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SUPERSONIC INLET INTEGRATION ISSUES

The purpose of this presentation is to highlight the issues affecting the development of

engine air inlets for the HSCT. The Propulsion Airframe Integration Technology (PAIT)

contract (NAS3-25963) sponsored by NASA Lewis Research Center is an important ele-

ment in the evolution of the propulsion system that will eventually power the HSCT. Most

of the material presented here is based on work performed by The Boeing Company un-
der Tasks I and 2 of PAIT.

From the propulsion perspective the premier technology issues associated with the HSCT

are airport noise and high altitude emissions. The sources are the nozzle and combustor,

respectively. For the inlet the most challenging issues are associated with integration,
these include the following:

• Integration with the main landinggear: protection from FOD, and water

and slush ingestion from the runway;

• integration with the engine: ensuring engine/inlet airflow matching, nor-

mal shock stability during engine airflow transients, and keeping total
pressure distortion within acceptable limits;

• integration with the wing: minimizing nacelle/wing interference drag and
inlet flowfield velocity distortion.

Inlet/Airframe Integration Issues

LOW SPEED

• FOD, water/slush ingestion

• noise suppression

• auxiliary inlets

TRANSONIC/SUBSONIC CRUISE

• engine/inlet airflow matching
• spillage drag

• wing/nacelle interference drag
SUPERSONIC CRUISE

• wing/nacelle interference drag

• normal shock stability
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LANDING GEAR/INLET INTERFERENCE

Nacelle locations dictated by the slender wing planform and the need for the nozzles to
be near the wing trailing edge may expose the inlets to the wake of the main landing
gear. In addition to shed vortices, the wake could carry runway debris. The integration
must minimize the hazards of foreign object damage (FOD) to the inlet and the engine.
The inlet must also be kept out of the landing gear's water and slush spray pattern when
operating on wet runways. Ingestion of excessive water and/or slush could result in de-
graded compressor performance. Selection of the nacelle locations is a crucial issue.

LANDING-G EAR/IN LET
INTEGRATION

)

/////.///)"///'///////////////////////////_

• Inlets away from leading edge.

• Nozzles near wing trailing edge.

• Propulsion nacelles close to

airplane centerline.

Inlets vulnerable to runway debris
and slush spray from wheels.
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INLET/ENGINE COMPATIBILITY

The inlet is typically sized to match the engine demand at the top of climb (i.e. the begin-

ning of cruise) so as to minimize cruise drag. The engine may be sized at a different point

in the mission (e.g. takeoff, transonic climb, etc.) depending on the thrust requirements of

the airplane. The design of both the inlet and of the engine must take into account the

need for a close match between the inlet supply and the engine demand airflows. The in-

let must be designed to limit the level of total pressure distortion and the engine must
tolerate a reasonable level of distortion.

Mixed compression inlets must tolerate minor fluctuations in engine airflow demand with-
out unstarting. The propulsion control system must be able to deal with larger distur-
bances.
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NACELLE/WING INTERFERENCE

Performance of supersonic inlets, especially of the mixed compression variety, is sensitive
to Mach number gradients in the local flowfield. The wing must be contoured to mini-

mize such gradients. But since the flow will not be perfectly uniform, the inlet must toler-

ate some levels of non-uniformity.

The wing and nacelle flowfields are closely coupled. The interference forces are signifi-

cant. The complex aerodynamic forces cannot be eliminated completely, so they must be

put to best advantage. The figure shows that if the wing and nacelle are properly shaped,

the pressure field of the nacelle shock wave can be used to pressurize the aft facing area

of the lower wing. The net result is that the installed drag of the nacelle is equal to its

skin friction drag, the wave drag having been cancelled by the thrust force on the wing.

NACELLE/WING INTERFERENCE

• Wing shape, nacelle shape, nacelle position.

• Proper combination reduces installed drag
to level of skin friction.
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INLET DEVELOPMENT PLAN

The HSCT inlet development plan is built on a foundation of continued design technolo-

gy enhancements. Elements of the effort under way include: broadening the applications

of CFD, expanding the inlet boundary layer control bleed system data base, and refining

drag analyses, especially in the transonic speed regime.

Throughout the inlet development program support must be provided to development of

the vehicle configuration. This effort includes prediction of the installed performance of

various inlet designs so that the design trade studies will lead to the optimum integration.

At the present state of CFD the theoretical predictions must be validated in wind tunnel

tests. Testing usually begins with cold flow inlet models. When the performance of the in-
let is understood and accepted, compatibility of the inlet and engine must be established.

In addition to verifying the aerodynamic compatibly of the propulsion system compo-

nents, the compatibility experiments validate the viability of the propulsion control sys-

tem.

NASA Lewis Research Center is actively supporting the development of the inlet for the

HSCT through the Propulsion Airframe Integration Technology contract (NAS3-25963).

HSCT INLET DEVELOPMENT PLAN

91 l 92 I 93 I 94 J 95 I 96 J_ 97 [ 98 J 99 J oo
V

Inlet Concept Inlet Configuration
Down-select Validated

V

i Flying Test-bedExperiments
Integrated Propulsion

Controls

I Engine/Inlet Compati-bility Experiments I
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Design Technology Improvements
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PAIT PROGRAM OBJECTIVES

The overall objective of the Propulsion Airframe Integration contract (NAS3-25963) is to

identify the best inlet for an HSCT having a cruise Mach number in the range of 2.0 to

2.5. The figures of merit used in making the final selection should reflect the impact of
the choice on total mission performance.

NAS?/s participation can supplement industry's efforts by pursuing concepts that have a
potential for high payoff with perhaps higher technical risk. The initial tasks of the PAIT

contract comprise analytical studies to narrow the field of competing inlet concepts.

Based on the results of the initial assessment, one or more concepts will be recommended

for further research. The follow-on work is expected to include wind tunnel testing of the

selected inlets first alone and later coupled with engines.

PAIT Program Objectives
Propulsion Airframe Integration Technology

Contract No. NAS3-25963

• Select HSCT inlet concept for cruise
Mach number in range of 2.0 to 2.5.

• Design inlet for safety and efficiency.
• Integrate inlet design with airframe.

• prevent engine FOD

• minimize cruise drag

• reduce community noise
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INLET CONCEPTS FOR PAIT

Currently six inlet concepts are being studied under Tasks 1 and 2 of the Propulsion Air-

frame Integration contract (NAS3-25963). All of the inlets are designed for Mach 2.4

cruise flight. The reference engine airflow schedule for the studies is that of a turbine by-

pass engine proposed by P&WA for the HSCT. The concepts were picked to assess the

benefits of 2D versus axisymmetric and external vs mixed compression designs. In both

the 2D and axisymmetric groups, two mixed compression concepts are shown. The ones in

the center have more external compression and shorter internal supersonic diffuser, while

the ones at the bottom have less external compression and longer supersonic diffusers.

The stability of the normal shock tends to increase as more compression is done external-

ly. At the same time the wave drag of the external cowl tends to increase. Two-dimen-

sional inlets generaIly require more length than axisymmetric designs. In compensation,

they offer more versatility in flow supply schedule and integration. The final selection is

likely to be based on the requirements of integration.

INLET CONCEPTS FOR PAIT
NAS3-25963

Two-Dimensional (2D)

_..__ ExternalCompression

Mixed

Compression

..................Transomc Row Capacdy

Axisymmetric
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PAIT INLET SELECTION CRITERIA

Tasks 1 and 2 of the Propulsion Airframe Integration contract (NAS3-25963) are under

way. The analytical screening studies under the first task compare the inlets on the bases

of internal performance, maximum flow supply capacity, boundary layer bleed require-

ments, and isolated (without wing) drag. The effort comprises definition of the inlet con-

tours and prediction of inlet performance using CFD and lower order analyses.

Under the second task, designs studies are in progress to compare the candidate inlets on

the basis of weight. The designs are carried to sufficient detail to allow structural sizing of

components.

The objective of the third task is to compute the effects of the same inlets on vehicle mis-

sion performance.

PAIT INLET SELECTION CRITERIA

Task 1

ISOLATED INLET PERFORMANCE

• Total pressure recovery

• Cruise boundary layer bleed drag

• Transonic spillage drag

Task 2

INLET WEIGHT

Task 3

AIRPLANE MISSION PERFORMANCE
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PRELIMINARY DESIGN AND ANALYSIS TOOLS

The initial steps for translating the inlet concepts into specific designs were accomplished

using procedures developed during the Boeing SST and SCR programs. Once satisfactory

results were obtained with the design codes, further computational fluid dynamics analy-
ses were conducted using the PARC code.

The supersonic diffuser lines were generated iteratively applying Boeing's method-of-
characteristics code. The predicted pressure profiles were analyzed with a finite difference

boundary layer code to determine the locations and flowrates of boundary layer bleed re-
quired to prevent separation.

The normal shock total pressure losses were calculated from the predicted supersonic

Mach number profiles at the inlet throat. The subsonic diffuser performance was esti-

mated with a code developed at Stanford University and modified at Boeing. The code

allows for interactions between the boundary layer and the core flow through an entrain-
ment function.

The design codes (method-of-characteristics, boundary layer, subsonic diffuser) were run

on engineering work stations with typical execution times measured in seconds. This pro-

cedure allowed preliminary analyses of a large number of trial contours.

PRELIMINARY DESIGN/ANALYSIS
Method of
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CFD ANALYSES

The PARC code was run in the 2D/axisymmetric Euler mode to analyze the flowfields of

the inlets generated with the design codes. Various flight conditions were simulated. The

parameters varied included flight Mach number and engine corrected flow.

The objectives were to confirm the results of the preliminary analyses. The PARC compu-

tations include the complete flowfield from the undisturbed freestream to the engine face
as opposed to the zone-by-zone analysis approach of the design codes. The effects of

oblique and normal shock waves are detailed, allowing determination of the shape and
operating position of the normal shock. More significantly, in the unstarted supersonic

operating mode, the sensitivity of spillage drag to normal shock spillage flowrate can be
directly calculated. Boundary layer effects are not included in the Euler solutions since
viscosity is not simulated.

Sample results from the CFD analyses are presented in the following charts.

CFD APPLICATIONS

PARC CODE

• 2D/Axisymmetric

• Euler mode (no viscosity)

RESULTS

• Normal shock position and shape

• Combined oblique and normal
shock losses

• Transonic spillage drag
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EXTERNAL COMPRESSION 2D INLET

The first concept in the inlet matrix is derived from a model tested in the Lewis 10- by

10-ft supersonic wind tunnel in 1986 (NASA CR 182253). The upper part of the chart
shows the computation domain of the PARC CFD analysis. The engine face is located at

approximately the midpoint of the long subsonic duct. The extension downstream of the

engine face was provided to allow the flow profile to be non-uniform at the engine face.

Variations in engine power setting were simulated by varying the throat area of a choked

convergent-divergent nozzle at the end of the flow duct.

The lower part of the chart shows a close-up of the inlet aperture region. The flow out of

the throat slot plenum is also controlled by a choked nozzle. The black lines trace the

sonic lines. The aperture region contains a complex flowfield comprising supersonic flow

with oblique shock waves, normal shocks, subsonic flow, and a free shear layer dividing

the stagnant air in the plenum from the primary flow. The CFD results were valuable in

shaping the contours of the aperture. The lower order codes are of little help in describ-

ing the details of the flow in this region.

RNAL COMPRESSION
2D INLET
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TWO-STAGE SUPERSONIC INLET

The second concept in the inlet matrix incorporates a long unbounded surface and a ple-

num upstream of the throat. The appearance is that of a mixed compression inlet with

one ramp missing. Unique features of the concept include the following: 1) the cowl lip

shock and the distributed cowl compression are focused at the leading edge of the aft

ramp so that no compression is taking place over the free surface of the plenum; 2) the

normal shock is positioned just upstream of the aft ramp's leading edge, a relationship

similar to that of the normal shock and cowl in an external compression inlet; 3) the nor-

mal shock position is controlled by closed loop control of the plenum pressure through

control of the plenum exit area. Maintaining a constant static pressure in the plenum al-

lows for the spillage of subsonic flow at various rates without affecting the supersonic dif-

fuser flowfield. The spillage flow shows up as a thin jet adhering to the upper surface of
the aft ramp in the figure.

TWO-STAGE SUPERSONIC INLET
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MIXED COMPRESSION 2D INLET

Results of CFD analyses are shown for a more conventional type of mixed compression

2D inlet. The design incorporates three movable ramps and has a much longer supersonic

diffuser than the previous inlet. The throat Mach number is maintained at 1.25 to provide

tolerance to small fluctuations in freestream Mach number. The normal shock is posi-
tioned just downstream of the throat where the Mach number is about 1.3. This provides

tolerance to minor fluctuations in the engine flow demand.

MIXED COMPRESSION 2D INLET
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STATIC PRESSURE DISTRIBUTIONS

Ramp and cowl contours and static pressure distributions are shown here for the mixed

compression 2D inlet. These curves were extracted from PARC solutions at cruise and at

Mach 1.65, the minimum Mach number where started operation is possible. The corre-

sponding Mach contours are shown at top and bottom, respectively, in the previous fig-
ure. The pressures are shown in absolute units at the same altitude, clearly indicating the
higher inlet pressure ratio at the higher flight Mach number. In actual operation the alti-
tude would vary with Mach number.
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MIXED COMPRESSION VARIABLE DIAMETER CENTERBODY INLET

The inlet shown here is a Mach 2.35 derivative of the NASA Lewis Mach 2.5 60/40 vari-

able diameter centerbody inlet. A big attraction of such a design is the short supersonic

diffuser. The bleed rates computed for this model agree well with the very low require-

ments established experimentally by NASA. The solution shown here is for Mach 2 flight.

MIXED COMPRESSION VARIABLE

DIAMETERCENTERBODY iNLET
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DESIGN LOADS FOR SIZING OF INLET STRUCTURES

The objective of Task 2 of PAIT is to compare the weights of the inlet designs based on

the analytical models developed under Task 1. To compute realistic weights, all of the ma-

jor components of the inlet must be designed and the material thicknesses must be sized

for the loads to be encountered in operation.

The chart shows predicted normal operating pressure loads, and hammershock loads (re-

sulting from compressor surge) for the mixed compression axisymmetric translating cen-

terbody inlet. Other analyses were conducted to estimate asymmetric pressure loads, and

g-loads resulting from a hard landing. Materials were selected, and material thickness re-

quirements were computed by structures specialists based on the loads data.

NORMAL AND ENGINE SURGE
PRESSURE LOADS
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MIXED COMPRESSION TRANSLATING CENTERBODY INLET

This inlet concept traces its ancestry to the NASA Ames P inlet; a contender for the US

SST. The picture shows a solids model rendering of the inlet design with the CATIA com-

puter aided design (CAD) system used at Boeing. The inlet components are sized for the

loads shown in the previous chart. The CAD system can compute the volume of each

component. The volumes, the material densities, and allowances for fasteners, etc. lead to

accurate prediction of the final inlet weight.

MIXED COMPRESSION TRANS-
LATING CENTERBODY INLET
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CONCLUDING REMARKS

For propulsion technology the premier issues are airport noise and high altitude emis-

sions. The sources are the nozzle and combustor, respectively. For the inlet the most im-
portant issues are associated with integration.

• Integration with the main landing gear: protection from runway FOD;

• integration with the engine: engine/inlet airflow matching, normal

shock stability during engine airflow transients;

• integration with the wing: nacelle/wing interference drag, inlet flowfield
uniformity.

The inlet development plan includes the following tasks: 1) enhancement of design tech-

nology; 2) support of vehicle configuration development; 3) analytical screening of inlet

concepts; 4) experimental validation of inlet designs; 5) experimental validation of inlet/

engine compatibility; 6) demonst:ation of propulsion system performance in flight.

CONCLUDING REMARKS

ELEMENTS OF INLET DEVELOPMENT PLAN

• design technology enhancements
• analytical screening of inlet concepts
• experimental validation of inlet designs
• demonstration of inlet/engine compatibility
WORKING WITH NASA AND ENGINE
SUPPLIERS

MAJOR ISSUES:

• wing/nacelle interference

• normal shock stability
• engine/inlet airflow match
• landing gear effects
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