase with height (Rogers and Yau 1989). The observations reported in the paper show a somewhat narrow spectrum where the total number of particles increases slightly with height and time, whereas drop sizes were bigger near the surface but changed little with height thereafter, and the droplet

concentration increased with height when several drop size bins are grouped together. The biggest difference is a greater range in liquid water contents from 0.05 to 0.7 g m⁻³ for these measurements.

More measurements of radiation fogs made in different parts of the country (and the world) are needed to confirm the changes in stage of fog development and altitude. Also, more data are needed on the evolution of advection fogs, especially frontal fogs at inland locations.

While fog was not a limiting factor at radar frequencies with respect to the ability to image the runway from 80 m and below, more data are needed in high LWC fogs at inherently low contrast airports (contrast refers to the relative backscatter difference between the runway and grass or dirt border) and for more fogs with significant drizzle.

Finally, there is also a need to show the data in the context of functions such as the gamma or log normal distribution that capture their essence with a few statistics; then to develop limits of characteristic model parameters which impact performance of sensor systems contemplated for all-weather imaging of the runway.

Acknowledgment

This research was supported by the National Aeronautical and Space Administration under Contract No. NAS1-19341.

REFERENCES

- Alkezweeny, A. J., D. A. Burrows and C. A. Grainger, 1993: Measurements of clouddroplet-size distributions in polluted and unpolluted stratiform clouds. J. Appl. Met., 32, 106-115.
- Arends, B. G., et al., 1992: Comparison of techniques for measurements of fog liquid water content. *Tellus*, 44B, 604-611.
- Baronti, P., and S. Elzweig, 1973: A study of droplet spectra in fogs. J. Atmos. Sci., 30, 903-908.
- Battan, L.J., 1973: Radar observations of the atmosphere. University of Chicago Press, Chicago, IL, 324 pp.
- Baumgardner, D., B. Baker and K. Weaver, 1993: A technique for the measurement of cloud structure on centimeter scales. J. Atmos. and Oceanic Tech., 10, 557-565, 39.

, 1982: A computer evaluation of the forward scattering spectrometer probe. Preprints, Conference on Cloud Physics, American Meteorological Society, 279-281.

, W. Strapp and J. E. Dye, 1985: Evaluation of the forward scattering spectrometerprobe. Part II: corrections for coincidence and dead-time losses. J. Atmos. and Oceanic Tech., 2, 626-632.

_____, 1983: An analysis and comparison of five water droplet measuring instruments. J. Climate and Appl. Meteor., 22, 891-909.

- Breed, D. W. and J. E. Dye, 1982: In-cloud intercomparison of FSSP and JW probes during CCOPE. Preprints, Conference on Cloud Physics, American Meteorological Society, 282-285.
- Brenguier, J. L., et al, 1993: Real-time detection of performance degradation of the forward-scattering spectrometer probe. J. Atmos and Oceanic Tech., 10, 27-33.
- Burgess, M. A. and R. D. Hayes, 1992: Synthetic vision a view in the fog. IEEE Proceedingsof 11th Digital Avionics Conference, Seattle, WA, October 5-8.
- Burgess, M. A., et al., 1993: Synthetic vision system technology demonstration program final report. Federal Aviation Administration, Washington, DC (anticipated publication December 1993).
- Chylek, P, 1978: Extinction and liquid water content of fogs and clouds. J. Atmos. Sci., 35, 296-300.

- Czys, R. R., 1988: The visualization of cloud droplet spectra. J. Atmos. and Oceanic Tech., 6, 182-185.
- Dickson, D. H., R. B. Loveland and W. H. Hatch, 1975: Atmospheric waterdrop size distribution at Capistrano Test Site (CTS) from 16 April through 11 May 1974, Vol. I-IV, ECOM DR 75-3, United States Army Electronics Command, Fort Monmouth, NJ, 287 pp.
- Duynkerke. P. G., 1991: Radiation fog: a comparison of model simulation with detailed observations. *Monthly Weather Review*, 119, 324-341.
- Dye, J. E., and D. Baumgardner, 1982: Laboratory evaluations of six PMS forward scattering spectrometer probes. Preprints, Conference on Cloud Physics, American Meteorological Society, 271-278.
- Eldridge, R. G., 1966: Haze and fog aerosol distributions. J. Atmos. Sci., 23, 613.
- _____, 1961: A few fog drop size distributions. J. of Meteor., 18, 671-676.
- _____, 1957: Measurements of cloud drop-size distributions, J. of Meteor, 14, 55-59.
- _____, 1971: The relation between visibility and liquid water content in fog. J. Atmos. Sci., 28, 1183-1186.
- Fuzzi. S., et al., 1992: The Po Valley fog experiment. Tellus, 44B, 448-468.
- Garcia-Garcia, F. and R. A. Montanez, 1990: Microphysical characterization of fog in a mountainous region of Mexico. Preprints, Conference on Cloud Physics, American Meterological Society, pp. 328-336.
- Gayet, J. F., P. R. A. Brown and F. Albert, 1993: A comparison of in-cloud measurements obtained with six PMS 2D-C probes. *Atmos. and Oceanic Tech.*, 10, 180-194.
- Gerber, H. E., 1981: Microstructure of a radiation fog. J. Atmos. Sci., 38, 454-458.

_____, 1991: Supersaturation and droplet evolution in fog. J. Atmos Sci., 24, 2569-2588.

- Goodman, J., 1977: The microstructure of California coastal fog and stratus. J. Appl., Met., 6, 1056-1067.
- Gordon, G. L. and J. D. Marwitz, 1982: An airborne comparison of three PMS probes. Preprints, Conference on Cloud Physics, American Meteorological Society, 267-270.

- Heintzenberg, J., 1992: The Po Valley fog experiment 1989, what have we learned, where do we go from here? *Tellus*, 44B, 443-447.
- Horne, W. F., et al., 1992: Synthetic vision system technology demonstration methodology and results to data. SAE Technical Paper 921971, presented at Aerotech 92, Anaheim, CA, October 5-8, 1992.
- Hovenac, E. A. and J. A. Lock, 1993: Calibration of the forward-scattering spectrometer probe: modeling scattering from a multimode laser beam. J. Atmos. and Oceanic Tech., 10, 518-525.
- Hudson, J. G., 1978: Fog microphysical measurements on the West Coast. Preprints, Conference on Cloud Physics and Atmospheric Electricity, American Meteorological Society, 198-205.
- Jennings, S. G., 1983: Extinction and liquid water content of fog at visible wavelengths. Applied Optics, 22, 2514-2515.
- Juisto, J. E. and G. Lala, 1983: The fog project-1982. Preprints, 9th Conference on Aerospace and Aeronautical Meteorology, American Meteorological Society, 95-98.
- Kocmond, et al., 1969: A review of project fog drops. Progress of NASA research on warm fog properties and modification concepts. NASA SP 212, 120 pp.
- Koenig, George G., 1991: Results of forward looking infrared and lidar atmospheric propagation in the IR (FLAPIR) experiment. Presentation at the 6th Plenary Session of the Certification Issues Study Team (Synthetic Vision project), March 12-13, Mesa, AZ.
- Kunkel, B. A., 1981: Comparison of fog drop size spectra measured by light scattering and impaction techniques. AFGL TR-81 0049, Air Force Geophysics Laboratory, Hanscom AFB, MA, 37 pp.
- Kurita, S., et al., 1990: Structure of a fog in the dissipation stage over land. Atmos. Env., 24A, 1473-1486.
- Lala, G. G., et al., 1982: Mechanisms of radiation fog on four consecutive nights. Preprints, Conference on Cloud Physics, American Meteorological Society, 9-11.
 - , G. M. Meyer, and J. Juisto, 1978: Cloud physics and boundary layer measurements in radiation fog. Preprints, Conference on Cloud Physics and Atmospheric Electricity, American Meteorological Society, 233-235.
- Lenham, A. P., and M. R. Clay, 1982: Drop size distribution of fog droplets determined from transmission measurements in the 0.55-10.1-micrometers wavelength range. *Applied Optics*, 21, 4191-4193.

Lindberg, J. D., 1981: Measurements of the properties of wintertime fog and haze in West Germany: a preliminary report on project "Meppen 80". SPIE Proc., Atmospheric Effects on Electro-Optical, Infrared, and Millimeter Wave Systems Performance, 126-132.

_____, et al., 1984: Vertical profiles of extinction and particle size distribution measurements made in European wintertime fog and haze. ASL TR-0151, U. S.

Army Electronics Research and Development Command, Atmospheric Sciences Laboratory, White Sands Missle Range, NM, 56 pp.

, J. D., 1984: Final report on the European vertical structures experiment at Cardington, England. ASL TR-0153, U. S. Army Electronics Research and Development Command, White Sands Missile Range, NM, 40 pp.

- Mack, E. J., et al., 1972: Some microphysical features of coastal and inland fogs. International Conference on Aerospace and Aeronautical Meteorology, American Meteorological Society, 219-224.
- Metcalf, J. I., and J. D. Echard, 1978: Coherent polarization-diversity radar techniques in meteorology. J. Atmos. Sci., 35, 2010-2016.
- Meyer, M. B., J. E. Juisto and G. G. Lala, 1980: Measurements of visual range and radiation-fog (haze) microphysics. J. Atmos. Sci., 37, 622-629.

_____, G. G. Lala and J. E. Juisto, 1986: Fog-82: A cooperative field study of radiation fog. *Bull. Am. Met. Soc.* 67, 825-832.

- Pilie, R. J., et al., 1975: The life cycle of valley fog. part II: fog microphysics. J. Appl. Met., 14, 364-374.
- Pinnick, R. G., et al., 1978: Vertical inhomogeneity in atmospheric fog and haze and its effects on IR extinction. Preprints, Conference on Cloud Physics and Atmospheric Electricity, American Meteorological Society, 235-242.

____, et al., 1978: Vertical structure in atmospheric fog and haze and its effects on visible and infrared extinction. J. Atmos. Sci., 35, 2020-2032.

, et al., 1978: Vertical structure in atmospheric fog and haze and its effects on IR extinction. ASL TR-0010, U. S. Army Electronics Research and Development Command, Atmospheric Sciences Laboratory, White Sands Missle Range, NM, 131 pp.

_____, et al., 1983: Backscatter and extinction in water clouds. J. Geophysical Research, 88, 6787-6796.

_____, et al., 1979: Verification of a linear relation between IR extinction, absorption, and liquid water content of fogs. J. Atmos. Sci., 38, 1577-1586.

, D. M. Garvey and L. D. Duncan, 1981: Calibration of Knowlenberg FSSP light-scattering counters for the measurement of cloud droplets. ASL TR 0101, 59 pp.

- Prokh, L. Z., 1974: Some results of fog droplet size measurements in the Ukrainian Steppes. Army Foreign Sciences and Technology Center, AD/A-005 969, 16 pp.
- Rhinehart, G. S., 1969: Fog drop size distribution-measurement methods and evaluation. ECOM-5247, AD690787, 39 pp.
- Rogers, R. R. and M. K. Yau, 1989: A Short Course in Cloud Physics. 3rd ed., Pergamon Press, New York, NY, 293 pp.
- Tampieri, F. and C. Tomasi, 1976: Size distribution models of fog and cloud droplets in terms of the modified gamma function. *Tellus*, 28, 333-347.
- Telford, J. W. and S. K. Chai, 1982: Fog, stratus and cumulus formation in warm air over cooler water. Preprints, Conference on Cloud Physics, American Meteorological Society, 7-9.
- Tomine, K., et al., 1991: The vertical structure of fog observed with a lidar system at Misawa Airbase, Japan. J. Appl. Meteor., 30, 1088-1096.
- Tonna, G., 1991: Backscattering, extinction, and liquid water content in fog: a detailed study of their relations for use in lidar systems. *Applied Optics*, **30**, 1132-1140.

_____, and C. Tomasi, 1992: Phase function mean properties at visible and infrared wave-lengths within a sample of 239 fog spectra. J. Met. Soc. of Japan, 70, 105-114.

- Trusty, G. L. and T. H. Cosden, 1978: Particle size distributions in three fogs. Preprints, Conference on Cloud Physics and Atmospheric Electricity, American Meteorological Society, 211-214.
- Wobrock, et al., 1992: Meteorological characteristics of the Po Valley fog. Tellus, 44B, 469-488.
- Woodcock, A. H., D. C. Blanchard and J. E. Juisto, 1981: Marine fog droplets and salt nuclei-part II. J. Atmos. Sci. 38, 129-140.
- Young, K. C. and E. Tomlinson, 1993: Microphysical effects of irradiating a fog with a 10.6-micrometer CO2 laser. J. Atmos Sci., 50, 941-950.

Sensor	Drop dia. range	Bin size	Accuracy
FSSP 100	2 to 47 micrometers	3 micrometers	 ±1 bin
0AP 200X	10 to 310 micrometers	20 micrometers	+1 bin
0AP 200Y	150 to 4650 micrometers	300 micrometers	±1 bin

Table 1. Characteristics of Particle Measuring System, Inc. sensors

						Weather	Conditions		
ц.	light Information	-							u
Location	Date	Number	Time (GMT)	Time (GMT)	Sky Condition	Visibility WX	Temp DwPt	Mind	Kemarks
	06707	· · ·	1500-1501	1455	WIX	1/8 F	54 53	0101	RVV 1200
Vangenoerg (VDU)	101700		1513-1514						
	082792	4	1524-1525						
	082792	5	1534-1536						
	082792	6	1546-1547	1555	WIX	3/16 F	57 57	3205	
	082792	7	1556-1558						
Arcata (ACV)	082892		1520-1521	1459	X0W	1/8 F	49 49	0704	R32VR 06
	082892	2	1537-1537						
	082892	3	1548-1548					2000	ALLA DAVID
	082892	4	1559-1600	1555	XOW	1/8 F	50 50	2000	LIVOU AVICA
	082892	5	1617-1618						
	082892	9	1628-1629						
	082892	7	1640-1641						03//01 8//02
	082892	8	1652-1653	1650	W1X	3/8 F	51 51	1604	06421 AV26A
	082892	6	1817-1817	1754	W2X	3/4 F	52 52	2406	K32VK 30V60
	082892	10	1828-1829	1827	W3X	1 1/4 F		2607	
	000000	-	1440-1441	1351	WIX	1/4 F	55 55	3103	
Santa Mana (SMA)	092392	3	1501-1502	1450	-X E2 OVC	3/8 F	55 55	3103	F8
	002000	-	1773-1775	1650	X1W	1/2 VR-F	53 53	090	Visibility 1/4-3/4
Worcester (UKH)	092607		1734-1736						
	092692		1745-1747	1750	WIX	1/2 VR-F	55 54	090	Visibility 1/4-3/4
	092692	4	1755-1757						
	092692	5	1806-1808						
	092692	\$	2116-2117	2050	WIX	1/4 L-F	55 55	0010	
	092692	1	2126-2128						
	092692	8	2139-2141	2150	WIX	1/4 L-F	54 54	0608	
(JUC)	002892		1147-1147	1050	W1X	0 F	51 50	0000	
	092892	2	1155-1155	1154	X.	1/16 F	50 50	0000	F9
	092892	3	1203-1204						
	092892	4	1214-1214						
	092892	5	1235-1235						2
	092892	6	1247-124	1 1257	×.	1/16F	53 52	0000	2

Table 2. Approaches/Landings in fog for the Synthetic Vision Flight Test Program

Table 3. Fog parameter comparisons

	20.	Incident	4								
	od(• 9 • •		Jan	Max number of drops (per cm^3)	Ractius of maximum (µm)	Median volume radius (µm)	Liquid water content (enr ³)	Instrumentation and size	Min. surface	Remarks	Reference
	Advection	Hanscom AFB.	Nov. 18, 1958	108	e -			(intra street	visionary (m)		
		MA		<u>8</u>	8-16 8-16	£	0.36 max	Optical particle counter Armour Research foundation	8	Sampling errors Bicely	Ekhridge 1961
I	Advection	Otic AED MA	1.4.11 1000					I-64			
			0961 '11 kinr	8	0.15 8	48	0.4 max 0.11 mean	FSSP-100 (PMS)	AN N		Kunkel 1981
	Advection	Arcata, CA	June 24, 1968	8	5-10	NA		(17-17-)			
				8 -	5 R	5	5	Impact on formvar solution	AN N		Rhinchart 1969
	Advection	Arcata, CA	Jub 15, 1976	uuu.				MI-7			
				000	03.04	¥	ž	Active Acrosol	ž		Trusty 1978
				8	3.5			Spectrometer Probe (PMS)			
2	Advection	Nova Scotia	Mav 18 1077		;			c1-170			
-		(at sea)			1.0	£	₹	Active Aerosol	¥		Thusty 1978
				3	P			Spectrometer Probe (PMS)			
	Advection	San Fransicso	Inh 17-18-1074	0000				CI-I'N			
		ð		64-00	۰. ۳	ž	0.04 max	Impact on soot coated slide 2.50	¥	Mean radius and liquid water	Goodman 1977
<u> </u>	Advection	Vandenhero AFR	Simme 1011							BILLEASOU WILL DE	
		ð		IC-20		Y	0.14 max 0.08 mcan	Gelatin replication Cornell Aeronautical	400		Mack et al. 1972
								Laboratory 15.100			
	Advection	Brunswick NAS.	July 16 27 1990	umoi				mL~1			
		WE		30	24	¥.	ž	Rain spectrometer (PMS) 0.1-150	20	Part of the International FI ADD	Koenig 1993
						_					

_

-

Table 3. Fog parameter comparisons (cont.)

.

Reference	Piele et al. 1975	Lala et al. 1982	Pirmick et al. 1978	Prokh 1974	Meyer 1980	Fuzzi et al. 1992	Kurita et at. 1990
Remarks	Bimodal after vis. minimum		Bimodal and increase particle size and concentration with height				
Min. surface visibility (m)	1000	80	<1000	છ	VN	VN	200
instrumentation and size range (µm)	Impact on Gelatin Slides 2-36	FSSP-100 (PMS) 0.1-47.5	Classical scattering aerosol spectrometer (PMS) 0.2-40	Impact on oil coated slides 8-80	Royco optical particle counter 0.3-15 Gelatin Stides 2-46	FSSP-100 0.5-47.5	Impact on colloidal film
Liquid water 1 content (gm ⁻³)	0.2 max 0.06 typical	0.45 max 0.1-0.4 range	0.4 max 0.01-0.4 range	NA	V V	0.7 max 0.1 to 0.3 typical	VN
Median volume radius (µm)	(2-4mean)	NA	AA	NA	VN	8	V Z
Radius of maximum (nm)	9-3 and 6-12	NA	 4 6.8 6.8 	10 and 20-24	0.5 to 1.0 10	10-20	2-3 and 7-10
Max number of	12-25	NA	1000 100-300	66 -9	80 60	VN	VN
Date	Aug-Sept. 1970	Oct. 10-14, 1981	Feb. 21-26, 1976	1959-1962	0d. 1977	Nov. 10-17, 1989	Dec. 9,1985
Location	Chemung River Valley	Albary, NY	Graferwohr West Germany	Zhortnevoya Uhrain	Albary, NY	Po Valley, Northern Italy	Karto Plain, Japan
Fog Type	Radiation	Radiation	Radiation	Radiation	Radiation	Radiation	Radiation

(concluded)
ameter comparisons
pai
Fog
Table 3.

_					
Reference	This report	This report	This report	This report	This report
Remarks	Birnodal	Max parameters at upper altitudes himodal	Multimodal	Rain and fog drizzle and fog	At lowest level measured (60 m)
Min. surface visibility (m)	102	183	402	402	0(prevailing)
Instrumentation and size range (um)	FSSP-100 and OAP 200y 2-300	FSSP-100 and OAP 200x 2-300	FSSP-100 2-47	FSSP-100 and OAP 200y 2-4500	FSSP-100 2-47
Liquid water content (emi ³)	0.73 max	0.57 max 0.43 max	0.46 max	0.36 max 0.34 max	0.18 max
Median volume radius (µm)	11-2	6-8 26 max 52 max	6-11	1000 тах 9	
Radius of meximum (µm)	5-7	11-14 11-14	5.8	£ £	811
Max number of drops (per cm ⁻³)	200	235 320	150	280 187	57
Date	Aug. 27, 1992	Aug. 28, 1992 Augs. 28, 1992	Sept. 23, 1992	Sept. 26, 1992	Sept. 28, 1992
Location	Vandenberg AFB, CA	Arcala, CA Arcala, CA	Santa Maria, CA	Worcester, MA	Huntington, WV
Fog Type	Advection	Advection	Advection	Fronta/w rain Fronta/w drizzle	Radiation

Fog Parameter	Inland Radiation	Coastal Advection
d (µm)	10	20
Range of d (µm)	5-35	7-65
LWC (gm ⁻³)	0.11	0.17
n (cm ⁻³)	200	40
Visibility (m)	100	300

Table 4. Typical fog properties (from Kocmond, et al., 1969)

Table 5. Changes with altitude and time for fog charactertistics

			Locations		
Parameter	Vandenberg AFB, CA	Arcata, CA	Santa Maria, CA	Worcester, MA	Huntington, WV
LWC	increases	increases	increases	variable	increases
Nt	increases	increases then decreases	increases then decreases	increases then decreases	variable
MVR	decreases then increases; peak near surface	constant peak near surface	constant peak near surface	variable	decreases then increases

Altitude Changes

Time Changes

			Locations		
	Vandenberg AFB, CA	Arcata, CA	Santa Maria, CA	Worcester, MA	Huntington, WV
LWC	variable	increases	increases	increases then decreases	increases
Nt	decreases then increases	increases	increases	slight increases	increases
MVR	decreases	constant	constant	increases	constant

:=

;

Fig. 2. Synthetic Vision experimental aircraft instrument landing system (ILS) approach distances.

Fig. 4. Temperature vs. altitude for all aircraft approaches to Vandenberg AFB, CA.

Vandenberg AFB, CA, August 27, 1992. Approach-2 (1500 GMT)

Vandenberg AFB, CA, August 27, 1992, Approach-2 (1500 GMT)

Vandenberg AFB, CA, August 27, 1992. Approach-4 (1524 GMT)

Vandenberg AFB, CA, August 27, 1992. Approach 6 (1546 GMT)

Vandenberg AFB, CA, August 27, 1992, Approach-4 (1524 GMT

Vandenberg AFB, CA. August 27, 1992. Approach 6 (1546 GMT)

Fig. 6. Drop size distribution logarithm plots for Vandenberg AFB, CA.

Vandenberg AFB, CA Drop Size Distribution for 20 meter Altitude for Sequential Approaches

Vandenberg AFB, CA Drop Size Distribution for 80 meter Altitude for Sequential Approaches

Fig. 7. Drop size distribution for 20 and 80 m altitude for Vandenberg AFB, CA.

Fig. 8. Liquid water content and medium volume radius for Vandenberg AFB, CA.

Vandenberg AFB August 27, 1992 (1534, 1546, 1556 GMT) Total particles (cm-3) 60 30 180 120 06 50 20 Altitude for Sequential Approaches (m)

Fig. 9. Total number of particles for Vandenberg AFB, CA.

-

Fig. 11a. Drop size distribution for Arcata, CA.

Fig. 11c. Drop size distribution for Arcata, CA.

Arcata CA, Approach 1 (1520 GMT)

Fig. 12. Drop size distribution for approach 1, Arcata, CA.

Arcata Approach 9 (1816 GMT)

Fig. 13. Drop size distribution for approach 9, 10, Arcata, CA.

Arcata, CA Drop Size Distribution for 20 meter Altitude for Sequential Approaches

Arcata, CA Drop Size Distribution for 80 meter Altitude for Sequential Approaches

Arcata, CA Drop Size Distribution for 160 meter Altitude for Sequential Approaches

Arcata, CA Drop Size Distribution for 20 meter Altitude for Sequential Approaches

Arcata, CA Drop Size Distribution for 80 meter Altitude for Sequential Approaches

Fig. 14. Drop size distribution for 20, 80, 160 m altitude for Arcata, CA.

Fig. 16a. Liquid water content and median volume radius for Arcata, CA.

Fig. 16b. Liquid water content and median volume radius for Arcata, CA.

Arcata CA, Approach 1, 2, 3 (1520, 1537, 1548 GMT)

Arcata CA, Approach 4, 5, 6 (1559, 1618, 1628 GMT)

Fig. 17a. Total number of particles for Arcata, CA.

Arcata Approach 9, 10 (1816, 1828 GMT)

Fig. 17b. Total number of particles for Arcata, CA.

Santa Maria, CA September 23, 1992

;

Fig. 20. Temperature vs. altitude for Santa Maria, CA.

Fig. 21. Liquid water content and median volume radius for Santa Maria, CA.

Fig. 23. Drop size distribution for Worcester, MA, logarithm plot.

=

Log concentration (per m3 per

:

Fig. 27. Liquid water content and median volume radius for Worcester, MA.

Fig. 28. Liquid water content and median volume radius for Worcester, MA., FSSP only.

Fig. 29. Total number of particles for Worcester, MA.

Fig. 30a. Drop size distribution for Huntington, WV, logarithm plot.

-

=

ж —

-

Log concentration (per m3 per micrometer)

1 M - 141

_

Fig. 30b. Drop size distribution for Huntington, WV, logarithm plot.

Log concentration (per m3 per micrometer)

Huntington, WV, Approach 4, 5, 6 (1214, 1235, 1247 GMT) Huntington, WV, Approach 4, 5, 6 (1214, 1235, 1247 GMT)

Fig. 31. Drop size distribution for Huntington, WV.

Fig. 32. Liquid water contents and median volume radius for Huntington, WV.

Huntington, WV, Approach 1, 2, 3 (1147, 1155, 1203 GMT)

Huntington, WV, Approach 4, 5, 6 (1214, 1235, 1247 GMT)

Fig. 33. Total number of particles for Huntington, WV.

-

.

·
APPENDIX A

.

•

Drop size concentration data and related parameters

_

						⇒ ₹	andenberg uaust 27, 19	AFB, CA 792.								
Annooch	Allinde (m)	bin 1	bin 2	5 nld	h nld	bin 5	pin 6	bin 7	e ujq	bin 9	01 uid	ll nld	bln 12	El nici	bin 14	51 UQ
Number	Beain time	End time					Ż	imber (per cu	bic m)							
	144804	144843					Slz	e:3 microns	Range:2-47 m	licrons	¢	c	c	c	c	c
	390	1.92E+05	9.09E+04	2.02E+04	0	0	0	0	0	0	- 0	5 0	- c	,		
	380	1.64E+05	1,47E+05	1.01E+04	3.38E+04	0	0	0	0	0		. .	-) (. .
	370	1.35E+05	2.03E+05	o	6.76E+04	0	0	0	0	0	0 0	-	-	5 0	- c	
·	360	1.62E+05	1.62E+05	8.11E+04	0	0	0	0	0	0	0	0	0	5	,	0
	350	0	0	1.63E+05	0	0	0	0	0	0	0	0 0	- C	-	-	-
	ADD.	4 07F+05	8 14F+04	0	0	0	0	0	0	0	0	0		.	.	- -
	330	4.87E+05	8.11E+04	0	0	0	0	0	0	0	0	0	0 0	0	- -	- -
	000	1.62F±05	A 096+04	0	0	0	0	0	0	0	0	0	0	0	•	, ,
	310	2.43E+05	0	4.05E+04	0	0	0	0	0	0	0	0	0 (-	5 0	5 0
		4 04F+05	0	0	0	0	0	0	0	0	0	0	0 (.	. .	- c
	2000	B.03E+04	8.03E+04	0	0	0	0	0	0	0		0 (0 0		-	
- ,-	2.2 DRC	3.415+05	601F+04	0	0	0	0	0	0	0	0	0	.	5	.	
	020	3 24F±05	2 43F+05	1.62E+05	0	0	0	0	0	0	0	0	0	5 (- 0	,
	0/7	A ADE+DS	2 436405		C	0	0	C	Ò	0	0	0	0	0		
	200	6.44CTOD	2.43C+00				4.03E+04	0	0	0	0	0	0	0	0	0 (
		0.20E+U3	4,005104			2 71F+04	C	0	0	0	0	0	0	0	0	0
-	240	/.246+05	2. loe+us	0.40E+04	0				0	0	0	0	0	0	0	0
-	230	1,056+06	8. IUE+U4							c	C	0	0	0	0	0
-	220	1.41E+06	2.04E+05	: ייי	- (.		00				0	0	0	0	0
-	210	1.34E+06	3.02E+05	7.51E+04	o '	0		0	0				C	0	0	0
-	200	1.08E+06	3.20E+05	2.67E+04	0	0	2.6/E+U4	.	. .	0	o c				C	0
-	061	1.21E+06	2.63E+05	7.84E+04	0	0	0	0	0	.	.	0 0				C
. –	180	6.98E+05	4.44E+05	0	0	0	0	0	0	D		.	.		0	o c
	021	1.20E+06	4.91E+05	8.18E+04	0	0	0	0	0	0	0	D	5	5	5	5
	1 4505.8	150110										I	(¢	c	c
			2 AKELUS	A 50F+04	C	0	0	0	0	0	0	0	0		.	0
N	000	1 /.UZE+U3	2.406100	4.07LTO		A OAF+Dd		0	0	0	0	0	0	0	0	0
N		1.035+00	2.19ET00	0.400-104		A 70F104	3 60F+04	0	0	0	0	0	0	0	0	0
2	2	1 1.0/E+U/	1.495+0/		4,200,00		1 385405	3 455+04	0	0	0	0	0	0	0	0
0		0.09E+U/		0.436+U/	3.73C+00	9 1 AF 400	1 01F+06	3.03F+05	3.37E+04	3.37E+04	0	0	0	0	0	0
Z	22	1 4.30E+U/	1,005-00	0.717.0	0.470.07	2.146.00		2 37F+05	1.355+05	6.75E+04	6.78E+04	0	0	0	0	0
2 (0.500E+U/	Z.40E+00	0.325.07	0,000-107	2.04c+00	0.43E+06	4 40F+05	2.03E+05	6.77E+04	0	0	0	0	0	0
2	191	1 5.U8E+U/	1.59E+U8	9.3/E+U/	2,00510/	3.126+00	0.005405	A ME+05	2 46F+05	2.21E+04	4.41E+04	0	0	0	0	0
2	140	3.395+0/	9./BE+U/	8.28E+U/	1.4/6+0/	1.415400	7.77L100	3.0364.05	7 D6F+04	7.06F+04	0	0	3.29E+04	0	0	0
2	130) 1.94E+07	2.81E+0/	9.91E+U0		0.0UE+U5	3.43C103	3.03540.07	2 30E407	1 ORE+07	2 13F+06	5.74E+05	1.02E+05	6.75E+04	0	0
2	120) 2.15E+07	2.98E+07	1.61E+07	1.39E+07	1.9/E+U/	2.48E+U/	2.54E+U/	2.395107	1.0461.07	2.136.06	1 DEFAUX	5 625+05	7 02F+04	0	0
2	110) 2.74E+07	3.01E+07	1.92E+07	2.16E+07	3.23E+07	2.65E+U/	2.8UE+U/	Z,43E+U/	1.051-07	3.77ET00	1 2 4 5 1 0 4	3 22E+05	O DAFADA	2 31F+04	2.31E+04
2	201) 2.65E+07	2.86E+07	1.85E+07	2.13E+07	2.95E+07	2.73E+07	2.85E+07	2.46E+U/	1.286+07	3.00E+U0	1.346+00 7.041-05	3.22CT03	1.056405		
	96) 2.38E+07	2.53E+07	1.72E+07	2.07E+07	2.60E+07	2,43E+07	2.30E+07	2.17E+07	1.11E+U/	4.U5E+U0	5, YOE+U3	1./36+03		o c	
	BC	1 2.22E+07	3.05E+07	· 2.29E+07	1.72E+07	1.98E+07	1.75E+07	1.55E+07	1.31E+07	5.38E+06	1.62E+06	3./UE+U5	0.92E4U4	0.9/E1U4	2	
10	ž	0 230F+07	3.295+07	· 2.71E+07	2.20E+07	1.88E+07	1.276+07	1.095+07	6.41E+06	2.57E+06	8.80E+05	1.06E+05	3.53E-104	0 ; ;	- 0	. .
4 6	. . .		1 3 AAF+07	1 2 66F+07	1.82F+07	1.99E+07	1.39E+07	1.20E+07	1.06E+07	5,28E+06	2.04E+06	6.08E+05	7.28E+04	2.43E+04		• •
10	5 33	2.51E+07	, 5.59E+07	3.71E+07	1.85E+07	1.27E+07	6.92E+06	4.41E+06	2.74E+06	1.05E+06	4.14E+05	4.90E+04	7.24E+04	0	Э	2
•																

c		0		3088	(5		0	0	0	0	0	0	0	0	0	0	2.45E+04	2.53E+04	C	C	2 625404		0,652	7004	C	.		יכ	0	0	0	0	3.64E+04	0	0 0	יכ	0 0	5 (о (.	0 (0 0	C	0
c	00	5 0		1.875+04	c				0	0	0	0	0	0	0	0	0	0	2.46E+04	0	Ċ				D	C		- c			0	0.00	2.305+04	0 (5	2 1 AF - 0	7.14E104	5 0	0		Z.30E1U4	5 0		1.23E+U4	1.UVE+UM	0
c		1,901-104-104		3.0UE+UK	c		5 0	о (0 0	0	0	0	0	2.36E+04	2.356+04	2.40E+04	7.38E+04	5.00E+04	5.06E+04	0	0	2.556+04	C		>	c		- C	.			.		3.46E+04	Z.34E+UM	0 705.04	4.7 ac 104	5 0) (4.7 IC+04	0 ADF - 04	2.425+04	2.40E+U4	3. IUE104	0
C	1 ROFINA				C			0		5	0	3.51E+04	0	9.54E+04	2.39E+04	7.37E+04	1.48E+05	1.24E+05	2.53E+04	4.99E+04	2.556+04	7.77E+04).56E+04	5.81E+04		C		00	0	- -	- -	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	4.39E+UM	3.40E+U4	1,416+03	7 1 46 404	1.146+04	1.00E+U3	3.335+04	2,100104	7,430.104	- c		1.47E+U3 A 37E+O4	0.3/6+04	0
7.68F+04	1 136405	1.100-004	3 30E+04	0.005100	C				0	0.//E+U4	0	7.12E+04	2.38E+04	1.20E+05	1.67E+05	2.92E+05	2.58E+05	3.46E+05	1.50E+05	1.52E+05	1.52E+05	1.28E+05	9.34E+04	5.79E+04		C			1 405.06	2 46E - 04	0.40E+UK		1.045+03	3.52E+U5	3 6 3C . OF	3.816405	0.01C100	1 435 405		0.010.00	2.005100	A BEELON	4.00C104	3.115103	1.305100	0
1.10E+05	7 52F+04	7 756404	A 15FLOS	3	C	о с		o c	0	0.70E+U4	3.50E+04	2.12E+05	1.89E+05	3.34E+05	5.01E+05	9.30E+05	3.32E+05	1.09E+06	3.74E+05	3.77E+05	2.03E+05	2.57E+05	1.09E+05	1.64E+05		C		3 416+04	1746,05	1.746100	0,100,100	0 53C105	2,035100	1,40E+U0	0.40L103	1 106+06	3 406-06	2 13F105	1 1 1 5 4 0 5	A 375.05	5 OBELOS	3 ROFINS	7 446 106	2 75E 405	2.1 VL T VL	0
4.93E+05	4.13F+05	A 136404	1 455+06		C			A AOFADA	1 775, OF	3.726103	3.13E+05	5.30E+05	6.85E+05	1.24E+06	1.59E+06	2.59E+06	1.44E+06	2.55E+06	8.50E+05	9.36E+05	5.58E+05	8.20E+05	3.41E+05	1.92E+05		C	2 23E+04	1.36F+05	1 2264 05	3 14F105		1.016405	1.000100	9.4.7.0E+00	3 OKE4/05	3.34F+06	1 015406	2 2/E+06	3 446+05	2 AOFADA	1 125406				r. 201-100	0
9.36E+05	1.18F+06	2 73E+05	2.73L+06		C	6.79F+04	0	1 58F+05	1.066406	0.700.05	9.72E+U5	2.09E+06	2.31E+06	3, 13E+06	3, 19E+06	5.74E+06	2.29E+06	6.37E+06	2.13E+06	2.06E+06	1.24E+06	1.92E+06	8.23E+05	4.93E+05		0	2.23F+04	2 73F+05		1 105405	3 405405		1.056.07	7 755404	0.43E406	7.63F+06	5.556+06	5.85F+05	9.86F±06	6 6 1 E + 0 6	3.0754.06	2.21F+06	3 ORE-UK	1.88F+06		3.47E+04
2.39E+06	2.48E+06	4.87F+05	3.42F+06		0	1.59E+05	1.03E+05	4 55F+05	1 OAF+DA	0.70C100	Z.Z5E+U0	0.01E+U0	5.U3E406	5.62E+06	5.54E+06	B.00E+06	4.65E+06	8.895+06	3.76E+06	3.47E+06	2.11E+06	3.24E+06	1.41E+06	7.61E+05		0	4.46E+04	1.195+06	5 755406	5.58F+06	1.34F+06	8.56F+06	2 50E+07	1.48F+07	1.29E407	1.276+07	1.165+07	1.16E+07	1.21E+07	1 165+07	6.21E+06	5.53F+06	6 94F+06	3.80E+06		0
5.03E+06	4.43E+06	1.05E+06	4.54E+06		0	7.67E+05	2.06E+05	1.14E+06	2 94F+06	A 3/6+06	4.346+00	0.34E4U0	0./4E+U0	7.3/E+U6	8.Z3E+U0	1.09E+07	8.52E+06	1.15640/	6.09E+06	6. }6E+06	4.38E+06	6.47E+06	3.21E+06	1.82E+06		0	2.23E+05	3.79E+06	1.21F+07	1.195+07	3.83F+06	1 21F+07	3 20E407	2.24E+07	2.116+07	1.62E+07	1.96E+07	1.89E+07	1.84E+07	1.80F+07	1.165+07	9.47E+06	1.046+07	6.27E+06		3.47E+04
7.26E+06	B.72E+06	3.28E+06	4.87E+06		0	2.53E+06	1.68E+06	2.99E+06	4.67F+06	7 24E406	1.205+00		8.04E+U0	1.42E+U/	1.386+U/	1.8/E+U/	1.0/E+U/	1.0/E+U/	1.15E+0/	1.28E+07	1.01E+07	1.21E+07	6.99E+06	4.38E+06		0	9.15E+05	1.27E+07	1.92E+07	1.56E+07	7.19E+06	1.09E+07	3.55F+07	2.66E+07	2.41E+07	1.95E+07	2.84E+07	2.36E+07	1.96E+07	2.74E+07	1.73E+07	1.57E+07	1.52E+07	1.04E+07		3.47E+04
1.13E+07	1.61E+07	1.37E+07	6.82E+06		0	1.93E+07	1.44E+07	1,17E+07	2.27E+07	2 60F+07	3 475,07	3.42CTU/	1.000+00/	4.77E+U/	3.705+U/	3.01E+U/	3.41E4U/	2.03E+U/	Z.84E+U/	2.38E+U/	2.29E+07	2.35E+07	2.20E+07	1.66E+07		2.82E+04	4.93E+06	3.75E+07	3.37E+07	3.39E+07	1.71E+07	1.26E+07	2.91E+07	2.98E+07	2.96E+07	3.45E+07	2.98E+07	2.74E+07	2.27E+07	3.01E+07	2.41E+07	2.23E+07	1.96E+07	2.10E+07		9.62E+04
1.87E+07	2.18E+07	2.14E+07	1.11E+07		2.14E+05	6.65E+07	1.26E+08	5.88€+07	1.07E+08	6.89F+07	4 235407	3 22E+07	0.526107	7, JZETU/	7.001107.07	Y.00E+U/	0.12E1U/	0,10E1U/	5 001-360.1	5.22E+U/	5.5/E+U/	3.02E+07	2.98E+07	3.01E+07		1.41E+05	1.70E+07	5.50E+07	4.54E+07	3.24E+07	2.19E+07	2.20E+07	2.40E+07	3.82E+07	5.35E+07	8.01E+07	3.38E+07	4.60E+07	4.73E+07	2.986+07	3.72E+07	3.37E+07	3.54E+07	2.43E+07		1.92E+05
3.73E+07	3.88E+07	3.42E+07	1.31E+07		6.84E+05	6.70E+07	1.99E+08	1.106+08	1.06E+08	8.59E+07	5375407	2.27E+07	5.41E+07	A ADELOT	7 206 103	A 205-07	0.22ETU/	1 435,00	7 001 03	7.99E+U/	V.92E+U/	5,01E+07	5.63E+07	4.20E+07		9.84E+05	1.95E+07	5.00E+07	4.56E+07	3.81E+07	1.86E+07	4.16E+07	3.62E+07	4.22E+07	5.07E+07	7.16E+07	4.03E+07	5.25E+07	6.52E+07	3.49E+07	6.12E+07	5.95E+07	7.69E+07	4.32E+07		1.02E+06
2.31E+07	2.94E+07	2.98E+07	1.23E+07	151343	1.11E+06	2.04E+07	4.51E+07	5.73E+07	3.22E+07	3.83E+07	4 86F+07	1 435407	2 K2E407	2 75E+07	3 14E407	3.10C+07	2.74C+07	4316407	3.24E.07	3.200+07	4.42E+U/	3.10E+U/	4.01E+07	3.425+07	152434	1.08E+06	7.44E+06	1.96E+07	2.13E+07	3.37E+07	9.14E+06	1.99E+07	2.35E+07	2.22E+07	2.63E+07	3.296+07	2.936+07	2.50E+07	2.92E+07	2.13E+07	2.79E+07	3.43E+07	4.49E+07	3.40E+07	153543	1.25E+06
40	30	20	0	151247	200	061	180	170	160	150	140	130				3 8		02	04	3	Ş Ş	40	9 S	20	152342	200	190	180	170	160	150	140	130	120	011	<u>8</u>	8	80	70	60	50	40	30	20	153429	210
2	N	2	2	approach	e	e	ຕ ່	e	e	en E	e	e	. 07	6	.) (7			» «	, u			n (5	approacn	4	Р	ע	Р	4	Р	4	Р	Р	4	4	ዋ	4	4	4	4	4	Ъ		approach	S

0	0	0	0	0	0	0	0	0	1.886+04	0	0	0	0	0	0	0	0	0	3638	¢	о (0	0	0	0	0	0	0	0	0 (5	0 0	0.101.0	3,69E+U4	5 0)	0 (כ ייי	2.43E+04	0	c		э ·	0
0	0	3.48E+04	0	7.01E+04	6.96E+04	0	0	0	0	0	0	0	0	0	2.71E+04	0	0	0	1.00E+04	(0 0		0	0	0	0	0	8218	1.64E+04	8218 _	0	0 0	0	1.87E+04		0 0		1.11E+05	0	0	0	Ċ		2.356+04	0
0	0	0	3.53E+04	3.48E+04	3.48E+04	1.06E+05	3.59E+04	4.86E+04	0	0	0	2.48E+04	0	0	0	0	2.01E+04	0	3624		0	0	0	0	0	2.446+04	0	1.65E+04	3.30E+04	1,65E+04	0	0	0	0 (0	0.1	4.91E+U4	3.62E+04	3.50E+04	3.64E+04	2.81E+04	Ċ	0	D	3.46E+04
0	3.59E+04	2.09E+05	1.06E+05	3.15E+05	6.96E+04	1.06E+05	3.586+04	0	3.68E+04	7.55E+04	0	2.48E+04	2.50E+04	0	0	0	0	0	5.08E+04	1		0	3.75E+04	0	4.40€+04	9.73E+04	1.51E+05	9.59E+04	4.11E+04	2.05E+04	0	7.20E+04	0	7.41E+04	0	2.44E+04	9.87E+04	2.53E+05	5.14E+04	5.77E+04	1.43E+04	4		2.35E+04	1.04E+05
7.356+04	2,15E+05	3.13E+05	2.48E+05	1.01E+06	3.48E+05	3.18E+05	3.58E+04	7.29E+04	1.88E+04	3.83E+04	1.00E+05	0	5.00E+04	5.19E+04	0	0	2.01E+04	4.17E+04	6.23E+04		0	0	1.13E+05	1.83E+05	2.04E+05	4.38E+05	3.02E+05	2.21E+05	1.40E+05	1.07E+05	7.346+04	0	1.48E+05	1.83E+04	7.36E+04	1.22E+05	2.95E+05	1.81E+05	1.74E+05	1.31E+05	9.92E+04		0	7.05E+04	2.10E+05
1.71E+06	1.40E+06	1.46E+06	1.31E+06	1.68E+06	1.36E+06	5.65E+05	2.51E+05	2.65E+05	3.546+05	7.65E+04	1.01E+05	1.24E+05	1.25E+05	5.23E+04	7.98E+04	1.19E+05	2.10E+04	2.03E+04	1.15E+05		0	3.54E+04	2.25E+05	4.02E+05	5.99E+05	9.96E+05	6.78E+05	6.35E+05	5.91E+05	4,42E+05	2.94E+05	2.16E+05	1.85E+05	2.22E+05	3.31E+05	5,13E+05	4.93E+05	8.38E+05	1.56E+05	2.37E+05	1.57E+05		•	2.12E+05	1.09E+06
8.80E+05	5.44E+06	5.78E+06	4.67E+06	5.27E+06	3.83E+06	2.40E+06	1.11E+06	1.16E+06	1.23E+06	6.05E+05	3.02E+05	5.44E+05	2.00E+05	3.08E+05	5.20E+04	2.75E+05	4.11E+04	8.24E+04	2.25E+05		0	2.83E+05	6.75E+05	1.65E+06	2.10E+06	3.45E+06	1.73E+06	1.68E+06	1.63E+06	1.40E+06	1,18E+06	3.60E+05	1.07E+06	1.11E+06	7.73E+05	1.37E+06	1.58E+06	2.44E+06	6.00E+05	8.07E+05	4.58E+05		0	6.11E+05	3.58E+06
2.59E+06	1.32E+07	1.48E+07	1.27E+07	1.42E+07	1.12E+07	6.75E+06	3.12E+06	3.75E+06	3.11E+06	2.46E+06	1.34E+06	1.83E+06	6.75E+05	8.27E+05	3.97E+05	2.35E+05	1.85E+05	1.24E+05	4.74E+05		0	8.505+05	2.81E+06	4.28E+06	7,41E+06	9.27E+06	4.52E+06	4.51E+06	4,49E+06	4.23E+06	3.97E+06	1.80E+06	3.07E+06	2.56E+06	2.91E+06	3.52E+06	4.30E+06	5.01E+06	2.24E+06	2.12E+06	1.12E+06		0	2.07E+06	7.11E+06
4.32E+06	2.36E+07	2.76E+07	2.41E+07	3.00E+07	2.11E+07	1.44E+07	6.99E+06	1.07E+07	8.67E+06	7.62E+06	3.70E+06	4.92E+06	3.08E+06	1.94E+06	6.58E+05	6.26E+05	4.52E+05	2.27E+05	9.28E+05		0	8.50E+05	6.15E+06	B.26E+06	1.55E+07	1.82E+07	1.04E+07	1.07E+07	1.10E+07	9.95E+06	8.96E+06	4.82E+06	8.18E+06	7.85E+06	8.10E+06	9.07E+06	9.00E+06	9.83E+06	4.88E+06	5.31E+06	3.28E+06		0	3.23E+06	1.36E+07
5.47E+06	2.54E+07	4.05E+07	3.87E+07	5.37E+07	3.40E+07	2.75E+07	1.68E+07	2.41E+07	1.82E+07	2.07E+07	1.116+07	1.44E+07	9.86E+06	8.19E+06	2.96E+06	1.65E+06	7.99E+05	1.38£+06	1.70E+06		0	1.51E+06	1.09E+07	1.46E+07	2.36E+07	3.10€+07	2.12E+07	2.16E+07	2.21E+07	2.00E+07	1.79E+07	1.38E+07	1.85E+07	1.95E+07	1.62E+07	1.68E+07	1.96E+07	1.86E+07	1.13E+07	1.38E+07	9.37E+06		0	7.39E+06	2.39E+07
4.70E+06	2.38E+07	3.48E+07	3.71E+07	5.35E+07	4.30E+07	3.87E+07	3.05E+07	3.59E+07	3.06E+07	3.57E+07	2.28E+07	2.96E+07	2.35E+07	1.80E+07	1.02E+07	7.12E+06	3.13E+06	4.62E+06	3.42E+06		0	1.01E+06	1.89E+07	2.06E+07	3.55E+07	3.94E+07	4.13E+07	3.91E+07	3.69E+07	3.66E+07	3.64E+07	2.59E+07	3.08E+07	3.46E+07	2.77E+07	2.89E+07	3.286+07	3.04E+07	2.39E+07	2.71E+07	2.15E+07		0	2.40E+07	6.70E+07
4.66E+06	1.94E+07	2.75E+07	2.87E+07	4.56E+07	6.89E+07	7.086+07	7.46E+07	5.22E+07	5.66E+07	5.17E+07	4.51E+07	4.63E+07	4.416+07	4.13E+07	3.40E+07	2.63E+07	1.68E+07	1.77E+07	1.08E+07		0	1.39E+06	4.13E+07	4.14E+07	5.62E+07	6.59E+07	1.30E+08	1.08E+08	8.56E+07	7.44E+07	6.32E+07	4.70E+07	4.19E+07	5.91E+07	5.90E+07	5.46E+07	5.03E+07	5.18E+07	4.55E+07	5.18E+07	4.92E+07		0	5.43E+07	1.56E+08
6.20E+06	1.48E+07	1.97E+07	2.07E+07	2.68E+07	6.04E+07	7 055+07	9.42F+07	5.916+07	9.29E+07	5.75E+07	8.09E+07	5.02E+07	5.80E+07	6.19E+07	4.97E+07	5.00E+07	4.77E+07	3.00E+07	1.84E+07		8.34E+04	2.64E+06	3.63E+07	3.98E+07	3.56E+07	4.97E+07	1.05E+08	1,03E+08	1.02E+08	9.86E+07	9.52E+07	6.6BE+07	4.80E+07	9.56E+07	1.53E+08	1.27E+08	6.81E+07	7.02E+07	1.09E+08	6.97E+07	6.24E+07		0	1.98E+07	6.48E+07
1.77E+07	2.74E+07	2.67E+07	2.91F+07	2.05E+07	3 25F+07	4 05F+07	4 7 1 F + 07	4.32F+07	5.85E+07	4 47E+07	6.94F+07	4.05F407	5.04F+07	5.97F+07	4.92E+07	6 12F+07	8.07E+07	3.69E+07	1.80E+07		1.15E+05	5.78E+06	2.32E+07	3.25E+07	2.37E+07	3.03E+07	4.04E+07	4.61E+07	5.18E+07	5.62E+07	6.07E+07	4.64E+07	3.67E+07	6.75E+07	1.07E+08	8.67E+07	5.06E+07	6.03E+07	1.11E+08	6.50E+07	6.30E+07		1.53E+05	7.85E+06	2.54E+07
1.81E+07	2.15E+07	1.84E+07	2 2 1 F + 07	1 91F+07	2 07E+07	2 66F+07	3 ORE+07	2.55F+07	3.02E+07	2 66F+07	3 11F407	2 22F+07	2 26F+07	2.57F+07	2 75F+07	3 256+07	4.59F+07	2.98E+07	1.18E+07	154635	8.41E+05	6.38E+06	1.446+07	2.67E+07	1.995+07	2.17E+07	2.60E+07	2.66E+07	2.71E+07	2.61E+07	2.52E+07	2.05E+07	1.64E+07	3.07E+07	3.86E+07	3.27E+07	2.20E+07	2.42E+07	3.10E+07	2.57E+07	2.66E+07	155746	6.67E+05	1.04E+07	2.62E+07
200	190	180	021	160	150						80	D,	02		50	00	UE DE	02	9	154535	240	230	220	210	200	061	180	170	091	150	140	130	120	011	001	90	80	70	09	50	4	155623	260	250	240
ŝ	о ча) <i>ч</i> с	у и;) <i>ч</i> .	<u>,</u> к	<u>о</u> и	о <i>ч</i> с	о uz	о чл	о ч с) ч	סע	o uc	, در ا) ur) v.,) va	<u>م</u> د	approach	9	- · 0	- •0) -C) -c	C) -C	0) -C	o •0	\$	••	Ŷ	Ŷ	9	•	9	\$	Ŷ	0	\$	approach	4	7	. L

1.00

6.95F+04							0	2.446+04	3.70E+04	C						0	0	0	C		o c		0	Þ
3.54F+04		2 APE+DA					7,196+04	0	0	C				0 0		D	0	0	C					5
0	C	4 76F+04		2.39F+04		1.07E+05	0	2.43E+04	0	2.40E+04	4.90E+04	3 6254 04	1 ROF+CM		·	D	0	0	0					5170
1.40€+05	C	2.42E+04	1.775+05	1.20E+05	3.586+04	1.79E+05	7.17E+04	2.44E+04	3.70E+04	0	7.356+04	C		2 405 404	2.47C104	D	0	2.56E+04	0	C			1 225.04	
3.49E+05	1.17E+05	2.39E+05	2.83E+05	1.44E+05	3.58E+04	2.86E+05	2.63E+05	1.93E+05	2.21E+05	9.66E+04	1.23E+05	3.62E+04	3.735404	2.70E40A	2.471704		2.50E+04	2.496+04	0	C	2 615+04	C	5173	C710
1.76E+06	1.63E+05	7.90E+05	1.27E+06	9.09E+05	6.08E+05	1.07E+06	4.54E+05	5.51E+05	4.79E+05	1.22E+05	2.95E+05	1.09E+05	1.86E+04	A 05EADA		4.04E+U0	1.00E+05	1.26E+05	2.57E+04	2.546+04	3 856+04	5.84E+04		2.001
4.55E+06	1.28E+06	2.27E+06	2.97E+06	2.15E+06	9.31E+05	2.72E+06	1.29E+06	1.57E+06	1.40E+06	6.08E+05	8.58E+05	4.73E+05	3.36E+05	2 2AF+05	0.376.0E	0.725100	2.76E+05	2.03E+05	1.28E+05	1.29E+05	1.036+05	9.73E+04	3 7AFAOA	
1.07E+07	3.78E+06	6.59E+06	6.87E+06	6.15E+06	4.26E+06	7.21E+06	5.07E+06	4.60E+06	4.12E+06	2.78E+06	3.58E+06	1.61E+06	1.14E+06	7 47E+05	2315.06	2.015100	1.11E+06	1.16E+06	1.286+05	8.946+05	2.96E+05	3.11E+05	7 DAF + DA	5
1.95E+07	6.84E+06	1.33E+07	1.376+07	1.266+07	9.45E+06	1.29E+07	1.28E+07	1.27E+07	1.14E+07	7.82E+06	8.78E+06	5.82E+06	3.94E+06	2.84F+06	7 30E106		3.3/E1U0	3,39E+06	5.34E+05	2.12E+06	7.82E+05	7.97E+05	2 18F+05	201121
3.07E+07	1.40E+07	2.11E+07	2.42E+07	2.39E+07	1.79E+07	2.58E+07	2.91E+07	3.12E+07	2.85E+07	2.38E+07	2.17E+07	1.75E+07	1.33E+07	1.10F+07	1 OVEAU?	1.2467.07	1.255+U/	1.01E+07	2.60E+06	7.21E+06	2.55E+06	2.39E+06	7.36F+05	
5.72E+07	2.87E+07	3.91E+07	3.77E+07	· 3.92E+07	2.81E+07	4.55E+07	4.97E+07	4.99E+07	4.77E+07	4.27E+07	3.94E+07	3.60E+07	2.96E+07	2.49E+07	3 456407	10,1000	Z'YOE+U/	2.35E+07	9.10E+06	1.68E+07	7.77E+06	5.67E+06	2.57E+06	
1.31E+08	5.99E+07	8.22E+07	1.18E+08	9.56E+07	5.99E+07	1.06E+08	1.09E+08	9.92E+07	9.11E+07	8.88E+07	8.00E+07	7.27E+07	6.62E+07	5.73E+07	6 26F+07		0.545+07	5.19E+07	3.19E+07	3.91E+07	2.25E+07	1.22E+07	9.21E+06	
6.61E+07	4.09E+07	5.70E+07	8.11E+07	7.27E+07	4.95E+07	9.32E+07	9.13E+07	1.11E+08	9.55E+07	1.01E+08	9.95E+07	9.08E+07	9.85E+07	1.246+08	8 44F+07		/.236+0/	6.0/E+0/	7.06E+07	5.53E+07	4.46E+07	1.88£+07	1.65E+07	
2.92E+07	2.84E+07	3.35E+07	3.59E+07	3.59E+07	2.77E+07	3.79E+07	3.46E+07	4.00E+07	3.86E+07	4.47E+07	4.69E+07	4.59E+07	5.20E+07	8.20E+07	5 60F+07	4 346 407	4.305107	4.51E+0/	9.58E+07	4.52E+07	7.09E+07	2.51E+07	1.39E+07	
2.56E+07	2.47E+07	2.42E+07	2.49E+07	2.48E+07	1.79E+07	2.58E+07	2.31E+07	2.45E+07	2.06E+07	2.05E+07	2.12E+07	2.05E+07	2.11E+07	2.94E+07	1.96F+07	1 036 .07	0.01100	2.041-107	2.96E+07	1.69E+07	3.88€+07	2.08E+07	7.23E+06	
230	220	210	200	190	180	170	09l	<u>03</u>	140	130	120	011	<u>8</u>	06	80	22		2	22	40	30	20	2	

						>∢	andenberg ugust 27, 19) AFB, CA 992								
Approach	Attiude (m)	l nid	bin 2	bin 3	bin 4	bin 5	9 uq	bin 7	bin 8	bln 9	01 Hq	11 nld	b.in 12	bkn 13	bin 14	bin 15
Number	Begin lime	End time					Ż	umber of drop	s (per cubic r	neleń						
approach	144804	144843			1	I	15	te: 20 microm	elers Range:	10-310 mkr	omelers	¢	Ċ	c	c	c
-	390	0	0	0	0	0	0	D	Ð	C	5			.	о (.
-	380	0	0	0	0	0	0	0	0	0	0	0	0	0	0 (0 (
-	370	0	0	0	0	0	0	0	0	0	0	0	0	o		
-	360	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
-	350	0	0	0	0	0	0	0	o	0	0	0	0	0	0	0
-	340	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	330	0	0	0	0	0	0	0	0	0	0	Õ	0	0	0	0
	320	0	0	0	0	0	0	0	0	0	0	ō	0	ç	0	0
	310	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	300	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	290	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
-	280			0	0	0	0	0	0	0	0	0	0	0	0	0
	270				0	0	0	0	0	0	0	0	0	0	0	0
	092						0	0	0	0	0	0	0	0	0	0
	250							0	0	0	0	0	0	0	0	0
	072								0	0	0	0	0	0	0	0
	0.5							0	0	0	0	0	0	0	0	0
	227							C	0	0	0	0	0	0	0	0
	210			1322			0	0	0	0	0	0	0	0	0	0
								0	0	0	0	0	0	0	0	0
							0	0	0	0	0	0	0	0	0	0
- ,	180							0	0	0	0	0	0	0	0	0
					• ⊂			c	0	0	0	0	0	0	0	0
	145058	011031	2	,	>	0)	1	•							
onouddo 0			C	C	0	0	0	0	0	0	0	0	0	0	0	0
• ~	200				0	• •	0	0	0	0	0	0	0	0	0	0
	190	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	180	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	170	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
N	160	2.11E+04	0	0	0	0	0	0	0	0	0	0	0	0	0	0
8	150	0	5505	0	0	0	0	0	o	0	0	0	0	0	0	0
2	140	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
CN	130	0	0	0	0	0	0	0	0	0	0	0	0	0	0	o
2	120	1.30E+06	8.82E+04	0	0	1029	0	0	0	0	0	0	0	0	0	0
N	110	3.30E+06	3.77E+05	0	0	0	0	0	0	0	0	0	0	0	0	0
Q	100	3.20E+06	2.796+05	1.56E+04	2057	0	0	400	0	0	0	0	0	0	0	0
N	8	2.82E+06	2.80E+05	5225	1548	0	0	009	490.2	0	0	0	0	0	0	0
N	80	1.81E+06	1.36E+05	3533	0	1403	0	0	328.7	0	0	0	0	0	0	0
. 1	70	2.04E+06	1.65E+05	5330	0	0	0	0	0	0	0	0	0	0	Ö	0
	60	2.83E+06	2.38E+05	1.09E+04	1083	0	0	825.3	1015	285.3	0	0	0	0	0	0
	202	1.99E+06	2.61E+05	3.51E+04	1641	1473	543.3	0	346.3	0	0	0	329.2	0	0	0

It into a

-

1

C			0		0) C) C						0	0	0)	C			0				0	0	0	0) C	2	0
C			0 0	I	0	0	0							• 0	0	G	0 0	0	0	0	416.7	0	0)	C			0	0	0	0	0	0	0	0	0) C) C	כ	0
0	Ċ		0	ı	0	0	0	0 0				0 0	0	0	0	0	0	0	0	0	0	0	0	1	C	0	0	. 0	0	0	0	0	0	0	0	0	c) c	2	0
0	0		0		0	0	0	0 0	0			0	0	0	332.4	0	0	0	0	339	0	0	0	1	C	0	0	0	0	0	0	0	0	0	0	0	0		0 0				، د	>	0
0	0		0		0	0	0	0	0	0	• •	0	0	0	0	0	0	0	0	0	0	0	112.6		C	0	0	0	0	0	0	0	0	0	0	0	0		200 200				, c	>	0
0	0	. 0	0		0	0	0	0	0	0	0	0	0	0	0	0	282.9	0	0	0	0	177.2	111.6		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	C	281.8	283.2	1	>	0
0	0	0	0		0	0	0	0	0	0	0	0	0	0	0	0	0	597.5	0	301.9	0	184.7	116.2		0	Q	0	0	0	0	0	0	0	0	0	0	0	868	290.3	C	293.7	ROLA	500.2		0
0	0	0	253.2		0	0	0	0	0	0	0	0	0	0	0	0	0	1059	0	1426	357.3	436.2	265.6		0	0	0	0	0	0	0	503.5	0	0	0	0	0	0	Ģ	0	0	526.8	2.222	\$	0
0	0	525.8	131.8		0	0	0	0	0	0	0	0	0	0	426.7	0	0	864.3	436.7	3489	0	534	339.1		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	852.3	645	184.3		0
0	0	679.2	1854		0	0	0	0	0	0	0	0	0	1083	0	0	547	1661	2228	5594	0	2725	1695		0	0	0	0	0	0	0	0	0	0	0	0	801.5	804	538	813.5	549.3	1932	1397		0
1124	573.2	3279	4060		0	0	0	0	0	0	0	0	0	0	4454	2225	2996	6778	5319	1.29E+04	0	7129	5249		0	0	0	0	0	0	0	0	0	1096	728	1089	3276	4374	731.7	2213	2965	5242	2003		0
0	4222	1.23E+04	1.32E+04		0	0	0	0	0	0	0	0	3247	5453	5500	1.16€+04	1.66E+04	2.45E+04	2.02E+04	1.80E+04	1.81E+04	1.37E+04	1.93E+04		0	0	0	0	0	0	0	0	3221	4863	8637	1613	1.46E+04	6475	7578	4913	6598	1.89E+04	9272		0
5620	2.57E+04	4.05E+04	3.99E+04		0	0	0	0	0	2698	0	0	2.37E+04	3.67E+04	4.08E+04	6.15E+04	5.41E+04	8.28E+04	5.68E+04	7.41E+04	3.83E+04	6.73E+04	5.14E+04		0	0	0	0	0	0	1785	8075	2.18E+04	2.46E+04	2.37E+04	1.09E+04	2.73E+04	4.10E+04	3.11E+04	3.04E+04	3.17E+04	3.846+04	3.52E+04		0
1.26E+05	3.44E+05	4.12E+05	3.75€+05		0	0	0	3857	5775	3.47E+04	1.16E+04	2.33E+04	2.15E+05	3.04E+05	4.93E+05	6.70E+05	4.85E+05	6.62E+05	4.70E+05	6.11E+05	4.96E+05	4.43E+05	4.59E+05		0	0	0	0	1.15E+04	0	3.06E+04	1.27E+05	1.796+05	2.46E+05	3.36E+05	2.34E+05	1.64E+05	2.70E+05	1.92E+05	2.85E+05	2.63E+05	2.53E+05	2.35E+05		0
1.19E+06	1.79E+06	1.89E+06	2.12E+06	151343	0	0	0	1.47E+04	1.77E+05	3.53E+05	3.76E+05	3.11E+05	1.73E+06	2.03E+06	3.18E+06	3.86E+06	3.90E+06	3.10E+06	2.89E+06	2.94E+06	2.98E+06	2.36E+06	2.41E+06	152434	0	0	2.20E+04	2.20E+05	1.54E+05	2.20E+04	5.10E+05	1.52E+06	1.46E+06	1.46E+06	2.27E+06	1.27E+06	1.68E+06	2.17E+06	1.57E+06	1.52E+06	1.92E+06	1.56E+06	1,51E+06	153543	0
40	30	20	01	151247	200	<u>8</u>	180	170	160	150	140	130	120	011	001	8	80	20	90	20	40	30	20	152342	200	190	180	170	160	150	140	130	120	סוו	8	8	80	70	60	50	40	30	20	153429	210
2	2	2	2	approach	e	e	ო	e	e	e	e	e	e	e	e	e	e	e	e	e	en	e	n	approach	4	Р	Р	Р	Р	ч	ঘ	4	ע	ম	দ	4	ম	Р	Р	Ф	Р	Ф	4	approach	5

00	.) (0	0	0	0	0	0		,	- (-	0	0	0	0	0	378	0		2	C	,) (> (0	0	0	0	0	0	0	0	C			. .		5	0	0	0	0		0	0	0	
0 0	5 0	5	0	0	0	0	0	c		. .	יכ	0	0	0	0	0	0	0	0		5	c	5 0	.	0 '	0	0	0	0	0	0	0	0	C		,	,	.	0	0	0	0	0	0		0	0	0	
- -	5 (D	0	0	0	0	0		o c		0.700	0	0	0	0	0	0	0	0	, ,	þ	c	.	0 (0	0	0	0	0	62.39	124.8	62.39	0	C		0	. (0	0	0	0	0	369	0		0	0	C	ŧ
5 0	0	0	0	0	0	0	0	, , , ,	8		519.5	0	344.3	0	0	0	0	0			5	c	.	0	0	Q	0	0	0	0	0	0	• •			•	0	D '	0	0	0	225	0	0		0	0		I
0 0	D	0	0	438.1	0	0	C			233.8	0	0	315.8	323	326.5	0	0	C	250.2	2.002	48.59	c	.	0	0	0	0	0	0	52.04	18	52.04			0 1 2	C. 104	234.4	0	0	0	469.9	0	0	0		0	0		,
0	0	0	402.3	0	0	0	C	2 PEF B	0.002	211.3	0	0	0	0	301.3	0	0	C			78.82	Ċ	כ	0	424.5	0	168.7	0	0	143.8	287.6	143.8		о с	o		လူဂ	431.1	575	288.2	433.8	405.9	130.9	0	1	0	C		•
0	0	0	0	0	0	0	C		0.742	681.3	1381	1239	305.7	623.1	318.5	322.1	0	000	1 010	242.4	228.1	ł	D	0	0	0	0	297	0	503.3	1001	OFF F			040.0 0		454.8	452.2	0	302.2	0	199.7	0	171.4		0			2
0	0	0	0	0	2031	0			//	0	0	0	0	736	0	0	0			יכ	527.5	•	0	0	0	0	205.8	0	0	118.9	237.8	1187	1011			534.5	268.7	534	356.3	0	1075	2075	2060	837.2		C		610	
0	0	0	0	0	623	625	C			660.5	0	0	1327	452.3	0	c		355 G	0.000	101	1363		0	0	0	0	0	0	1301	868.7	136.4		2.270			6.94.5	1316	1308	0	1747	1307	1886	2536	2546	2	C		. .	>
0	0	111	0	0	1596	801	VCYL	1024	555.3	1269	854.5	0	571.3	0	0	1180	807	1015		134/	3149		0	0	0	0	0	0	0	6649		2021	1473	0/01	5 (D	2527	5032	1673	3350	2518	2318	3835	041.2	7.104	C	503	c70	2
0	0	0	0	1069	6499	1092			2266	3436	1154	1561	2311	2358	1599	7 118	3640	2000	1000	2443	6598		0	0	0	563	443.4	748.3	2267	2532	2002	2171 0530	9007	4/22	C07 Z	2265	8023	5704	6051	2285	5711	9860	BAAD	2501	1107	C	5 1 1 2	0200	7/01
0	0	0	0	1582	12F+04	10F+04		4644	8890	6788	3441	6908	2291	16E+04	708.3	ESEADA	7105	7006	0671	7253	1.57E+04		0	0	1991	1661	4565	6616	2.35F+04			1.205+04	1.15E+04	I'UIE+UM	3353	1688	1.95E+04	1.35E+04	4475	1.015+04	1 ME+04	2 555+04	2 75640A	2.1 36404	1.175+04	C	0	Sent	1981
0	0	2643	7983	60E+04	133E+04]	ROFTON 2		1.13E+04	2.43E+04	5.02E+04	2.03E+04	2.53E+04	3.48F+04	1 77F+04]	2 SOFTON		0.406+04 4.246+04		3./UE+U4	2.60E+04	4.78E+04		0	0	5610	1.69E+04	1.21E+04	1 87F+04	1 53E+04	4,000,04	4.39E+U4	4.25E+U4	4.12E+04	3.99E+U4	1.13E+04	1.71E+04	4.87E+04	5.42E+04	3.036+04	2 47F+04	A POFADA	A ODE+DA	4,700,00	4.09E104	3.036+04	c		1005	1.625+104
3853	6.28E+04	7.366+04	1316+05	2 23F+05	2 55E405 /			4, 19E+05 4	2.86E+05	3.25E+05 {	2.36E+05 3	3.08F+05	1 82E+05	2 61 F+05	2.01E+05 '				2.64E+U5	2.10E+05	1.98E+05		0	0	7 82F+04	1 146+05	1 685+05	2 07F±05	2.07.5.05	2.92E+00	2.92E+U5	Z.YZE+U3	3.05E+05	3.17E+05	1.70E+05	1.28E+05	2.92E+05	2.63E+05	3 12F+05	2 73F+05	2 BELOS	2.000100	2.775.06	2.406103	0.086+U3	c		6.48E+U4	2.03E+05
1.91E+05	B.06E+05 4	1 02F+06	0.36F+05	1.27E+06	1 7564.05		1,015100	2.32E+06	1.89E+06	1.87E+06	1.85E+06	1 B6F+06	1 ROF+DA	1 705405	1.755405		1.04E+U0	1.395+00	1.65E+06	1.55E+06	9.57E+05	154635	0	4.49E+04	6 42F+05	8 33F+05	1 30F+06	1.576+05	1.0/ 5100	1.025+00	1./9E+U6	1.956+06	1.79E+06	1.63E+06	1.16E+06	1.28E+06	1.69E+06	1.285+06	1 22F+06		1 405,06	1,000-106	1.195100	7.005.05	7.UZE+U5	155/46		2.77E+05	1.15E+06
200	3 061	IBU	021		150	3	140	130	120	011		5		85	29	3 3	Ŋ Q	P	30	20	0	154535	240	230	200	010					0/1	160	150	140	130	120	011	001	8		3 6		3 3	2	04	155623	N 07	250	240
5	LC C) v:	ייכ	ייכ	,		n I	5	5	5) u	ייכ	ייכ	ייס	יס	۰ n	Q	5	ç	ŝ	pproach	Ŷ) -	v 4	~	• <	o √	0 ~	0	¢.	Ŷ	Ŷ	\$	Ŷ	\$	Ŷ	· ·c	• •	• ⊲		• •	0 •	o ·	o	approach		7	7

C		0 0	.	יכ	D	0	0	C				103						• c) () (00	o c	0
0			,		0	0	0	0	C		o) C) C	2 AR 7		, c			• c) c) C	• c	0
0	322.8		,		2.065		0	0	0	507.5	o ⊂	343.3) C) C) C) C				0
0	C			5 0	5 0		0	0	312.1	465.4	622.7	318.3	1428										0
0	273.8		715.5 2	o c	. .	- - -	844	281.1	569.7	429.6	B66	0	0	221.3	0	0	600.3	0		304.4	0	0	0
0	287.2	C) c			804.8	589.7	1195	904	605	1226	460.9	465.9	0	947.5	944,6	625.7	0	0	483.3	243.4	304.1
0	1018	0		• c	. .	0 0	2	1045	353	535.5	1068	359.7	544.5	824.7	0	0	373	0	0	377	191.5	283.2	194.6
0	830.7	0	0			00		0	864.3	652	1744	891.7	0	675.2	451.7	680.5	912.3	0	0	1847	1167	1392	935.1
788.5	0	0	813			00	ן ו	550	6115	835	2797	1129	0	0	1727	3505	2913	579.7	0	1775	1495	1797	851.2
4302	o	0	0	C		21115		4463	9813	2285	6852	4627	0	1174	5490	3555	1584	788.3	801.3	3218	1220	3648	2088
3184	0	0	4888	1093		1451	1001	8821	2.35E+04	1.35E+04	2.146+04	1.25E+04	5159	5214	1.51E+04	8824	8227	3501	3548	8344	7223	1.08E+04	5256
1.88E+04	0	3638	2.76E+04	1.30E+04		3 425+04		4.00E+U4	3.98E+04	3.70E+04	6.28E+04	4.24E+04	5808	1.62E+04	2.36E+04	2.97E+04	3.57E+04	2.17E+04	9993	2.21E+04	1.93E+04	2.13E+04	1.47E+04
1.84E+05	2.71E+04	9.39E+04	1.30E+05	1.11E+05	5.96F+04	3 70F+05		Z.Z3E+U5	2.67E+05	2.50E+05	3.10E+05	2.31E+05	1.24E+05	1.16E+05	2.48E+05	2.23E+05	2.17E+05	l.52E+05	1.07E+05	1.68E+05	1.33E+05	1.04E+05	1.08E+05
1.58E+06	5.92E+05	9.70E+05	1.19E+06	1.12E+06	7.736+05	2.08F+06	1 200,04	1.395+00	9.42E+05	1.40E+06	1.39E+06	1.07E+06	9.98E+05	7.80E+05	9.63E+05	1.22E+06	1.19E+06	9.19E+05	7.84E+05	7.91E+05	5.07E+05	3.11E+05	5.02E+05
230	220	210	200	061	180	170		2		140	130	120	110	8	8	80	70	99	203	40	30 5	20	01
~ '	~	7	7	7	7	7		~ 7	`	~	~	~ `	2	~	7	~	~	7	7	7	7	2	~

Ξ

				August 27, 199	92			
Approach	Altitude		Temp	Vapor	Number	Liquid water	Median	Total
number	(m)		(C)	density	seconds	content	vol. radius	number
	Begin time	End time		(g/m3)	in layer	(g/m3)	(m-6)	(per cm3)
	145958	150110			_		2.00	000 005
2	210		18.5	15.84	2	0.00	2.60	000.995
2	200		18.1	15.47	2	0.00	6.28	001.384
2	190		18.1	15.47	2	0.00	3.05	034.929
2	180		18.1	15.47	2	0.06	3.59	290.279
2	170		17.2	14.66	2	0.06	4.01	219.441
2	160		17.2	14.66	2	0.13	3.93	466.022
2	150		17.2	14.66	2	0.10	4.23	329.471
2	140		16.7	14.20	3	0.08	4.27	232.961
2	130		16.4	13.97	2	0.02	4.53	060.410
2	120		16.4	13.97	2	0.63	11.04	188.730
2	110		16.4	13.97	1	0.73	11.00	225.146
2	100		15.6	13.31	3	0.76	11.13	223.102
2	90		15.6	13.31	2	0.66	11.14	197.952
2	80		15.3	13.07	3	0.41	10.62	166.253
2	70		14.7	12.60	2	0.27	9.67	157.298
2	70 60		14.7	12.60	3	0.37	10.81	162.387
2	50		14 7	12.60	3	0.17	8.69	164.949
2	50		13.9	12.00	2	0.09	8.02	106.717
2	40		13.9	12.00	4	0.10	7.77	123.525
2	30		13.7	11 87	5	0.06	6.19	104.416
2	20		12.7	11 31	24	0.13	11.28	061.340
2	10	151242	12.5	11.51	_ ·			
_	151247	151343	17 0	14 66	1	0.00	3.04	002.009
3	200		175	14.00	3	0.07	4.46	176.709
3	190		17.0	14.66	2	0.11	3.86	386.508
3	180		17.2	14.00	2	0.07	4.24	242.181
3	170		10.9	12.45	2	0.13	4.84	279.135
3	160		10.4	13.97	2	0.12	5.71	235.122
3	150		10.4	13.57	2	0.12	7.63	208.253
3	140		10	13.04	2	0.13	8.73	104.369
3	130		15.0	13.31	2	0.24	7.08	259.695
3	120		15.6	13.31	2	0.24	7.64	261.948
3	110		15	12.84	3	0.24	8.91	283.772
3	100		14.7	12.60	່ ເ	0.27	7.98	221.198
3	90		14.7	12.60	2	0.22	9.83	215.375
3	80		14.2	12.20	3	0.30	7 23	345.081
3	70		13.9	12.00	3	0.23	8.00	214,575
3	60		13.9	12.00	3	0.10	7 79	240.887
3	50		13.6	11.78	კ ი	0.17	2.75 2.72	160.479
3	40		13	11.35	3	0.10	7 / 9	161 295
3	30		13	11.35	5	0.11	7.40	130 961
3	20		12.6	11.07	8	0.09	7.10	130.001
	152342	152434			_		2.06	002 236
4	200		18.1	15.47	2	0.00	2.00	002.200

Vandenberg AFB, CA

August 27, 1992 Approach Altitude Temp Vapor Number Liquid water Median Total number {m} (C) density seconds content vol. radius number Begin time End time (g/m3) in layer (g/m3) (m-6) (per cm3) 4 190 17.8 15.19 3 0.02 4.52 050.036 4 180 17.2 14.66 2 0.12 5.80 180.167 4 170 17.2 2 14.66 0.19 7.59 185.177 4 160 17.2 2 14.66 0.17 7.71 172.921 4 150 16.4 13.97 2 0.07 6.65 079.506 4 140 16.4 3 13.97 0.19 9.45 133.684 4 130 16 13.64 2 0.54 9.76 225.429 4 120 15.6 3 13.31 0.36 9.27 207.200 4 110 15.6 13.31 2 0.40 9.75 233.906 4 100 15.3 13.07 3 0.37 9.51 280.077 4 90 14.7 2 12.60 0.31 8.84 200.725 4 80 14.7 2 12.60 0.32 9.11 213,900 4 70 14.7 2 12.60 0.38 10.09 229.791 4 60 14.4 3 12.40 0.33 9.33 183.611 4 50 13.9 12.00 2 0.21 8.47 190.322 4 40 13.9 12.00 3 0.18 8.44 184.193 4 30 13.7 11.89 6 0.24 9.61 216.526 4 20 12.9 11.27 7 0.15 8.73 146.387 153429 153543 5 210 18.1 15.47 2 0.00 7.24 002.662 5 200 18.1 15.47 3 0.09 9.86 064.756 5 190 17.2 14.66 2 0.47 10.15 176.129 5 180 17.2 2 14.66 0.60 9.84 217.666 5 170 16.8 14.31 2 0.55 9.62 219.405 5 160 16.4 13.97 2 0.73 9.44 271.739 5 150 16.4 2 13.97 0.59 9.18 297.521 5 140 16.4 13.97 2 0.46 8.50 299.314 5 130 15.6 13.31 2 0.33 7.21 305.667 5 120 15.6 13.31 3 0.36 8.15 256.024 5 110 15.6 13.31 4 0.33 7.72 300.483 5 100 14.7 2 12.60 0.31 7.75 247.808 5 90 14.7 3 12.60 0.22 6.82 265.937 5 80 14.4 3 12.40 0.24 7.44 210.706 5 70 13.9 12.00 3 0.20 6.88 212.764 5 60 13.9 12.00 3 0.17 6.56 217.928 5 50 13.9 12.00 3 0.12 5.97 174.743 5 40 13.4 2 11.67 0.10 5.69180.116 5 30 13 11.35 4 0.08 5.34 195.761 5 20 13 11.35 4 0.07 5.84 121.014 5 10 12.3 10.85 22 0.07 9.52 066.131 154535 154635 6 240 19.3 2 16.65 0.00 3.29 001.039 6 230 18.9 16.22 2 0.03 9.93 020.723 6

Vandenberg AFB, CA

A-10

15.42

2

0.21

7.91

154.938

18

			2	August 27, 199	2		Madian	Taral
Approach	Altitude		Temp	Vapor	Number	Liquid water		aumber
number	(m)		(C)	density	seconds	content	(m.5)	
	Begin time	End time		(g/m31	in laver	(g/m3)	<u>9.51</u>	190 307
6	210		18	15.42	4	0.20	8.81	220 436
6	200		17.9	15.30	5	0.40	8 97	270 415
6	190		17.5	14.92	3	0.31	7 25	381 060
6	180		17.2	14.66		0.48	7.29	362.261
6	170		16.8	14.28	0	0.43	7 77	343.462
6	160		16.3	13.90	9	0.40	7.69	328,176
6	150		16	13.61	1	0.40	7.61	312.955
6	140		15.6	13.31	1	0.30	7.22	227.667
6	130		15.6	13.31	1	0.24	8.03	204.980
6	120		15.6	13.31	2	0.20	7.61	318.931
6	110		14.9	12.78	4	0.35	7.18	413.280
6	100		14.7	12.60	2	0.30	7.10	361.198
6	90		14.4	12.40	3	0.35	8.21	259 247
6	80		13.9	12.00	3	0.35	8.68	274.224
6	70		13.9	12.00	2	0.30	7 22	339.791
6	60		13.5	11.69	4	0.25	7.22	261.939
6	50		12.9	11.27	0	0.23	6.85	237.311
6	40		13	11.35	5	0.21	0.00	
	155623	155746			2	0.00	1 99	000.820
7	260		19.8	17.10	2	0.00	7.09	129.996
7	250		19.8	17.10	3	0.10	7.60	389.285
7	240		18.9	16.22	2	0.60	8.50	377.361
7	230		18.9	16.22	2	0.00	7 71	208.711
7	220		18.9	16.22	3	0.20	8.21	280.416
7	210		18.1	15.47	3	0.45	8.09	346.769
7	. 200		18.1	15.47	2	0.51	8.01	314.079
7	190		17.2	14.66	3	0.45	7 99	216.363
7	180		17.2	14.66	2	0.51	8.04	359.113
7	170		16.8	14.31	2	0.52	7 70	357.019
7	160		16.4	13.97	3	0.50	7.70	376.000
7	150		16.1	13.75	3	0.32	7.5	339.698
7	140		15.6	13.31	2	0.47	7 37	332,951
7	130		15.6	13.31	3	0.41	7.56	322.513
7	120		15	12.84	3	0.40	7.00	291.363
7	110		14.7	12.60	2	0.31	6.62	286.209
7	100		14.7	12.60	4	0.27	6.19	331.975
7	90		14.2	12.20	3	0.25	7 45	289.608
7	80		13.9	12.00	2	0.34	6 79	246.533
7	70		13.9	12.00	3	0.23	6 74	216.654
7	60		13.9	12.00	3	0.21	5.23	240.442
7	50		13.3	11.57	3	0.11	6 65	183.617
7	40		13	11.35	3	0.10	5.55	188.338
7	30		13	11.35	6	0.10	7 24	086.281
7	20		13	11.35	0.01	0.00	6 1 9	050.520
7	10		12.5	11.01	0.01	0.04	0.10	000.020

Vandenberg AFB, CA

								Arcata, C/	-							
Approach		Bin 1	Bin 2	E via	Bin 4	Bin 5	Bin 6	August 28, 199 Bin 7	2 a ria		:	;				
number	Begin time	End time						Number per cu	bic mater			Bin 11	Bin 12	Bin 13	Bin 14	Bin 15
-	300261	8 152045						Size: 3 micr	ons Rance:	2-47 microne						
		9.36E+06	1.45E+07	3.80E+07	4.61E+07	6.21E+06	1.18E+06	2.86E+05	3.55F+05	3 525 ±04	3 575 4 0.4	1 701 . 01	•			
	20	J Z.14E+07	3.40E+07	8.96E+07	1.05E+08	1.17E+07	2.62E+06	6.12E+05	5.06E+05	1 BOF + 05	3.37E+04	1.705+04	0 202 0	0	0	0
)))	0 1.UZE+0/	1.72E+07	3.53E+07	5.70E+07	1.54E+07	3.37E+06	1.30E+06	7.28E+05	3.06F+05	3 456 ±06	1146-05	3.58E+U4	0	0	0
			3.0/E+07	7.31E+07	8.82E+07	1.55E+07	2.88E+06	1.88E+06	1.01E+06	4 50F + 05	2.436 + 06	1.146+03	0.010.0	0	•	0
	200	10+399.1 0	3.32E+07	7.04E+07	5.96E+07	9.40E+06	1.95E+06	7.556+05	5.75E+05	4 326 405	2.385 ± 05	1.436+U5	3.64E+04	0	0	•
	2	0 2.0/E+07	5.29E+07	1.02E+08	5.57E+07	7.28E+06	1.17E+06	3.66F+05	2.19E 10E	7 225 104	1.436 + 03	9.03E+04	3.58E+04	0	0	0
- ,	09	0 2.10E+07	5.30E+07	7.43E+07	2.49E+07	1.71E+06	6.69E+05	1.11F+05	1 495405	7 485 - 04	7.32E+U4	3.62E+04	•	0	•	0
- ,	40	3.25E+07	1.09E+08	8.90E+07	1.85E+07	1.996+06	2 736+05	2 23E 4 0E	101164.5	7.40E+04	3./3E+04	0	0	3.73E+04	0	0
-	30	3.27E+07	7.89E+07	5.48E+07	1.85E+07	2.926+06	5 375 105	A 106 105	7.43E+04	1.5UE+05	/.45E+04	0	4.99E+04	0	0	0
-	20	1 2.28E+07	3.89E+07	3.79E+07	1.83F+07	2 85F + 06	8 00E - 0E	4.100+03	2.5/E+05	/./2E+04	1.54E+05	5.16E+04	0	0	0	
-	10	5.96E+06	1.14E+07	1.06E+07	3.41F+06	2 50F 406	0.80C+03	4.15E+U5	1.69E+05	2.01E+05	1.22E+05	0	0	0	0	
	153634	153711				*:00L 1 00	2,346 + 00	2.336+06	1.50E+06	9.52E+05	3.70E+05	3.41E+05	1.62E+05	8.05E+04	2.53E+04	1.22F+04
7	110	7.42E+05	3.71E+05	9.27E+04	0	C	9 27F±04	c	¢	(
~ ~	100	B.68E+06	1.06E+07	5.13E+06	3.71E+06	8.94E+05	4 935+05	0 786±05	0 7 EQC : 04	0 (0	0	0	0	0	0
2	06	1.00E+07	1.80E+07	3.89E+07	3.14E+07	4.76E+06	9 735+05	1 135 + 05	7.335+04 1.405-05	0 101 0	0	•	0	0	0	0
2	80	1.18E+07	2.27E+07	5.01E+07	2.96E+07	2 65F + 06	8 49E LOS	2 75C - 05	1.43E+05	3./6E+04	7.53E+04	0	0	0	0	Ċ
2	70	1.84E+07	4.00E+07	9.99E+07	5.12E+07	5.70F+06	7 995 105	2010L-0010	2.705+05	2.25E+05	4.98E+04	5.03E+04	0	•	0	Ċ
2	60	2.10E+07	6.02E+07	1.02E+08	4.30E+07	6.936+06	1.00LTU0	2.105+U3 5 775 05	2.355+05	2.91E+05	7.27E+04	1.09E+05	3.63E+04	0	0) c
2	50	1.77E + 07	5.69E+07	8.09E+07	2.456+07	4 20F + 06	1 305 - 06	9.72E+05	4.29E+05	3.10E+05	1.43E+05	4.81E+04	4.77E+04	0	0	396+04
2	40	2.96E+07	1.12E+08	1.08E+08	2.40F+07	5 286 4 06	1.336+00	4.38E+05	1.83E+05	1.83E+05	1.47E+05	7.30E+04	0	3.66E+04	. c	
2	30	2.12E+07	6.28E+07	5 87F+07	2.40C 107	9.20E+U0	1.54E+06	9.39E+05	6.75E+05	5.06E+05	2.17E+05	2.41E+05	9.64E+04	2.42E+04 3	42F+04	
7	20	3.38E + 07	4.46E+07	2 71F+07	1 285407	3.115 - 06	9.9/E+U5	4.18E+05	3.19E+05	3.20E+05	2.94E+05	4.89E+04	2.46E+04	2.46E+04		
2	10	5.62E+06	1.15E+07	9.53F+06	3 90F106	2.115+00	8.04E+U5	3.06E + 05	3.04E+05	2.55E+05	7.48E+04	5.07E+04	2.58E+04	0		0 0
	154746	154826			0.001 100	2.435 7.00	2./IE+06	2.86E+06	2.69E+06	1.86E+06	3.35E+05	3.22E+05	1.80E+05	5.28E+04 4	346404	6369
e	200	9.07E + 04	0	o	c	c	Ċ							•		5660
e	190	1.98E+06	2.866+06	4 986 + 06	3 885 4 06	0 120 2	0	0	0	0	0	0	0	C	c	c
e	180	1.06E+07	1.32E+07	3 24F + 07	3,885 + 00 8,055 + 07	3.8/E+U5	2.17E+04	0	0	0	•	0) a		00	
ო	170	1.33E+07	1.83F+07	5 355 + 07	1 345 - 09	2.91E+U/	3.565+06	4.60E+05	1.53E+05	3.86E+04	7.73E+04	3.81E+04	3.86E+04 :	3 81F+04	0	
e	160	2.02E+07	3.14F+07	9.51E±07	1.2467-08	3.586+07	5.32E+06	8.47E+05	7.71E+04	0	3.84E+04	7.71E+04	3.84E+04			
e	150	2.07E+07	3.62F+07	3.31C+0/	1 1 25 4 08	2.23E+07	3.97E+06	6.39E+05	1.34E+05	1.33E+05 3	3.81E+04	3.81E+04	2.896+04		0.155	- c
ო	140	2.12E+07	4 105 + 07	1.07E+08	1.126+03 9 396+03	1./4E+U/ 1.2EC:01	3.14E+06	4.61E+05	1.06E+05	1.05E+05	7.07E+04	5.99E+04	1.456+04	• c	CCCC	
e	130	2.38E+07	5.05E+07	1.116+08	0.335+07 6 455+07	1.235+U/ 8.005-06	2.32E+06	2.82E+05	7.79E+04	7.71E+04 1	.03E+05	1.02E+05	0			.
e	120	2.22E+07	4.94E+07	1.115+08	7 56E ± 07	0.30E+00	1.186+06 1.165-00	1.97E+05	0	7.91E+04 3	1.94E+04, :	3.94E+04	0	• c	òc	.
e	110	2.38E+07	5.00E+07	1.13E+08	6.75E+07	6 76F + 06	1.405+06 1.655+06	2.33E+05	1.15E+05	7.74E+04 3	.82E+04	1.16E+05	0	.65E+04	• c) c
m	100	2.46E+07	5.87E+07	1.04E+08	3.04F+07	2.65F±06	1.005 T UB	2.306+05	1.18E+05	0	.81E+04	7.86E+04 3	3.90E+04 3	1.90E+04		• c
e	06	2.19E+07	5.54E+07	9.20E+07	3.46F+07	3 26E + 06	2.400 + 05	8.00E+04	•	0	.93E+04	0	0	0		
e	80	2.14E+07	5.56E+07	9.71E+07	3.50E+07	3.56F+06	2.335+03 5 525 - 05	1.90E+04	1.1/E+05 1	.186+05 7	.80E+04	7.85E+04	0	0	• •) c
ი -	20	2.60E+07	7.14E+07	7.86E+07	1.14E+07	1.186+06	0.00LT00	1,305+05	2.3/E+05	.90E+04 7	.90E+04	0	0	0	0	• 0
	60	2.55E+07	8.16E+07	1.01E+08	1.23E+07	1.49E+06	1 216405	4.075 ±04 4	4.U/E+U4 4	.07E+04	0	•	0	0	0	0
	50	2.46E+07	9.10E+07	9.96E+07	1.54E+07	1.44E+06	8 03F + 04	A GREADA	0 001 001	0	.04E+04 4	.04E+04	03	.986+04	0	0
-	40	3.09E+07	9.05E+07	8.64E+07	1.96E+07	2.71E+06	3.97F + 05	3.30L T 04 0	3.305+04	0 101	0	0	0	0	0	0
	155924	160016)			7.4/C+04 1	.166+05	•	0	0	0	0	93E+04
4 •	200	4.37E+04	0	0	0	0	C	c	c							
4 •	061	2.24E+07	3.50E+07	1.55E+07 1	1.66E+07	1.03E+07	2.89E+06	4 58F+05 5	045404		0	0	0	0	0	0
4 4	180	1.62E+07	1.91E+07	5.46E+07 1	1.35E+08	5.91E+07	1.36E+07	3.18F+06 5	046404 2	065 05 4	101 . 01	0	0	0	0	0
4 •	0/1	1.51E+07	1.91E+07 (5.21E+07 1	I.16E+08	4.18E+07	9.93E+06	2.145+06 3	1 261103 1	- 90 - 109 - 1 57 - 0 - 1	.43E+05 1	.14E+05 3	.796+04	0	0	0
4	160	1.56E+07	2.17E+07 (B.88E+07 1	1.41E+08	3.95E+07	1.03E+07	181F+06 4	156,06 7	.3/E+04 /	5]E+04 5	.07E+04	0	0	0	0
										.20E+U5 I	13E+05	0	0	0	0	0

-

							٩	uguet 28, 1992								
perch		Bin 1	Bin 2	Buin 3	8in 4	Bin 5	Bin 6	Bin 7	8 in 8	Bin 9	Bin 10	Bin 11	Buin 12	Bin 13	Bin 14	Bin 15
number	Begin time	End time						Number per cubi	ia meter a rich - An		c	c	Ċ	c	c	c
4 -	150	1.06E+07	1.5/E+U/ 1 555+07	4.84E+U/	9.4 IE + 07	2.005+07	0.21E+U0	1.0/E+00 1 386±06	2.005400 7 666404	3.085+04	0 2 675 ± 04 3	0				
4	130	3.2267.00 1.9364.07	3 256+07	4.11C + 07 8 80F + 07	1115+08	2./3570/ 1.995407	4.95F+06	7.74F+05	2.06E+05	1.81E+05	1.03E+05 2	2.60E+04 5	.20E+04	• •	0	0
4	120	2.01E+07	3.52E+07	9.64E+07	8.86E+07	1.28E+07	3.07E+06	3.36E+05	5,18E+04	7.75E+04	7.75E+04	0	0	2.59E+04	0	0
4	110	1.82E+07	3.39E+07	9.87E+07	8.39E+07	1.25E+07	2.61E+06	3.65E+05	7.81E+04	2.61E+04	0	2.59E+04	0	0	0	0
4	100	2.09E+07	4.66E+07	1.16E+08	7.31E+07	1.06E+07	1.49E+06	1.81E+05	1.80E+05	1.29E+05	5.18E+04 E	5.11E+04	0	2.63E+04	•	0
4	06	2.26E+07	5.07E+07	1.22E+08	7.67E+07	1.09E+07	2.34E+06	3.38E+05	1.30E+05	7.79E+04	7.77E+04 5	5.18E+04	0	0	•	0
4	80	2.55E+07	6.32E+07	1.27E+08	5.33E+07	6.16E+06	7.38E+05	1.06E+05	5.36E+04	5.24E+04	5.24E+04	0	0	0	0	0
4	70	2.07E+07	6.44E+07	1.29E+08	4.96E+07	5.96E+06	1.01E+06	1.54E+05	1.91E+05	1.18E+05 :	3.94E+04 3	3.78E+04 3	3.786+04	0	•	0
4	60	1.98E+07	4.80E+07	6.87E+07	3.33E+07	6.34E+06	9.80E+05	1.19E+05	1.58E+05	1.54E+05	4.02E+04 7	7.72E+04 3	3.86E+04	0	0	0
4	50	2.72E+07	8.53E+07	9.02E+07	2.32E+07	3.63E+06	5.24E+05	5.29E+04	2.36E+05	5.29E+04	2.67E+04 E	5.29E+04 2	2.62E+04	2.67E+04	0	0
4	40	3.28E+07	1.11E+08	7.33E+07	1.31E+07	1.93E+06	5.14E+05	3.93E+04	7.94E+04	7.94E+04	0	3.97E+04 3	3.97E+04	0	0	0
4	30	3.85E+07	7.92E+07	3.83E+07	1.11E+07	1.97E+06	5.08E+05	3.13E+05	2.32E+05	1.56E+05	0	3.86E+04	0	0	0	0
4	20	3.24E+07	4.74E+07	2.926+07	7.87E + 06	9,566+05	2.79E+05	1.05E+05	1.20E+05	9.37E+04	1.39E+04 1	I.36E+04	•	1.39E+04	0	0
4	01	1.70E+07	2.46E+07	2.17E+07	3.75E+06	3,99E+05	7.97E+04	0	0	0	1.59E+05	0	0	0	0	0
Ŀ	101032	161/36		ſ	c		c	c	c	c	¢	c	c	c	c	c
ניס	002	3.14C+04	9.14C+04	3.0EC 1.07	0 1 845 1 0 7	1 025 107	0 1 0 7 5 + 0 6	0 7 1 76 ± 05	3 356 ± 05	0 20E ± 04			0 70E + 04	0	.	
0 4	072		1.4/0+0/	3.03E + 07 8.00E - 03	4.045+07	1.325+01	4.0/E+00	7.175+03 9.035+05	3.2367.03	3.005.04	, 101 JCL 6	, 735 4 04		.	,	00
តម	012	1.3/E+U/	2.08E+U/	0.00E + 07	3.21E+07	2.10E+07	3.815+00 5 525+06	9.036+03	1.14c+05 3.04c+06	3.61E+04	3./35+04 .	1./JC+04			. .	
n u		1.335+07	2.0/5+0/	4.0367.07	7.205+07	2.215+07	9.335 ± 00	1./25+00 2.945+06	3.046+05 8.206+05	3.400 + 04	1.315+04 .	2 RELAN	.			o
с ц		1.335+07 1 485+07	2.24E+0/ 3 18E+07	4.205±07 5.365±07	7.2/E+U/	4.295+07 3 095+07	1.295+01	2.845+00 1 545+06	0.305 + 05 4 555 + 05	1.32E + 05	7 61E+04	7.035704	.			
ი <i>დ</i>	170	1 845 407	2.40E+07	6 39F + 07	9565+07	3 81F ± 07	6 57E + 06	1.67F+06	6.57E+05	2.275 + 05	5 04F+04	52F+04			• •	0
א נ	160	1 566+07	2.56F+07	6.66F+07	1.10F+08	4.12F+07	1.02F+07	2.97E+06	0.37E+06	4.956+05	2.28E+05	3.82E+04	0	0	0	0
с С	150	1 A9F+07	2 56F + 07	7 18F +07	1 116 + 08	3 536+07	7 BOF + 06	1 93F+06	7 336 + 05	1 936 + 05	1 935+05	C	0	0	0	0
ഹ	140	1.54E+07	2.826+07	6.84E+07	8.42E+07	1.96E+07	4.44E+06	1.06E+06	3.40E+05	7.53E+04	3.78E+04 3	3.75E+04	0	0	0	0
ۍ i	130	1.85E+07	3.25E+07	8.35E+07	1.05E+08	2.76E+07	6.38E+06	1.56E+06	7.69E+05	3.20E+05	2.00E+05	0	0	0	0	0
5	120	1.90E+07	3.55E+07	9.59£+07	9.46E+07	1.88E+07	4.36E+06	1.03E+06	5.50E+05	3.01E+05	1.01E+05 :	2.48E+04	2.48E+04	2.52E+04	0	0
S	110	1.81E+07	3.57E+07	1.05E+08	1.02E+08	2.27E+07	5.19E+06	1.16E+06	4.38E+05	1.21E+05	1.05E+05	4.55E+04	0	0	0	0
ß	100	1.79E+07	3.546+07	9.66E+07	8.07E+07	2.49E+07	5.66E+06	1.25E+06	5.10E+05	2.82E+05	5.04E+04	0	2.68E+04	0	0	0
S	6	1.93£+07	4.64E+07	1.06E+08	7.48E+07	1.88E+07	4.20E+06	1.04E+06	3.05E+05	1.27E+05	0	2.57E+04	2.57E+04	2.52E+04	0	0
5	80	2.12E+07	4.93E+07	8.03E+07	4.72E+07	7.94E+06	7.34E+05	2.71E+05	3.83E+04	0	0	0	3.83E+04	0	3.83E+04	0
2	70	3.46E+07	7.70E+07	1.38E+08	5.59E+07	9.44E+06	2.27E+06	5.78E+05	1.54E+05	7.70E+04	0	0	0	0	0	0
പ	60	1.77E+07	5.08E+07	1.07E + 08	5.38E+07	1.39E+07	3.18E+06	7.38E+05	2.33E+05	1.55E+05	3.90E+04 :	3.87E+04	•	0	0	0
ß	20	1.62E+07	4.73E+07	6.89E+07	4.25E+07	1.05E+07	3.02E+06	7.40E+05	5.10E+05	1.56E+05	3.84E+04	7.89E+04	0	0	0	0
S	40	2.26E+07	7.14E+07	5.72E+07	1.14E+07	1.25E+08	8.09E+04	3.97E+04	1.21E+05	0	0	0	0	0	0	0
S	30	1.76E+07	5.04E+07	4.35E+07	1.51E+07	1.82E+06	4.82E+05	7.87E+04	8.13E+04	8.13E+04	0	0	•	0	0	0
ß	20	4.67E+07	5.37E+07	2.42E+07	1.21E+07	1.62E+06	4.97E+05	2.90E+05	1.66E+05	4.15E+04	•	0	0	•	0	0
2	10	5.61E+06	: 9.27E+06	9.60E+06	3.99E+06	1.08E+06	4.02E+05	3.26E+05	2.27E+05	1.53E+05	4.78E+04	2.78E+04	0	0	0	0
	162755	162907	_										,		•	
9	260	1.71E+05	0	0	0	0	0	•	0	0	0	0	•	0	0	0
9	250	7.13E+06	90+366'6	1.80E+07	4.47E+07	2.82E+07	7.94E+06	2.15E+06	7.05E+05	1,45E+05	2.44E+04	0	2.46E+04	0	0	0
9	240	8.03E+06	9.59E+06	1.94E+07	4.80E+07	4.10E+07	1.69E+07	5.40E+06	1.69E+06	6.25E+05	2.21E+05	1.84E+05	0	0	0 (0 (
9	230	1.95E+07	1.72E+07	4.07E+07	1.39E+08	8.52E+07	3.08E+07	1.07E+07	3.24E+06	8.86E+05	1.72E+05	1./ZE+05	2.436+04	0	0 (
é de	220	2.17E+07	2.01E+07	6.40E+07	1.68E+08	B.06E+07	2.96E+07	9.46E+06	3.31E+06	1.07E+06	4.42E+05	7.33E+04	0 0	0		3.69E + 04
.	210	1./5E+U/	1.93E+U/	5.01E+07	1.4ZE+U8	7.22E+07	2./8E+0/	9.53E+06	4.14E+06	5.60E+U5	3.90E+U5	7.29E+04	0 000		2.42E+U4	2.445 + 04
0 9	202	1.81E+07	1.80E+U/	4,335+07	1,11E+UG 1,18E,00	/.a/E+U/	2.30E+U/	0.0UE+U0 2.525.06	1./2E+V0 2.26E-08	3.30E+05	1.10E+U5	/.33E+U+ .	3.00E + U+	3.005 + U+	U 286 404	2 0
D	20	1./10+0/	1.030+01	4.00L101	1.105700	8.005401	2.125401	8.33E+VU	2.205 + VU	3.045+00	1.105+00	2	\$	>	2.000 1 21	>

Arcata, CA

-

							44	VICALA, CA uguet 28, 1992								
Approach		Bån 1	Bin 2	Bin 3	Bin 4	Bin 5	Bin 6	Bin 7	8 43	8 u18	Bån 10	Bin 11	84n 12	Bin 13	Bin 14	B Ln 15
number 1	9egin time	End time					-	Number per cubi	c meter							
9	180	1.90E+07	2.26E+07	5.93E+07	1.24E+08	7.29E+07	2.75E+07	7.79E+06	2.40E+06	5.86E+05	1.96E+05	1.47E+05	2.47E+04	2.44E+04	2.47E+04	• •
90 (170	2.31E+07	3.21E+07	9.11E+07	1.51E+08	4.81E+07	1.86E+07	7.15E+08	1.80E+06	6.91E+U5	1.48E+U5 4	4.9ZE+04	2.4/E+04	2.45E+04		.
20 X	150	3.3/E+0/	1.9/E+0/ 2.61E+07	4.99E+07 7 72E±07	9.90E+07	6.10E+07 5 75E+07	2.4/E+0/ 231E+07	7.45E+U6 8.16F+06	1.486+08 1.956+08	3.94E+U5	1.485+05 . 2725+05 .	2.49E+04 7.35F+04	7.35E+04 7.45E+04		0 2 45F + 04	
.	140	1 84F+07	2.67F+07	7 28F+07	1.015+08	5.81F+07	2.38E+07	6.67E+06	2.106+06	7.37E+05	1,47E+05	7.386+04	0	3.68E+04	0	0
9	130	1.85E+07	3,12E+07	8.02E+07	9.34E+07	4.75E+07	2.15E+07	7.48E+06	3.40E+06	1.04E+06	4.06E+05	1.84E+05	0	3.69E+04	0	0
9	120	2.56E+07	3.86E+07	1.21E+08	9.72E+07	3.51E+07	1.22E+07	3.39E+06	8.23E+05	4.09E+05	1.12E+05	3.79E+04	0	0	0	•
9	110	1.75E+07	3,46E+07	8.60E+07	9.09E+07	4.61E+07	1.59E+07	5.64E+06	3.02E+06	8.22E+05	1.50E+05	1.50E+05	7.49E+04	5.00E+04	2.52E+04	0
9	100	1.93E+07	4,66E+07	9.38E+07	7.50E+07	2.79E+07	7.78E+06	2.38E+06	7.08E+05	2.61E+05	1.49E+05	•	0	0	0	•
9	06	3.16E+07	6.44E+07	1.10E+08	6.63E+07	2.54E+07	9.71E+06	3.65E+06	1.996+06	9.78E+05	1,13E+05	1.51E+05	7.45E+04	0	0	0
9	80	2.92E+07	8.19E+07	1.61E+08	6.13E+07	1.85E+07	6.36E+06	2.59E+06	1.33E+06	4.19E+05	1.14E+05	3.79E+04	0	0	0	0
9	20	2.89E+07	8.04E+07	1.55E+08	4.59E+07	7.78E+06	1.59E+06	4.09E+05	1.79E+05	1.02E+05	2.56E+04	•	•	0	0	0
9	60	· 2.33E+07	7,15E+07	1.03E+08	3.68E+07	1.24E+07	4.62E+06	1.58E+06	1.09E+06	4.57E+05	2.29E+05	2.57E+04	5.01E+04	0	0	0
9	20	2.98E+07	1.24E+08	1.33E+08	2.57E+07	6.92E+06	1.57E+06	6.79E+05	4.17E+05	1.31E+05	2.63E+04	0	0	0	0	0 (
9	40	4.20E+07	1.16E+08	6.62E+07	2.15E+07	6.31E+06	2.16E+06	5.52E+05	2.37E+05	7.88E+04	5.25E+04	2.64E+04	0	0	0	0
9	30	5.74E+07	1.09E+08	5.95E+07	2.29E+07	8.11E+06	3.47E+06	2.02E+06	1.11E+06	7.10E+05	1.05E+05	1.84E+05	2.64E+04	0 0 0	0 0 0 0	0 0
0	₽ .	2.80E+07	4.4/E+U/	3.305+07	1.835+07	1.435+00	4.41E+U0 2.07E+DE	2.50E+U0	1.82E+U0	0.10E+03	2.340+05.2	9.065 + 04	0.345+04	2.035+04	2.3357.04	0 0
D	162040	184049	a.uac + 00	1.30E+00	3.036+00	1.005 + 00	2,3/5703	9.30E + 04	3.075104	2.105704	>	+0+0+0	>	2	2	>
7	062	8.81F+04	C	C	0	0	0	0	0	0	0	0	0	0	0	0
	280	1.74E+05	0	0	0	0	0	0	0	0	0	0	0	0	0	0
٢	270	1.64E+06	1.56E+06	4.20E+06	9.41E+06	5.56E+06	1.94E+06	4.17E+05	6.95E+04	0	0	0	0	0	0	0
۲ ۲	260	1.15E+07	1.29E+07	2.53E+07	7.78E+07	6.94E+07	2.46E + 07	6.87E+06	1.58E+06	5.18E+05	1.84E+05	3.72E+04	3.72E+04	3.64E+04	0	0
	250	0 8.47E+06	9.62E+06	1.65E+07	4.51E+07	4.33E+07	1.736+07	4.62E+06	1.24E+06	1.40E+05	9.30E+04	2.43E+04	6.98E+04	7.02E+04	2.32E+04	•
-	240	1.65E+07	1.32E+07	3.57E+07	1.18E+08	1.04E+08	3.25E+07	8.91E+06	2.22E+06	8.45E+05	2.11E+05	3.49E+04	1.05E+05	0	3.49E+04	•
7	230) 2.03E+07	1.94E+07	3.66E+07	1.14E+08	8.48E+07	3.20E+07	8.43E+06	1.87E+06	6.71E+05	1.76E+05	1.41E+05	3.51E+04	0	0	0
7	220	1.27E+07	1.46E+07	2.93E+07	7.20E+07	5.74E+07	2.44E+07	7.65E+06	2.35E+06	4.00E+05	2.83E+05	1.41E+05	9.37E+04	2.33E+04	•	0
7	210) 2.88E+07	2.97E+07	8,97E+07	1.75E+08	5.68E+07	2.44E+07	7.13E+06	3.00E+06	1.22E+08	1.75E+05	2.10E+05	7.01E+04	7.01E+04	6.97E+04 :	3.48E+04
7	200) 2.84E+07	2.59E+07	9.30E+07	1.93E+08	5.68E+07	2.15E+07	6.93E+06	2.51E+08	7.32E+05	4.52E+05	1.05E+05	7,00E+04	3.47E+04	0	0
٢	190) 2.96E+07	2.94E+07	1.00E+08	1.83E+08	5.15E+07	2.03E+07	7.50E+06	3.14E+06	1.36E+06	4.18E+05	3.14E+05	1.40E+05	3.50E+04	0	0
~ '	180) 2.50E+07	3.18€+07	9.92E+07	1.54E+08	5.21E+07	1.95E+07	8.22E+06	3.26E+06	1.53E+06	4.51E+05	1.39E+05	2.09E+05	6.97E+04	0 (0 0
~ ~	170) 2.96E+07	3.73E+07	1.18E+08	1.60E+08	4.50E+07	1.94E+07 1 77E+07	7.72E+06 8 23E+06	3.58E+06	1.40E+06 1.14E+06	4.21E+05 3 73E±05	2.81E+05	7.026+04 1.406+05	7.02E+04	0 4 66F+04	0 34F+04
~ ~	150) 3.26E+07	4.01E+07	1.516+08	1.686+08	3.306+07	1.336+07	5.38E+06	2.32E+06	5.94E+05	5.61E+05	2.10E+05	6.98E+04	0	0	0
7	140) 2.87E+07	5.03E+07	1.34E+08	1.13E+08	3.72E+07	1.62E+07	6.06E+06	2.37E+06	6.28E+05	3.49E+05	2.09E+05	1.05E+05	0	0	0
7	130	3.66E+07	6.25E+07	1.70E+08	1.24E+08	3.06E+07	1.13E+07	4.34E+06	1.33E+06	5.60E+05	2.10E+05	2.80E+05	7.00E+04	7.00E+04	7.00E+04	0
7	120) 2.95E+07	4.70E+07	1.22E+08	1.12E+08	3.91E+07	1.50E+07	5.66E+06	2.82E+06	1.08E+06	6.60E+05	1.40E+05	0	3.46E+04	0	0
7	110	3.08E+07	6.80E+07	1.40E+08	8.77E+07	2.92E+07	1.30E+07	5.99E+06	2.18E+06	8.49E+05	3.52E+05	2.59E+05	1.18E+05	4.65E+04	2.33E+04	2.33E+04
2	10() 3.41E+07	8.13E+07	1.71E+08	7.45E+07	1.78E+07	5.98E+06	2.34E+06	7,69E+05	2.44E+05	1.40E+05	1.05E+05	3.48E+04	0	3.48E+04	0
~ 7	б (0 3.51E+07	7.14E+07	1.93E+08	8.98E+07	1.82E+07	7.31E+06	3.44E+06	1.20E+06	6.36E+05	3.53E+05	1.06E+05	7.04E+04	5.29E+04	. 0	1.76E+04
~ ~	ž) 2.92E+0/) 3.83E+07	7.46E+U/	1.4/E+U8	7.486+07 6 186+07	2.44E+U/ 3.18E+07	1.15E+U/ 8 50E+06	4.43E+06 3.67E+06	1./9E+00	7.23E+05 8 31E+05	5./3E+U5	2.89E+05	3./1c+04	4.85E+04	2.335+04 3.655+04	
		3 29F+07	1 015 + 08	1 405+08	4 B6F+07	1 59F+07	5.63F+06	3.0/LT00	1.3361.00 8.816+05	5.01E+05	7.07F+05	1 756+05	4 996+04	2.50F+04	2.50F+04	2.50F+04
	50) 3.51E+07	1.08E+08	1.196+08	4.02E+07	1.53E+07	5.04E+06	2.86E+06	7.596+05	2.20E+05	1.886+05	0	3.76E+04	0	0	0
7	40	0 2.95E+07	8.77E+07	7.36E+07	3.19E+07	1.04E+07	2.65E+06	6.53E+05	2.31E+05	1.15E+05	0	3.83E+04	0	0	0	0
7	3(0 4.93E+07	8.77E+07	4,98E+07	2.30E+07	9.26E+06	5.37E+06	2.01E+06	1.21E+06	4.37E+05	1.03E+05	7.72E+04	2.59E+04	0	2.59E+04	0
~	X :	0 4.16E+07	4.95E+07	3.34E+07	2.11E+07	8.38E+06	3.32E+06	1.26E+06	4.74E+05	7.90E+04	7.90E+04	7.90E+04	0	0	0	0
1	ĭ	0 7.69E+U6	1.076+07	1.04E+U/	6.14E+Uo	2.4/E+U0	1.09E+U6	4.50E+U5	2.15E+U5	1.25E+U5	9.43E+04	5.1/E+04	4.24E+04	2.07E+04	c	.0/E+U4

				¢	ъ (0	0	0	0	7E + 04	0	0	0	0	0	0	•	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	ä	1				0	4	0	0	0 2.57	0	0	0	0	0	0	0	0	0	0	0	4	0	0	0	0	0	0	0	0	0	0	0
							.49E+0															.64E+C											
	ſ	-			* ^*	0	0	0	+04	0	0	0	0	0	0	0	0	0	+04	0	0	0	0	+04	0	0	0	0	0	0	0	0	0
	i			1 (() ()	1.205				2.50E										2.64E					3.90E						_			
	:	51 12			1.20E+04	0	0	1.13E+05	4,98E+04	0	0	1.14E+05	0	0	0	•	7.74E+04	2.55E+04	0	3.81E+04	3.86E+04	2.64E+04	0	3.93E+04	0	0	2.64E+04	0	0	0	2.80E+04	•	2.65E+04
	:	64n 11		•	D	0	37E+04	50E+05	99E+04	53E+04	0	62E+04	0	68E+04	77E + 04	22E+04	74E + 04	0	64E+04	0	10E + 05	61E+04	0	93E+04	0	0	28E+04	69E+04	67E+04	0	0	0	93E+04
					04	04	04 9.0	05 1.9	05 4.5	04 2.	0	04 7.6	04	04 7.	04 3.	-04 5.	07.	0	04 2.	-05	-05 3.	-04 2	-04	-04 3.	0	0	-04 5.	-04 2.	-04 2.	+04	+04	0	+04 2.
		Bin 10			7.20E+	7.19E+	4.90E+	1.13E+	1.50E+	7.71E+		7.62E+	3.74E+	7.63E+	3.83E+	2.53E+			5.20E+	2.67E+	1.93E+	5.25E+	3.85E+	3.93E+			2.64E4	8.18E+	2.67E+	5.51E4	2.80E+		6.32E+
		50 C			E+04	E + 05	E + 05	E + 05	E + 05	E + 04	0	iE + 05	E + 04	'E + 04	'E + 04	E + 05	μE + 04	E+04	IE + 05	E+05	1E+05	3E+05	3E + 05	7E+05	IE+04	IE+04	3E+04	3E+05	7E+04	3E+04	0	3E+04	2E + 04
		a			5 7.20	5 1.44	5 1.73	6 3.76	6 3.76	5 5.06	5	5 3.06	15 7.61	5 3.87	5 3.77	1.75	5 7.74	5.11	1.04	5 2.26	6 4.64	1.06	1.16	1.1.20	14 7.8	5.5.3	5.28	02 1.05	05 2.6	55 8.1	0	05 4.11	05 4.0
		Bin 8	c meter		5.76E+0	5.75E+0	8.32E+0	1.50E+0	1.50E+0	4.54E+0	2.66E+0	7.24E+0	7.96E+0	5.00E+C	2.66E+C	4.39E+C	4.64E+C	3.36E+C	3.13E+C	9,53E+C	1.08E+C	1.58E+C	3.09E+C	3.53E+C	7.93E+(1.06E+(2.38E+(3.49E+(1.06E+(1.10E+(1.23E+(1.13E+(
a, CA	28, 1992	7 1	r per cubi		E+06	E+06	E+06	E+06	E+06	E+06	E+06	E+06	E+08	E+06	90 + 3,	E + 06	E+06	E + 06	iE + 06	E+06	£+06	E + 05	E + 06	E + 06	iE + 05	E+05	3E+05	2E+05	3E+05	9E+05	IE+05	LE + 04	3E + 04
Arcat	August	ă	Numbe		7 2.23	7 3.31	7 6.33	7 7.02	7 6.36	7 4.13	7 3.24	7 4.88	7 4.05	7 3.07	7 3.07	7 3.36	7 2.17	7 2.21	6 1.26	6 2.40	6 3.37	6 5.79	6 1.71	6 1.49	6 3.43	6 3.69	6 5.28	6 8.12	6 1.06	6 3.79	5 1.41	5 3.94	5 9.43
		Bin 6			03E+0	.19E+0	63E+0	.81E+0	44E+0	0 + 390.	.45E+0	.04E+0	.04E+0	.87E+0	.43E+0	526+0	.45E+0	.06E+0	.75E+0	1,78E+0	I.71E+0	1.24E+0	.86E+0	.84E+0	2.17E+0	0+306.	0,09E+0	2.54E+0	.00E+0	2.16E+0	3.37E+0	2.00E+0	1.93E+0
		Q			+07 1	+07 1	+07 2	+08 2	+07 2	+07 2	+07 1	+07 2	+07 2	+07 1	+07 1	+07 1	+07 1	+07 1	+07 7	+07 8	:+07 B	+07 3	+07 5	+01 5	+06 2	:+06 1	+00	90+	+06	90+	90+	90+	1 90+3
		n 19			3.59E	5.42E	9.71E	1.06E	8.94E	7.91E	5.94E	1 7.39E	1 7.05E	1 7.01E	1 6.52E	1 5.80E	1 5.39E	4.48E	3.07E	3 2.81E	3.096	1.556	1.74E	1.895	9.325	7.27E	7.796	1 6.93	7 5.018	6.49	3 1.86	3 1.90	5 1.831
		Bin 4			4.20E+07	9.84E+07	2.02E+08	1.65E + 08	2.22E + 08	1.89E+08	2.35E+08	2.09E + 08	1.85E + 08	1.69E + 08	1.62E+08	1 66E + 0E	1.65E+0E	1.56E+0E	1.34E+0E	1.25E+08	1.09E+06	5.89E+07	6.38E+07	5.69E+07	4.28E+07	3.48E+07	2.74E+0	2.43E+0	2.39E+0	1.98E+0	9.12F+0(5.35E+0(6.84E+0
		n 3			E+07 4	E+07	F+07	E+07	E+07	E+07	E+07	E+07	E+07	E + 07	E+07	F+07	E+07	E + 08	E + 08	E+08	iE + 08	E+08	E+08	5E + 08	3E+08	3E+08	3E+08	SE + 08	SE + 08	5 + 07 DE + 07	5+01	1F+07	4E+06
		æ			7 1.94	7 3,85	7 7 55	7 4.26	7 5.62	7 5.79	1 8.36	11.1 L	38.6 7	7 8.49	7.15	7 7 33	7 8.65	111 20	1.31	7 1.51	1.36	1.20	37.1.70	1.25	1.5	08 1.53	08 1.26	1 40 1 40	90 F 80	0.1 4.90	27 3 20	21 20	06 2.0
		Bin 2			1.33E+0	1.65E+0	2 59F + 0	1.59E+0	1.78E+0	1.82E+0	1.93E+0	1.95E+0	2.53E+C	2 57F+C	2.25E+C	2 24F+C	2.54E+C	3.04E+C	3.92E+(5 06F + (4.86E+(6 72F+(7.74E+(7.22E+(9.90E+(1 20E+(1 1 7F + (1 51F+(1 27F+0	6 50F+C	8 15F+1	4 61F + (2.97E+(
		-	2	5325	E+07	E+07	F+07	E+07	E+07	E+07	E+07	F+07	E+07	E+07	E+07	E + 07	E+07	E+07	E + 07	F+07	E+07	E + 07	E+07	E+07	IE+07	15+07	E+07	E+07	1107	E+07	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	E+07	5E+0θ
		궙	End tim	7 16	0 1,041	0 1.37	0 2 611	0.202	16070 0	0 1.80	0 2.23	0 2.12	0 2.33	0 2 13	0 1 88	0 1 80	0 1 99	0 2.21	0 2 20	0 258	0 2.34	0 2 68	0 3.21	0 2.71	0 2.58	0 3 07	212 C.	385		0 2 48	2 C C	0 4 91	0 2.05
			Begin time	16520	29(280	160	260	250	24(230	22	112	100	191	9.1	2.1	10.	15	14		12	: [Õ	ő	o đ	5 F	- 6		•	r (*		. –
		Approach	number		8	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	α	5 a) ac	ο α) œ	, œ	ο α	, a) a	ο α	5 ac) œ) a) ac) a			. œ) a	5 a	5 a	•	5α		5 a	3 00

	Bin 15				-	-	-		-	-	-	-	-		-	-	-		- •			5	-	-		- •				-	-	-	- `	- •)	-		-	7	-	-
	Bin 14		Ċ		• c	• •	0	0	0	0	0	0	0		0	0	0	0 (2 0	20) O	0	0	0	¢		о с	0	0	0	0	0	00	.			00	0	0	0		0	0	0	c
	Bin 13		c		• a	0	0	0	0	0	0	0	0		0	0	0	0 0	- -		• •	0	0	0	Ċ	5 0	• c	0	0	0	0	0	00	-) C	• •	0	0	0		0	0	0	0
	Bin 12		c		• o	0	0	0	0	0	0	0	0		0	0	0	0 0	-		0	0	o	0	¢	-	• c	0	0	0	0	0	00	5 0			• •	0	0	0		0	0	•	C
	Bùn 11		c	00	• •	0	0	0	0	0	0	0	0		0	0	0	0 0	- c	00	0	0	0	0	c) a	0	0	0	0	0	00		, ,) C) O	0	0	0		0	0	0	0
	Bin 10		c	. .	0	0	0	0	0	•	0	0	0		•	0	0	.		.	0	0	0	0	<	5 0	0 0	0	0	0	0	0	00			0 0	0	0	0	0		0	0	0	a
	Brin 9		microne	0	0	0	0	456.3	0	306	309.6	0	0		0	0	0	5 0	00	0	0	0	0	0	c		00	0	117	216.6	316.2	0	0 0	1961	493.1	0	0	0	0	o		0	0	0	307 5
	Bin 8	meter	Range: 10-310 800-7	537	0	0	0	0	0	361.3	0	0	975.6		0	0	0 (,) O	354.7	0	0	181.2	c	, ,	0	0	0	186.7	373.3	0	0 023	573 F	0.710	0	• •	0	577.5	557.7		0	0	0	C
ata, CA	Bin 7	mber per cubic	e: 20 microne 3.27 F.	3300	0	0	0	0	661.5	0	0	0	1932		0	0	0 (0	•	0	0	664	c		0	0	0	0	0	0	1396 1396	0	• •	4281	0	1397	1412	1350		0	0	0	c
Arc	Bin 6	ž	Siz 1676	1684	0	1699	0	0	0	1701	0	1056	5084		0	0	0 0	U 728	50	0	556.3	0	568.7	1971	c	0 0	0	0	434.4	217.2	0	0	4467 7687	7698	908.5	3656	907.5	901	2718	2146		0	0	0	¢
	Bin 5		ведв	.84E+04	0	2304	1149	0	4604	3096	3887	473	.33E+04		0	0	0 0	4533		0	2260	761.7	3874	5965	c	• •	0	0	1475	737.3	0	4778	60 /5 22F + 04	4899	8670	9944	6180	4876	.11E+04	8204		0	0	1156	c
	Bin 4		27F + 04	1.74E+04 1	3425	.02E + 04	.02E + 04	8480	6814	.60E + 04	.27E + 04	2811	i.49E+04 1		0	0 000,	1686	6720	4452	3348	.23E+04	7954	.386+04	.86E+04	c	`	1741	1753	9166	7533	5900	7088	24E+04 .89F+04 1	54F+04	57E+04	.47E+04	.56E+04	71E+04	.45E+04 1	.43E+04	1	0	0	3439	1136
	Bin 3		1 856 4 04 1	1,09E+05	5785	3.36E+04	3.44E+04	5.17E+04	1.60E + 04	5.60E+04 1	2.73E+04 1	5.59E+04	1.07E+05 :		0 (0 00	50C8	1.325 7 04	2.07E + 04	.98E + 04	5.29E+04 1	1.40E+04	1.856+04	7.01E+04	C	00	1.18E+04	8885	1.43E+04	5.20E+04	5.98E+04	1.80E+04	15E+05 5	04E+05 2	.02E+05 2	1.94E+04 1	.42E+05 2	7.64E+04 2	3.76E+04 1	7.61E+04 \$	(0 (0	455 + U4	166+04
	Bin 2		2.87F+05 4	7.70E+05	1.61E+05	7.65E+05 8	5.41E+05 :	5.90E+05 {	5.67E+05 4	5.30E+05 1	1.51E+05	1.69E+05 5	3.32E+05	,	0 0	6140	/.34E+04 62E+06 3	1.44F+05 5	3.14E+05 2	3.27E+05 1	5.15E+05 E	5.74E+05 4	4.16E+05 4	1.25E+05	c	0	1.896+05 1	3.42E+05	7.41E+05 4	7.12E+05 5	3.83E+05 5	7.63E+05 4	1.01E+06	1.59E+05 1	3.76E+05 1	3.52E+05 5	3.54E+05 1	3.28E+05 7	3.17E+05 €	5.94E+05	•		4153	2.6/E+U5	2.07E+U5
	Bin 1	nd time	152048 1.55E+06	3.18E+06	2.04E+06	3.04E+06	2.98E+06	2.89E+06	2.42E+06	1.82E+06	2.17E+06	2.13E+06	2.22E+06	153711		2.34E+04 8 33F 05 1	0,//E+05	2.23F+06 4	1.92E+06	1.97E+06	2.60E+06 !	2.80E+06	2.38E+06	2,10E+06	070+01	1.61E+04	5.74E+05	1.57E+06	3.21E+06	3.50E+06	3.78E+06 +	3.33E+06 2.30E+06	3./UE+U0 1.01E+06 9	1.51E+06	5.32E+06 {	4.93E+06 8	4.22E+06 \$	3.17E+06 (3.57E+06	3.64E+06	160016		1.59E+05	1.20E+06	1.1 /E+U0
	Altitude (m)	egin time E	152008	100	06	80	70	. 09	50	40	30	20	10	153634	011	28	56	202	09	50	40	30	50	10	200	190	180 (1.70	160	150	140	0.5	110	100	06	90	202	60	50	40	155924	500			2
		đ,		-		-		-	-	-	-	-	-	c	v r	v r	v r	• •	. 0	2	2	2	2	7	~		e	9	e	"	ო ი	.	ი ო	e	e	e	33	e	e e	m		4.	4 1	J •	đ

8

-

-

. .

							Arc	ata, CA 1 28, 1992								
Approach	Altitude (m)	Bin 1	Bin 2	Bin 3	Bin 4	Blin 5	Bin 6	Bin 7	Bin 8	Bin 9	B in 10	Bin 11	Bin 12	Bin 13	Bin 14	Bin 15
number	Begin time	End time					Ž	mber per cubic r	nater				,		¢	¢
4	150	7.13E+05	1.33E+05	1929	0	0	0	0	0	1230	0	0	0	0	0	0
4	140	7.68E+05	1.57E+05	2924	0	0	0	0	0	0	0	0	0	0	0 (0
4	130	2.37E+06	3.81E+05	7924	1.17E+04	0	0	0	0	0	•	0	0	0	0	о (
4	120	1.91E+06	3.38E+05	2.99E+04	3542	0	0	0	0	0	0	0	0	0	0	э (
4	110	1 2.05E+06	3.59£+05	1.82E+04	7167	808.3	592.3	0	0	0	0	0	0	0	0 (0
4	100	1 2.62E+06	4.61E+05	5.63E+04	1.79E+04	9662	3544	1851	753.3	318.7	0	0	0	0	0	0 (
4	06	3.05E+06	5.22E+05	5.03E+04	9540	6441	1777	1847	376.7	0	0	0	0	0	0	0
4		1 2.51E+06	4.02E+05	4.84E + 04	8363	4036	1779	0	0	0	0	0	0	0	0	0
4	70	2.20E+06	4.26E+05	3.93E+04	1.25E+04	3622	889	0	564.5	478	0	0	0	0	0	0
4	60	2.106+06	4.23E+05	4.18E + 04	3540	0	0	0	0	0	0	0	0	0	0	0
4	50	1 2.21E+06	4.01E+05	2.82E + 04	3567	802	592.3	460.3	0	0	0	0	0	0	0	0
4	40	1.52E+06	2.12E+05	2.40E + 04	8880	0	0	0	0	0	0	0	0	0	0	0
4	30	1.35E+06	2.45E+05	6013	0	0	0	0	0	0	0	0	0	0	0	0
4	20	1 2.03E+06	4.05E+05	4.00E+04	1.42E+04	2794	1462	917.5	0	0	0	0	0	0	0	0
4	10	1 1.83E+06	4.17E+05	4.13E+04	2.44E+04	9432	5202	0	2211	0	0	0	0	0	0	0
	161632	161736														
un	230	0	0	0	0	0	0	0	0	0	0	0	0	•	0	0
, uî	220	5.81F+05	1.90E+04	2958	0	0	0	0	0	0	0	0	0	•	0	0
, C	210	1 335+06	1 65F+05	2 66F + 04	5264	2368	0	0	0	0	0	0	0	0	0	0
. U		1 9 40F + 05	1 535 + 05	1 34F + 04	3514	1190	435.5	0	0	0	0	0	0	0	0	0
<u>ل</u> ا ر	007	1 30F + 05	2 3 2 E ± 05	1 BOF + 04	5931	2405	0	0	0	0	0	0	0	0	0	0
., U		1 1.33E + 06	2.32L T 05	3 79E + 04	7075	1592	1171	• c	. 0	0	0	0	0	0	0	0
) 1.4/c+00	2.30E T 05	2./3C + 04	2018	1583	1163	908.7	• c) O	0	0	0	0	0	0
		7 2 105 106	3.2/ET03	3.30C + 04	1 4 25 4 04	1197	BBO	0) C	. 0	• •	0	0	0	0	0
-		1 2.93E+U0	4.03E+03	4.10E+04	1.445 7.04	1011	2		, ,				• c	Ċ	0	0
•• 6		1 1.895+U0	2.386 + 03	3.315+04		1102	<u>ہ</u> د		• •) c		• c	0	0	0
_, 1	140	0 1.88E+06	2.30E+05	1./8E+04	1 051 . 01	1103		.	,	,	• •	• c) c) c	
_, [130	0 1.91E+06	3.01E+05	3./2E+04	1.055 + 04	1505	573	. .	268.2	o	, c	• c) C) c		• •
	120	0 1.76E+06	2.35E+05	3.53E+04	1.04E+04	6061	c/0	.	0000	,			
	110	0 1.58E+06	2.57E+05	2.16E+04	6415	2311		.	.	,	.	.	.			
	100	1.996+06	2.57E+05	3.45E+04	3607	2438	/ 6G		• •		.	.		,	.	
	ы Б	0 1.77E+06	2./5t+05	2.65E+04	1.09E + 04	2423 2	.	2	.	0		.	• c			
	ы Ж	0 2.14E+06	2.31E+05	3.0/E +04	5461		0 100	0	0		.	0	, ,			
	×	0 1.40E+06	2.02E+05	1.52E+04	1146	1121	668	098.0	,						• c	o c
	ŏ	0 1.83E+06	2.505+05	2./5E+U4	0.001	0	<u>،</u> د	•	.	.	.	,		• •		
	َ مَ	0 1.38E+06	2.04E+05	2.45E + 04	0781	• •	, ,		
~*	5 4	0 1.32E+06	1.66t + U5	1.245 + 04			0.00	.	، د	,	.	.		o c) C	
	ň	0 1.13E+06	2.63E+05	1.53E+04	1815	1226	902		، د	.	- -	<u>ہ</u> د	,	.		,
	ž	0 9.25E+05	1.64E+05	1.53E+04	9056	1218	1804	669	0	0	0	- C			، د	2
	5 1	0 8.93E+05	1.47E+05	1.63E+04	3431	2005	206.8	•	0	•	0	0	0	0	C	2
	16275!	5 182907													¢	(
-	3 26(0	•	0	0	0	•	0	0	0	0	0	0	0	0	2
-	3 25(0 4.33E+05	1.30E+05	1.32E+04	4473	755.7	0	433.7	0	0	0	0	0	0	0	5
-	3 24(0 4.85E+05	9.06E+04	5659	1667	2253	0	0	0	0	0	0	0	0	0	0
-	3 23(0 1.02E+06	2.08E+05	2.05E + 04	5519	5218	0	0	0	0	•	0	0	0	0	0
	3 22(0 7.82E+05	1.75E+05	4.50E+04	4989	1122	0	0	0	•	•	0	0	0	0	0
-	5 211	0 9.17E+05	2.36E+05	2.99E+04	5535	0	0	0	0	0	0	0	0	0	0	0
-	5 20	0 1.03E+06	2.45E+05	3.08E + 04	8295	2244	819.5	644	1567	884.5	421.7	0	0	0	0	0
-	6 19t	0 1.27E+06	2.77E+05	2.82E+04	3333	5629	1656	646	0	0	0	0	0	0	0	0

.

· Ξ

	Brin 15		0	0	0 (0	.	,	00	0	0	0	0	0	0	0	0 0	5 0	>	0	0	0	0	0	0	0	0	0	0	0 0	5 0		• c	0	0	0	0	0	0 (0 0	0	0	0	0	0	0	C
	bin 14		0	0	0 (.	,	. .	• •	0	0	0	0	0	0	0	0 0	. .	>	0	0	0	0	0	0	0	0	0	0	0 0	5 0	. .	• c	0	0	0	0	0	0	0	0	0	0	0	0	0	c
	4n 13 I		0	0	0 1	.	. .		• •	0	0	0	0	0	0	0	0 (.	5	0	0	0	0	0	0	0	0	0	0	0 0	.	. .		0	0	0	0	0	0	0	0	0 (0	0	0	0	0
	In 12 B		0	0	0	• •	0	0	0	0	0	0	0	0 0	0 0	>	0	0	0	0	0	0	0	0	0	0	0 0	5 0	. .	o c	00	0	0	0	0	0	0	0	0 (0	0	0	0	0
	in 11 e		0	0	0	• •	0	0	0	0	0	0	0	0 (50	5	0	0	0	0	0	0	0	0	0	0	0 0	•	- -	, c	0 0	0	0	0	0	0	0	0	0	0	0	0	0	0
	n 10 Be		•	•	0	0 0	- -	,	• •	0	0	0	0	0	0	0	0 0	5 0	5	0	0	0	0	0	0	0	0	0	0	0 0	5 0			00	0	0	0	408.2	0	0	0	0	0	0	0	0	0
	in 9 Bi		0	•	0	0 0	.	00	0 0	0	0	0	0	0	0	0	0 (.	2	0	0	0	0	0	0	0	0	0	0	0 0	.	-		0 0	0	0	0	0	o,	0	0	0	0	0	0	0	0
	in 8 8	3	0	0	0	•	. .	>	> 0	0	0	0	0	0	0	0	0 (5	5	0	0	0	0	0	0	0	0	0	0	0 (5 0	U 7 065	1.600	0 0	0	0	0	0	0	0	0	0	0	0	0	0	0
a, CA	in 7 8	er per cubic mei	0	1307	0	0 0	5 0		885	0	0	0	450	0	0	1375	453 2		1,010	0	0	0	0	0	0	0	0	0	0	0 000	623	0	1256	0	•	1232	413.3	0	623.2	1296	1978	887.3	0	0	0	0	704.4
Arcat	19 U 9 U	M umb	0	1115	0	561.7	6/0		• •	0	857	1731	2887	573	0	1761	580.7 227.7	1.182	7171	0	0	0	0	0	0	0	0	0	0	3193	1915	481/ 533	905 805	1595	0	1580	1590	796	798.5	1109	1685	1137	0	869	1152	0	698.6
	تھ ب		752	0	763.7	3046	2283	2469	2310	1157	2315	1174	3147	1561	0	5602	3945 1122		1047	0	0	0	0	0	0	0	0	4354	1085	1081	0/12	2184	3265	2170	0	0	3606	0	3283	4527	2311	772	3557	0	1556	2359	921.4
	Bin 4 B		5576	3352	7925	5625	1E+04 E033	50/2 5160	4561	6839	3E + 04	7E + 04	9317	8113	4770	4E+04	7E + 04	G1/8		0	0	0	0	0	0	0	3237	4840	9633	8030	9030	3232 5373	6463	2E+04	8E + 04	4770	4263	6399	5673	0068	7E + 04	8009	8779	3489	4624	5E + 04	4574
	Bin 3 (1E+04	6E+04	2E+04	0E+04	16+04 1.0 96 - 04	56+04 56+04	2E+04	1E+04	6E+04 1.0	0E+04 1.5	5E+04	6E+04	1E+04	9E+04 1.5	6E+04 1.1	30 + 04 30 - 04	10+04	0	0	0	2822	1820	2726	0	7250	1E + 04	8E+04	7E + 04	3E+04	01 + 14 65 + 114	96 + 04	0E+04 1.1	56+04 1.2	0E+04	0E+04	8E + 04	8E + 04	0E+04	0E+04 1.8	0E + 04	5E+04	7E + 04	1E + 04	5E+04 1.0	8E + 04
	2 un		0E+05 1.5	2E+05 2.4	7E+05 1.9	7E+05 3.8	/E+03 3./	10110 4.2 56105 11	3E+05 2.1	5E+05 2.3	BE+05 6.9	6E+05 5.0	BE+05 2.7	0E+05 1.5	0E+05 1.6	BE+05 2.5	7E+05 2.5	46+03 2.9 86+06 2.3	8E T UU 2.3	0	0	0	3E + 04	5E+04	1E+04	9E + 04	2E + 04	1E+05 1.9	9E+05 2.9	0E+05 2.1	UE+U5 5.4	011 + 105 - 10 612 - 105 - 14	остој 2.3 2F+O5 1 О	6E + 05 3.8	4E+05 4.8	2E+05 4.3	8E+05 2.7	6E+05 1.0	8E+05 2.8	8E+05 3.2	2E+05 2.3	7E + 05 2.9	1E+05 4.7	9E+05 2.0	7E+05 3.3	2E+05 2.9	6E+05 Z.9
	i 1 1	2	E+06 2.3	lE+05 1.8.)E+05 1.2	2E+05 2.5	10 + 0.0 - 21 8 10 - 0.0 - 21 8	1 2 4 0 0 7 3 0 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1	16+06 24	E+06 2.8	E+06 2.6	1.7 E+06 1.7	3E+05 1.9	7E+05 1.6	3E+06 2.2	5E+06 2.1	3E+05 1.7	10+00 10+00 10+00	64048	0	0	0	3E+05 6.0.	E+04 1.9	7E+05 7.6	1E+05 4.0	3E+05 6.6	3E+05 1.1	5E+05 1.3	4E+05 1.8	10 + 05 - 1.8	1E+05 2.4	15+05 15	E+05 1.8	3E+05 2.5	1E + 05 2.0	3E+05 2.2	DE+05 1.5	9E+05 1.5	DE+05 2.1	3E+05 1.7	2E+05 2.0	3E+05 2.6	1E+05 2.5	3E+05 1.6	3E+06 1.5	7E+05 1.5
	(m) e	te End ti	180 1.00	170 9.14	160 7.65	150 7.32	140 8.4C	21.1 UCI	110 1.20	100 1.42	90 1.52	80 1.13	70 9.96	60 6.57	50 1.16	40 1.05	30 9.05	18./ 02	13940 14	290	280	270	260 2.76	250 7.4E	240 4.47	230 4.24	220 4.46	210 4.46	200 5.55	190 8.44	180 8.4.	3C./ 0/1	150 3.80	140 8.21	130 6.15	120 5.94	110 7.05	100 3.10	90 5.35	80 7. /L	70 6.8	60 7.12	50 7 50	40 5.31	30 5.4	20 1 00	10 4.3,
	h Altitud	Begin tim	9	9	9		D G		. 0	9	9	9	9	9	9	9	9	D 9	0 16	~ ~	7	7	7	7	7	7	1	2	7	~ 7	~ 7			. ~	7	7	7	7	7	7	ر		ر	7	7		
	Approact	number																				٨	1	0																							

Ē

No. I - IIGUA

i watan

---------------.

_ _

				August 28, 19	92			
Approach	Altitude		Temp	Vapor	Number	Liquid water	Median	Total
number	(m)		(C)	density	seconds	content	vol. radius	number
	Begin time	End time		(g/m3)	in layer	(g/m3)	(m-6)	(per cm3)
	152008	152048						
1	110		13.2	11.51	4	0.11	5.81	116.151
1	100		13.0	11.35	2	0.24	5.77	266.396
1	90		13.0	11.35	2	0.14	6.11	141.181
1	80		12.2	10.80	2	0.21	5.89	231.030
1	70		12.2	10.80	2	0.15	5.65	193.016
1	60		12.2	10.80	2	0.14	5.24	240.538
1	50		11.4	10.28	2	0.09	4.87	176.017
1	40		11.4	10.28	3	0.10	4.54	251.638
1	30		11.1	10.08	3	0.08	5.04	189.304
1	20		10.5	9.71	5	0.07	5.52	122.412
1	10		10.2	9.54	14	0.12	13.89	042.366
	153634	153711						
2	110		13.9	12.00	1	0.00	8.23	001.298
2	100		13.4	11.67	2	0.01	5.72	029.823
2	90		13.0	11.35	2	0.07	5.43	104.336
2	80		12.7	11.17	3	0.07	5.29	118.548
2	70		12.2	10.80	2	0.14	5.23	216.924
2	60		12.2	10.80	3	0.14	5.20	236.368
2	50		11.4	10.28	2	0.10	4.95	186.627
2	40		11.4	10.28	3	0.14	5.18	283.552
2	30		11.4	10.28	3	0.09	5.45	165.519
2	20		10.5	9.71	3	0.06	6.01	122.314
2	10		10.5	9.71	13	0.12	12.39	044.841
2	154746	154826				154826.00		
З	200	10.020	15.6	13.31	2	0.00	0.88	000.091
3	190		15.3	13.07	3	0.01	5.22	014.294
3	180		14.7	12.60	2	0.17	5.99	166.110
3	170		14.7	12.60	2	0.25	5.91	251.324
2	160		14.0	12.07	8	0.25	5.65	303.895
2	150		13.5	11 71	0	0.23	5.57	291.046
2	140		13.0	11.35	3	0.20	5.46	278.136
່ ວ	130		12.6	11.07	2	0.15	5.19	258.267
່ ວ	120		12.0	10.80	2	0.19	5.53	268.598
С	120		12.2	10.80	2	0.19	5.49	263.513
3	100		12.2	10.00	2	0.12	4.96	220.460
3	100		12.2	10.00	2	0.12	5.24	207.889
3	90		11.0	10.54	2	0.12	5.32	213.915
3	80		11.4	10.20	2	0.09	4 67	189.048
3	70		11.4	10.20	2	0.00	4 46	222.369
3	60		11.4	0.71	2	0.10	4 4 8	232.304
3	50		10.5	9.71	<u></u> А	0.10	4.40	230 969
3	40		10.5	9.71	4	0.11	4.00	200.000
	155924	160016		10.00	2	0.00	0 88	000 044
4	200		14.7	12.60	2	0.00	0.00	000.044

A-20

B-----

				August 28, 19	92			
Approach	Altitude		Temp	Vapor	Number	Liquid water	Median	Total
number	(m)		(C)	density	seconds	content	vol. radius	number
	Begin time	End time		(g/m3)	in layer	(g/m3)	(m-6)	(per cm3)
4	190		14.7	12.60	3	0.06	6.37	103.084
4	180		14.3	12.30	2	0.36	6.42	302.052
4	170		13.9	12.00	3	0.28	6.17	256.227
4	160		13.4	11.67	2	0.31	6.00	299.693
4	150		13.0	11.35	3	0.21	5.97	203.060
4	140		13.0	11.35	2	0.19	6.21	176.468
4	130		12.5	10.98	3	0.23	5.67	276.743
4	120		12.2	10.80	3	0.18	5.46	256.586
4	110		11.4	10.28	3	0.18	5.43	250.247
4	100		11.4	10.28	3	0.19	5.47	269.763
4	90		11.1	10.08	3	0.19	5.39	286.281
4	80		10.5	9.71	3	0.15	4.97	275.890
4	70		10.5	9.71	2	0.15	5.00	270.803
4	60		10.1	9.47	2	0.10	5.27	177.685
4	50		09.7	9.23	3	0.10	4.57	230.462
4	40		09.7	9.23	2	0.08	4.25	232.438
4	30		09.7	9.23	2	0.05	4.49	170.417
4	20		09.3	9.00	6	0.05	5.31	118.455
4	10		08.9	8.77	1	0.05	26.42	067.676
	161632	161736						
5	230		16.4	13.97	2	0.00	2.38	000.183
5	220		15.6	13.31	2	0.12	6.18	124.645
5	210		15.6	13.31	2	0.19	5.78	220.424
5	200		15.1	12.95	4	0.18	6.03	190.896
5	190		14.7	12.60	3	0.25	6.77	210.720
5	180		14.2	12.20	3	0.24	6.08	231.959
5	170		13.6	11.78	3	0.23	6.04	239.253
5	160		13.0	11.35	2	0.30	6.35	274.061
5	150		13.0	11.35	2	0.27	6.06	271.084
5	140		12.6	11.07	2	0.19	5.77	221.827
5	130		12.2	10.80	3	0.25	5.92	276.365
5	120		11.7	10,45	3	0.22	5.72	270.289
5	110		11.4	10.28	5	0.24	5.70	290.771
5	100		11.1	10.08	3	0.22	5.86	263.331
5	90		10.5	9.71	3	0.20	5.64	270.912
5	80		10.5	9.71	2	0.12	5.24	207.128
5	70		10.5	9.71	2	0.17	5.01	318.270
5	60		10.1	9.47	2	0.16	5.42	247.114
5	50		10.1	9.47	2	0.13	5.62	189.899
5	40		09.7	9.23	2	0.05	4.18	164.009
5	30		09.7	9.23	2	0.05	4.71	129.057
5	20		09.7	9.23	2	0.05	5.25	139.398
5	10		09.5	9.12	9	0.02	7.66	030.759

162755 162907

· _

August 28, 1992

Approach	Altitude		Temp	Vapor	Number	Liquid water	Median	Total	
number	(m)		(C)	density	seconds	content	vol. radius	number	
	Begin time	End time		(g/m3)	in layer	(g/m3)	(m-6)	(per cm3)	
6	260		16.4	13.97	1	0.00	0.88	000.171	
6	250		16.7	14.20	3	0.16	6.92	119.013	-
6	240		16.4	13.97	2	0.25	7.50	151.012	-
6	230		16.1	13.75	3	0.53	7.19	347.217	-
6	220		15.6	13.31	2	0.56	6.99	398.378	
6	210		15.3	13.07	3	0.51	7.12	343.696	,
6	200		14.7	12.60	2	0.44	7.09	303.450	-
6	190		14.7	12.60	2	0.48	7.12	319.563	-
6	180		13.9	12.00	3	0.47	7.06	336.681	
6	170		13.6	11.78	3	0.43	6.45	373.583	
6	160		13.0	11.35	3	0.39	7.12	277.600	5
6	150		12.7	11.17	3	0.41	6.95	322.806	-
6	140		12.2	10.80	2	0.41	7.08	310.291	
6	130		12.2	10.80	2	0.40	7.26	304.993	-
6	120		12.2	10.80	2	0.30	6.13	333.846	
6	110		11.7	10.45	3	0.36	6.94	301.023	
6	100		11 4	10.28	2	0.23	6.08	273.811	
6	90		11.4	10.28	2	0.27	6.53	314.570	
6	80		11.4	10.28	2	0.25	5.68	362.965	
6	70		10.5	9.71	3	0.16	4.77	319.982	
6	60		10.5	9.71	3	0.17	5.79	254.585	
6	50		10.5	9.71	3	0.13	4.48	322.414	
6	40		10.0	9 55	3	0.11	5.25	255.054	
6	30		09.7	9.00	3	0.14	6.35	264.262	
6	20		09.7	9.23	6	0.12	8.20	141.820	52
6	20		09.5	9.20	7	0.02	7 53	026.348	
0	162040	164049	03.5	3.10	,	0.02	1.00	0201010	
-	163940	104040	17 0	14 66	1	0.00	0.88	000 088	
/	290		17.2	14.00	2	0.00	0.88	000 174	_
/	280		17.2	14.00	2	0.00	6.82	024 801	
/	270		17.2	14.00	2	0.03	7 27	230 830	
/	260		10.4	13.97	2	0.37	7 39	146 502	
/	250		10.4	13.97	ວ າ	0.24	7.55	331 439	-
/	240		15.0	13.31	2	0.55	7.13	317 935	=::
7	230		15.6	13.31	2	0.40	7.13	221 205	
7	220		15.0	12.84	3	0.30	7.44	A16 A20	
7	210		14.7	12.60	2	0.51	0.07	410.439	
7	200		14.3	12.30	2	0.51	6.39	429.234	
7	190		13.9	12.00	2	0.51	6.50	420.749	
7	180		13.9	12.00	2	0.49	08.0	333./33	
7	170		13.9	12.00	1	0.49	0.60	422.010	-
7	160		13.0	11.35	3	0.46	6.63	400.379	=-
7	150		13.0	11.35	2	0.43	5.97	447.285	
7	140		12.6	11.07	2	0.39	6.47	388.518	
7	130		12.2	10.80	1	0.37	5.94	442.373	

				August 28, 19	92			
Approach	Altitude		Temp	Vapor	Number	Liquid water	Median	Totai
number	(m)		(C)	density	seconds	content	vol. radius	number
	Begin time	End time		(g/m3)	in layer	(g/m3)	(m-6)	(per cm3)
7	120		12.2	10.80	2	0.39	6.60	374.945
7	110		12.2	10.80	3	0.35	6.50	378.486
7	100		11.4	10.28	2	0.25	5.48	388.028
7	90		11.4	10.28	4	0.30	5.63	420.657
7	80		11.4	10.28	3	0.32	6.36	369.763
7	70		10.9	9.99	2	0.28	6.08	391.752
7	60		10.5	9.71	3	0.22	5.71	347.473
7	50		10.5	9.71	2	0.19	5.73	325.983
7	40		10.5	9.71	2	0.12	5.36	236.892
7	30		10.5	9.71	3	0.13	6.77	228.333
7	20		10.5	9.71	1	0.09	6.43	159.332
7	10		10.2	9.53	8	0.04	8.35	039.594
	165207	165325						
8	290		17.2	14.66	1	0.18	7.03	134.366
8	280		17.2	14.66	1	0.29	6.62	237.229
8	270		16.4	13.97	3	0.57	6.58	460.136
8	260		16.4	13.97	2	0.55	6.87	387.718
8	250		15.6	13.31	3	0.57	6.50	440.316
8	240		15.6	13.31	3	0.48	6.41	387.510
8	230		14.7	12.60	2	0.47	5.96	437.226
8	220		14.7	12.60	2	0.51	6.29	428.233
8	210		14.3	12.30	2	0.48	6.27	428.429
8	200		13.9	12.00	2	0.44	6.32	393.602
8	190		13.9	12.00	2	0.40	6.24	357.309
8	180		13.3	11.57	3	0.40	6.21	356.534
8	170		13.0	11.35	1	0.40	6.12	368.740
8	160		12.7	11.17	3	0.36	5.91	384.263
8	150		12.2	10.80	3	0.30	5.70	366.298
8	140		12.2	10.80	2	0.32	5.75	393,200
8	130		11.4	10.28	2	0.32	5.96	361.711
8	120		11.4	10.28	3	0.18	5.38	292.623
8	110		11.4	10.28	2	0.23	5.26	373.730
8	100		11.4	10.28	2	0.20	5.65	308,158
8	90		10.5	9.71	3	0.16	4.67	332.818
8	80		10.5	9.71	3	0.15	4.53	347.654
8	70		10.5	9.71	3	0.14	4.63	318.314
8	60		10.5	9.71	3	0.16	4.50	372.523
8	50		10.5	9.71	3	0.12	4.54	293.446
8	40		10.0	9.39	3	0.08	5.35	167.905
8	30		09.7	9.23	3	0.05	4.67	188.967
8	20		09.7	9 23	2	0.03	4.98	120 361
8	10		09.9	9.26	<u>م</u> 11	0.00	15.08	008 504
-	. •		VU . U	0.00	• •	0.01	10.00	000.00+

-

Altiude (m)	Bin 1	Bin 2	Bin 3	Bin 4	Bin 5	Bin 6	Bin 7	Bin 8	Bln 9	Bin 10	Bin 11	Bin 12	Bin 13	Bin 14	Bin 15
gin time	End time					z	umber per cubic	i mater							
181556	7 545±04	7 EAELOA	c	c	C	° c	ize: 3 microne 1 0	tange: 2-47 mic 0	0	0	0	0	0	0	0
066	1 13F+05	7.52E+04	7.51E+04	3.75E+04	0	0	0	0	0	0	•	0	0	0	0
310	1.98E+07	2.41E+07	5.41E+07	7.56E+07	1.97E+07	4.27E+06	7.15E+05 1	I.52E+05 2	2.15E+04	•	0	•	•	0	0
300	4.01E+07	3.96E+07	1.37E+08	2.01E+08	4.87E+07	1.46E+07	2.88E+06 3	3.91E+05 1	.94E+05 +	6.47E+04	0	0	0	0	0
290	4.00E+07	4.25E+07	1.30E+08	1.85E+08	4.44E+07	1.43E+07	2.83E+06	5.27E+05 6	3.79E+04	0	0	0	0	0	0
280	3.48E+07	3.84E+07	1.27E+08	1.66E + 08	4.37E+07	1.40E+07	3.16E+06	5.11E+05 2	2.23E+05	4.49E+04	0	•	0	0	0
270	5.24E+07	7.03E+07	1.23E+08	1.18E+08	2.66E+07	7.96E+06	1.70E+06 3	3.40E+05 1	1.36E+05	0	0	0	0	0	0
260	5.18E+07	8.78E+07	2.06E+08	1.30E+08	3.19E+07	8.30E+06	1.39E+06	2.37E+05 3	1.40E+04	1.02E+05	0	•	0	0	0
250	5.26E+07	8.46E+07	2,52E+08	1.54E+08	3.95E+07	9.12E+06	1.70E+06	4.996+05 6	3.66E+04	3.33E+04	0	0	0	0	0
240	4.56E+07	7.36E+07	1.76E+08	1.52E+08	3.946+07	1.20E+07	2.70E+06	3.16E+05 3	3.40E+04	3.40E+04	•	•	•	0	0
230	4.02E+07	7.79E+07	1.78E+08	1.32E+08	3.42E+07	9.84E+06	2.12E+06	4.52E+05 3	3.47E+04	6.95E+04	6.95E+04	0	0	0	0 (
220	4.13E+07	9.86E+07	1.79E+08	8.67E+07	1.67E+07	2.61E+06	2.74E+05	4.63E+04	•	•	0	0	0	0	0 0
210	0 4.35E+07	9.47E+07	1,89E+08	1,16E+08	2.94E+07	6.69E+06	1.09E+06	0	1.06E+05	•	0	0	0	0	0 0
200	3.42E+07	8.23E+07	1.53E+08	8.77E+07	2.23E+07	4.73E+06	6.27E+05	9.27E+04	0	•	•	2.30E+04	0	0	0 0
190	3.70E+07	9.00E+07	1,70E+08	9,80E+07	1.97E+07	3.68E+06	5.77E+05	1.44E+05	0	•	0	0	0	0	0 (
180) 3.58E+07	9.68E+07	2.12E+08	9.95E+07	1.82E+07	3.71E+06	6.01E+05	3.52E+04	0	•	•	0	0	0	
170	1 4.24E+07	1.27E+08	2.30E+08	7.39E+07	1.49E+07	2.28E+06	1.88E+05	0	0	2.36E+04	0	0	0	0	0
160	0 4.08E+07	1.45E+08	2.22E+08	6.88E+07	1.38E+07	3.06E+06	4.09E+05	7.20E+04	0	•	•	0	0	0	0 (
150) 3.91E+07	1.22E+08	1.59E+08	6.02E+07	1.11E+07	1.65E+06	2.16E+05	3.60E+04 3	3.58E+04	0	0	0	0	0	0
140	3.56E+07	9.62E+07	1.30E+08	5.82E+07	1.13E+07	2.45E+06	3.93E+05	7.286+04 4	4.93E+04	•	0	0	0	0 (0 0
130) 3.34E+07	1.02E+08	1.17E+08	4.51E+07	5.70E+06	7.04E+05	9.81E+04	0	•	0	0	0	0 (0	2 0
120	6.48E+07	1.80E+08	1.04E+08	2.38E+07	2.98E+06	2.24E+05	3.74E+04	0	•	0	0	0	0 (0	0
110) 5.23E+07	1.63E+08	9.38E+07	2.07E+07	1.84E+06	4.28E+05	2.52E+04	•	0	0	0	2.51E+04	0	•	
100	1.77E+08	2.12E+08	6.31E+07	1.01E+07	8.25E+05	1.54E+05	2.556+04	0	0	0	5	2.55E+U4	0	.	2
ĕ	0 1.00E+08	1.94E+08	8.24E+07	1.46E+07	2.13E+06	5.33E+05	7.556+04	7.63E+04	2.56E+04	0	0	o «	0	.	
8) 6.93E+07	1.28E+08	5.51E+07	1.31E+07	1.96E+06	1.49E+05	4.99£+04	•	0	0	Ó	o (0	ہ د	
×) 6.03E+07	6.91E+07	2.48E+07	5.75E+06	1.00E+06	1.70E+05	9.43E+04	•	1.90E+04	0	0	0		.	1.a3c+0+
90	0 1.57E+07	3.08E+07	1.90E+07	6.22E+06	1.03E+06	2.52E+05	1.42E+05	7.20E+04	0	0 (0 (о «	3.51E+04		
ð.	3 8.21E+06	1.66E+07	1.25E+07	3.67E+06	1.09E+06	4.59E+05	3.50E+04	S	3.586+U4		.	، د) (
4	0 1.32E+06	1.95E+06	1.27E+06	6.15E+05	3.10E+05	4.15E+04	0	0	0	0 (0	э «	0		5 0
ĕ	0 5.35E+05	5.54E+05	3.15E+05	1.00E+05	2.52E+04	1.30E+04	0	9344	0	o	c	D	2	2	>
18273(0 182900			¢	Ċ	c	4	c	c	c	c	c	C	C	C
376	0 8.03E+04	0	8.03E+04	5 <		0	`	,	,	• c					0
36	0 7.99E+04	C	5	יכ	2	о (> <) (,					
350	0 7.92E+04	3.97E+04	0 (0 0	0	0	.	. .		o c	00				0
34	0 7.91E+04	o	0		0	· د	о (.	`	.	,	• <			C
33(0 1.99E+05	0	0	0	0	0	0.0	0	0		. .				
32	0 8.34E+06	1.05E+07	3.42E+0/	4.09E+07	9.665 + 06	Z.82E+00	2.8/E+U5	4,486+04		,	`	.	, ,		
31	0 2.90E+07	3.44E+07	9.51E+07	1.28E+08	3.48E+07	9.79E+06	2.19E+06	2.71E+05	4.49E+04	0 (.	.	. .		
ğ	0 4.22E+07	5.99E+07	1.63E+08	1.54E+08	3.88E+07	1.116+0/	1.9/E+00	4.41E+U5	1.UZE+U5		`	0	o (
29	0 2.86E+07	4.56E+07	1,05E+08	8.24E+07	2.13E+07	5.08E+06	8.20E+05	1.026+05	3.40E+04	0.81E+04	> <	ہ د		o c	
28	0 4.48E+07	7.20E+07	1.87E+08	1.44E+08	3.77E+07	1.05E+07	1.50E+06	2.99E+05	3.30E+04	0	0		0 0		
27	0 5.73E+07	9.68E+07	2.79E+08	1.60E+08	3.91E+07	1.05E+07	1.87E+06	3.67E+05	6.66E+04	0	5	3.36E + U4	.		
26	0 5.43E+07	8.78E+07	2.30E+08	1.62E+08	4.33E+07	1.09E+07	2.84E+06	3.01E+05	6.64E+04	3.36E+04	3.32E + 04	0	0	3.365 + 04	0
25	0 6.03E+07	1.15E+08	2.81E+08	1.40E+08	3.50E+07	7.71E+06	1.04E+06	6.82E+04	0	3.28E+04	0	0		0	0 (
24	0 6 35F + 07	1 64F+08	2 20F 108	1 14F 108	715±07	4 1 4 5 1 0 5	E GAELOE	A 50F LOA	A 53FLOA	C	2 30F + 04	0	2.30E + 04	0	0
					2.110401	4.447400	0.04140.0	+>	+0+140.4	`		•		•	

ì

14-141

1

a state a state

7.000

A-24

E

:

1.1.1

t de la second

i...

-

							Ϋ́	rcata, CA								
Approach	Aititude (m)	Bin 1	Bin 2	Bin 3	Bin 4	Bin 5	Brin 6	guer 20, 1992 Bin 7	8in 8	8 in 9	Bin 10	Bin 11	Bin 12	Bin 13	Bin 14	Bin 15
number	Begin time	End time					~	Number per cubi	c meter							
10	220	4.97E+07	9.69E+07	2.15E+08	1.33E+08	3.24E+07	7.63E+06	1.41E+06	4.04E+05	0	3.37E+04	0	0	0	0	0
10	210	4.82E+07	1.14E+08	1.83E+08	9.32E+07	2.02E+07	4.96E+06	9.74E+05	3.69E+05	6.76E+04	0	0	0	0	0	0
10	200	6.01E+07	1.75E+08	3.08E+08	7.91E+07	1.85E+07	1.98E+06	1.00E+05	0	0	0	0	0	0	0	0
10	190	6.39E+07	1.75E+08	2.71E+08	7.43E+07	1.68E+07	4.69E+06	7.94E+05	3.45E+05	1.04E+05	3.45E+04	0	0	0	0	0
10	180	5,64E+07	1.60E+08	2.22E+08	7.66E+07	1.83E+07	4.19E+06	9.67E+05	3.69E+05	8.93E+04	0	2.28E+04	0	0	0	0
10	170	5,26E+07	1.37E+08	1.68E+08	7.21E+07	1.83E+07	3.39E+06	6.22E+05	0	0	6.92E+04	0	0	0	0	0
10	160	4.18E+07	1.14E+08	1.48E+08	7,21E+07	1.98E+07	6.43E+06	1.75E+06	6.21E+05	1.38E+05	0	2.31E+04	0	0	0	0
10	150	3.68E+07	8.83E+07	9.74E+07	4.0-2E + 07	8.45E+06	1.50E+06	2.44E+05	1.40E+05 (6.98E+04	0	0	0	0	0	0
10	140	4.09E+07	1.19E+08	1.32E+08	5.15E+07	1.11E+07	3.57E+06	9.11E+05	1.40E+05	7.01E+04	0	0	0	0	0	0
10	130	0.64E+07	1.36E+08	1.01E+08	3.56E+07	5.80E+06	8.44E+05	4.81E+04	2.45E+04	0	0	0	0	0	0	0
10	120	5.33E+07	1.11E+08	5.86E+07	1.36E+07	2.54E+06	5.42E+05	4.96E+04	0	2.48E+04	2.45E+04	0	0	0	0	0
10	110	1 2.58E+07	1.21E+07	1.58E+06	4.76E+05	1.19E+05	0	0	0	0	0	0	0	0	0	0
10	100	0 2.38E+07	1.59E+07	4.23E+06	1.38E+06	5.43E+05	2.34E+04	2.34E+04	2.34E+04	0	0	0	0	0	0	0
10	06	4.55E+05	4.74E+05	4.12E+05	6.65E+04	0	0	0	0	0	0	0	0	0	0	0
10	80	1.24E+06	1.04E+06	5.19E+05	1.74E+05	4.34E+04	0	4.34E+04	0	0	0	0	0	0	0	0
10	20	1 5.36E+06	3.54E+06	1.27E + 06	2.79E+05	7.30E+04	0	2.32E+04	0	0	0	0	0	0	0	0
10	90	0.89E+05	1.72E+05	2.15E+05	0	0	0	0	0	0	0	0	0	0	0	0
10	20	0.36E+05	2.55E+05	8.45E+04	4.26E+04	•	0	0	0	0	0	0	0	0	0	0
10	40	1 4.06E+05	2.38E+05	6.50E+04	0	0	0	0	0	0	•	0	0	0	0	0
10	000	0.6.61E+05	6.42E+05	1.40E+05	1.556+05	4.67E+04	0	0	0	0	•	0	0	0	0	0
10	20	1 5.59E+05	3,35E+05	2.51E+05	8.38E+04	•	0	0	•	0	•	0	0	0	0	0
10	. 10	1.4,86E+05	4.24E+05	2.73E+05	5.81E+04	2.57E+04	1.83E+04	9169	9358	2.93E+04	0	9358	•	9169	0	0

-

-

A-25

.

-

=

Anometh	Altinda	- Ha	1 1 2		4 via		Au Bin A	juet 28, 1992 Bin 7		e uis	Bin 10	Bin 11	Bin 13		Bin 14	Bin 15
outer the second	Recis time	End time	i	Ì	,			imber ner cubic		Ì		:	:			2
							8 3	za: 20 microne	Range: 10-310	nicrone						
	18155	6 181716														
	33(•	0	0	0	•	0	0	0	0	0	0	0	0	0	0
	92(0	0	•	•	•	0	0	ö	•	0	0	0	0	0	0
	31	0 4.11E+04	•	•	•	•	0	0	0	0	0	0	0	0	0	0
	30	0 1.04E+05	3.26E+04	0	1496	0	0	0 (• •	0 (0	0 (0 (0 0	0	0 (
	167 767	0 1.56E+05	1.85E+04	5170	0	0	0 0	0 906	0	0 0	0 0	0 0	0 0	342.3	0 0	0 0
	207 77(0 /.02E+04	3.325 + U4	17/1	4 0	000.3	- c		955 7			,	
	26(0 6.31E+04	1.66E+04	7706	3056) o	• •	• •	483.9	1226	• •	• •	• •) o	• •	• •
	35(0 1.47E+05	3.30E+04	7715	1524	1030	0	0	963.5	1635	388.7	0	0	0	0	0
	9. 24(0 2.34E+05	1.12E+04	0	1538	0	0	1193	488.3	1651	393.1	0	0	0	0	0
	9 23(0 2.36E+05	1.13E+04	5250	0	0	0	0	•	2489	397.1	0	0	0	0	0
.,	9 22	0 7.22E+04	3800	1773	1039	•	0	0	0	0	0	0	0	0	0	•
	9 21	0 1.31E+05	4.00E+04	1.07E+04	0	•	0	0	6 .966	847	403.7	0	0	0	0	•
	20 20	0 2.95E+04	1.93E+04	0	0	0	0	0	•	•	0	0	0	0	0	•
		0 4.46E+04	2.92E+04	2721	0	0	0	0	512	•	826.5	446.2	0	0	0	•
	6 8 1 8	0 1.78E+05	2.92E+04	5446	0	0	0	627	•	864.4	0	445.1	0	0	0	0
		0 2.97E+04	3.11E+04	7282	1084	•	0	0	0	1162	0	0	0	0	0	0
	10	0 1.05E+05	1.18E+04	1.10E+04	•	734.7	1087	•	0	584.9	•	•	0	0	0	•
	a 15	0 3.16E+05	4.14E+04	0	0	•	0	633	0	•	•	•	•	0	0	•
	141	0 1.52E+05	4.77E+04	3728	3280	0	0	•	0	•	•	0	•	0	0	•
		0 1.38E+05	2.81E+04	1876	•	0	0	0	0	•	•	ō	0	0	0	•
<i>.</i> А.	12	0 9.19E+04	1.81E+04	2816	1662	•	828	0	528	•	•	0	•	¢	0	•
	Ē	0 1.08E+05	1.61E+04	7513	0	2256	553.3	0	0	•	•	0	0	0	0	0
5		0 3.13E+04	1.63E+04	3753	0	755.3	0	0	0	0	0	0	0	0	0	0
	ň	0 6.12E+04	2.80E+04	5601	3306	•	•	•	•	0	•	•	•	•	0	0
	Č I	0 6.11E+04	2.00E+04	3723	1102	•	•	•	•	•	0	0	0	0	0	•
	~ 6	0 7.97E+04	2.99E+04	6982	821.2	1114	408	642.5	•	•	0	0	0	0	0	0
	ő G	0 1.12E+05	5.88E+04	ö	0	•	0	0	514	0	0	0	0	0	0	•
	õ	0 1.58E+05	8.26E+04	1.38E+04	4889	•	•	0	•	•	•	0	0	0	0	0
	4	0 5.97E+04	3.52E+04	7300	0	730	•	0	•	0	•	0	0	0	0	0
	ñ i	0 1.91E+04	6653	780.4	0	309.4	0	0	0	•	•	0	0	0	0	0
	18273	0 182900 î	(ſ		•	•				•	•	•	•	•	ł
÷ :	37	000	0	0	0	0 (0 (0 (0 (0 (0 (•	о (э (
					с с 	.	• •	5 0	.	•		•	5 0	•		2
					.	.		ہ د	.	.	.	5 0		> (.	> <
÷ ;				.	.	-	•	0	.		•		5 0	.	-	.
- 1				5	.	5	0	0	0	0	0	0	5	5	.	э ·
ř.	32	0 1.43E+04	009/	0	-	0	0	0	0	0	0	0	0	0	0	0
ř.	91	0 1.44E+04	1.13E+04	1756	0	0	•	0	0	0	0	0	0	0	0	0
ž	30	0 6.37E+04	2.78E+04	o '	•	0	•	0	0	0	0	0	0	0	•	0
ŕ	0 29	0 6.33E+04	2.21E+04	0	0	0	756	0	0	407.9	0	0	0	0	•	0
ŕ	3 28	0 4.18E+04	1.65E+04	1.02E + 04	0	0	0	0	0	0	0	0	0	0	•	0
ŕ	0 27	0 1.05E+05	2.21E+04	2576	1525	0	0	0	0	0	0	0	•	0	0	0
ŕ	0. 26	0 1.70E+05	2.77E+04	1.29E+04	1530	1037	0	0	0	411.4	0	0	0	0	0	•
ŕ	0 25	0 6.36E+04	0	2589	1533	0	0	594.5	485.5	0	0	0	•	0	0	0
÷	0 24	0	1.11E+04	0	1004	0	509	0	0	274.7	0	561.7	0	0	0	0

A-26

-

Arcata, CA August 28, 1992	ùn 3 Buhat Bin 6 Buha6 Buh∂ Buha8 Buha8 Buha9 Buha10 Buha11 Buha12 Buha13 Buha14 Buha15	Number per cubic mater	1732 0 0 0 0 0 0 0 0 0 341.3 0 0	0 1537 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 485.5 0 0 0 0 0 0 0				5258 0 0 0 0 0 0 0 0 0 0 0 0	7101 0 0 0 0 0 0 0 0 0 0 0			1814 0 729.7 0 0 0 0 0 0 0 0 0	1828 0 0 0 0 0 0 0 0 0 0 0	2776 0 0 0 0 0 0 0 0 0 0 0				7573 0 763 0 0 0 0 0 0 0 0 0		2798 0 0 0 0 0 0 0 0 0 0 0 0				5597 2232 255 551.8 0 0 0 0 0	
	Bin 5 Bu		0	0	0	0	0	0	0	0	0	0	729.7	0	0	0	0	0	763	0	0	0	0	0	255	
	3 Bihn 4		1732 0	0 1537	0	0	0	0	5256 0	7101 0	5350 0	5391 0	1814 0	1828 0	2776 0	0	0	0	7573 0	0	2798 0	0	5587 0	0	5597 2232	
	Bin 2 Bin		2.98E+04	3.34E+04	1.66E+04	0	0	1.49E+04	7.88E+04	3.04E+04	1.15E+04	1.16E + 04	2.34E+04	1.58E+04	5950	7960	0	6165	6.11E+04	0	0	4037	0	7927	1.47E+04	
	Altitude Bin 1	egin time End time	230 0	220 1.06E+05	210 1.06E+05	200 4.19E+04	190 1.06E+05	180 1.42E+04	170 1.29E+05	160 1.31E+05	150 8.76E+04	140 1.10E+05	130 4.44E+04	120 1.05E+05	110 2.28E+04	100 6.08E+04	0 06	80 2.35E+04	70 7.80E+04	60 09	50 2.29E+04	40 0	30 2.28E+04	20	10 2.03E+04	
	Approach	number B.	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	≌ A-27	

1

4

. 2

Arca	ta,	CA
August	28,	1992

-

				August 20, 10				
Approach	Altitude		Temp	Vapor	Number	Liquid water	Median	Total
number	(m)		(C)	density	seconds	content	vol. radius	number
	Begin time	End time		(g/m3)	in layer	(g/m3)	(m-6)	(per cm3)
	181556	181716						
9	330		18.1	15.47	1	0.000	2.4	000.151
9	320		18.1	15.47	2	0.000	4.6	000.301
9	310		17.8	15.19	3	0.163	5.8	198.453
9	300		17.2	14.66	2	0.439	5.9	484.463
9	290		17.2	14.66	3	0.411	5.9	459.085
9	280		16.7	14.20	3	0.390	5.9	427.076
9	270		16.4	13.97	1	0.281	5.7	400.724
9	260		16.0	13.64	2	0.346	5.5	517.227
9	250		15.6	13.31	2	0.416	5.5	594.194
9	240		15.6	13.31	2	0.392	5.8	502.217
9	230		14.7	12.60	2	0.354	5.7	475.240
9	220		14.4	12.40	3	0.227	5.1	424.681
9	210		13.9	12.00	2	0.312	5.5	480.155
9	200		13.9	12.00	3	0.235	5.4	384.905
9	190		13.0	11.35	2	0.253	5.3	419.395
9	180		13.0	11.35	2	0.270	5.1	467.078
Ğ	170		12.7	11.17	3	0.241	4.7	491.012
ğ	160		12.2	10.80	3	0.236	4.7	494.062
9	150		12.2	10.80	2	0.181	4.8	393.221
ä	140		11 4	10.28	3	0.167	5.0	334.614
ä	130		11 4	10.28	3	0.128	4.6	304.494
9	120		11.4	10.28	2	0.108	4.1	375.304
9	110		10.8	9.89	3	0.096	4.1	332.011
9	100		10.5	9 71	3	0.077	3.5	462.654
9	90		10.5	9.71	a a	0.091	3.9	394.120
9	50		10.5	9.71	3	0.063	4.0	267.941
9	80 70		10.5	0.25	3	0.005	4.0	161 356
9	70		9.9	9.35	-+ 2	0.000	4.1	073 229
9	60		9.7	9.23	2	0.020	53	0/0.220
9	50		9.7	9.23	2	0.013	5.5	005 515
9	40		9.7	9.23	3	0.003	0.0	005.515
9	30		9.5	9.10	/	0.001	7.5	001.554
	182/30	182900	40.0	10.00		0.000	4.0	000 161
10	370		18.9	16.22	1	0.000	4.0	000.101
10	360		18.9	16.22	2	0.000	0.9	000.080
10	350		18.9	16.22	2	0.000	2.3	000.119
10	340		18.9	16.22	2	0.000	0.9	000.079
10	330		18.1	15.47	2	0.000	0.9	100.199
10	320		18.1	15.47	3	0.089	5.7	106.767
10	310		18.1	15.47	3	0.293	5.9	333.120
10	300		17.6	15.06	2	0.367	5.7	471.593
10	290		17.2	14.66	2	0.205	5.6	288.848
10	280		16.8	14.31	2	0.362	5.6	497.459
10	270		16.4	13.97	2	0.430	5.4	645.451

÷

				August 28, 19	92			
Approach	Altitude		Temp	Vapor	Number	Liquid water	Median	Total
number	(m)		(C)	density	seconds	content	vol. radius	number
	Begin time	End time		(g/m3)	in layer	(g/m3)	(m-6)	(per cm3)
10	260		16.4	13.97	2	0.428	5.6	592.101
10	250		15.6	13.31	2	0.390	5.3	639.935
10	240		15.3	13.07	3	0.362	4.9	693.842
10	230		14.7	12.60	3	0.382	5.3	625.459
10	220		14.3	12.30	2	0.347	5.4	535.608
10	210		13.9	12.00	2	0.260	5.2	464.464
10	200		13.9	12.00	2	0.289	4.5	643.185
10	190		13.0	11.35	2	0.281	4.7	607.180
10	180		13.0	11.35	3	0.261	4.9	539.048
10	170		13.0	11.35	1	0.222	5.0	451.515
10	160		12.5	10.98	3	0.234	5.4	404.474
10	150		12.2	10.80	2	0.123	4.9	273.054
10	140		12.2	10.80	2	0.171	5.0	359.071
10	130		12.2	10.80	3	0.118	4.5	345.178
10	120		11.4	10.28	3	0.065	4.1	239.444
10	110		11.4	10.28	2	0.004	3.0	040.040
10	100		11.4	10.28	3	0.008	4.0	045.973
10	90		11.4	10.28	2	0.000	4.0	001.407
10	80		11.4	10.28	2	0.001	5.1	003.060
10	70		10.8	9.89	3	0.003	6.4	010.550
10	60		10.5	9.71	2	0.000	3.7	001.076
10	50		10.5	9.71	2	0.000	24.9	001.021
10	40		10.5	9.71	3	0.000	2.9	000.709
10	30		10.5	9.71	2	0.001	24.0	001.649
10	20		10.5	9.71	3	0.001	52.4	001.229
10	10		10.3	9.60	9	0.003	26.1	001.360

-

_

-

Arcata, CA

Santa Maria CA

-

al the manual states

		1	i			2	Bepte Bin 6	ember 23, 1992 Bin 7		8 ug	Bin 10	Bin 11	Min 12	Bin 1 3	Bin 14	Bin 15
Approach	Altitude (m)	L un	7			Í	æ	humber per cubic	: meter							
number	743952	144110						ize; 3 micrmete	rs; Range: 2-47	micrometere						
-	250		2.55E+05	8.51E+04	0	0	0	0	•	0	•	0	•	•	•	0
	240	8.51E+04	8.51E+04	0	0	0	•	0	•	0	•	0	0	0	0	0 (
. –	230	1.12E+05	8.42E+04	2.82E+04	•	0	•	Ó	0	0	•	•	0	0	0	0 (
	220	1.41E+05	5.68E+04	2.84E+04	0	2.84E+04	0	ö	•	•	•	•	•	0	0	0 (
-	210	1.71E+05	8.53E+04	0	0	•	0	•	•	•	•	0	0	0	0	0 (
-	200	2.146+05	1.86E+05	0	2.84E+04	0	0	•	•	•	•	0	0	0	0	.
-	190	2.396+05	1.05E+05	0	0	0	0	•	•	•	0	0	0	0	0	。
-	180	1.17E+07	1.81E+07	2.63E+07	4.58E+07	4.75E+07	2.27E+07	6.36E+06	2.48E+06 \$	9.84E+05 3	1.96E+05	3.21E+05 4	1.91E+04	2.46E+04	7.37E+04	. .
-	170	1.33E+07	1.87E+07	2.81E+07	5.51E+07	5.19E+07	2.21E+07	5.32E+08	2.19E+06	9.73E+05 1	.12E+05	.49E+05	7.51E+04	7.366+04	0	.
	160	1.40E+07	2.26E+07	4.55E+07	8.90E+07	5.20E+07	1.52E+07	4.07E+06	1.73E+06	3.36E+05	3.52E+05	7.33E+04	1.87E+04	5.59E+04	5.59E+04	.
	150	1.76E+07	2.90E+07	6.48E+07	1.04E+08	3.43E+07	7.34E+08	1.62E+06	2.20E+05	1.47E+05 1	47E+05	7.34E+04	0	7.34E+04	1.47E+05	0
-	140	1.70E+07	3.11E+07	7.02E+07	1.07E+08	3.09E+07	6.64E+06	1.83E+06	6.71E+05	3.42E+05 1	.64E+05	I.51E+05	2.49E+04 :	3.76E+04	2.50E+04	I.27E+04
-	130	1.29E+07	2.82E+07	6.46E+07	9.82E+07	3.45E+07	8.62E+0 6	2.18E+06	7.81E+05	3.52E+05 [°]	1.95E+05	0	7.85E+04	0	3.86E+04	0
	120	1.896+07	3.84E+07	1.08E+08	1.18E+08	2.41E+07	7.54E+08	2.74E+06	8.36E+05	4.28E+05	2.14E+05	1.37E+05	9.72E+04	0	1.94E+04	0
-	110) 2.23E+07	5.77E+07	1.38E+08	9.84E+07	2.21E+07	7.53E+06	3.38E+06	1.56E+06	9.51E+05 (3.03E+05	. 30+306.1	1.90E+05	7.67E+04	0	3.83E+04
-	1001	1 2.74E+07	6.816+07	1.51E+08	8.10E+07	2.14E+07	8.89E+06	3.75E+06	2.72E+06	8.05E+05 4	1,98E+05	3.45E+05 ·	1.54E+05	1.15E+05	3.84E+04	0
-	06) 2.14F+07	5.23E+07	1.01E+08	7.17E+07	2.33E+07	8.93E+06	4.00E+06	2.30E+06	9.00E+05	5.00E+05	3.50E+05	1.50E+05	7.50E+04	2.50E+04	2.50E+04
) 2 28F + 07	5 93F+07	9 46F+07	5.985+07	2.46E+07	1.06E+07	4.99E+06	3.53E+06	1.53E+06 \$	9.88E+05	3.70E+05	4.97E+04	4.94E+04	2.45E+04	0
÷		1 3 08F + 07	9 17F+07	8 83F+07	3 89E + 07	1.59E+07	9.26E+08	5,02E+06	2.46E+06	2.06E+06	3.44E+05	4.47E+05	1.74E+05	4.95E+04	4.97E+04	2.48E+04
Ŧ		0 3.00C107	7 205407	6 28F+07	3 24F+07	1 586+07	9.836+06	4.62E+06	2.97E+06	1.73E+06	3.54E+05	5.35E+05	1.21E+05	7.25E+04	7.24E+04	0
•	5 4		1 165 109	0.200 1 07	1 436407	R 47F+06	3 625 + 06	1 90F+06	1.335+06	7.00E+05	5.00E+05	2.25E+05	0	7.51E+04	2.49E+04	2.49E+04
•		0 5./1E+U/	1.156+00	3 6 3 E + 07	0 136 + 08	6 59F + 08	4 11F+06	2 22F+08	1.37E+06	9.356+05	5.07E+05	2.736+05	1.56E+05	3.96E+04	1.89E+04	5.86E+04
	Ť		1.1967.03			6.776+06	3 405 408	2 20F 108	1 875 + 08	1 136+06	2 66F + 05	2.41E+05	6.24E+04	7.50E+04	2.55E+04	2.53E+04
	5 5 6	0 5.12E+0/	4.00E+07	1.48E+U/	1.325+00	5.34E+06	3.835406	2.20LT00	1 89F + 06	1.17E+06	B.47E+05	2.85E+05	1.78E+05	9,51E+04	4.47E+04	3.16E+04
3(4	1 4.035 + 0/	5.30C+01		0.777.00		3 535 1 06	2 945 + 08	1 775 408	8 44E+05	5 37F+05	o	2.30E+05	0	0	0
า	1	0 4.69E+07	3.1/E+0/	7.21E+06	0.45E+U0	0,31E+U0	3.336 + 00	2.045400	1.116 100	0.1111.00		•		•		
	71061	Z 150Z24	1 75C L 05	c		c	8 61F+04	C	0	0	0	0	0	0	•	•
	2 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	0 1.416703	1 28F LOG	9 49F+04			0	0	0	0	0	0	0	0	•	•
. •			1 285 105	A 10FLOA		Ċ	c	c	0	0	0	0	•	•	•	•
	17 F	0 1.305703	1.305.102		1 21E + 04					0	0	0	0	0	0	•
			20			1 DECLOS					• •	0	0	0	•	0
	3 5 6	0 2.09E+05	0.105.1	1.05E+05	0 - 37E - 0	7 035 4 06	7 ORE 106	1 075406	4 856+05	5 09F+05	9 70F+04	1.216+05	• •	2.43E+04	•	0
	π. 	0 3.40E+00	4./36+00	7 8 00E+07	7 1 165 ± 08	F OTELOU	1 725+07	8 29F+06	5 14F+06	2.57E+06	1.43E+06	4.766+05	4.76E+05	7.33E+04	3.68E+04	0
		0 1.8/E+U/	2.346+01	7 0.03E+01	1.13E+08	1 305 + 07	1 376 407	5 87F + 06	3 365 + 06	2.09F+06	9.786+05	4.596+05	2.67E+05	5.86E+04	4.49E+04	0
	-10- 	0 2.35E+07	3.206+01	7 3.796+0.	7 0 505+07	4.335 T 01	1 146 + 07	4 20F+06	2.50C100	1.07F+06	5.716+05	2.865+05	1.34E+05	5.68E+04	0	1.93E+04
	0 - F	0 2.046+07	3.40E+07	7 1 045 + 05	2 1 19F+08	3.98F+07	1 436+07	5.20E+06	3.99E+06	1.67E+06	8.63E+05	5.09E+05	2.79E+05	1.77E+05	2.52E+04	2.59E+04
	+ -	0 2,436707	5 76F + 07	7 1 295405	8 1 29F+08	1 3.66F+07	1.18E+07	4.22E+06	2.39E+06	1.11E+08	6.15E+05	2.67E+05	1.91E+05	7.87E+04	3.88E+04	7.87E+04
		0 2.00E 07	7 235+07	7 1.43E+06	9 9.60E+07	2.64E+07	8.05E+06	2.75E+06	1.47E+06	1.03E+06	3.85E+05	7.74E+04	1.03E+05	7.69E+04	0	•
		0 2.95F+07	8.00E+07	7 1.39E+06	3 7.94E+07	2.38E+07	8.60E+06	2.37E+08	1.29E+08	4.14E+05	1.81E+05	1.55E+05	•	0	7.74E+04	0
	. Č	0 3 74F+07	1.27E+08	3 1.64E+05	3 5.62E+07	1.54E+07	5.08E+06	1.20E+08	8.14E+05	3.50E+05	2.33E+05	1.17E+05	3.91E+04	7.76E+04	0	•
) 6) 6	0 3.69E+07	9.26E+07	7 9.336+0	7 4.46E+07	1.70E+07	6.65E+06	2.79E+06	1.80E+06	9.42E+05	4.45E+05	2.36E+05	1.31E+05	2.81E+04	0	2.61E+04
		0 4.28E+07	9.74E+07	7 9.70E+0	7 3.68E+07	1.65E+07	7.63E+06	4.25E+06	1.50E+08	1.50E+08	6.30E+05	4.72E+05	0	7.87E+04	0	1.57E+05
	3	0 4.55E+07	9.34E+07	7 8.27E+0	7 3.03E+07	7 1.35E+07	6.08E+06	2.56E+06	1.29E+08	8.16E+05	2.11E+05	1.05E+05	1.32E+05	2.64E+04	2.63E+04	0
	3	0 6.40E+07	1.52E+06	8 9.38E+0	7 2.32E+07	9.35E+06	5.28E+06	1.96E+06	1.53E+06	7.04E+05	7.81E+04	2.35E+05	3.92E+04	3.91E+04	3.92E+04	0
	 	0 4.00E+07	1.18E+0E	8 7.37E+0	7 1.98E+07	9.90E+06	5.46E+06	3.11E+06	1.71E+06	8.31E+05	7.02E+05	3.89E+05	1.04E+05	7,79E+04	1.04E+05	2.62E+04
	3 4	10 5.46E+07	1.17E+0	8 5.14E+0	7 1.54E+07	7 8.28E+08	4.19E+06	3.14E+06	1.35E+06	1.14E+06	6.76E+05	2.08E+05	1.83E+05	1.04E+05	2.5/E+04	0 227 - 0
	3	NO 8.30E+07	1.05E+0	8 3.06E+0	7 9.47E+06	5.67E+06	4.06E+06	2.48E+06	1.93E+06	1.16E+06	6,86E+05	1.59E+05	7.94E+04	5.28E+04	5.30E+04	2.82E+04
	3	20 5.18E+07	4.32E+0	7 1.13E+0	7 6.78E+06	3 5.39E+06	3.87E+06	1.57E+08	1.42E+06	9.35E+05	4.57E+05	2.33E+05	1.10E+05	4.69E+04	1.59E+U4	5 0
	3	10 2.20E+07	1.97E+0	7 1.09E+0	7 1.14E+07	7 5.03E+00	2.17E+06	1.21E+08	8.45E+05	3.63E+05	2.82E+05	4.03E+04	C	J	2	c

A-30

-

Approach	Altitude (m) Bedin hime	Bun 1 Faud Nime	2 um		1 1 1	Bin 5	Santa Septer Bin 6	Maria, CA mber 23, 1992 Bin 7 B	0 5	8 8	1 1	8kn 11	Bún 12	Bin 13	Bin 14	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
	5952 143952	<i>сна ите</i> 144110					2.05	umber per cubic me ze: 300 micrometen	ter s: Range: 150	-4650 micromet	Ę					
	250	0	0	0	0	0	0	0	0	0	с 	C	c	C	c	C
•	240	0	0	0	0	0	0	0	0	00	• •	00	0	00	• •	00
•	230	0	0	0	0	•	0	0	0	0	0	0	0	0	0	0
I	1 220	0	0	0	0	•	0	0	0	•	0	0	0	0	•	0
	210	•	•	•	0	0	0	0	•	•	0	0	•	0	0	0
1	200	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	190	0	0	0	0	•	0	•	0	0	0	0	0	0	•	•
	180	0	0	0	•	•	0	0	0	0	0	0	0	0	•	0
	170	•	•	0	•	•	0	0	0	0	0	•	•	0	•	0
·	160	39.17	6.367	4.452	4.686	0	2.627	0	0	0	0	0	0	0	0	0
	150	0	0	0	0	•	0	0	0	•	0	0	0	0	0	0
•	140	19.31	2.893	1.513	1.592	•	•	0	0	0	0	0	0	•	0	0
- •	130	14.7	0.0	4.576	0	0	0	0	0	0	0	0	0	•	•	0
- •	120	.	4.33	2.307	2.392	0	0	0	0	•	0	0	•	0	•	0
•	110	0 0	4.299 î	0 (0	0	0	0	0	0	0	0	0	•	•	0
- •	8	о (0	0	0	0	0	0	0	0	•	•	0	•	•	0
1	6	0	0	0	•	0	•	0	0	0	0	•	0	0	•	0
•	80	0	0	0	0	0	•	0	0	0	0	0	0	0	•	0
	20	•	•	0	•	•	•	0	0	•	0	0	0	0	•	0
	60	9.213	•	0	•	•	•	0	0	0	0	0	0	0	•	0
	20	•	2.734	•	•	•	•	0	0	0	0	0	0	0	•	0
~	40	•	•	•	•	0	0	0	0	0	0	0	0	0	•	0
2	30	0	•	•	•	0	•	0	0	0	0	0	0	0	0	0
1	50	1.138	•	•	0	•	0	0	0	0	0	0	•	0	0	0
-	0	0	•	0	•	•	•	0	0	0	0	0	•	•	٥	0
i	150122	150224														
., 1	230	0	0	0	0	0	•	0	0	0	0	0	0	•	•	•
. , (220	0	0	0	0	0	•	0	0	0	0	•	0	0	•	•
	210	0	0	0	0	•	•	0	0	0	0	•	0	0	0	0
	200	0	0	•	•	0	0	0	0	0	0	•	0	0	•	0
	190	0 (0 (0 ;	0	0	0	0	0	0	0	0	•	0	0	0
., (0	0	p ·	0	•	0	0	0	0	0	0	0	0	•	0
., .	<u></u>	0	0	0	0	0	0	0	0	0	0	•	•	0	0	0
., C	100	0 00	0.23	0 0 0	0 1	0	o ;	0	0	0	0	0	0	0	0	•
, .	061	10.00	0.371	0.0/3	0 (2.483	2.63	0	0	0	0	•	•	0	•	0
., .	130	14.20			.	0 0	.	0 0	0 0	0 (0 0	0 0	0 (0 (0	0
, v.	120	14 17			,			0	<u>،</u> د	.	о (
, .,	110	14.29	5.69						.		. .	,	.	0 0	0	5 0
e)	100	7.15	0	• •	• •	0	0	• o	• c		• c	• •	• c	.		
	06	9.533	0	0	0	0	0	• •			• c	• •	• c	• •		
	1 80	0	0	0	0	0	0	• •	• a			• c	• c		• c	о с
	1 70	4.773	0	0	0	0	0	Ċ				• c			• •	
e)	60	7.11	0	0				• c	• c		• c			. .		
(7)	1 50	4.743	0	• •	• •				• c	• c	۰ c	• •		.		
	1 40	9.427	• •	• •	• •	• c			• c			, ,) () (.	
e,	30	4.75	0	0	0	, 0	0	• 0) o	, o	, o	, o	» o) c	> c) C
~,	1 20	0	0	0	0	0	0	0			Ċ		• c	• •) c	
	10	0	0	0	. 0	0	• 0	• 0	• 0	, o	, o	• o	, o	» o	» o	» o
								•	,	,	,	,	,	>	,	د

te Maria Ű

!

Santa	Ma	aria,	CA
Septem	ber	23,	1992

Approach	Altitude		Temp	Vapor	Number	Liquid water	Median	Total
number	(m)		(C)	density	seconds	content	vol. radius	number
	Begin time	End time		(g/m3)	in layer	(g/m3)	(m-6)	(per cm3)
	143952	144110						
1	250		21.5	18.88	1	0.000	3.3	000.34
1	240		21.5	18.88	1	0.000	2.4	000.17
1	230		21.5	18.88	3	0.000	3.1	000.22
1	220		21.5	18.88	3	0.000	6.7	000.25
1	210		21.5	18.88	1	0.000	2.3	000.26
1	200		21.5	18.88	3	0.000	3.2	000.43
1	190		20.9	18.23	3	0.000	2.2	000.34
1	180		20.6	17.92	3	0.309	7.8	182.49
1	170		20.6	17.92	2	0.309	7.5	196.11
1	160		19.8	17.10	4	0.322	6.9	245.43
1	150		18.9	16.22	1	0.255	6.1	259.38
1	140		18.6	15.96	6	0.256	6.0	266.49
1	130		18.1	15.47	2	0.257	6.2	250.63
1	120		17.2	14.66	4	0.281	5.8	318.81
1	110		16.8	14.31	2	0.297	5.9	352.22
1	100		16.4	13.97	2	0.305	6.1	366.32
1	90		15.9	13.53	3	0.273	6.6	286.79
1	80		15.6	13.31	3	0.291	7.3	283.23
1	70		15.0	12.84	3	0.253	7.9	285.98
1	60		14.7	12.60	3	0.233	8.4	237.49
1	50		14.7	12.00	3	0.127	7.1	252.79
1	50		13.0	12.20	4	0.124	8.4	255.29
4	40		13.5	11.67	6	0.097	9.8	134.19
1	30		12.4	11.07	12	0.105	10.8	113.96
	20		12.0	10.90	1	0.090	9.9	107.88
I	10	150004	12.2	10.80	•	0.000	0.0	
2	150122	150224	21 5	19 99	2	0.000	8.4	000.38
3	230		21.5	10.00	2 A	0.000	3.6	000.36
3	220		21.0	10.00	- -	0.000	3.0	000.38
3	210		21.5	10.00	2	0.000	55	000.04
3	200		20.0	17.92	2	0.000	6.9	000.47
3	190		20.6	17.92	1	0.000	7.0	055 39
3	180		20.6	17.92	3	0.074	7.0	306 17
3	170		20.6	17.92	2	0.402	7.J 6.A	394 53
3	160		20.0	17.26	5	0.407	67	275.96
3	150		18.9	16.24	4	0.312	0.7	275.50
3	140		18.6	15.96	3	0.414	0.5	200 74
3	130		18.1	15.47	2	0.389	5.2	333.74
3	120		17.5	14.92	3	0.301	5.9	360.70
3	110		17.2	14.66	3	0.260	5.8	302.01
3	100		16.4	13.97	2	0.223	5.2	408.08
3	90		16.4	13.97	3	0.212	0.5	297.40
3	80		15.6	13.31	1	0.233	7.2	306.79
3	70		15.6	13.31	3	0.1/2	0.4	2/0.5/
3	60		15.6	13.31	2	0.164	5.8	352.17
3	50		15.0	12.84	3	0.176	7.5	273.63
3	40		14.7	12.60	3	0.149	7.9	257.75
3	30		14.2	12.20	3	0.126	9.0	244.62
3	20		13.9	12.00	5	0.088	9.5	127.09
3	10		13.4	11.67	2	0.059	7.7	073.88

ł

1

19.0

IN IN MI

ala ala

11

÷

-

6148411

_

e...

-

							Ň	orcester, M	۲,							
Approach	Altitude (m)	Bin 1	Bin 2	E ug	Bin 4	Bin 5	Bin 6	Bin 7	e una	Bin 9	Bin 10	Bin 11	Bin 12	61. 12	61- 14	
number	Begin time	End time						Number per cul	oic meter				:	l	ľ	
	1 310	1.17E+06	6.99E+05	1.92E+06	2.04F+06	1 226+06	1 17F±05	Size: 3 microne 1 755±05	Range: 2-47 m 6. 0.35 / 0.4	vicrone 0	c	(
	1 300	1.36E+06	1.93E+06	2.98E+06	2.78E+06	7.736+05	2.496+05	1.01E + 05	3.98F+04	U 4 14F±04	0 005704		0 0	0	0 0	0 (
	1 290	2.06E+06	4.02E+06	5.57E+06	4.92E+06	2.00E+06	7.24E+05	2.41E+05	6.92E+04	3.41E+04	6.87F+04			1.896+04		0 2 4 AC - 0.4
	1 280	2.34E+06	4.44E+06	5.96E+06	6.06E+06	2.30E+06	8.12E+05	2.03E+05	6.79E+04	1.02E+05	0	0	3.38E+04	0		3.405+U4
. •	270	4.79E+06	8.82E+06	1.17E+07	1.29E+07	5.77E+06	1.77E+06	2.84E+05	3.37E+04	1.63E+04	0	0	4.97E+04	1.63E+04	0) C
	260	4.20E+06	7 87E+06	1.21E+07	1.15E+07	4.77E+06	1.37E+06	1.69E+05	5.08E+04	1.70E+04	3.39E+04	1.70E+04	3.40E+04	0	0	> 0
÷	067 1	4.41E+U6 0.64F - 06	1.14E+07 1.57F - 02	1.48E+07	1.68E+07	9.65E+06	3.96E+06	4.16E+05	1.33E+05	4.98E+04	4.85E+04	1.58E+04	4.98E+04	0	0	0
-	240	8.045+00 1 255±07	1.8/E+U/ 2 20E+07	2.86E+07	4.28E+07	2.22E+07	7.34E+06	1.26E+06	1.32E+05	2.21E+04	2.19E+04	2.19E+04	2.21E+04	0	0	2.21E+04
-	220	9.93E+06	2.235+07 2.145+07	3.665+07	0.0/E+U/ 8.00E+07	3.01E+07	9.24E+06	1.30E+06	2.33E+05	9.99E+04	6.65E+04	0	0	•	0	0
	1 210	1.11E+07	2.216+07	4.77E+07	5.96E+07	2.01E+07	5.96F+06	1.21E+06	1.03E+05	6.62E+04 6.42E+04	3.22E+04	00	0 0	3.22E+04	0	0
*-4	1 200	2.40E+07	3.80E+07	1.08E+08	1.10E+08	1.96E+07	4.17E+06	1.33E+05	1.67E+05	0.425.704 6.67F+04		2 0	50	2.18E+04	2.14E+04	0.111.0
	190	2.14E+07	4.34E+07	8.40E+07	6.70E+07	1.05E+07	2.53E+06	2.74E+05	0	0	• •	• •			0 455 404	9.44L+04
, (180	2.09E+07	4.76E+07	9.57E+07	5.85E+07	8.47E+06	1.28E+06	1.69E+05	4.97E+04	3.29E+04	3.36E+04) O	3.42E+04	1.68E+04	+0+10+10	3 366 + 04
•	170	2.936+07	5.73E+07	1.44E+08	8.44E+07	1.37E+07	2.51E+06	2.50E+05	2.82E+04	2.73E+04	1.41E+04	1.39E+04	0	1.41E+04	0	0
- •	160	2.50E+07	5.75E+07	1.43E+08	7.47E+07	1.34E+07	3.17E+06	6.89E+05	1.15E+05	6.91E+04	4.56E+04	2.30E+04	0	0	0	2.30E+04
	001	1.036+07	4.62E+07	7.79E+07	5.00E+07	1.20E+07	2.98E+06	3.71E+05	6.75E+04	2.02E+05	0	0	0	3.38E+04	0	0
~ ••	130	3.046+07	1.935+07 9.325+07	1.42E+08	5.69E+07	7.9/E+06	1.94E+06	2.72E+05	1.02E+05	1,02E+05	6.81E+04	0	0	0	0	0
	200	3 276+07	3.325 + 07 1 295 + 08	1.405+08	4.42E+07	5.84E+06	7.36E+05	1.11E+05	6,69E+04	2.23E+04	2.22E+04	0	•	•	0	0
	110	3 87F + 07	1 595 408	1.0/6+08	3,005+07	9.04E+U6	9./4E+05	9.86E+04	1.00E+05	3.29E+04	•	3.47E+04	•	0	0	•
-	100	3.44E+07	1.30E+08	1.29E+08	2.726+07	3.76F+06	0.41E+05 6 44F+05	4.00E+04	U 1 676±06	0 305 0	2.27E+04	0 1 201 - 01	0	0	0	2.27E+04
- _	06	4.02E+07	1.90E+08	1.04E+08	1.56E+07	3.00F+06	4 84F+05	3 246 4 05	1.32E+05	0.205+04	1.356 + 04	1.33E+04	Z./5E+04	0.100	1.39E+04	0
-	80	5.72E+07	2.54E+08	1.46E+08	2.26E+07	3.66E+06	6.66E+05	2.32E+05	1.60F+05	9 20F+04	U 4 685 4 04	U A 576 404	5 0	2.30E+04	0 0	•
- 33	20	4.37E+07	1.41E+08	8.28E+07	1.26E+07	2.17E+06	6.11E+05	1.70E+05	2.38F+05	6 77F + 04	6 79F + 04	3 395 104) (3 205 1 04	. .	.
-	60	2.02E+07	5.53E+07	3.13E+07	5.25E+06	1.73E+06	3.67E+05	1.67E+05	1.66E+05	6.61E+04	3.31E+04	0	00	3.33C † U4		
	50	5.76E+07	1.66E+08	5.92E+07	7.55E+06	2.03E+06	6.98E+05	2.80E+05	1.74E+05	2.44E+05	0	0	• •	0	> c	3 46F + 04
	40	1.19E+08	1,81E+08	4.37E+07	5.60E+06	1.26E+06	4.92E+05	2.80E+05	1.40E+05	7.14E+04	0	0		2 34F+04		
- •	30	2.68E+07	3.93E+07	1.55E+07	3.92E+06	1.64E+06	4.78E+05	3.75E+05	1.02E+05	6.88E+04	0	6.75E+04	• •	0	> 0	• c
	50	6.14E+07	5.73E+07	1.59E+07	3.58E+06	1.29E+06	7.67E+05	2.10E+05	2.44E+05	1.05E+05	1.05E+05	6.95E+04	7.02E+04	0	0	0
-	173353	1.25E+07 173553	1.61E+07	6.93E+06	2.45E+06	1.20E+06	7.83E+05	3.15E+05	2.26E+05	1.47E+05	8.83E + 04	7.19E+04	2.35E+04	0	8471	0
2	390	4.79E+06	6.11E+06	3.68E + 06	4.14E+06	1.71E+06	5.91E+05	3.28E+05	1.315+05	2 63F + 05	c	c	c	Ċ	c	c
~	380	1.20E+06	1.83E+06	3.20E+06	4.07E+06	2.04E+06	1.00E+06	4.67E+05	4.01E+05	0	8.70E+04	0	3.35F+04			
(N C	370	1.24E+06	1.71E+06	2.87E+06	3.65E + 06	2.44E+06	9.60E+05	9.25E+04	1.856+05	3.05E + 04	0	0	0	3.05E+04	0	0
	350	1.03E + 00	2.185+U0 1.995-06	2.23E+06	5.20E+06	2.61E+06	8.07E+05	5.54E+05	2.07E + 05	1.07E+05	1.70E+05	3.35E+04	0	0	0	0
	000	2.235 + 00	1.335+00 3.455+06	3.04E+06 E 19E : 06	3.63E+06 3.52F - 06	1./2E+06	4.17E+05	3.08E+05	9.28E+04	•	3.27E+04	9.28E+04	3.27E+04	0	•	0
• ~	UEE .	2.03C + 06	3.436+00	3.16E + U0	3.52E+06	1.26E+06	3.32E+05	1.99E+05	6.64E+04	3.64E+04	1.33E+05	1.33E+05	•	0	0	3.84E+04
	320	4.07E+06	5.85F+06	6.60F+06	3./0E+U0 5.33F+08	1.41E+06 2.03E+06	6.U5E+U5 8 795 - 05	2.85E+05	1.99E+05	4.62E+04	4.27E + 04	0	4.62E+04	0	•	•
0	310	6.11E+06	7.88E+06	0.000 + 07 1 06F + 07	9.3357.00 B 76F+06	2.0357-00 3 355-06	0./8E+U5	2./1E+05 2.005 -05	2.63E+05	1.22E+05	1.66E+05	7.00E+04	5.41E+04	0	0	3.63E+04
2	300	5.39E+06	9.53E+06	1.30E+07	1.27E+07	5.78E+06	2.30F+06	4 70F + 05	2.035 7 US	0.335+04	1.4 IE + U5	7.U8E+04	3.8/E+04	3.52E+04 5	.29E+04	0
2	290	5.50E+06	9.65E+06	1.36E+07	1.60E+07	9.85E+06	4,99E+06	1.14E+06	2.68E+05	1.00F+05	3 70F + 04	2.23E+04	1.12E+04	1.156+04 1	136+04	0
2	280	4.73E+06	9.57E+06	1.55E+07	1.80E+07	1.18E+07	5.79E+06	1.51E+06	1.77E+05	4.46E+04	1.55E+04 1	3 73F+04	1.46F+04	0 185±04		0.375+04
2	270	5.37E+06	1.15E+07	1.68E + 07	1.79E+07	7.20E+06	1.81E+06	3.40E+05	1.57E+05	I.12E+05	3.83E+04	2.30E+04	2.19E+04	0 0	19F+04	
2	260	7.39E+06	1.48E+07	2.28E+07	2.40E+07	1.09E+07	3.44E+06	4.89E+05	1.77E+05 8	3.88E+04	2.24E+04	0	0	0	0	• •
N	700	6.16E+U6	1.43E+07	2.18E+07	2.48E+07	1.37E+07	5.30E+06	1.12E+06	2.02E+05	1.79E+05	1.13E+05	2.24E+04	2.24E+04	0	0	0

-

Worcester, MA

- - - -

							sapte	mber 20, 1332	i	e i		11 11	Bhr 17	Rin 13	8in 14	8in 15
Approach	Aldtude (m)	Bin 1	2 vya	Bin 3	Bin 4	Bin 5	Bin 6	Bin 7	Bu d			I	:			
number	Begin time	End time						umberpercumc 7.6.7E.⊥0.5.1	50E+05 6	50F+04 5	06F+04 3	38E+04	0.1	.65E+04 1	.69E+04 3	3.37E+04
2	240	7.85E+06	1.75E+07	2.83E+07	3.11E+07	1.42E+0/	4.45E+00	/.025+U3 1				125.05	Ċ	C	0 31F + 04	0
2	230	6.93E+06	1.62E+07	2.68E+07	2.93E+07	1.10E+07	3.08E+06 4	1.54E+05 1	.15E+05 1	156+05 8	.03E+04 1	.135+03	, , ,			07570V
2	220	8.38E+06	1.57E+07	2.87E+07	3.49E+07	1.11E+07	3.06E+06	t.74E+05 1	.36E+05 9	03E+04 6	.71E+04 2	22E+04		2.2/E+04		0
2	210	9.79E+06	2.21E+07	4.11E+07	4.83E+07	1.58E+07	4.27E+06 4	5.93E+05 1	.16E+05 1	.15E+05 2	.31E+04	4 0 4	. BIE+04 .	2.315+U4 2		
. ~	200	1.45E+07	2.96E+07	5.91E+07	5.28E+07	1.16E+07	2.51E+06	4.14E+05 1	.61E+05 4	.60E + 04	0	.59E+04	.	.	.	
	190	5.356+06	1.46E+07	2.21E+07	1.39E+07	3.74E+06	5.34E+05	2.34E+05 2	00E+05 1	.67E+05	0	.72E+04	0	0	<u>ہ</u> د	
	180	1 22E+07	3.27E+07	4.90E+07	2.69E+07	6.15E+06	1.26E+06	1.82E+05 2	2.04E+05 9	.12E+04	0	23E+04 2	.31E+04	2.31E+04	о (,
• •	170	1.64E+07	3.736+07	7.24E+07	5.75E+07	1.28E+07	2.49E+06	4.386+05 2	2.30E+05 9	.20E+04 2	.29E+04 4	59E+04 2	29E+04	2.29E+04		. .
• •	160	2.37E+07	5.24E+07	1.24E+08	8.49E+07	1.62E+07	2.97E+06	4.02E+05 1	1.75E+05 7	.04E+04 1	.75E+04 1	.77E+04 1	.75E+04		1./5E+U4	0
	021	2 20E+07	6 82F+07	1 26F + 08	5.48E+07	9.81E+06	2.19E+06	3.72E+05 1	1.39E+05 1	.40E+05	0).24E+04	0	t.64E+04	0	2.32E + U4
~ ~		1 97E + 07	5 396 + 07	9 56F+07	4.25E+07	6.76E+06	1.66E+06	2.07E+05 1	1.73E+05 6	.84E+04 1	.72E+05 3	1.47E+04	•	•	0	0
		0 1.3/C+01	6 405 ±07	1 205 +08	4 66F+07	6.81E+06	1.86E+06	2.41E+05 1	1.73E+05 1	.71E+05 3	.46E+04 3	3.46E+04 8	.87E+04	3.46E+04	3,46E+04	0
	130	J Z.3ZE+U/	0.436+07 1.016+08	1 405 408	3 795 + 07	5 79F+06	1 19F + 06	2.33E+05	9.33E+04 2	.32E+04 4	.69E+04 4	1.65E+04 2		2.36E+04	0	2.32E+04
N (721	0 3.136 + 07	0.446.00	1 226 1 08	3 075407	4 82F+06	1 40F + 06	3.42E+05	1.37E+05 2	.06E+05 3	.41E+04 6	3.84E+04	0	3.43E+04	0	0
	100) 2./3E+U/ , 3.64E+O7	3.44E+U/	1.23E + 08	1 88F+07	2 72F+06	5.07E+05	2.53E+05	1.15E+05	4	.62E+04 4	4.61E+04 2	2.32E+04	0	2.31E+04	2.31E+04
	202) 3,54E+U/		1 215408	3 10F ± 07	3.65F+06	9 70F+05	3.70E+05	2.07E+05 2	096+05 6	.91E+04	2.30E+04	0	4.64E+04	2.31E+04	0
	รัต้ อี	0 3.895+07	9 0 1 0 1 0 0 0	1 275408	1 775 + 07	2.005 - 00 2 87F + 06	5.60E+05	3.286+05	2:83E+05 2	.11E+05 2	.35E+04	2.36E+04	0	0	•	0
7 (0 1030100	2.0101012	0 136 107	1 165 407	2.07F+06	7.14E+05	3.93E+05	2,14E+05 1	.78E+05 3	1.57E+04	7.146+04 3	1.57E+04	0	0	0
N (1 005 1 00	1 0.13C 107	1125+07	1 46F+06	6.26E+05	3.48E+05	2.43E+05 6	.94E+04	0	0	3.48E+04	3.47E+04	0	0
~ ~) /.0dc+0/	1.906.1.00	3515407	5 93F+06	1 225.406	4.886+05	1.74E+05	2.44E+05	0	0	3.98E+04	•	0	0	0
~ (10130000 0	1,000 107	D D D D D D D D D D D D D D D D D D D	3.435+06	1 216+06	3 935+05	1.86E+05	1.85E+05 2	.34E+04 2	34E+04	1.15E+05	•	0	2.34E+04	0
	4	J 3.20E+U/	2.000 + U/	0.336700	3.43LT00	1 565 406	7 18F+05	4.76E+05	1.91E+05 7	1.12E+04 1	.20E+05	0	0	0	0	2.42E+04
Ĩ	ň) 5.24E+U/	4.60E+0/		3.035100	1.306 1.06	7 3064.05	3 085 + 05	2 54F + 05 d	356+05 1	.64E+05	2.06E+04	2.06E+04	0	4.67E+04	0
א A	5	0 2.98E+0/	2.32E+0/	0.42E+UG	0 3.01E+U0	2.175+00 1 005 106	7 505 105	5 ODE + OF	3 336 + 05 1	88F+05 9	9.38E+04	5.10E+04	2.71E+04	2.18E+04	2.17E+04	0
	ž	0 4.84E+06	1 9.22E+06	0 4.82E + 00	0 2.12E+U0	1.036+00			-		•					
4	17450	9 174646			00.110.0	1 705 1 06	1 07C + 05	1 115 105	c	c	0	7.07E+04	0	0	0	0
ला	1 32(0 1.91E+06	1.41E+00	5 2.9/E+UC	3.04E+U5	1./06+00	2.036+05	1.415+03	1 ATE LOF 3	1516+04		0	0	3.51E+04	0	3.51E+04
e)	1 31(0 1.53E+06	1.39E+06	5 2.56E+OC	3 3.20E+06	1.5/E+U0	4.9/6+03	2.436103		1.196±05	3 40F ±04	3 40F+04	3 37F+04	0	0	0
	1 30(0 2.35E+06	3 2.06E+0£	5 3.98E+06	3 4.00E+06	1.68E+06	4.89E+05	2./UE+U5	1.34E+U3 -	1.185+00 -	3.40C+04	0	0	2.67E+04	0	2.17E+04
	1 29(0 2.77E+06	3.08E+06	3 4.86E+Ot	5.97E+06	2.15E+06	60+3/0.6	Z.05E + U5			7.00E+04	ADELOA	1 80F + 04	0	5.24E+04	0
	3 28	0 5.89E+06	1.09E+07	7 1.08E+0)	7 7.29E+06	2.17E+06	9.77E+05	2.79E+05	1./bE+U5	1.24E+U5	7.00E+04	3.425 + 04	1.001 1 04	3 485+04	0	0
	3 274	0 1.18E+07	3.27E+07	7 3.23E+0	7 1.68E+07	9.84E+06	3.90E+06	5.63E+U5	2.10E+05		0.300 ± 04	0.40C+04	4 875 + 04	0	0	0
	3 26	0 1.02E+0	7 2.46E+0	7 2.76E+0	7 2.08E+07	1.01E+07	3.61E+06	6,06E+05 E EEL OE	4.20E+03	1.1/ET03	0.406+03	4 64F+04	4.63F+04	9.25E+04	4.64E + 04	0
••	3 25	0 1.00E+0	7 2.49E+0	7 2.99E+0	7 2.14E+0/	1.035+07	3.03E+00	3,305+U3	2.315 + 03	1 156 + 05 ·	4.51E+04	6.86E+04	6.91E+04	0	0	0
., .	3 24	0 2.09E+0.	/ 3./0E+U	7 8.02E+0-	7 6 5 7 E + 07	2.01E + 07	4.31C+00	8.52F+05	2.77E+05	2.08E+05	4.64E+04	4.59E+04	2.30E+04	2.28E+04	2.30E+04	0
	5 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	0 1,335 + 0	0 3 3 3 5 4 0 1	7 2:715+0	7 2 935 + 07	8 57F + 06	2.68F+06	4.99E+05	2.97E+05	2.97E+05	6.78E+04	1.13E+05	2.26E+04	0	•	0
	27 27	0 1 286 4 07	7 2 23E+07	7 2 77F+07	7 -2.40E+07	7.30E+06	1.38E+06	4.67E+05	2.56E+05 *	9.29E+04	2.30E+04	6.96E+04	4.63E+04	2.33E+04	2.336+04	0
		0 1.205+06	3 2 03E + 0	7 3 66F+0	7 3.57E+07	9.51E+06	2.28E+06	7.12E+05	3.31E+05	2.22E+05	8.93E+04	8.97E+04	4.53E+04	4.53E+04	•	0
		O B FRE TOF	3 1 GOF+0.	7 2 94F+0	7 1.85E+07	4.54E+06	1.29E+06	4.38E+05	2.52E+05	1.84E+05	1.37E+05	2.28E+04	2.28E+04	0	2.336+04	0
	5 C	0 1 1 35 + 0	7 3 1 2 E + 0	7 5 80F+0	7 3.23E+07	6.30E+06	1.28E+06	5.41E+05	2.25E+05	1.13E+05	6.77E+04	4.50E+04	4,46E+04	4.46E+04	2.27E+04	2.23E+04
		0 2525+0	7 5 10F+0	7 1.14E+08	3 6.95E+07	9.96E+06	1.896+06	1.71E+05	2.38E+05 +	6.86E+04	6.86E+04	3.50E+04	3.50E+04	3.50E+04	3.36E+04	0
	 	0 1 70F+0	7 4 23F+0	7 8,16E+0	7 5.086+07	8.50E+06	1.60E+06	5.30E+05	1.83E+05	2.52E+05	4.62E+04	9.22E+04	0	2.34E+04	0	2.26E+04
		0 2556+0	7 6 27F+0	7 1.43E+0	8 6.69E+07	9.81E+06	1.90E+06	3.66E+05	1.14E+05	1.14E+05	1.83E+05	2.30E+04	2.27E+04	2.30E+04	0	0 (
		0 257540	7 7 07F+0	7 1 49F + 01	B 5.78E+07	8.46E+06	1.52E+06	2.99E+05	9.20E+04	4.61E+04	4.58E+04	2.32E+04	2.28E+04	2.32E+04	0	0
	 	0 3 346 +0	7 1 0 2 E + 01	8 192F+0	B 5.44E+07	8.14E+06	1.16E+06	1.76E+05	1.75E+05	5.26E+04	1.74E+04	5.27E+04	1.74E+04	3.56E+04	0	0
,		0 3.245 -0	7 8 536+0	7 1 13F+0	8 2.99E+07	4.70E+06	9.18E+05	3.70E+05	1.85E+05	1.13E+05	6.91E+04	4.50E+04	0	2.30E+04	0	4.68E+04
	: E	0 3 45F+0	7 1 25E+0	R 1.62E+0	8 2.80E+07	4.06E+06	1.02E+06	2.77E+05	2.54E+05	1.15E+05	4.66E+04	2.32E+04	2.28E+04	0	0	э (
		N 4 44F+0	7 1 77F + 0	А 1.19Е+0	8 1.64E+07	1.87E+06	4.82E+05	1.03E+05	1.73E+05	6.91E+04	3.48E+04	3.43E+04	3.43E+04	0	0	0
		V 151.5 V	· · · · · · · ·	· · · · · · · ·			1									

÷

- • • · · ·
0000 0 C 0 0 00 0 0 ¢ 0 0 0 0 0 C 0 00000 0 0 0 0 0 00 1.95E + 042.12E+04 1.75E+04 3.43E+04 3.54E+04 2.56E+04 **3.81E+04** 90E+04 76E + 041.87E+04 Bin 15 0 0 0 0 0 0 0 1.59E+04 000000 000 0 0 5.14E+04 0 0 0 0 0 0 0 0 0 1.19E+05 2.28E+04 1.10E+04 3.79E+04 2.74E+04 3.48E+04 0 2.37E+04 2.26E+04 2.33E+04 3.49E+04 1.68E+04 2.29E+04 3.49E+04 1.74E+04 0 2.53E+04 Bin 14 0 0 4,59E+04 0 0 0 0 0 0 0 0 2.37E+04 2.20E+04 3.61E+04 2.48E+04 0 C 0 1.77E+04 1.76E+04 c 0 3.47E+04 0 0 7.84E+04 3.81E+04 000000 3.40E+04 3.48E+04 3.52E+04 2.33E+04 3.31E+04 3.52E+04 3.43E+04 6.89E+04 1.05E+05 3.49E+04 6.84E+04 2.53E+04 Bin 13 2.33E+04 0 0 0 5.21E+04 3.44E+04 0 1.74E+04 0 5.13E+04 6.89E+04 4.33E+04 3.32E+04 4.65E+04 5.20E+04 0 0 0 0 3.49E+04 2.28E+04 0 0 0 1.73E+04 3.62E+04 0 0 3,34E+04 2.33E+04 2.20E+04 3.70E+04 1,45E+04 4.70E+04 3.43E+04 3.42E+04 6.90E+04 4.32E+04 1.95E + 04Bån 12 0 2.29E+04 0 9.74E+04 0 2.42E+04 2.33E+04 3.90E+04 1.19E+04 0 0 5,52E+04 1,40E+04 3.52E+04 1.74E+04 3.52E+04 3.39E+04 0 0 6.98E+04 8.57E+04 7.19E+04 1.10E+05 0 0 0 0 1.03E+05 3.48E+04 1.33E+05 1.20E+05 0000 3.48E+04 3.52E+04 6.94E+04 7.04E+04 3.54E+04 **3.69E+04** C 0 7.52E+04 4.68E+04 4.57E+04 1.90E+04 Bin 11 2.56E+04 1.41E+05 7.24E+04 0 0 2.33E+04 4.12E+04 6.92E+04 3.73E+04 4.60E+04 5.23E+04 0 3.50E+04 3.30E+04 3.52E+04 8.65E+04 1.03E+05 6.93E+04 1.44E+05 1.80E+05 3.54E+04 6.98E+04 5.26E+04 1.71E+05 1.06E+05 0 0 000 3.54E+04 6.99E+04 2.09E+05 1.05E+05 1.26E+05 1.00E+05 2.99E+04 3.65E+04 3.70E+04 2.33E+04 6.86E+04 7.63E+04 2.29E+04 3.50E+04 6.64E+04 Bin 10 1.22E+05 9.22E+04 2.81E+05 .82E+04 5.05E+04 0 7.08E+04 6.86E+04 6.28E+04 9.58E+04 1.35E+05 1.08E+05 1.61E+05 1.34E+04 2.08E+05 1.05E+05 1.60E+05 2.04E+05 1.05E+05 1.38E+05 1.02E+05 6.86E+04 1.72E+05 3.49E+04 2.08E + 05 5.21E+04 1.73E+05 1.80E + 05 1.59E+05 3.70E+05 0 0 0 00 9.95E+04 1.05E+05 4.70E+04 3.49E+04 6.60E+04 3.73E+04 1,60E+05 6.98E+04 1.796 + 044.70E+04 Bin 9 4 1.06E+05 2.39E+05 2.04E+05 1.65E+05 6.95E+04 1.84E+05 1.62E+05 1.95E+05 6.18E+04 1.48E+05 1.13E+05 1.09E+05 1.37E+05 1.79E+05 3.12E+05 2.81E+05 2.05E+05 1.60E+05 3.11E+05 6.95E+04 1.73E+05 2.41E+05 3.08E+05 2,79E+05 1,41E+05 1.69E+05 2.41E+05 1.06E + 051.05E+05 3.13E+05 2.63E+05 2.43E+05 1.79E+05 2.42E+05 3.18E+05 1.856+05 3.81E+04 4.61E+05 0 0 000 6.64E+04 6.97E+04 2.20E+04 1.48E+05 2.65E+04 8 u 8 Number per cubic meter September 26, 1992 3.66E+05 2.88E+05 0 6.48E+05 2.78E+05 1.91E+05 6.18E+04 4,40E+05 4.29E+05 1.03E+05 3.84E+05 5.01E+05 4.37E+05 3.90E+05 7.84E+04 7.44E + 051.40E+05 4.97E+05 1.43E+05 8.97E+04 1.13E+05 1.79E+05 2.79E+05 4.19E+05 4.66E+05 4.896+05 6.38E+05 7.82E+05 3.13E+05 2,68E+05 3.46E+05 5.01E+05 3.08E+05 4.01E+05 4.53E+05 4.49E+05 2.11E+05 5.48E+05 3.70E+05 1.85E+05 0 3.42E+04 1.79E+04 1.996+04 1.38E+04 Bin 7 0 3.70E+05 7.02E+05 7.486+05 6.60E+05 4.83E+05 7.29E+05 1.81E+05 4.33E+05 1.18E+06 7.42E+05 1,93E+06 6.81E+05 1.22E+06 1.22E+06 7.44E+05 4.74E+05 5.11E+05 5.83E+05 1.19E + 060 3.84E+04 0 4.07E+04 1.46E+05 4.20E+05 2.93E+06 2.58E+06 4.50E+06 3.75E+06 2.15E+06 1,48E+06 1.64E+06 1,51E+06 7.79E+05 1.11E+06 1.01E+06 8.72E+05 5.54E+05 8.36E+05 4.52E+05 4.35E+05 1.86E+06 9.45E+05 4.54E+04 Bin 6 1.13E+06 1.50E+06 1.32E+06 1.15E+06 5.83E+06 4.86E+06 4.95E+06 59E+06 2.18E+06 1.92E+06 2.52E+06 1.60E + 06 1.74E+06 6.64E+05 6.99E+05 1.31E + 058.97E+04 3.97E+04 2.09E+06 1.82E+06 1.84E+06 1.61E+06 1.90E+06 3.63E+05 7.80E+05 8.75E+05 1.02E+06 3.13E+06 1.30E+07 9.09E+06 1.61E+07 9.55E+06 2.81E+06 9.66E+06 7.74E+06 8.97E+06 7.67E+06 4.79E+06 2.03E+06 1.55E+05 57E+05 1.41E+06 1.47E+07 1,49E+07 1.01E+05 7.06E+04 e 2.43E+06 1.11E+07 3.40E+06 1.96E+06 3.31E+05 3.10E+06 9.83E+05 2.56E+06 9.31E+06 7.56E+06 2.38E+07 1.50E+07 1.64E+06 4.04E+05 7.94E+04 2.93E+05 9.40E+06 6.76E+06 5.50E+06 3.87E+06 5.44E+06 1.86E+06 1.18E+06 2.15E+06 3.97E+06 4.27E+07 3.50E+07 3.85E+07 4.15E+07 4.57E+07 3.87E+07 3.75E+07 4.23E+07 6.32E+07 5.63E+07 3.10E+07 3.28E+07 3.23E+07 2.12E+07 1.18E+07 5.94E+06 4.63E+06 3.40E+06 2.21E+06 6.44E+04 3.05E+05 돏 1.12E+08 1 .32E + 08 1.06E+08 1.43E+08 1.56E+08 1.40E+08 8.41E+07 1.13E+07 8.77E+06 7.10E+06 2.99E+06 3.95E+05 7.30E+05 5.69E+05 1.21E+05 6.14E+05 50E+07 9.66E+06 2.42E+06 4.35E+00 9.76E+06 2.98E+07 4.12E+07 2.97E+07 7.89E+06 4,53E+07 6.41E+07 9.14E+07 1.10E+08 3.69E+07 3.56E+06 1.21E + 061.44E + 054.55E+07 2.07E+07 3.08E+07 3.91E+07 2.68E+06 1.33E+06 2.26E+06 2.48E+06 3.88E+07 2.99E+07 3.27E+07 9.22E+07 1.42E+06 E una 6.26E+05 2.52E+07 2.23E + 083.20E+07 2.59E+07 7.19E+04 4.34E+05 1.59E+08 1.60E+08 5.74E+07 1.38E+08 1.41E+08 3.73E+07 2.45E+06 2.45E+08 1.16E+08 3.77E+08 2.07E+06 7.51E+08 9.13E+06 2.73E+07 1.52E+07 2.12E+07 2.556+07 1.79E+07 5.90E+06 2.41E+07 3.35E+07 5.07E+07 5.75E+07 5.61E+07 7.34E+07 1.08E+08 1.33E+08 1.54E+08 1.82E+08 66E + 08 1.05E+08 2.30E+07 2.94E+06 3.44E+06 1.24E + 066.07E+05 1.63E+05 50E+05 1.40E+08 8in 2 ഹ 2.53E+07 7.87E+04 4.30E+05 51E+06 1.50E+07 9.64E+06 2.42E+07 2.35E+07 3.25E+07 8.06E+07 1.13E+07 3.01E+06 3.54E+06 1.30E+06 2.33E+05 4.97E+05 1.42E+05 5.34E+05 3.91E+07 5.05E+07 1.16E+08 2.67E+06 2.02E+06 1.07E+06 1.38E+06 3.11E+06 1.93E+06 39E+06 6.27E+06 1.41E+07 1.18E+07 1.16E + 071.095+07 **3.68E + 06** 53E+07 1.936+07 2.40E+07 2.82E+07 3.65E+07 4.33E+07 4.44E+07 5.19E+07 2.21E+07 4.89E+07 7.936+07 3.02E+07 175705 180800 Bin 1 cime. End ø 8 290 260 250 240 230 220 210 200 200 200 190 170 170 170 170 1100 1100 330 320 310 290 280 280 8 30 30 2 310 000 280 270 8 80 02 09 50 30 20 20 20 10 80 70 50 40 180622 175527 Altitude (m) time Rentin G ഗഗ 3 3 3 0 Approach number

10.00

Worcester, MA

	ļ	61 12		•	•	•	•	•	•	0	0	0	0	•	.21E+04	0	0	0	0	0	0	0	0	o	0	0	•	0	0	4287
	:	Rin 14		0	0	0	0	0	0	0	0	0	•	0	0 2	•	•	•	•	•	•	0	0	•	•	0	.13E+04	0	0	0
		Bun 13		0	0	41E+04	0	•	•	•	•	0	0	0	0	•	•	0	0	0	0	0	0	•	0	0	0 2	91E+04	0	3205
		Bin 12		0	0	03.	0	0	•	•	0	0	0	•	0	0	•	0	•	29E+04	28E+04	0	0	35E+04	48E + 04	07E+05	•	0	0	25E+04
		Bin 11		Ö	0	•	•	•	•	0	0	0	0	0	0	22E+04	68E+04	22E+04	•	ю́ О	28E+04 3.	0	0	.34E+04 3.	0 3	.32E+04 1.	.13E+04	0	.73E+04	.36E+04 2
		Bin 10		0	0	0	0	0	0	37E+04	0	0	0	0	21E+04	14E+04 2.	0 1.	20E+04 2.	0	0	58E+04 3.	0	28E+04	35E+04 3.	51E+04	67E+04 3.	67E+04 2.	0	0 5	15E+04 8
		Bin 9		0	0	0	0	67E+04	31E+04	0.0	40E+04	0	0	31E+04	0 2.	38E+04 2.	0	42E+04 2.	17E+04	71E+04	0 0	0	89E+04 3.	34E+05 3.	75E+05 3.	06E+05 3.	29E+04 6.	41E+04	0	05E+05 6.
		Bin 8	neter	0	39E+04	0	0	0 2	0	42E+04	0.3	42E+04	42E+04	28E+04 3.	22E+04	22E+04 4.	03E+04	68E+04 4.	10E+05 2.	65E+04 6.	0	0	31E+05 9.	0 1.	45E+05 1.	49E+05 2.	72E+05 7.	09E+05 9.	68E+04	03E+05 1.
sster, MA	oer 26, 1992	Bin 7	ther per cubic n	•	11E+05 1.	34E + 04	30E + 04	34E+04	82E+04	37E+04 3.	83E+04	57E+04 2.	96E+04 3.	94E+04 3.	32E+05 2.	10E+05 2.	35E+04 5.	66E+05 6.	19E+05 1.	33E+05 6.	32E + 05	0	28E+05 1.	35E+05	15E+05 2.	19E+05 3.	52E+05 2.	32E+05 2.	43E+05 5.	75E+05 2.
Worce	Septemb	Bin 6	NUN	35E + 04	14E+06 1.	31E+05 6.1	23E+05 2.	70E+05 5.	52E+06 4.0	11E+06 3.	35E+06 6.1	38E+05 6.	70E+06 9.	57E+05 9.	34E+05 1.3	35E+05 1.	84E+05 3.	45E+05 2.	06E+05 2.	67E+05 1.	29E+05 1.	326+05	62E+05 4.	34E+05 3.	94E+05 3.	99E+05 4.	32E+05 6.	40E+05 1.	56E+05 1.	79E+05 4.
		Bin 5		17E+04 1.9	30E+06 1.	13E+06 4.8	30E+05 1.3	31E+05 1.	52E+06 1.	04E+06 1.	07E+07 1.	32E+06 2.	31E+07 1.	43E+06 9.	49E+06 4.	90E+06 6.	27E+06 5.	68E+06 6.	02E+06 5.	83E+06 2.	45E+06 3.	13E+06 5.	02E+06 6.	07E+06 3.	08E+06 5.	61E+06 7.	12E+06 8.	62E+05 6.	26E+05 2.	09E+06 6.
		Bin 4		36E+05 3.	36E+06 3.	58E+06 1.	69E+06 4.	43E+05 2.1	34E+07 9.	20E+07 4.	49E+07 1.	25E+07 2.	76E+07 1.	67E+07 9.	05E+07 3.	04E+07 4.	60E+07 4.	04E+07 3.	83E+07 2.	85E+07 1.	38E+07 1.	01E+07 1.	88E+06 1.	47E+06 1.	54E+06 1.	57E+06 1.	14E+06 1.	29E+06 6.	22E+06 8.	45E+06 1.
		Bilm 3		33E+05 1.	22E+06 6.	61E+06 2.	92E+06 1.	01E+05 6.	36E+07 4.	68E+07 1.	36E+07 4.	91E+07 1.	26E+08 7.	75E+08 7.	24E+07 3.	91E+07 4.	556+08 3.	76E+08 3.	21E+08 1.	366+08 1.	03E+08 1.	64E+07 1.	.16E+07 5.	.72E+06 1.	79E+06 1.	.09E+06 2.	36E+06 2.	.52E+05 1.	086+05 1.	.27E+05 1.
		Bin 2		25E+05 3.	02E+06 7.	72E+06 2.	14E+06 1.	45E+05 7.	51E+07 4.	75E+07 1.	42E+07 5.	14E+07 1.	20E+07 1.	52E+07 1.	82E+07 8.	46E+07 9.	03E+08 1.	45E+08 1.	71E+08 1.	76E+08 1	34E+08 1.	82E+08 9	B0E+08 4	47E+07 4	30E+07 6	02E+07 4	.76E+07 2	13E+06 7	97E+05 9	286+05 9
		Bin 1	time	77E+05 2.	94E+06 5.	96E+05 1.	47E+05 1.	78E+05 3.	38E+07 3.	97E+08 1.	896+07 5.	01E+06 1.	30E+07 5.	87E+07 6.	12E+07 5.	27E+07 6.	99E+07 1.	80E+07 1.	87E+07 1.	44E+07 1.	43E+07 2.	25E+07 2.	456+07 1.	86E+07 3.	09E+07 4.	25E+07 3.	41E+07 1.	54E+06 1.	70E+05 5.	.24E+05 5
		itude (m)	r time End	270 2.	260 1.	250 9.	240 7.	230 5.	220 1.	210 8.	200 1.	190 4.	180 2.	170 2.	160 2.	150 2.	140 2.	130 3.	120 3.	110 4.	100 5.	906	80 5.	70 2.	60 4.	50 3	40 2	30 1	20 3	10 6
		Vppmech Alt	number Begin	5	5	5	5	5	9	2	2	9	5	5	5	5	5	5	5	9	2	5	5	5	5	5	ء م	ء 36	ء ر	വ

.

-

.

1

- 30 BC -

üter.

-

Ę

							Septem	Bar 26, 1992								
Approach	Altitude (m)	Bin 1	Bin 2	Bin 3	Bin 4	Brin 6	Bin 6	Bin 7 B.	in 8	Bin 9 Bin 10	-	In 11	Bun 12 Bu	n 13	Bin 14	Bin 16
number	Begin time	End time					ν. Ν	nber per cubic met	1							
-	310	450.6	7479	C	C	C		i: 300 microne Re	nge: 150 - 46 O	50 microne D	c	c	c	c	c	c
-	300	418.3	27.49	5.237	2.765	> 0	• •	0	> 0	00	, o	• •	• •		• c) C
,	1 290	578	3.753	0	8.297	0	0	0	0	0	0	0	• •	0	. 0	0
	1 280	534.2	18.79	0	0	0	0	0	0	0	0	0	0	0	0	0
•	1 270	607.1	20.89	1.989	0	2.21	•	0	0	0	0	0	0	0	0	0
	1 260	648.5	24.84	2.001	0	0	0	0	0	0	0	0	0	0	0	0
- '	1 250	786.1	34.1	0	0	0	•	0	0	0	0	0	0	0	0	0
	1 240	819.9	45.24	0	2.767	0	0	0	0	0	0	0	0	0	0	0
•	1 230	1087	49.37	0	0	0	0	0	0	0	0	0	0	0	0	0
	1 220	947	56.2	7.862	0	4.385	0	0	0	0	0	0	0	0	0	0
	1 210	884.2	42.59	2.616	2.749	0	0	0	0	0	0	0	0	0	0	0
•	1 200	1329	45.17	0	0	0	0	0	0	0	0	0	0	0	0	0
	1 190	1042	71.13	0	0	4.342	•	0	0	0	0	0	0	0	0	0
	1 180	1377	48.91	3.995	2.047	4.367	0	0	0	0	0	0	0	0	0	0
•	1 170	1493	75.35	11.32	1.682	3.616	0	0	0	0	0	0	0	0	0	0
	1 160	1661	68.19	5.311	0	2.939	0	0	0	0	0	0	0	0	0	0
• •	1 150	1734	67.57	7.886	0	0	0	0	0	0	0	0	0	0	0	0
•	1 140	1822	85.85	3.95	0	0	4.564	4.85	0	0	0	0	0	0	0	0
•	1 130	1882	73.99	12.94	0	0	0	0	0	0	0	0	0	0	0	0
	1 120	2021	108.4	7.86	0	0	0	0	0	0	0	0	0	0	0	0
	110	2178	139.5	13.09	0	2.909	•	0	0	0	0	0	0	0	0	•
	1 100	2087	176.3	7.838	0	0	0	0	0	0	0	0	0	0	0	0
	1 90	2237	202.3	5.173	5.519	0	0	0	0	0	0	0	0	0	0	0
A	1 80	2257	276.4	13.29	0	0	3.143	0	0	0	0	0	0	0	0	0
3	1 70	1880	428.1	7.69	0	•	0	0	0	0	0	•	0	0	0	0
37	1 60	1655	408.7	26.82	0	0	•	0	0	0	0	0	0	0	0	0
-	1 50	1977	363.5	19.3	0	0	0	0	0	0	0	0	0	0	0	0
	1 40	2078	353.9	25.86	2.705	2.855	0	0	0	0	0	0	0	0	0	0
	30	1971	439.9	22.9	4.019	0	0	0	0	0	0	0	0	0	0	0
	1 20	1915	398.4	19.53	4.113	0	0	0	0	0	0	0	0	0	0	0
	1 10	2122	407.1	35.6	0.9521	2.033	0	1.143	0	0	0	0	0	0	0	0
	173353	173553														
•	2 390	2349	265.6	0	0	0	0	0	0	0	0	0	0	0	0	0
	2 380	2387	241	23.71	•	0	0	0	0	0	0	0	0	0	0	0
	2 370	2328	238.5	3.932	•	0	0	0	0	ò	0	0	0	0	0	0
	2 360	3302	235.5	15.46	4.075	4.302	0	4.839	0	0	0	0	0	0	0	0
	2 350	3151	380.2	11.61	0	0	0	0	0	0	0	•	0	0	0	0
	2 340	2284	331.9	0	0	0	0	0	0	0	0	0	0	0	0	0
•	2 330	1530	396.5	36.7	5.484	0	3.114	0	0	0	0	0	0	0	0	0
•	2 320	2296	666.9	285.8	34.2	2.264	4.795	0	0	0	0	0	0	0	0	0
•	2 310	2668	1205	130.9	8.64	9.055	2.412	0	0	0	0	0	0	0	0	0
•	2 300	2543	391.7	65.16	7.143	0	0	0	0	1.937 2.0	92	0	•	0	3.022	0
	2 290	2553	112.2	0	0	0	0	0	0	0	0	0	0	0	•	0
	2 280	1936	143.9	0	2.853	0	0	0	0	0	0	0	0	0	•	0
•	2 270	2189	91.27	10.65	0	0	0	0	0	0	0	0	0	0	0	0
-	2 260	2380	80.63	0	5.579	0	0	0	0	0	0	0	0	0	0	0
-	2 250	3235	167.4	2.648	2.812	0	0	0	0	0	0	0	0	0	0	0

A-37

Worcester, MA

	Bun 15		0	0 0	5 0	• •	0	0	•	0	•	0 (.	> 0	0	0	0	0	0	0	0	0	0	•	0 (• •	0	0	0	0	0	o (0 (. .		0	0	0	0	0	0	0
	8in 14		0	0 0	- -	• •	0	•	•	0	0	0	.		> 0	0	0	•	0	0	•	0	0	0	1	0 0		.	00	0	0	0	0 (0 0	,	0	0	0	0	0	0	0
	Bin 13		0	0	. .	0	0	0	•	0	0	0 (-	.	> 0	0	0	0	•	0	0	0	0	0	1	0 0			00	0	0	0	0 (0	0	0 0	-) a	0	0	0	0	0	0
	Bin 12		0	0		• •	0	0	•	0	0	0 (0) a	0	0	•	0	•	0	0	0	0		0 (0	.	00	0	0	0	0 (0 0	0	0 (- C	. .		• a	0	0	0	0	0	0
	Bån 11		0	0 (.	• •	0	0	•	•	•	0	•) c	0	0	0	0	0	0	0	0	0.9712		0 (.		00	0	0	0	0 (0 0	0 0	0 (5 0			0	0	0	0	0	0
	Bin 10		0	0 (.	• •	0	0	0	o,	0	0			`	0	0	0	0	0	0	•	0	0	1	0 0	.		00	0	0	0	0	ა ი	0 0	0 0	5 0	- c			0	0	0	0	0	0
	Bin 9		0	0 (0 0 0	0	0	0	0	0	0	0	0 0) C	0	0	0	0	0	0	0	0	0		0 (0	.	0	0	0	0	0 (0 0	0	0	.	0		• •	0	0	0	•	0	0
	Stin S	meter	0	0	0 0	• •	• •	0	0	0	0	0	0		• •	0	0	0	5.365	5.34	•	•	0	0	1	0 0	.		00	0	0	0	3.547	0 (0	0 0	0	.) C	0	0	0	•	0	0
Dester, MA mber 26, 1992	Bin 7	umber per cubic	0	0	0 0	• •	0	0	0	•	0	0	0		• c	0	0	0	0	•	•	3.322	0	0		0 0	0 0	. .	00	0	3.347	0	0	0 0	o (0 22 2	3.308	3.3.18 0			3,343	3.353	2.605	0	3.35	0
Word	Bin 6	ź	2.364	0	0 0	• •	4.685	0	0	0	•	4.791	.		3 165	0	0	0	0	0	•	0	0	0.6269		0 0	0000	066.2	00	0	3.149	3.125	0	0 (0 0	0 0	0 100	3.106) C	0	3.149	0	0	6.307	0
	Bin 5		0	0	0 10 0	0.0	0	0	0	0	0	0	4.514			5.975	2.992	0	0	0	2.89	2.986	9.019	0.5942		0 (0 000 0	2.203 8 063	0	0	2.981	0	0	0 (0 (0 10 0	2006.7	6/.11 2.025	000.2 00 01	2.938	0	0	0	0	2.972	0
	Bin 4		0	0	0	+00.0	8.395	0	•	•	2.88	12.81	4.2/6	110 4	2.81	2.81	5.737	4.329	0	0	2.738	2.798	5.676	2.974		0 (5	0 0 0 0	6.366	0	5.657	2.803	5.6	8.417	8.357	2.805	0.304 11 10	01.11	0.404 0 174	2.784	0	0	2.15	0	0	4.248
	Bin 3		8.01	8.039	13.39	8 084	3.982	10.67	16.27	8.193	8.134	20.27	8.081	00.01 10.04	26.73	10.71	2.693	8.178	20.11	3.973	15.75	21.32	27.07	21.86		8.012	260.8 200.6	2.037	4.049	20.18	29.47	37.23	50.47	23.88	18.5	21.39	10.01	20.47	64.01 77 84	29.04	24.12	13.42	8.247	2.658	8.087	8.049
	Bin 2		276.4	342.1	339.5	2114	208.8	228.6	285.7	431	493.8	510.4	411.8	20C 8 C T F	2.210	339.7	384.4	249.2	376.5	379.8	381.4	386.4	446.1	477.1		83.93	88.24	96.36	411.2	680.2	790.2	1028	692.8 :12	4 /0.2	454.3	361.5	441.1	119	1.000	628.5	493.1	316.7	275.1	243.3	296.9	210.9
	Bin 1	ind time	3323	3102	2932	3375	3559	3849	4251	4008	3634	3605	3246	2002	3361	3831	3606	3442	3552	3730	3612	3330	3551	3308	1/4040	1801	4061 1916	3404 1338	4320 5524	6179	5673	5313	4381	4866	9129	4963	1070	494	4119	3613	3147	3310	3140	3067	3349	3151
	Altitude (m)	igin time 1	240	230	220	002	190	180	170	160	150	140	130	110	1001	6	80	70	60	50	40	30	20	10	6064/1	320	016		280	270	260	250	240	230	220	210	2002	190	120	160	150	140	130	120	110	100
	Approach	number Be	2	5	2		0	2	2	2	2	5				1.01	2	2	2	2	2	2	5	~	35	ი ი		.	n m	9	e	e	en (т (с т (" , "		n r	0 0	r n	e	e	e	ē	e

A-38

=

÷

-

=----

							Woro	ester, MA ther 26, 1992						:		;
Approach	Aldude (m)	Brin 1 51 4i	Bin 2	Bin 3	Bin 4	8In 5	Bin 6 Mu	Bin 7 mhar nar cuhio r	Bin B Biar	5 U 18	Bun 10	Bin 11	Bin 12	61 13	Bin 14	
	1 90 mile	5 3337	360.4	11.86	4.181	0	0	0	0	0	0	0	0	0	0	U
~	1 80	3226	346.1	7.815	4.107	4.348	0	0	0	0	0	0	0	0	0	0
	5 70	1 2947	331	3.945	4.153	0	0	0	0	0	0	•	0	0	0 (0
.,	3 60	1 2948	331.5	5.266	2.808	0	0	0	0	0	0	0 (0 (•		50
.,	3 50	1 3199	302.1	10.47	0	0	•	0	0	0	0	0	0	0 (.	5
	40	0 3056	312.3	21.05	2.76	0	0	3.277	0	•	0	0	0	0	0 (2
• •	30	3239	344.4	16.16	0	0	0	0	0	0	0	0	0	0	0	0
	3 20) 3535	259.8	12.62	4.404	0	0	0	0	0	0	0	0	0	0	0
	3 10	3794	308.7	15.99	4.886	1.732	0	0	0	0	0	0	0	0	0	0
	175527	175705												,		
7	1 310	1738	95.26	0	0	0	0	0	0	0	0	0	0	0	0	0
7	1 300) 2044	144.2	5.502	2.888	0	0	0	0	0	0	0	0	0	0	0
7	1 290	0 2270	151.5	4.081	4.296	0	0	•	0	0	0	0	0	0	0	0
-	1 280) 2937	347.9	8.095	0	0	0	0	0	0	0	0	0	0	0	0
~	1 270) 3857	318.3	5.388	2.838	0	3.172	3.37	0	0	0	0	•	0	0	0
	1 260	1 4393	347.6	8.136	5.132	5.417	0	0	0	0	0	0	•	0	0	0
7	1 250	4931	592.1	22.17	8.527	2.237	0	0	0	0	0	0	0	0	0	0
-	1 240	5443	911.9	40.27	0	0	0	0	5.355	0	0	0	0	0	0	0
4	1002	4981	934 8	34,88	0	0	3.153	0	0	0	0	0	0	0	0	0
	1 220	4438	966.6	55.85	11.18	0	6.249	0	0	0	0	0	0	0	0	0
	1 210	3458	589.7	74	8.432	2.235	2.348	0	0	0	0	0	0	0	0	0
	2002	2745	288.5	1910	0	0	0	4.986	0	0	0	0	0	0	0	0
	190	3473	2 662	24.19	• •	4.497	0	0	0	0	0	0	0	0	0	0
A	180	3505	670.2	23.92	2.096	2.213	0	0	0	0	0	0	0	0	0	0
3	4 170	3621	587.8	56.18	4.228	0	0	0	0	0	0	0	•	0	0	0
9	1 160	3924	429.6	32.05	0	0	0	0	0	0	0	0	0	0	0	0
-	4 150	(4873	580.8	4.034	0	0	0	0	0	0	0	0	0	0	0	0
-	4 140) 4644	413.9	15.98	4.212	4.412	0	0	0	0	0	0	0	0	0	0
	4 130	4999	461.9	12.03	4.181	0	0	0	0	0	0	0	0	•	0	0
	4 120	0 4553	853.7	28.52	4.288	0	4.794	0	0	0	0	6.79	0	0	0	0
	4 110	0 4835	857.6	40,04	0	4.491	0	5.055	5.39	0	0	0	0	0	0	Ŷ
,	4 100	5304	1048	43.8	0	4.422	0	4.975	0	0	0	0	0	•	•	0
,	- 76 - 70	1 4992	837.5	32.01	6.294	2.194	0	0	0	0	0	0	0	0	0	0
	4 80	0 4766	776.4	48.15	3.382	0	0	0	0	0	0	2.678	0	0	0	0
	4 70	0 4496	585	40.41	0	0	0	5.05	0	0	0	0	0	0	0	0
	4 6(0 4638	615.1	40.37	0	0	0	3.35	0	0	0	0	•	•	•	0
	4 50	0 4415	772.2	63.96	8.781	0	0	0	0	0	0	0	0	0	0	0
	4	0 4795	666.8	56.42	0	9.437	3.347	0	0	0	0	0	0	0	0	0
	4 30	0 4824	737.1	69.22	0	4.789	0	0	0	0	0	0	0	0	0	0
	4 2(0 4589	749.1	56.78	0	0	0	0	0	0	0	0	0	0	0	0
	4 1(0 5094	844	40.68	4.881	1.451	2.312	2.34	0	0	0	0	0	0	0	0
	18062	2 180800														
	5 33(0000	0	0	0	0	0	0	0	0	0	0	0	•	•	0
	5 32(000	0	0	0	0	0	0	0	0	0	0	0	0	•	0
	5 31(0 4.347	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5 30(0	0	0	0	0	0	0	0	0	0	0	0	0	0	•
	5 29(000	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5 28(0 3.19	0	0	0	0	0	0	0	0	0	0	0	0	0	0

.

							Word	ester, MA								
							Septer	iber 26, 1992								
Approach	Altitude (m)	Bin 1	Bin 2	Bun 3	Bån 4	Bin 5	Bin 6	Bin 7 B	in 8	Bin 9	Bin 10	Bin 11	Bin 12	Bun 13	84n 14	Bin 15
number	Begin time	End time					Ž	mber per cubic me	ì							
(1)	5 270	0.36	0	0	0	0	0	0	0	0	0	0	0	•	0	0
رى	5 260	10.4	0	0	0	0	0	0	0	0	0	0	0	0	0	0
رى	5 250	0.43	0	0	0	0	0	0	0	0	0	0	0	0	0	0
τ. J	5 240	38.03	0	0	0	0	0	0	0	0	0	0	0	0	0	0
رى	5 230	0 50.41	0	0	0	0	0	0	0	0	0	0	0	0	0	0
رى	5 220	0 67.56	0	0	0	0	0	0	0	0	0	0	0	0	0	0
رى	5 210	0 24.88	0	0	0	0	0	0	0	0	0	0	0	0	0	•
ر ۍ	5 200	3 43,26	3.69	•	0	0	0	0	0	0	0	0	0	0	0	0
ری	5 190	126	0	•	0	0	0	0	0	0	0	0	0	0	0	0
ري.	5 180	0 148.6	0	0	0	0	0	0	0	0	0	0	0	0	0	0
رى	5 170	300	0	3.832	0	0	4,508	0	0	0	0	0	0	0	0	0
لي	5 160	3 318.3	2.451	2.536	0	0	0	0	0	0	0	0	0	•	0	0
نی	5 150	0 474.3	4.861	•	0	0	2.976	0	0	•	0	0	0	0	0	0
	5 140	326.8	0	•	0	0	0	0	0	0	0	0	0	•	0	0
	5 130	703.2	17.11	2.583	0	0	0	0	0	0	0	0	0	•	0	0
رى	5 120	0 268.8	0	0	0	0	0	0	0	0	•	0	0	•	0	0
رى	5 110) 457.6	7.125	0	•	0	0	0	0	0	0	0	0	0	0	0
لى	5 100	3 469.6	24.84	3.706	0	0	0	0	0	0	0	0	0	•	0	0
لود	ء 90	0 668.4	7.132	0	0	8.321	0	0	0	0	0	0	0	0	0	0
نۍ	5 BC	0 1184	34.74	3.693	•	0	0	0	0	0	0	0	0	0	0	0
رى	5 70	0 1051	17.27	0	0	0	0	0	0	0	0	0	0	0	0	0
ري	5 60	0 2164	42.22	•	0	0	0	0	0	0	0	0	0	0	0	0
	5 50	2707	114.3	3.618	0	0	0	0	0	0	0	0	0	0	0	0
ر ک	5 40	0 2474	111.6	0	2,563	0	2.871	0	0	0	0	0	0	0	0	0
ш "Л	5 30	0 1592	36.02	•	0	0	0	0	0	0	•	0	0	0	0	0
ິ ດ	5 20	0 1786	62.8	3.861	8.13	0	0	0	0	0	0	0	0	0	0	0
•••	5 10	3446	332.3	6.336	2.012	0	0	1.082	0	0	0	0	0	0	0	0

Ξ..:

Worcester,	MA
------------	----

.

			4	September 26, 1	992			
Approach	Altitude		Temp	Vapor	Number	Liquid water	Median	Total
number	(m)		(C)	density	seconds	content	vol. radius	number
	Begin time	End time		(g/m3)	in layer	(g/m3)	(m-6)	(per cm3)
	172307	172437		2				
1	310		09.7	9.23	1	0.01	22.8	007.40
1	300		09.7	9.23	3	0.02	71.0	010.28
1	290		09.7	9.23	2	0.04	21.3	019.74
1	280		09.7	9.23	2	0.03	08.3	022.32
1	270		09.7	9.23	4	0.06	07.4	046.10
1	260		09.7	9.23	4	0.05	07.2	042.05
1	250		09.7	9.23	4	0.08	07.3	061.71
1	240		09.7	9.23	3	0.16	06.9	129.86
1	230		09.7	9.23	2	0.22	06.7	185.91
1	220		09.7	9.23	2	0.20	06.8	164.77
1	210		09.4	9.07	3	0.17	06.3	167.88
1	200		09.7	9.23	2	0.25	05.7	304.92
1	190		08.9	8.77	2	0.17	05.7	229.08
1	180		08.9	8.77	4	0.17	05.6	232.78
1	170		09.1	8.86	5	0.24	05.6	331.94
1	160		08.9	8.77	3	0.23	05.6	317.65
1	150		08.9	8.77	2	0.17	06.0	205.92
1	140		08.9	8.77	2	0.23	05.8	319.02
1	130		08.9	8.77	3	0.18	05.1	311.45
1	120		08.9	8.77	2	0.19	04.8	371.43
1	110		08.9	8.77	3	0.21	04.8	410.91
1	100		08.9	8.77	5	0.17	05.2	325.30
1	90		08.9	8.77	3	0.17	05.5	353.55
1	80		08.9	8.77	3	0.22	05.1	484.59
1	70		08.9	8.77	2	0.16	13.5	282.97
1	60		08.4	8.52	2	0.12	142.6	114.61
1	50		08.4	8.52	2	0.15	30.8	293.90
1	40		08.9	8.77	3	0.15	75.9	352.09
1	30		08.9	8.77	2	0.12	161.2	088.23
1	20		08.9	8.77	2	0.12	137.9	141.09
1	10		08.9	8.77	9	0.12	179.0	040.82
	173353	173553						
2	390		11.4	10.28	1	0.08	110.0	021.73
2	380		11.4	10.28	2	0.09	116.1	014.31
2	370		11.4	10.28	2	0.08	109.6	013.21
2	360		10.9	9.99	2	0.14	146.4	015.72
2	350		10.5	9.71	2	0.11	131.8	013.65
2	340		10.5	9.71	1	0.09	120.6	018.06
2	330		10.5	9.71	3	0.11	209.2	015.88
2	320		10.5	9.71	4	0.29	316.1	025.55
2	310		10.5	9.71	4	0.29	227.4	038.94
2	300		10.5	9.71	6	0.33	1231.8	049.63
2	290		09.7	9.23	2	0.12	09.5	061.26

			S	September 26, 1	1992			
Approach	Altitude		Temp	Vapor	Number	Liquid water	Median	Total
number	(m)		(C)	density	seconds	content	vol. radius	number
	Begin time	End time		(g/m3)	in layer	(g/m3)	(m-6)	(per cm3)
2	280		09.7	9.23	3	0.13	08.9	067.30
2	270		09.7	9.23	3	0.10	11.6	061.27
2	260		09.7	9.23	3	0.12	08.2	084.01
2	250		09.7	9.23	3	0.16	09.2	087.82
2	240		09.7	9.23	4	0.19	11.5	104.54
2	230		09.4	9.07	3	0.17	23.5	094.18
2	220		08.9	8.77	3	0.18	14.6	102.52
2	210		08.9	8.77	3	0.25	17.8	142.41
2	200		08.9	8 77	3	0.20	07.1	170.81
2	190		08.9	8.77	2	0.14	93.6	060.91
2	180		08.9	8 77	3	0.16	32.7	128.58
2	170		08.9	8 77	3	0.24	07.5	199.72
2	160		08.9	8 77	4	0.31	06.4	305.20
2	150		08.9	8 77	3	0.27	07.2	285.95
2	140		08.9	8 77	2	0.26	51.4	220.83
2	120		08.9	8 77	2	0.20	07.7	265.82
2	120		08.9	8 77	2	0.23	06.4	320.91
2	120		08.9	9.77	2	0.24	08.5	281 62
2	100		08.9	0.77	2	0.22	46.2	284 59
2	100		08.9	0.77	3	0.21	14.0	329.01
2	90		08.9	0.77	3	0.23	14.0	104 42
2	80		08.9	0.77	3	0.22	10.3	279 27
2	70		08.9	8.77	2	0.10	10.0	3/0.2/
2	60		08.9	8.77	2	0.22	90.0 120.9	100.40
2	50		08.9	8.77	2	0.10	130.8	135.45
2	40		08.6	8.60	3	0.13	129.5	114 10
2	30		08.9	8.77	3	0.15	150.1	066.99
2	20		08.9	8.77	3	0.16	150.2	000.00
2	10		09.2	8.97	10	0.16	173.9	024.08
	174509	174646				0.05	00.1	044 50
3	320		10.5	9.71	1	0.05	90.1	011.53
3	310		10.1	9.47	2	0.06	82.6	011.20
3	300		10.1	9.47	4	0.09	94.6	015.19
3	290		09.7	9.23	3	0.11	99.9	019.89
3	280		09.7	9.23	4	0.16	105.9	038.71
3	270		09.7	9.23	2	0.25	91.7	108.32
3	260		09.7	9.23	3	0.30	130.1	098.33
3	250		09.7	9.23	3	0.30	137.5	100.71
3	240		09.4	9.07	3	0.36	39.4	229.38
3	230		09.4	9.07	3	0.30	09.2	206.60
3	220		08.9	8.77	3	0.22	71.7	101.32
3	210		08.9	8.77	3	0.19	70.3	096.53
3	200		08.9	8.77	3	0.25	74.7	115.06
3	190		08.9	8.77	3	0.26	158.7	082.36
3	180		08.9	8.77	3	0.25	80.3	141.42

÷.

-

-

-

- 2

-

....

-

Worcester, MA

September 26, 1992

. . .

Approach	Altitude		Temp	Vapor	Number	Liquid water	Median	Total
number	(m)		(C)	density	seconds	content	vol. radius	number
	Begin time	End time		(g/m3)	in layer	(g/m3)	(m-6)	(per cm3)
3	170		08.9	8.77	2	0.34	39.6	272.65
3	160		08.9	8.77	3	0.27	38.6	203.01
3	150		08.9	8.77	3	0.30	06.9	310.16
3	140		08.9	8.77	3	0.28	06.4	313.88
3	130		08.9	8.77	4	0.28	05.7	389.90
3	120		08.9	8.77	3	0.19	06.2	258.17
3	110		08.9	8.77	3	0.26	09.2	355.85
3	100		08.9	8.77	2	0.18	05.7	359.19
3	90		08.9	8.77	2	0.17	46.4	285.75
3	80		08.9	8.77	2	0.16	74.6	265.30
3	70		08.9	8.77	2	0.12	95.6	135.83
3	60		08.9	8.77	3	0.14	69.7	292.03
3	50		08.9	8.77	3	0.14	63.5	267.73
3	40		08.9	8.77	3	0.13	141.3	082.57
3	30		08.9	8.77	3	0.11	126.6	012.47
3	20		08.9	8.77	2	0.10	126.0	009.80
3	10		09.4	9.07	12	0.11	130.7	006.45
	175527	175705						
4	310		10.5	9.71	2	0.04	96.5	006.19
4	300		10.5	9.71	3	0.06	110.2	012.82
4	290		10.5	9.71	2	0.07	105.4	010.93
4	280		10.5	9.71	2	0.10	127.1	024.54
4	270		10.0	9.39	3	0.15	127.7	039.45
4	260		09.7	9.23	5	0.23	35.2	139.47
4	250		09.7	9.23	4	0.25	84.2	101.35
4	240		09.7	9.23	2	0.34	130.3	119.91
4	230		09.7	9.23	3	0.31	98.2	136.00
4	220		09.7	9.23	3	0.34	126.5	143.82
4	210		09.7	9.23	4	0.25	115.3	109.72
4	200		09.5	9.11	4	0.13	148.1	029.26
4	190		08.9	8.77	2	0.20	29.3	128.89
4	180		08.9	8.77	4	0.25	65.4	165.45
4	170		08.9	8.77	2	0.30	12.1	257.20
4	160		08.9	8.77	3	0.27	07.2	279.70
4	150		08. 9	8.77	2	0.24	49.1	209.66
4	140		08.9	8.77	2	0.24	39.8	242.92
4	130		08. 9	8.77	2	0.26	17.7	317.43
4	120		08. 9	8.77	2	0.45	191.5	352.01
4	110		08.9	8.77	2	0.38	141.4	357.38
4	100		08.9	8.77	2	0.35	134.5	354.07
4	90		08.9	8.77	4	0.28	108.7	317.54
4	80		08.9	8.77	5	0.33	139.2	404.15
4	70		08.9	8.77	2	0.22	139.3	202.69
4	60		08.9	8.77	3	0.20	157.8	054.32

.

_

ANDLE I I.A. JURNARI V VIII LARVANI

Septem	ber 2	26.1	992

Approach	Altitude		Temp	Vapor	Number	Liquid water	Median	Totai
number	(m)		(C)	density	seconds	content	vol. radius	number
	Begin time	End time		(g/m3)	in layer	(g/m3)	(m-6)	(per cm3)
4	50		08.9	8.77	3	0.21	172,6	069.83
4	40		08.9	8.77	3	0.22	180.2	064.34
4	30		08.9	8.77	2	0.20	183.3	012.88
4	20		09.3	9.00	2	0.19	168.2	014.09
4	10		09.7	9.23	15	0.24	177.6	010.34
	180622	180800						
5	330		10.5	9.71	3	0.00	10.9	000.58
5	320		10.5	9.71	2	0.00	05.7	001.60
5	310		10.5	9.71	3	0.00	12.4	002.30
5	300		10.5	9.71	2	0.00	05.4	002.13
5	290		10.5	9.71	2	0.00	07.7	000.61
5	280		10.7	9.85	4	0.00	06.7	002.09
5	270		10.7	9.85	4	0.00	05.6	001.05
5	260		11.4	10.28	5	0.02	06.3	025.11
5	250		10.9	9.99	2	0.01	06.7	009.61
5	240		10.5	9.71	3	0.00	05.9	006.07
5	230		10.5	9.71	3	0.00	08.1	002.80
5	220		10.5	9.71	3	0.09	05.5	147.01
5	210		10.5	9.71	2	0.04	05.7	060.59
5	200		10.5	9.71	2	0.11	05.4	184.27
5	190		10.5	9.71	3	0.03	05.4	049.72
5	180		10.5	9.71	2	0.18	05.2	293.63
5	170		10.5	9.71	2	0.21	05.1	355.64
5	160		10.0	9.39	3	0.09	04.8	196.47
5	150		09.7	9.23	3	0.13	05.1	232.55
5	140		09.7	9.23	4	0.14	04.4	329.56
5	130		09.7	9.23	3	0.16	04.3	393.62
5	120		09.7	9.23	3	0.11	04.1	351.98
5	110		09.7	9.23	2	0.12	04.1	376.41
5	100		09.7	9.23	2	0.11	04.0	407.23
5	90		09.7	9.23	1	0.12	04.0	452.71
5	80		09.7	9.23	2	0.08	04.4	284.44
5	70		09.7	9.23	2	0.03	17.5	071.38
5	60		09.7	9.23	2	0.06	49.3	094.63
5	50		09.7	9.23	2	0.08	66.4	072.87
5	40		09.7	9.23	3	0.08	93.5	049.27
5	30		09.7	9.23	3	0.04	71.9	006.47
5	20		09.7	9.23	2	0.05	110.1	004.44
5	10		10.7	9.83	15	0.11	128.3	006.26

==

1 1

_--

							W	Prcester, M	• ۲							
Approach	Altitude (m)	Brin 1	Bin 2	Bin 3	Błn 4	Bin 5	Bein 6	Bin 7	Sin 8	Bin 9	Bin 10	Bin 11	Bin 12	e i u	Bin 14	
ramber	Begin time 211540	End time 211710						Number per cut	dic mater				:	2	t	
Ð	310	9.86E+06	1.02E+07	6.25E+07	7.45E+07	3 63F+06	8 21F + 05	Size: 3 microne	Range: 2-47 m 1 - 375 + 05	vicrone 🔨						
Ű	300	9.68E+06	1.59E+07	9.41E+07	6.00E + 07	2.78E+06	7.03E+05	3.01E+05	6.70E+05		00	00	00	00	00	0
90	290	1.10E+07	3.43E+07	1.13E+08	2.11E+07	1.75E+06	1.91E+05	3.46E+04	0	> O	1.71E+04		0 1 75F ± 04			0 0
U Q	280	1 3/E+06	3.41E+07	7.47E+07	1.78E+07	1.50E+06	4.35E+05	1.17E+05	4.69E+04	1.16E+04	1.16E+04	0	0	00	00	
. 0	260	1 436+07	4.40E+U/ 4 73E+07	9.385+07 1 275+00	2.99E+07	3.97E+06	1.33E+06	6.39E+05	3.55E+05	4.75E+04	0	0	0	2.35E+04	0	00
9	250	1.33E+07	3.79E+07	1.16F+08	3.00E+0/	0.41E+06 7 89E + 06	3.25E+06	1.48E+06	4.24E+05	9.42E+04	2.33E+04	2.38E+04	0	0	0	0
9	240	1.41E+07	5.80E+07	8.36E+07	2.886+07	1.37F+07	3 935 4 06	1.445+06 5.035±05	2./9E+05	6.95E+04	0	0	0	0	0	0
9	230	1.33E+07	5.13E+07	3.68E+07	7.31E+06	2.03E+06	7.71E+05	3.88E+05	2.2/C+U3	4.58E+04 3.55E+04	4.56E+04	0 1 056 4 05	0 0	0	2.31E+04	0
9	220	1.16E+07	2.97E+07	1.46E+07	6.04E+06	3.35E+06	1.59E+06	1.76E+05	1.76E+05	3.52E+04	• c	0.1 360.1	0 3 525±04		0 0	0 (
9 9 9	210	1.57E+07	4.55E+07	5.95E+07	3.70E+07	1.34E+07	3.06E+06	3.50E+05	2.33E+04	0	0	2.33E+04	3.325+04		00	00
о (с	200	1.41E+0/ 1.31E+07	2.44E+07	2.96E+07	3.05E+07	1.14E+07	2.86E+06	7.32E+05	9.28E+04	4.64E+04	0	0	0	0	00	
9 9	180	1 555+07	3.00E + U/	3.93E+07	4.285+07 2.925-03	1.56E+07	3.12E+06	5.27E+05	1.20E+05	9.65E+04	2.37E+04	0	0	0	0	• •
9 9	170	1.05E+07	3.07F+07	4.036+07 4.196+07	3.82E+U/	1.41E+0/	2.98E+06	6.98E+05	2.20E+05	1.84E+05	0	0	0	0	0	0
9	160	1.23E+07	2.93E+07	6.08E+07	5.71F+07	1.485±07	3.30C+U0 2.32E±06	4.40E+U5 2.6EE+05	1.1/E+05	2.37E+04	0	0	0	0	2.37E+04	0
9	150	9.07E+06	2.07E+07	4.33E+07	3.09E+07	6.146+06	2.32E + 06	2.335705	4.21E+04 5 27E+04	1.42L+04	1.43E+04	0	1.39E+04	0	0	0
9	140	1.62E+07	4.27E+07	1.01E+08	5.21E+07	1.04E+07	1.98E+06	4.24E+05	3.275+04 2125+05	0 3 35F ± 04	0 3 305 4.04	0 2 365 4 0 4	0	0	0	0
9	130	1.41E+07	4.63E+07	7.47E+07	3.48E+07	6.17E+06	1.03E+06	2.35E+05	7.02E+04	2.35F+04	+0+ Jcc. 7	2.35E + 04	z.355+04	0	0 0 0	0
ο (120	1.84E+07	6.15E+07	1.10E+08	4.31E+07	7.64E+06	1.57E+06	1.79E+05	1.79E+05	0	> 0			2.355+04	Z.34E+04	0 (
9 0 1	01	1.98E+07	7.57E+07	1.31E+08	2.83E+07	4.63E+06	6.97E+05	7.14E+04	9.56E+04	0	2.42E+04	0) O		2 42F+04	
	38	1.345+07 3 475+07	0.18E+:07	6.63E+07	1.286+07	2.20E+06	3.51E+05	7.02E+04	7.03E+04	0	0	0	0	0	0	
0 00 1 5	808	2.475+07 1.946+07	5 79F+07	9.19E+07	1.38E+07 E EOE - 06	2.24E+06	4.91E+05	3.47E+04	3.52E+04	3.52E+04	0	0	0	0	3.47E+04	0
9	02	3.87E+07	7.38F+07	3 496 407	0.035 7 00 6 005 4 06	1.15E+U0 7.16F - 0E	2.//E+U5	6.89E+04	1.15E+05	2.30E+04	2.30E+04	0	0	0	0	2.30E+04
9	60	8.10E+07	8.00E+07	J.75E+07	U.335+00 1.78F+06	7.605 ± 05	3.565+05	1.43E+05 3 60E : 04	4.74E+04	0	0	0	0	0	0	0
9	50	2.48E+07	3.33E+07	1.37E+07	2.66E+06	6.14F+05	3.205703 1.386405	3.005+04 4 775+04	7.20E+04	3.60E+04	0	0	0	0	0	0
9	40	4.68E+07	5.28E+07	1.02E+07	1.39E+06	4.00E+05	1646+05	3.83F+04	0 - 0 3 675 ± 04	0.85E+U4	4./2E+04	0,0,0	0	0	0	2.44E+04
9	30	3.08E+07	3.51E+07	8.08E+06	1.25E+06	3.18E+05	1.71E+05	7.30F+04	3.0/E+04 7.37F+04	0 0	00	1.81E+04	0	0	0	0
9	20	1.47E+06	1.82E+06	8.77E+05	8.74E+05	1.69E+05	0	3.11E+04	3.11E+04			2 0	Z.51E+04	0 0	0 (0
Ċ	10	6.40E+05	7.63E+05	6.48E+05	2.73E+05	1.15E+05	1.51E+05	4.79E+04	5.01E+04	2.73E+04	1.82E+04	00			0 4565	0 0
7	110212	212806 7 185 4 06	0 615 1 06	101-03								•)	>		>
~	330	7.59E+06	3.01E+06	2.10E+07 154F+07	4 116 ± 07	2.//E+07 3.10E+07	1.26E+07	9.01E+06	5.01E+06	2.66E+06	1.14E+06	4.14E+05	5.51E+05	1.04E+05	3.47E+04	0
7	320	1.1.2E+07	1.15E+07	2.87E+07	8.06E+07	3.37F+07	0.335700 1 245407	4.03E+06	2.2/E+06	3.46t+05	3.10E+05	1.03E+05	3.41E+04	3.4BE+04	0	0
7	310	1.31E+07	2.56E+07	5.16E+07	7.47E+07	5.41E+07	1.26E+07	3.89F+06	2.23E+06	1.74E+U5 3.52E+05	1./bE+U5 2.766+06	1.41E+05	/ 06E + 04	3.50E+04	0	0
~	300	1.59E+07	4.09E+07	5.87E+07	5.56E+07	2.51E+07	4.32E+06	1.41F+06	3516+05	3 525 ±04	2./36+03 3.536+04	1.03E+U5 (0.91E+04	0	0	0
	290	1.57E+07	3.91E+07	3.97E+07	1.49E + 07	4.95E+06	2.95E+06	1.76E+06	5.27E+05	2.46F + 05	3.326 + 04	S ORE TO A	9.52E+U4	0 0	0 (0
~ ^	280	1.03E+07	1.64E+07	3.89E+07	3.24E+07	9.62E+06	4.18E+06	2.75E+06	1.12E+06	2.79E+05	1.05F+05	3 50F+04	3.485 + 04	0 405 404	0 0	0 0
	2/0	1.296+07	2.97E+07	4.64E+07	3.35E+07	1.61E+07	5.59E+06	1.46E+06 3	3.81E+05 2	2.35E+05	5.47E+04	1.81E+04	0		.	
. ~	250	1 106+07	2.10E+U/ 3.00E+07	4.48E+U/	5.54t+07	2.28E+07	5.45E+06	1.26E+06	2.77E+05 1	I.08E+05	0	1.20E+04	0	0	.20E+04	• c
~	240	9.366+06	3.12F+07	4.4/E+U/ 3 47E+07	2.02E+07 1 80E+07	1.14E+07 (1.26E : 07	6.39E+06	3.81E+06	1.69E+06 3	3.23E+05	1.41E+05 8	B.08E+04 3	1.00E+04	2.01E+04 1	.97E+04	0
7	230	1.20E+07	3.32E+07	3.31F+07	1.00E + 07	1.30E+U/ 3.31E+07	1.105+07	0.43E+06	1.96E+06 6	3.53E+05	4.65E+04 (3.986+04	0	0	0	0
7	220	1.38E+07	2.71E+07	3.02E+07	4.84E+07	3.09F+07	1.23E+U/ 4	9.425+06 2.165,06	1.12E+06 1		9.26E+04 4	4.62E+04	0	0	0	0
7	210	9.28E+06	2.08E + 07	2.96E+07	4.21E+07	7 48F + 07	a 5.85+06	2.1357UU (2.385106 1	0.3/E+U0 3	1.4/E+U4	3.47E+04	0	0	0	0	0
7	200	1.32E+07	2.99E+07	4.00E+07	5.23E+07	2.38E+07	9.46F+06	0.18F+06 1	1.135+00 4	1.435 + U5	/.11E+04	00	1.43E+04	1.43E+04	0	0
					I				, UULIUL		S	2	1.41E+04	0	0	0

							Word	xeater, MA nber 26, 1992								:
	Ahitude (m)	lin 1	Bin 2	Bin 3	Bin 4	Bin 5	Blin 6	Bin 7	Bin 8	8 u 9	Bin 10	1 1 11	Bin 12	Bin 13	8in 14	5L 15
Approact	Beain time	End time					ź	imber per cubic	c mater	00L 00	ć	101 201	c	2 33F + 04	0	.29E+04
	190	1.16E+07	2.82E+07	4.41E+07	5.98E+07	2.78E+07	9.43E+06 2	.01E+06	3.24E+05 1	.39E+05		+.03E+04 3	25F+04	0	0	0
	180	8.43E+06	1.82E+07	3.15E+07	3.95E+07	1.61E+07	3.22E+06 1	.65E + 06	/.20E+U5 4	2.U3E+U3 0	1.335+04 .	2.00L 101.2	0	0	0	0
,-	170	1.36E+07	2.90E+07	7.00E + 07	7.37E+07	2.05E+07	5.28E+06 1	.23t+00	2.346+U5	1 055 105 1	745+04 .	1 74F+04	0	0	0	0
	7 160	1.24E+07	2.56E+07	6.42E+07	6.33E+07	1.64E+07	4.54E+U0 /		2.44C+03		83F+04	0	0	1,75E+04	0	.80E+04
, -	7 150	1.62E+07	3.71E+07	B.66E+07	7.02E+07	1.77E+07	4.06E+06 6	CU+3CU.0	1.905+03 7 165+05 /	1.79F+04	0	2.38E+04	0	0	0	0
	7 140	1.71E+07	3.89E+07	1.14E+08	7.19E+07	1.63E+07	4.10E+00 %	9, 1 ZE + U5	2.10E+05	7 786 ±04		0	0.44E+04	4 0	1.82E+04	0
	7 130	0 1.63E+07	4.52E+07	9.99E+07	5.87E+07	1.42E+07	3.54E+00 /	7.285+UD	1.405 + 05 -	10 - 107.	1 77F + 04	0	0	0	0	0
	7 120) 2.15E+07	7.41E+07	1.10E+08	4.12E+07	7.52E+06	1.U9E+U0 4	2,146+03	1,100 T 03	275+04 v	1 70F + 04	0	0	0	•	•
	7 110) 2.67E+07	1.03E+08	1.54E+08	3.92E+07	6.27E+06	1.15E+06	2.056+03	9.000 + 04 •		0	0	0	0	0	0
	7 100) 2.39E+07	1.08E + 08	1.53E+08	3.56E+07	6.01E+06	9.55E+U5	7.05E+04	1 705 1.04			• •	0	0	0	0
	7 90) 2.74E+07	1.186+08	1.51E+08	3.51E+07	6.12E+06	8.17E+05 2	2.15E+U5	4./8E+04 3.57E+04		3 57F+04	3.57E+04	0	0	0	0
	7 8(0 2.70E+07	1.23E+08	1.53E+08	3.15E+07	4.936+00	1,836+00 -	2.006 + 05	2.05E+04	7 41F+04	0	0	3.53E+04	0	•	0
	7 7) 2.81E+07	1.38E+0B	1.436+08	3.31E+U/	5.30E+00		1./0L 105	1 06E + 05	0	3.52E+04	0	0	0	•	0
	7 6(0 3.31E+07	1.30E+08	1.14E+08	2.49E+07	3.62E+06	9.00E+03	2.40E + 05	1.006.1.00		0	0	0	0	0	0
	7 5(0 5.17E+07	1,04E+08	5.42E+07	9.90E+06	1.5/E+U0	1.005+03	1,135 + 04	5 45F + 04) C	1 836 + 04	0	•	0	•	0
	7 4(0 2.85E+07	4.13E+07	1.39E+07	2.85t+06	7.535+05	2.1357U3	3.12C+04	0	• o	0	0	0	0	•	0
	7 3(0 5.26E+07	6.27E+07	1.59E+07	2.23E+06	5.5/E+U5	0.435404	1.00E T 03	2 27F + 04) O	2.57E+04	0	0	0	0	0
	7 2(0 4.22E+07	3.91E+07	8.06E + 06	1.535+00	0,926+05			2 715 4 04	1 775 + 04	1 07F + 04	0	0	6304	0	0
	7 1(0 1.03E+06	1.84E+06	1.08E + 06	2.96E+05	1.14E+05	1.0/E+03	B.90E+04	2.11E + V4	1.7.6 7.04)				
	21385	1 214043						100	201.00	30 T 330 C	1 785 4.06	6 35F±05	2 34E+05	6.70E+04	3.32E+04	3.38E + 04
ł	8 37	0 1.16E+07	5.56E+07	6.94E+07	1.90E+07	8.94E+06	6.33E+06	4.09E+00	3,386 + 00	2,2357.06	1.7061.06	7 70E LOS	3 875+05	6 62F + 04	9.96E+04	0
\-	8 36	0 1.48E+07	4.59E+07	9.67E+07	2.58E+07	1.19E+07	8.08E+06	3.61E+06	2.38E+U0	2.005 + 00	1.025+00	7.296 ± 05	3.92E + 05	1.105 ± 05	8.87E+04	0
46	8 35	0 1.57E+07	6.32E+07	1.07E+08	1.67E+07	9.57E+06	4.07E+06	2.72E+06	2.14E+06	1.6/E+U6	1.326+00	9.90C+03	1 716 405	1 395 + 05	0	0
5	34.	0 1.80E+07	9.76E+07	7.65E+07	1.20E+07	6.49E+06	2.94E+06	1.90E+06	1.93E+06	1.21E+06	5.895+05	2.396+03	1./16+05	1.535-105 1.645+05	4 66F + 04	0
	33.	0 3.82E+07	6.14E+07	1.51E+07	6.23E+06	5.58E+06	3.92E+06	3.19E+06	2.88E+06	2.22E+U6	1.046+00	4.235 T U U	2.055±05	1 165405	9 13F + 04	0
	в 32	0 7.68E+06	1.43E+07	1.61E+07	1.22E+07	6.54E+06	3.94E+06	2.75E+06	2.32E+06	1.82E+06	8.1/E+U5	5.885+U5	2.0367.05	0.305+04	0	• •
	31.0	0 8.50E+06	1.59E+07	1.82E+07	1.42E+07	7.75E+06	3.73E+06	1.97E+06	1.90E+06	9.87E+05	7.75E+05	3./6E+U5	0.146+03	3.336 + 04	4 70F +04	2 12F + 04
	а 30	0 3.90E+06	1 7.77E + 06	8.06E+06	6.67E+06	4.75E+06	2.71E+06	1.72E+06	1.60E + 06	9.49E+05	5.88E+U5	4. 4E + U3	3.146 F 04	A 575 +04	2 20F + 04	2 37F + 04
	в 29	0 3.52E+06	1 8.33E+06	9.22E+06	7.20E+06	4.38E+06	3.68E+06	2.14E+06	1.67E+06	9.596+05	5.65E+U5	2.52E+U5	4,330+04	4.0/5704		0
	8 28	0 3.61E+06	1 7.73E+06	3 8.95E+06	7.92E+06	4.75E+06	3.89E+06	2.11E+06	1.14E+06	4.26E+05	2.47E+05	1.36E+U5	2.2/5+04	4.3367-04 3 3564-04		2 26E+04
	8 27	0 1.12E+07	2.46E+07	90+306+06	5.96E+06	4.60E+06	2.69E+06	1.36E+06	5.07E+05	1.60E+05	1.14E+U5	2.2051.04	40730612	2.006101		0
	8 26	0 3.56E+06	1 5.20E+06	3 4.62E+06	5.82E+06	4.93E+06	2.88£+06	1.41E+06	4.03E+05	1.16E+05	4./3E+04	2.30E+04		1 805+04		0
	8 25	0 4.60E+06	3 7.75E+06	3 5.98E+06	3 7.54E+06	5.77E+06	4.93E+06	2.52E+06	8.59E+05	2.45E+05	8.82E+04	3.305+04		1.001.107		0
	8 24	10 2.37E+06	3 6.51E+0t	3 6.78E+06	3 7.53E+06	5.70E+06	3.58E+06	1.90E+06	5.60E+05	2./4E+U5	U 1 185 ± 05	2.22E + 04	2 2RF + 04	4.62E+04	2.286+04	2.34E+04
	8 23	30 7.75E+0t	3 2.23E+0	7 1.63E+0	7 1.03E+07	8.35E+06	6.42E+06	3.33E+U0	9.756+03	2.325.105	0.005 +04	7.035404	0	2.23E+04	0	0
	8 22	30 5.90E+0(3 1.15E+0	7 8.25E+06	3 1.08E+07	9.60E+06	8.65E+06	4.92E+U0	1.9/6+00	4.22E+03	3.00L 105	2 34F+04	4.68E+04	0	0	2.35E+04
	8 21	10 8.02E+0t	3 1.57E+0	7 1.19E+0	7 1.39E+07	1.19E+0/	9.3/E+06	4.34E+U0		2.105105	1.746+05		1 78F + 04	1.77E+04	0	0
	8 2(0 1.00E+0	7 2.29E+0	7 2.79E+0	7 2.93E+07	1.79E+07	8.58E+06	2.91E+06	8.51E+U5	1.000 + 05	7 006 4 04		1.056+05	3.50E+04	0	0
	31 8	90 6.96E+0	5 1.24E+0	7 2.59E+0	7 4.22E+07	2.31E+0/	1.08E+0/	4.80E+00		3.305+05	A 71E+04		2.35E+04	0	2.38E+04	•
	8 15	30 1.14E+0	7 2.08E+0	7 4.63E+0	7 7.06E+07	2.69E+07	9.95E+06	2.936+00	0.0/E+U3	2.13E+03	4 70E + 04	4 67F + 04	0	0	0	0
	8	70 1.12E+0	7 2.25E+0	7 5.43E+0	7 6.55E+07	2.32E+0/	7.58E+06	1.60E+00	4.215+U3	1.406+05	2 375 ±04	0	7.156+04	0	0	0
	8	50 1.47E+0	7 2.94E+0	7 7.39E+0	7 7.53E+07	2.31E+0/	/.86E+05	2.1/E+00	3.015+03		10110.7	2 37F + 04	7115+04	0	0	0
	8	50 1.17E+0	7 2.56E+0	7 6.30E+0	7 6.11E+07	2.17E+07	8.12E+06	2.58E+06	5.21E+U5	2.3/6+03		0	0	0	0	2.37E+04
	8 1.	40 1.96E+0	7 4.76E+0	7 1.24E+0	8 7.94E+07	1.95E+07	6,08E+06	1.62E + 06	2.635+05	9.51E+04		A JEELOA	4 75F + 04	2 36F + 04	0	0
	8	30 2.18E+0	7 5.91E+0	7 1.35E+0	8 6.25E+07	7.1.57E+07	5.26E+06	1.26E+Ub	4.036+05	2.3/E+U3	07 JL J C	4./3L+C1	3 555 + 04	0	0	0
	8	20 2.35E+0	7 7.87E+0	7 1.37E+0	8 5.31E+07	7 1.00E+07	2.06E+06	2.49E+05	1.42E+U5	3.5/E+U4	9,375+04 0		0.000		0	0
	8	10 2.62E+0	7 1.05E+0	8 1.29E+0	8 3.88E+07	7.56E+06	1.30E+06	4.48E+05	4.72E+04			1 305 - 04	, c) C	1 826 + 04	0
	<u>–</u> ه	00 2.84E+0	7 1.26E+0	8 1.65E+0	8 3.68E+07	7.41E+06	1.90E+06	7.36E+05	2.33E+05	3.57±+U4	5.38E + U4	1./ac+v+	>	,		

A-46

war Alford a Ulfallo a

:

İ

							Sept	tember 26. 1992								
Approach	Altitude (m)	Bin 1	Bin 2	Bin 3	Bin 4	Bin 5	Bin 6	Bin 7	Bin 8	Bin 9	ßin 10	Bin 11	Bin 12	Brin 13	Bin 14	Bin 15
number	Begin time	End time					-	Number per cubi	c meter							
80	06	2.89E+07	1.25E+08	1.64E+08	3.45E+07	6.61E+06	1.72E+06	5.15E+05	2.34E+05	6.99E+04	2.33E+04	0	2.33E+04	0	0	0
8	80	2.58E+07	9.74E+07	9.77E+07	3.05E+07	6.16E+06	1.46E+06	2.44E+05	2.44E+05	6.97E+04	0	0	3.46E+04	0	0	0
8	70	4.04E+07	1.40E+08	9.85E+07	2.37E+07	4.29E+06	1.17E+06	3.01E+05	7.08E+04	1.78E+04	1.77E+04	0	0	0	0	0
80	60	4.10E+07	1.46E+08	8.78E+07	1.75E+07	3.75E+06	1.24E+06	4.97E+05	4.59E+05	1.42E+05	7.03E+04	3.51E+04	0	0	0	0
80	50	6.03E+07	1.87E+08	8.186+07	1.35E+07	3.14E+06	1.16E+06	2.47E+05	1.07E+05	3.55E+04	3.51E+04	3.51E+04	0	3.55E+04	0	0
80	40	5.83E+07	1.47E+08	5.22E+07	9.23E+06	1.92E+06	1.12E+06	2.80E+05	3.49E+04	0	0	0	0	0	1.49E+04	. 0
8	30	4.35E+07	8.18E+07	3.33E+07	6.45E+06	1.40E+06	1.02E+06	4.21E+05	2.47E+05	1.37E+05	6.87E+04	0	3.43E+04	0	.43E+04	0
80	20	3.91E+07	4.76E+07	1.85E+07	3.85E+06	8.23E+05	5.74E+05	1.43E+05	3.51E+04	7.13E+04	3.62E+04	0	0	0	0	0
80	10	5.52E+06	7.13E+06	3.60E+06	1.76E+06	7.36E+05	4.11E+05	2.86E+05	1.46E+05	1.93E+04	5.00E+04	1.92E+04	0	1.29E+04	6495	6619

	Bin 15		c	00	0	0	0	0	0	0	0	0 (.	. .			• •	0	0	•	0	0	0	-	.		,	òc	0	0	0		0	0 0		• c	0	0	0	0	0	0	0	0	0	0
	lin 14		c	00	0	0	0	0	0	0	0	0	0 0	. .	, c) O	0	0	0	0	0	0	0 0	o <	- C	.	• c	0	0	0		0	0 0	,	. -	• •	0	0	0	0	0	0	0	0	0
	n 13		¢	00	0	0	0	0	0	0	0	0	0 (.	.		, ,	0	0	0	0	0	0	0	0 -) a	• •	0		•	0 (5 0	. .	• c	0	0	0	0	0	0	0	0	0
	n 12 Bu		4		0	0	0	0	0	0	0	0	0	.		.	, c	c	0	0	0	0	0	0	0 (.		.	• c	• c	• •	•	0	0	.		, ,	• •	0	0	0	0	0	0	0	0
	111 BL		4	5 0	• •	0	0	0	0	0	0	0	0	0 0		,			0	0	0	0	0	0	0	.	.	.			• •	•	0	0	0 0	.			0	0	0	0	0	0	0	0
	10 81		•	. .	• •	. 0	0	0	0	0	0	0	0	0 0	•			• c	• •	• •	• •	0	•	0	0	0 0	5 0	.				,	0	0	0 0	.	. .	• c	. 0	0	0	0	0	0	0	0
	-9 Bin		microne			• •	0	0	0	0	0	0	0	0 0	.	5 0	. .		• •	• •	0	0	0	0	0	0 (0 0	0 0		>		>	0	0	0	5 0	. .	• •	, o	0	0	0	0	0	0	0
	8		ge: 150 - 4650	0 0	• c	> 0	0	0	0	0	0	•	0	0 (.	5 0	5 0	<u>ہ</u> د	<u>ہ</u> د) C	0	0	0	0	0	0	0 0	0				5	0	0	0	0 0	-		• c	0	0	0	0	0	0	0
er, MA 26 1992		per cubic mete	10 microne Ren	00		, 0	0	0	0	0	0	0	0	0	0	.	5 0	.) c	0	0	0	0	0	0	0 (.	5 0	5 0			0	0	0	0 (• c) O	0	0	0	0	0	0
Worcest	6 Bin	Number	Size: 30	0 0	.	, ,	0	0	0	0	0	0	0	0	0	0	0		o		> 0	0	0	0	0	0	0	0 (5	-		BCD.1	0	0	0	0	0 0			1.672	0	0	0	0	0	0
	5 Bin			0 0			0	0	0	0	0	0	0	0	0	0	- -	5 0	.	• •	o c	0	0	0	0	0	0	0 (2	.		+7O.2	0	0	0	0	0 0	.	.	1.583	0	0	0	0	0	0
	1 Bin			0 0		, ,	• o	0	0	0	0	0	0	0	0	0	0 (.	.		o c	0	918	0	•	0	0	0 (-	-	,	/706	0	0	•	0	0 0	.	.	, ,	0	0	0	0	0	0
	Brin 4			0 0	5 8	80. 601	929 129	0	0	0	0	0	774	0	0	0	0 0	5 0	5 0		> c	. 0	0 2	0	0	0	0	0	0 0	0 4	0	3/4 U.S	0	0	0	0	.142	0 0	0 641	241	0	. 0	0	0	0	0
	Bin 3			78	500	20 17 17	14 2.5	34	91	44	25	0	0 2.	0	0	0	72	87	. .			22	0	85	0	0	141	563	0	/15 2	5 L	.a.a.	0	0	0	0	0 (5 0		10 280	20	, o	0 0	.85	0	1.92
	Bin 2		8	2 9			7 24	7 13	2 2	0 5.2	9 7.8	0	61	9	13	25	39 2.6	50 G.4	6	0 0	1.0 2.0 2.0	33 2.6	10	33 3.9	4.	4	.7 4.0	.2 5.2	18	.5 2.1	5. C	9 06 06	30	51	05	56	= 1	8/	1.4 22	21 67	49	27		06 11	0	0
	Bin 1	End time	21171	78.3	0.08 (0.0	21 B	897	13.3	13.2		26.1	~	4.4	0 22.2	0 4.46	0 6.72	22.3		13.4		1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	53.5	0 92.6	0 60.1	0 253	0 218	0 207	0 451	4	0 446	0 41/	0 6/4 7 2128	0	0 0	0 13.	0.6	0 53.	32.		36.0	2 C	44	8.8	33.	0	9
	Aititude {m}	legin time	211540	31(ð S	797	270	26(25(24(23(22(21(20(19	18	17	10		+	τ, <u>τ</u>	11	Ŏ	đ	¢Ö	7	9	5	4	en 1	~ ~	71261	34	33	32	31	30	50	27	17	25	77 77	23	57	21	50
	Approach	number 6		9	9	e a	o u	. .		. 0	9	9	9	9	9	9	9	9	9	0 (9	. .	. 0	° A	9 -4	ه 8	9	9	9	9	9	φ.		7	7	7	7		`	~ r					. ~	

A-48

. ...:

-

000

÷

-

F-1

1

la H

	Rin 15		0	0	0 (50	• •	0	0	0	0	0	0	0	0	0	0	0 0		>	o	0	0	0	0	0	0	0	0	0	0	00		0	0	0	0	0	0	0	0	0	0	0	0	0 0
	Bun 14		0	0	0		00	0	0	0	0	0	0	0	0	0	0 (0 0	00	>	0	0	0	0	0	0	0	0	0	0	0	0 0		0 0	0	0	0	0	0	•	0	•	•	0	0	• •
	Bin 13		0	0	0		00	0	0	0	0	0	•	0	0	0	0 (.	.	>	0	0	0	0	0	0	0	0	0	0	0	0 0		• •	0	0	0	•	•	0	0	0	0	0	0	00
	Bin 12		0	0	5	. .	00	• •	0	0	0	0	0	0	0	0	0	. .	.	>	0	0	0	0	0	0	0	0	0	0	0	0 0		0	0	0	0	0	0	0	0	0	0	0	0	• •
	Bin 11		0	0	5		0	• •	0	0	0	0	•	0	0	0	0	. .	.	5	0	0	0	0	0	0	0	0	0	0	0	00		0	0	0	0	0	0	0	0	•	•	0	0 (.
	Bin 10		0	0 (.		0	0	0	0	0	0	•	0	0	0 (.	.		5	0	0	0	0	0	0	0	0	0	0	0	0 0	• •	0	0	0	0	0	0	0	0	0	0	0	o (- -
	Bin 9		0	0 (5 0	- c	0	0	0	0	0	0	0	0	0	0 (0	0 0	.	>	0	0	0	0	0	0	0	0	•	0	0	00	• •	0	0	0	0	0	0	0	0	0	0	0	0 (-
	Bin 8	Trater	0	0 0	.		0	0	0	0	0	0	0	•	0	•	0	00	. .	>	0	0	0	0	0	3.563	0	•	0	0	0	.	• •	0	0	0	0	0	0	0	0	0	0	0	о «	- o
ester, MA ber 26. 1992	ßin 7	nber per cubic r	0	0 0) (- -	0	0	0	0	0	0	0	0 0	0	0	.) c	•	0	0	0	0	0	0	•	0	0	0	0 (0 0	> 0	0	0	0	0	0	0	0	3.45	0	0	0	.	00
Wor Co Septem	Bin 6	ur u	0	0 0	5 0	. .	0	0	0	0	0	0	0	0 0	0	0	.		00	,	0	0	0	0	0	0	0	0	0	0	0 (0 0	• •	3.277	0	0	0	0	0	0	0	0	0	0 (.	00
	Bin 5		0	0 0		00	0	0	0	0	0	0	0	•	.	0	.		0.7743		0	0	0	0	0	0	0	0	0	0	0 (3.084	0	3.087	0	0	0	0	0	0	3.095	0	0 (0 000 9	6.714
	Bin 4	•	0	00		00	0	0	0	0	0	0 0	0	0 0	5	•	0		2.185		0	0	0	0	0	0	0	0	0	0	0 00 0	208.2	2.922	11.71	2.916	14.61	4.373	4.356	29.16	2.903	2.936	0	5.903	0	4.400	8.932
	Bin 3		0	2.74	201 6	0	2.847	0	0	0	4.229	0 0	0	0 0	-		.		3.493		0	11.76	7.87	0	7.965	0	8.049	0	2.715	2.716	8.162	8.201 18.67	16.64	16.67	19.43	11.09	27.05	8.255	19.32	13.81	13.89	13.92	11.22	8.437	4.100 767 2	6.345
	Bin 2	•	0	5.22	1 076	0/6.1	0	0	2.638	0	0	0 0	0	4.051	•	0			10.02		3.753	3.734	14.94	22.49	7.61	12.73	15.36	38.82	7.769	28.46	20.72	25.69 25.69	21.14	21.18	23.79	26.43	19.86	11.81	23.73	5.263	5.269	13.25	18.7	.		8.051
	Bin 1	d time	4.403	13.09	50 00	16.9	13.61	22.68	35.63	4.59	0	4.537	40.71	13.67	0 2 4	0./1	210.0	36.97	107.8	214043	31.44	62.5	12.52	43.87	54.99	63.87	51.39	43.3	43.32	30.31	20.02	36.38	30.92	31,06	17.71	22.13	26.55	19.77	22.06	13.28	22.06	31.03	53.66	13.46	, 1, 0, 0	37.12
	litude (m)	in time En	061	180	180	150	140	130	120	110	100	88	Da f	0,03	8	8	}	8 8	2 2	213851	370	360	350	340	330	320	310	300	290	280	260	250	240	230	220	210	200	190	180	170	160	150	140	0 <u>6</u> 1	271	<u>2</u> 0
	Approach A	number Beg	~ 1	~ ~		. ~	7	7	7	7	2	~ r	~ r	~ r	~ г			. ~	. ~		8	©	8	8	8	8	8	80	8	80 0	0 0	0 00	80	8	8	8	80	œ (ω,	æ	20 (80 0	ю с	0 0	0 00

:

							Word	ester, MA								
							Septen	nber 26, 1992								
Approach	Altitude (m)	Bin 1	Bin 2	Bin 3	Bin 4	Bin 5	Bin 6	Bin 7	Bin 8	Bin 9	Bin 10	64n 11	Bun 12	Bin 13	Bin 14	Bin 15
number	Begin time 1	nd time					ž	mber per cubic i	neter							
8	6	44.64	5.423	0	14.7	3.089	0	0	0	0	0	•	5.177	0	0	0
8	80	33	0	4.112	8.707	4.569	0	0	0	0	•	•	0	0	0	0
60	02	27.05	9.986	4.332	2.197	7.044	2.455	0	0	•	•	0	0	•	0	0
8	60	19.87	7.885	4.189	0	4.6	0	0	0	0	•	•	0	0	0	0
8	50	45.65	11.69	4.094	0	•	0	5.115	0	0	0	•	0	0	0	0
80	40	33.04	3.952	0	0	9.22	4.869	0	0	0	•	•	0	0	0	0
8	30	12.96	0	0	4.273	4.524	4.775	0	0	0	•	0	0	0	0	0
8	20	19.39	3.934	0	0	0	4.86	5.165	5.405	0	•	0	0	0	0	0
8	10	103.8	16.79	0,779	0.7447	3.357	0.8967	0.9592	0	2.209	0	0	0	0	0	0

the second s

1

A-50

i fat l

1

worcester, MA	orcester.	MA
---------------	-----------	----

:

-

1111

September 26, 1992

Approach	Altitude		Temp	Vapor	Number	Liquid water	Median	Total
number	(m)		(C)	density	seconds	content	vol. radius	number
	Begin time	End time		(g/m3)	in layer	(g/m3)	(m-6)	(per cm3)
	211540	211718						
6	310		10.5	9.71	1	0.13	5.41	161.661
6	300		10.5	9.71	2	0.12	5.14	183.445
6	290		10.5	9.71	4	0.09	4.44	181.500
6	280		10.5	9.71	6	0.07	4.54	137.984
6	270		10.5	9.71	3	0.10	4.88	186.425
6	260		10.0	9.39	3	0.14	4.94	237.045
6	250		09.7	9.23	3	0.14	5.14	225.467
6	240		09.7	9.23	3	0.12	5.53	203.048
6	230		09.7	9.23	2	0.04	4.60	112.166
6	220		09.7	9.23	2	0.03	6.02	067.369
6	210		09.7	9.23	3	0.11	5.62	174.556
6	200		09.7	9.23	3	0.09	5.98	113.718
6	190		09.7	9.23	3	0.11	5.88	153.293
6	180		09.7	9.23	2	0.11	5.89	155.028
6	170		09.7	9.23	3	0.12	5.83	149.332
6	160		09.7	9.23	5	0.13	5.57	175.506
6	150		09.7	9,23	4	0.07	5.38	111.658
6	140		09.4	9.07	3	0.14	5.23	225.100
6	130		08.9	8.77	3	0.10	5.07	177.464
6	120		08.9	8.77	2	0.13	4.90	242.465
6	110		08.9	8.77	3	0.11	4.41	260.251
6	100		08.9	8.77	3	0.06	4.36	158.999
6	90		08.9	8.77	2	0.08	4.09	258.615
6	80		08.9	8.77	3	0.04	4.38	113.918
6	70		08.9	8.77	3	0.04	4.12	155.658
6	60		08.9	8.77	2	0.03	3.58	181.429
6	50		08.9	8.77	3	0.03	5.50	075.447
6	40		08.9	8.77	4	0.02	4.14	111.907
6	30		08.9	8.77	3	0.02	5.52	075.896
6	20		08.9	8.77	2	0.01	61.47	005.267
6	10		09.6	9.19	11	0.03	281.80	002.738
	212617	212806						
7	340		11.4	10.28	2	0.34	8.86	168.643
7	330		11.4	10.28	2	0.24	6.66	166.286
7	320		11.4	10.28	2	0.27	7.10	187.376
7	310		11.4	10.28	2	0.30	6.92	238.727
7	300		11.4	10.28	2	0.17	6.09	202.474
7	290		10.5	9.71	2	0.08	6.25	120.043
7	280		10.5	9.71	2	0.12	6.64	116.188
7	270		10.5	9.71	4	0.13	6.42	146.323
7	260		10.5	9.71	6	0.16	6.29	163.151
7	250		10.3	9.57	7	0.13	7.57	139.679
7	240		09.7	9.23	3	0.16	8.25	126.616

•

Worcester, M/	7
---------------	---

September 26, 1992

Approach	Altitude		Temp	Vapor	Number	Liquid water	Median	Total
number	(m)		(C)	density	seconds	content	vol. radius	number
	Begin time	End time		(g/m3)	in layer	(g/m3)	(m-6)	(per cm3)
7	230		09.7	9.23	3	0.17	7.51	145.394
7	220		09.7	9.23	2	0.18	6.79	162.752
7	210		09.7	9.23	2	0.17	7.10	141.139
7	200		09.7	9.23	2	0.18	6.68	172.307
7	190		09.7	9.23	3	0.19	6.49	183.475
7	180		09.7	9.23	3	0.13	6.61	122.598
7	170		09.7	9.23	3	0.18	5.81	213.554
7	160		09.7	9.23	4	0.15	5.77	187.580
7	150		0 9 .7	9.23	4	0.17	5.62	232.986
7	140		09.7	9.23	3	0.18	5.47	263.420
7	130		09.7	9.23	3	0.16	5.45	238.816
7	120		09.4	9.07	3	0.12	4.81	255.356
7	110		09.4	9.07	3	0.14	4.48	330.161
7	100		09.3	9.00	2	0.14	4.41	326.910
7	90		09.2	8.92	3	0.14	4.38	338.592
7	80		09.3	9.00	2	0.14	4.32	340.836
7	70		08.9	8.77	2	0.14	4.35	348.338
7	60		08.9	8.77	2	0.11	4.28	307.110
7	50		08.9	8.77	3	0.06	3.95	221.883
7	40		09.1	8.88	4	0.02	3.99	087.738
7	30		08.9	8.77	3	0.02	3.42	134.182
7	20		09.7	9.23	3	0.01	3.58	091.808
7	10		09.6	9.20	14	0.01	243.38	004.617
	213851	214043						
8	370		11.4	10.28	2	0.22	10.14	183.383
8	360		11.4	10.28	2	0.25	9.29	214.683
8	350		11.4	10.28	3	0.21	8.80	225.121
8	340		11.4	10.28	2	0.15	7.72	219.640
8	330		11.4	10.28	3	0.15	11.50	140.560
8	320		11.4	10.28	3	0.16	12.42	069.441
8	310		11.4	10.28	3	0.12	10.27	074.645
8	300		11.4	10.28	3	0.09	11.56	039.356
8	290		11.4	10.28	3	0.09	10.69	042.044
8	280		11.4	10.28	3	0.07	9.39	040.961
8	270		11.4	10.28	3	0.05	8.53	060.157
8	260		10.5	9.71	3	0.05	8.78	029.004
8	250		10.9	9.99	4	0.07	9.08	040.337
8	240		10.5	9.71	3	0.07	9.26	035.220
8	230		10.5	9.71	3	0.12	9.47	076.271
8	220		10.5	9.71	3	0.13	9.35	062.229
8	210		10.5	9.71	3	0.14	8.87	076.793
8	200		10.5	9,71	4	0.15	7.55	120.680
8	190		10.5	9.71	2	0.20	7.62	128.680
8	180		10.5	9.71	3	0.24	18.0	103./00

i

12.22112111

-

=:

				September 26,	1992			
Approach	Altitude		Temp	Vapor	Number	Liquid water	Median	Total
number	(m)		(C)	density	seconds	content	vol. radius	number
····	Begin time	End time		(g/m3)	in layer	(g/m3)	(m-6)	(per cm3)
8	170		10.0	9.39	3	0.19	6.24	186,497
8	160		10.2	9.55	3	0.23	6.25	227.092
8	150		09.7	9.23	3	0.20	6.42	194,708
8	140		09.7	9.23	3	0.23	5.69	298.552
8	130		09.7	9.23	3	0.20	5.47	300 978
8	120		09.7	9.23	2	0.16	5.00	304 842
8	110		09.7	9.23	3	0.16	4.96	308 302
8	100		09.7	9.23	4	0.18	4.69	366 164
8	90		09.7	9.23	3	0.30	11.26	361 466
8	80		09.7	9.23	2	0.13	5.05	259 574
8	70		09.7	9.23	4	0.13	4 73	308 219
8	60		09.7	9.23	2	0.11	4 53	298 353
8	50		09.3	9.00	2	0.12	4 59	346 858
8	40		08.9	8.77	2	0.10	5 25	269 912
8	30		08.9	8.77	2	0.08	8 17	168 346
8	20		09.3	9.00	2	0.11	968.26	110 753
8	10		09.6	9.19	12	0.05	933.89	019.691

September 26, 1992

1 1 1 1 1 1 1

•

ji -

September 26, 1992 (FSP 100 Only last three columns)

.

-

E. M. H. L. M. M. A. L. M. A.

Annroach	Altitude		Temp	Vapor	Number	Liquid water	Median	Total
number	(m)		(C)	density	seconds	content	vol. radius	number
Humber	Begin time	End time		(g/m3)	in layer	(g/m3)	(m-6)	(per cm3)
	211540	211718						
6	310		10.5	9.71	1	0.12	5.31	161.661
6	300		10.5	9.71	2	0.12	5.07	183.445
6	290		10.5	9.71	4	0.08	4.32	181.500
6	280		10.5	9.71	6	0.06	4.42	137.984
6	270		10.5	9.71	3	0.10	4.78	186.425
6	260		10.0	9.39	3	0.14	4.90	237.045
6	250		09.7	9.23	3	0.14	5.12	225.467
6	240		09.7	9.23	3	0.12	5.51	203.048
6	230		09.7	9.23	2	0.04	4.54	112.166
6	220		09.7	9.23	2	0.03	6.02	067.369
6	210		09.7	9.23	3	0.11	5.60	174.556
6	200		09.7	9.23	3	0.08	5.97	113.718
ő	190		09.7	9.23	3	0.11	5.88	153.293
e e	180		09.7	9.23	2	0.11	5.88	155.028
6	170		09.7	9.23	3	0.12	5.82	149.332
6	160		09.7	9.23	5	0.13	5.56	175.506
6	150		09.7	9.23	4	0.07	5.38	111.658
6	140		09.4	9.07	3	0.14	5.22	225.100
6	130		08.9	8.77	3	0.10	5.05	177.464
6	120		08.9	8.77	2	0.13	4.88	242.465
6	110		08.9	8.77	3	0.11	4.40	260.251
6	100		08.9	8.77	3	0.06	4.26	158.999
6	90		08.9	8.77	2	0.08	4.07	258.615
6	80		08.9	8.77	3	0.03	4.18	113.918
6	70		08.9	8.77	3	0.04	3.97	155.658
6	60		08.9	8.77	2	0.03	3.26	181.429
6	50		08.9	8.77	3	0.02	4.23	075.446
6	40		08.9	8.77	4	0.02	3.20	111.906
6	30		08.9	8.77	3	0.01	3.65	075.895
6	20		08.9	8.77	2	0.00	5.54	005.267
0	10		09.6	9.19	11	0.00	9.20	002.738
0	212617	212806						
7	340	212000	11.4	10.28	2	0.34	8.86	168.643
7	330		11.4	10.28	2	0.24	6.66	166.286
7	320		11.4	10.28	2	0.27	7.10	187.376
7	310		11.4	10.28	2	0.30	6.92	238.727
7	300		11.4	10.28	2	0.16	6.06	202.474
7	200		10.5	9.71	2	0.08	6.23	120.043
/ 7	230		10.5	9.71	2	0.12	6.63	116.188
/ ד	200		10.5	9.71	4	0.12	6.36	146.323
י ר	270		10.5	9.71	6	0.15	6.16	163.151
/ 7	200		10.3	9.57	7	0.13	7.56	139.679
/	200		09.7	9.23	3	0.16	8.25	126.616
1	240		· · · · ·	0.20	-			

ħ

Ē

ы.

to of the

_

September 26, 1992 (FSP 100 Only last three columns)

Approach	Altitude		Temp	Vapor	Number	Liquid water	Median	Total
number	(m)		(C)	density	seconds	content	vol. radius	number
	Begin time	End time		(g/m3)	in layer	(g/m3)	(m-6)	(per cm3)
7	230		09.7	9.23	3	0.17	7.51	145.394
7	220		09.7	9.23	2	0.18	6.77	162.752
7	210		09.7	9.23	2	0.17	7.10	141.139
7	200		09.7	9.23	2	0.18	6.67	172.307
7	190		09.7	9.23	3	0.19	6.49	183.475
7	180		09.7	9.23	3	0.13	6.57	122.598
7	170		09.7	9.23	3	0.18	5.80	213.554
7	160		09.7	9.23	4	0.15	5.75	187.580
7	150		09.7	9.23	4	0.17	5.61	232.986
7	140		09.7	9.23	3	0.18	5.46	263.420
7	130		09.7	9.23	3	0.16	5.45	238.816
7	120		09.4	9.07	3	0.12	4.80	255.356
7	110		09.4	9.07	3	0.14	4.48	330.161
7	100		09.3	9.00	2	0.14	4.39	326.910
7	90		09.2	8.92	3	0.14	4.38	338.592
7	80		09.3	9.00	2	0.13	4.32	340.836
7	70		08.9	8.77	2	0.13	4.34	348.338
7	60		08.9	8.77	2	0.11	4.28	307.110
7	50		08.9	8.77	3	0.05	3.94	221.883
7	40		09.1	8.88	4	0.02	3.97	087.738
7	30		08.9	8.77	3	0.02	3.39	134.182
7	20		09.7	9.23	3	0.01	3.47	091.808
7	10		09.6	9.20	14	0.00	8.35	004.617
_	213851	214043	,					
8	370		11.4	10.28	2	0.22	10.11	183.383
8	360		11.4	10.28	2	0.25	9.11	214.683
8	350		11.4	10.28	3	0.20	8.53	225.121
8	340		11.4	10.28	2	0.14	7.53	219.640
8	330		11.4	10.28	3	0.14	11.34	140.560
8	320		11.4	10.28	3	0.14	11.25	069.440
8	310		11.4	10.28	3	0.11	9.87	074.645
8	300		11.4	10.28	3	0.09	11.25	039.356
8	290		11.4	10.28	3	0.09	10.52	042.044
8	280		11.4	10.28	3	0.07	9.09	040.961
8	270		11.4	10.28	3	0.05	8.04	060.157
8	260		10.5	9.71	3	0.04	8.06	029.004
8	250		10.9	9.99	4	0.06	8.60	040.337
8	240		10.5	9.71	3	0.05	8.17	035.220
ð	230		10.5	9.71	3	0.09	8.38	076.271
ð	220		10.5	9.71	3	0.11	8.86	062.229
ŏ	210		10.5	9.71	3	0.12	8.37	076.793
ð	200		10.5	9.71	4	0.14	7.19	120.680
ð	190		10.5	9.71	2	0.19	7.47	128.680
8	180		10.5	9.71	3	0.21	6.44	189.766

		Sept	ember 26, 19	92 (FSP 100 O	niy last three co	olumns)		
Approach	Altitude		Temp	Vapor	Number	Liquid water	Median	Total
number	(m)		(C)	density	seconds	content	vol. radius	number
Humbor	Begin time	End time		(g/m3)	in layer	(g/m3)	(m-6)	(per cm3)
8	170		10.0	9.39	3	0.18	6.14	186.497
8	160		10.2	9.55	3	0.20	6.00	227.092
8	150		09.7	9.23	3	0.19	6.21	194.708
8	140		09.7	9.23	3	0.22	5.57	298.552
8	130		09.7	9.23	3	0.20	5.43	300.978
0 8	120		09.7	9.23	2	0.16	4.91	304.842
8	110		09.7	9.23	3	0.14	4.59	308.302
0 8	100		09.7	9.23	4	0.16	4.48	366.164
9	90		09.7	9.23	3	0.15	4.42	361.466
0	80		09.7	9.23	2	0.11	4.65	259.574
0	70		09.7	9.23	4	0.10	4.31	308.219
0	60		09.7	9.23	2	0.10	4.32	298.353
0	50		09.3	9.00	2	0.09	4.01	346.858
0	40		08.9	8.77	2	0.07	3.92	269.912
0	30		08.9	8.77	2	0.05	4.44	168.346
0	20		09.3	9.00	2	0.03	4.18	110.753
8	10		09.6	9.19	12	0.01	7.92	019.691

1

e II II e

7

Worcester, MA

:::

a an an an an an an an

Ī

-

							л °	ntington, W ptember 28, 199	22							
Approach	Altitude (m)	Bin 1	Bin 2	Bin 3	Bin 4	Bin 5	Bin 6	Bin 7	Bin 8	Bin 9	Bin 10	Bin 11	Bin 12	Rin 13	Rin 14	014.15
number	Begin time	End time						Number per cut	bic meter						<u>r</u>	
-	114649	114/13						Size; 3 microns	: Range: 2-47 m	licrone						
		1.23E+U5 1.23F+05	4,09E+04	- 4.09E+04	0	0	0	•	0	0	0	0	0	0	0	0
	0.0	1.23E+U5 8 20F - 04	4.10E+04		0	0	0	•	•	0	0	0	0	0	0	0
	8 6	8.296+04	2.00E + 04		0	0	0	0	0	0	0	0	0	0	0	0
	2 9	8.19E+04	0		0 (0	0	•	0	0	0	0	0	0	0	0
	8 6	1.235+03	0	- 4.UBE+U4	0	0	0	•	•	0	0	0	•	0	0	0
	3 \$		2.09E+U4			0	0	•	0	0	0	0	0	0	0	0
	,	4.41E+U5	2.40E+05	1.60E+05	4.01E+04	8.02E+04	•	4.01E+04	0	0	0	0	0	0	0	0
	6	1.426+07	2.09E+07	/.12E+06	2.76E+06	1.86E+06	3.21E+05	3.21E+05	1.92E+05	0	0	0	0	0	0	0
	2	1.82E+07	2.66E+07	1.76E+07	6.33E+06	1.71E+06	6.03E+05	2.04E+05	1.04E+05	8.59E+04	1.71E+04	0	0	0	0	0
-	115443	2.30E + U/	3.48E+U/	2.9/E+0/	1.20E+07	3.79E+06	1.18E+06	3.71E+05	3.23E+05	1.42E+05	7.02E+04	2.39E+04	0	0	0	0
6	70442	1 585 4 05	1 605 1 05	Ċ	d	•	•									
• ~	2 9	1 215405	1.075 1.06	0	1 261 . 00	0 001 01	0	0	0	0	0	0	0	0	0	0
• ~	3 2	7 975 406	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1.336+U0 1.306-07	1.30E+06	9.63E+05	5.23E+05	2.41E+05	9.26E+04	7.45E+04	3.09E+04	1.54E+04	0	1.54E+04 1	.54E+04	0
. ~	40 7	2 31E ± 07	1.105+07 3.605+07	1.236 + 07	1.035+07	1.48E+07	8.77E+06	3.75E+06	1.93E+06	4.98E+05	3.31E+05	2.42E+04	4.69E+04	0	0	0
2	e e	3.326+07	3.005 + 07 5 095 + 07	5 045 ± 07	4.3/E+U/ 1 04E - 07	1.34E+07	4.2/E+06	7.73E+05	2.95E+05	1.47E+05	1.11E+05	•	•	03	.71E+04	0
5	50	2.986+07	5.07F+07	4 64F+07	7 915 ±06	3.13E+00 7.61E+06	0.406 + 05	1.01E+05	1.50E+05	1.51E+05	1.23E+05	5.00E+04	2.46E+04	0	0	0
	120328	120347			201710-1	1.01 - 1.03	2.40C T U3	1.926 + 05	1.026+04	1.52E+05	0	0	0	1.87E+04	0	0
3	06	B.26E+04	8.26E+04	0	0	0	0	o	C	c	c	c	ć	c	c	đ
e	80	8.28E+04	5.52E+04	0	0	0	0	0) c				5 0	50	0	0 0
e	70	1.65E+05	8.28E+04	0	0	0	0	0					.	<u>ہ</u> د	0	0
e	09	4.09E+04	0	4.12E+04	0	0	0	0					0	.	0	0
e	20	2.68E+04	1.08E + 05	0	0	0	0	0	0				o	,	0	0
e	40	1.53E+07	144E+07	6.84E+06	4.69E+06	2.12E+06	8.13E+05	3.03E+05	1.65E+05	1.37E+04	0) O			>	- -
	121346	121406									,	•	•	\$	>	>
4	06	1.13E+05	0	0	0	0	0	0	0	0	0	0	0	c	c	c
4 <	08 F	5.60E+04	2.81E+04	2.80E+04	0	0	0	0	0	0	0	0	0	0	0) O
4 -	5 8	1.236+05	6.01E+04	0	0	0	0	•	0	0	0	0	0	0	0	
4 •	8 3	1.99E+04	1.03E+05	0	0	0	•	•	0	0	0	0	0	0		
4	50	2.88E+05	1.65E+05	3.17E+04	6750	1.85E + 04	0	0	0	0	0	0	0	0	0	• •
ų	016521	1 615 .05		•											,	,
0 4	150	1.61E+05	8.05E+04	0	0	0	0	•	•	0	0	0	0	0	0	0
ט מ	061	2.00E+05	8.01E+04	0	0	0	0	0	0	•	0	0	٥	0	0	0
ט ר	130	2.036 + 04	+.00E+U5 E 42E+05	0 0	0 (0	0	0	0	•	0	0	0	0	0	0
ഹ	2 <u>7</u>	0.136704	3.435 ± 04	50	0	0 (0	0	0	0	0	0	0	0	0	0
ۍ د	110	8.16F+04			>	. .	.	0 0	0	0	0	0	0	0	0	0
5	100	1.21E+05	4.05E+04	4.03F+04	» с			5 0	0	0	0	0	0	0	•	•
5	06	1.99E+05	1.19E+05	0	• •		> c					0	0 0	0	0	0
5	80	2.35E+05	7.82E+04	0	0	0	• •			.		0	o <	.	0 (0
5	70	2.49E+06	4.08E+06	2.86E+06	2.75E+06	1.44E+06	8.29E+05	4,84E+05	2.40E+05	1 31F+05 4	5 54F+04		0 185 404	-	5 0	0 0
ۍ	60	2.64E+07	5.38E+07	4.62E+07	3.35E+07	1.58E+07	6.51E+06	1.836+06	6.71E+05	3.30E+05	1.65F+05 !	5 89F+04 3	38F+04 1	0 176±04 1	175 4 04 1	175104
1	124636	124658								• •						
9	130	0	0	0	0	0	0	0	0	0	0	0	o	c	c	C
io o	120	8.18E+04	4.09E+04	0	0	•	0	0	0	0	0	0	• •	• •		• c
0	011	0	0	0	0	0	0	0	0	0	0	0	0	• •	0	• c
0	0 <u>0</u>	4.09E+04	4.08E+04	0	0	0	0	0	0	0	0	0	0	0	0	
ں م	06 0	1.22E+05	4.05E+04	0	0	0	0	0	0	0	0	0	0	0	0	00
0 0	Э С	3.22E+05	0	0	•	0	0	•	0	0	0	0	0	0	0	
0 4	0.9	4.03E+04	4.03E + 04	0 0	0	0	0	•	0	0	0	0	0	0	0	0
5	3	3.240 101	0.445+0/	5.0/E+U/	3.146+07	1.65E+07	9.15E+06	3.33E+06	1.30E+06 6	3.02E+05	3.52E+05 1	.42E+05 5	.33E+04 3	60E+04	0	72E+04

i

							Hunting	ton WV 1 28, 1992								
heada	Attinda (m)	Bin 1	Bin 2	Bin 3	Bin 4	Bin 5	Bin 6	lin 7 Bin	8 Bin	19 19	10 Bin	11 Blin	12 Bun 1	na Et	14 82	a 15
aumher.	Realin time	End time					4mmN	er per cubic mete								
	114649	114713					Size:	300 microne Ren	ge: 150 - 4650 i	microne		¢	c	c	c	c
-	100	0	0	0	0	0	0	0	0	0	5	•	.	,	,	• c
. –	06	0	0	0	0	0	0	0	0	0 0	- <	.	.	.	• c	• •
	80	0	0	0	0	0	0	0	0	• c	• c	
-	70	0	0	0	•	0	0	0	0	5	. .	5 0	.	.	• c	
-	60	0	0	0	0	0	0	0	0 (0 0	5 0	.	.	, c	• c	0
-	50	0	0	0	•	0	0	0	0	5	.	.	o	• •	• c	• c
-	40	0	0	0	0	0	0	0	0	0 (.	5 0	5 0	.	s c	• c
	30	0	0	•	0	0	0	0	0	0	0	5 0	5 0	.	,	, ,
	20	3.107	3.715	0	o	0	0	0	0	0	0 (.	-	,	• c
	10	0	0	0	0	0	0	0	0	0	0	5	5	2	2	>
	115442	115458								,	¢	¢	d	c	c	C
~	70	0	0	0	0	0	0	٥	0	0	0 0	.	.	.	0 0	• •
• ~	60	0	0	o	0	0	0	0	0	0	0	.	.	5 0		0 0
• •	50	0	0	0	0	0	0	0	0	0	0		.	.	.	• •
• •	40	13.34	3,987	0	0	•	0	0	0	0	0	0	.	.		o c
• ~	90	31.45	8.05	0	2.966	0	0	0	0	0	0	0 (o (.	5 0	
4 C	2 Q	46.08	8.077	0	0	2.284	0	0	0	0	0	0	0	5	5	>
1	1 20328	120347										•	¢	¢	c	c
~	00	0	0	0	0	0	0	0	0	0	0	0	5	.	.) (
° °		• •	• •	0	0	0	0	0	0	0	0	0	0	0	.	. .
, ,	8 8		c	0	0	0	0	0	0	0	0	0	0	o '	.	,
.	e G	ò	0	0	0	0	0	0	0	•	0	0	0	0	.	2
, ,	22	• c	0	0	0	0	0	0	0	•	•	•	0	0	.)
, ,	40) C	0	0	0	0	0	0	0	0	0	0	0	0	5	2
r	121346	121406										,		¢	4	Ċ
<	040171	0	0	0	0	0	0	0	0	0	0	0	0	0 (5 0	. .
t •		• c		0	0	0	0	0	0	0	0	0	0	5	.	
t -	08		0	0	0	0	0	0	0	0	0	0	0	0 (5	
;	e og		0	0	0	0	0	0	0	0	0	0	0	0 0	.	
* -	2 2 2		0	0	0	0	0	0	0	0	0	0	0	D	5	>
ŧ	123510	123538	ł											ć	4	Ċ
Ľ	160	0	0	0	0	0	0	0	0	0	•	0	0	.	.	
n u	150	• c	• 0	0	0	0	0	0	0	0	0	•	0	o (. .) (
n u	071		0	0	0	0	0	0	0	0	0	0	0	0 (。	
שר	051		0	0	0	0	0	0	0	0	0	0	0	.	.	> <
<u>م</u> د	120	0	0	0	0	0	•	0	0	0	0	0 0	. <	.	,	
2	110	0	0	Ó	0	0	0	0	0	0 (.	.	5 0	o c	• c	• •
S	100	0	0	•	0	0	0	0	0	.	.	.	, ,	• c		0
5	0 6	0	0	0	0	0	0	о «	0 0	5 0) c	0 0	0	0
ß	80	0	0	•	0	0	0 (.	.	0			• c	0	0	0
S	70	0	0	0	0	0	о (.	,	.	. .		c	0	0	0
5	99	0	0	0	0	0	0	þ	þ	>	2	•)	,		
	124636	124658				•	•	¢	c	c	c	c	0	0	0	0
9	130	0	0	0 (0 (0				, c	0 0	0	0	0	0	0
9	120	0	0	0	0		•	,	, ,			0	0	0	0	0
9	110	0	0	0		- <	.	o	<u>ہ</u> د		0	0	0	0	0	0
9	100	0	0			.		o		0	0	0	0	0	0	0
9	06	5 (2 (2 <	> <	,	» c) c	, c	, 0	0	0	0	0	0	0
9	80	0	0 (20			, -			0	0	0	0	0	0	0
9 9	02	5 0	20) C	» c) a) o	, o	, 0	0	0	0	0	0	0	0
9	60	S	2	2	`	\$	>	ł	I.							

A-58

Approach	Altitude	oopte	Temp	Vapor	Number	Liquid water	Median	Total
number	(m)		(C)	density	seconds	content	vol. redius	number
	Begin time	End time		(g/m3)	in layer	(g/m3)	(m-6)	(per cm3)
	114649	114713						
1	100		12.2	10.8	2	0.00	3.65	000.205
1	90		12.2	10.8	2	0.00	2.15	000.164
1	80		12.2	10.8	4	0.00	2.03	000.104
1	70		12.2	10.8	2	0.00	1.75	000.082
1	60		12.2	10.8	2	0.00	3.89	000.163
1	50		12.2	10.8	3	0.00	1.91	000.162
1	40		12.2	10.8	2	0.00	7.25	001.002
1	30		12.2	10.8	1	0.02	5.85	047.698
1	20		11.4	10.3	4	0.03	5.06	071.454
1	10		11.4	10.3	3	0.05	5.50	105.338
	115442	115458						
2	70		13.9	12.0	1	0.00	2.38	000.316
2	60		13.9	12.0	4	0.01	8.72	007.158
2	50		13.9	12.0	3	0.13	8.31	079.709
2	40		13.0	11.4	2	0.12	5.93	167.118
2	30		13.0	11.4	3	0.06	4.87	157 221
2	20		12.6	11.1	4	0.04	4.22	136 165
	120328	120347						
3	90		12.2	10.8	4	0.00	2.38	000 165
3	80		12.2	10.8	3	0.00	2.32	000 138
3	70		12.2	10.8	2	0.00	2.22	000.750
3	60		12.2	10.8	2	0.00	3.96	000.082
3	50		12.2	10.8	3	0.00	2 47	000.134
3	40		11 4	10.3	5	0.02	6.18	044 704
-	121346	121406			· ·	0.02	0.10	044.704
4	90		12 2	10.8	з	0.00	1 75	000 113
4	80		12.2	10.8	3	0.00	3.68	000.113
4	70		12.0	10.0	4	0.00	2.26	000.182
4	80		11.8	10.5	4	0.00	2.20	000.183
4	50		12.0	10.5	7	0.00	4.67	000.123
•	173510	123538	12.0	10.7	,	0.00	4.07	000.510
5	160	120000	12 2	10.8	2	0.00	2 27	000 242
5	150		12.2	10.8	2	0.00	2.27	000.242
5	140		12.2	10.8	2	0.00	2.21	000.280
5	130		12.2	10.8	3	0.00	2.40	000.187
5	120		12.2	10.8	3	0.00	1.75	000.136
5	110		12.2	10.8	5	0.00	1.75	000.184
5	100		12.2	10.8	2	0.00	1.75	000.082
5	90		12.2	10.0	2	0.00	3.00	000.202
5	90		12.2	10.8	2	0.00	2.30	000.318
5	70		12.2	10.8	2	0.00	2.15	000.313
5	60		12.2	10.8	С	0.02	8.44	015.389
5	124626	124650	12.2	10.8	0	0.14	0.57	185.330
6	124030	124038	1.7. 7	10.0	•	0.00	0.00	
6	130		12.2	10.8	1	0.00	0.00	000.000
e e	110		12.2	10.8	2	0.00	2.27	000.123
6	100		+2.2	10.8	ו ס	0.00	0.00	000.000
6	00		12.2	10.8	2	0.00	2.58	000.082
6	90		12.2	10.8	2	0.00	2.15	000.163
6	20		12.2	10.8	1	0.00	1.75	000.322
6	70		12.2	10.8	2	0.00	2.38	000.081
o	60		12.2	10.8	4	0.18	7.19	216.365

.

Huntington, WV

September 28, 1992 (FSSP-100 Only, last three columns)

i - i

₽.: ₽ -

•

÷

REPORT DOCUMENTATION PAGE Form Approved OMB No. 0704-0188									
Public reporting burden for this collection of info gathering and maintaining the data needed, and collection of information, including suggestions Highway, Suite 1204, Arlington, VA 22202-430	rmation is estimated to average 1 hour d completing and reviewing the collectic for reducing this burden, to Washingtor 2, and to the Office of Management and	r per response, inclu on of information. S n Headquarters Ser d Budget, Paperwo	iding the time for revie end comments regard vices, Directorate for I rk Reduction Project (wing instructions, s ing this burden esti nformation Operatio)704-0188), Washin	earching existing data sources, mate or any other aspect of this ns and Reports, 1215 Jefferson Davis igton, DC 20503.				
AGENCY USE ONLY (Leave blank)	2. REPORT DATE		3. REPORT TYPE	AND DATES CO	OVERED				
	April 1994		Contractor H	eport					
. TITLE AND SUBTITLE Drop Size Distributions and F Measured from Aircraft	Related Properties of Fo	ng for Five L	ocations	C NAS1-1 Task 10 S	9341 Subtask				
author(s) J. Allen Zak				WU 505-6	4-13-67				
7. PERFORMING ORGANIZATION NAM VIGYAN, INC. 30 Research Drive Hampton, VA 23666	E(S) AND ADDRESS(ES)			8. PERFORMI REPORT N	NG ORGANIZATION UMBER				
	CY NAME/SI AND ADDRESS/E	5)		10. SPONSOR					
9. SPONSOHING / MONITOHING AGEN	rch Center Hampton \	 /A 23681-0	001	AGENCY F					
NASA Langley Resea				NASA CF	3-4585				
and Federal Aviation Admi Atlantic City Internatio	nistration Technical Cer nal Airport, NJ 08405	nter		DOT/FAA	VCT-94/02				
FAA Technical Center Lask 12a. DISTRIBUTION / AVAILABILITY S Unclassified/Unlimited	MONITOR: JAMIES R. Dra			12b. DISTRIB	UTION CODE				
Subject Categories 47 and 0)1								
13. ABSTRACT (Maximum 200 words) Fog drop size distributions v Program. Three West Coas top of the cloud to the botton versus concentration are sh samples. Also shown are m drops with median volume r just above the runway surfa generally increased with tim samples where there was a peak of drops 5-11 microme These observations are con there is considerable variati	vere collected from aircu- t marine advection fogs m as the aircraft descer- own in 3-dimensional pl nedian volume radius ar adius of 5-8 micrometer ce. Liquid water conter te. Multimodal variation peak concentration of seters, and high-altitude p npared with others and on with time and altitud	raft as part of s, one frontanded on a 3- lots for each nd liquid wa rs, although nt increased small drops peak of the corroborate le even in th	of the Synthe I fog, and a ra- degree glides in 10-meter all ter content. A the drop size with height, a r density and (2-5 microme larger drops (previous res e same type	tic Vision Te adiation fog slope. Drop itude interva dvection foi s in the radi and the tota particle size ters) at low 11-15 micro ults in fog gi of fog.	echnology Demonstration were sampled from the size versus altitude al from 1-minute gs contained the largest iation fog were also large I number of drops e were noted in most altitudes, mid-altitude ometers and above). ross properties, although				
14. SUBJECT TERMS				15.	NUMBER OF PAGES				
Fog, drop size distributions	, altitude and time varial	tion of fog p	arameters		136				
				16.	A07				
17. SECURITY CLASSIFICATION OF REPORT	18. SECURITY CLASSIFICATION	ON 19. SEC	CURITY CLASSIFIC	CATION 20.	LIMITATION OF ABSTRACT				
Unclassified	Unclassified		1001100						
NON 7540 01 280 5500					Standard Form 298 (Rev. 2-89)				

NSN 7540-01-280-5500

_

-

-