N94- 33524 LIFT ENHANCEMENT BY TRAPPED VORTEX

Vernon J. Resow
NASA AMES RESEARCH CENTER MOFFETT FIELD, (A 940.35-1000

FIRST ANNUAL HIGH-SPEED RESEARCH WORKSHOP WILLIAMSBURG, VA MAY 14-16, 1991

$$
\begin{aligned}
& 57-02 \\
& 11982
\end{aligned}
$$

Eforts are continuously being made to find simple ways to convert wings of aircrafl from an elficient cruise conifiguration to one that develops the high lift needed during landing and takeoff. The high-lift configurations studied here consist of conventional nirfoils with a irapped vortex over the upper surface. The vortex is trapped by one or wo vertical fences that serve as barriers to the oncoming strean and as reflection planes for the vortex and the sink that. form a separation bubble on top of the airfoil. Since the full three-dimensional unstendy flow problem over the wing of an aircraft is so complicated that it is hard to get an mederstanding of the principles that govern the vortex trapping process, the analysis is restricted here to the llow field illustrated in the first slide. It is assumed that the flow field hetween the two rnd plates approximates a streamwise strip of the flow over a wing. The flow between the endplates and ahout the airfoil consists of a spanwise vortex located between the suction orifices in the end plates. The spanwise fence or spoiler located near the nose of the airfoil serves to form a separated flow region and a shear layer. The vorticity in the shear layer is concentrated into the vortex by withdrawal of fluid at the suction orifices. As the strength of the voriex increases with time, it eventually dominates the flow in the separated region so that a shrar or vortical layer is no longer shed from the tip of the fence. At that point, the vortex strongilh is fixed and its location is such that all of the velocity contributions at its center sum to zero therely making it an equilibriun point for the vortex. This presentation describes the results of a theorelical anmlysis of such an idealized flow fied.

WING WITH TRAPPED VORTEX

This slide presents a two-dimensional idealization of the experimental configuration presented in the previous slide that will he tised in the theoretical analysis. A large trapped-vortex hubble is shown over the airfoil to emphasize the fact that the analysis is most interested in those configurations wherein the vortex bubble covers a large fraction of the upper surfare of Hite airfoil. If such a flow field can be established, the lift enhancement by the trapped vortex is sulstantial cnough to yiedd lifi coefficicuts that are in the range of the value, $C_{r}=6$, shown in Whe slide. The two-dimensional flow fied is assumed to be inviscid and incompressible so that it can be represented by potential flow theory. Conformal mapping technigues can then be used to develop the desired flow-field configuration from the fow about a circular cylinder. Λ sulstantial advantage of the conformal mapping technique is that it yields directly the location of the equilibrium point for the center of the vortex/source combination, the circulation, Γ, of the vortex, and the source strength, in. Kinowlege of Γ and $\dot{i} t$ then yield the lift due to the trapped vortex and the drag attributed directly to the trapping process which is designated hy C_{d}. As indicated in the slide. the flow is assumed to depart smoothly from the tip of the rence and from the trailing edge of the airfoil in order to satisfy the Kitta condition at those locations.

The single fence case was first studied, Ref. 1, in order to gain an understanding of the mainue of the flow field and to obtain an estimate of the magnitude of lift enhancement that can be achieved hy means of a trapped vortex.

Ref. I: Rossow. Vernon J.. "Lift Enhancement by an Externally Trapped Vortex". AIAA Jommal of Aircraft, Vol. 15. No. 9, Sept. 1978. pp.618-62:5.

TWO-DIMENSIONAL FLOW FIELD MODEL $C_{L}=6, C_{D}=0.16$

The results presented here for the single fence case illustrate the location of the erguilibrinm point for the vortex/source combinations for several different fence lenghiss and lift. coedicients. It is to he noted that the lift coellicient has been specified but the downstreant extemb of the vortex hubble has not been fixed. It was assumed that the length of the fence and location of the equilibrium point would be enongh to fix the size of the vortex bubble. llowever, when experiments were conducted in a water channel, it was found that a trapped vortex could he formed in some cases but that a large amount of fluid had to be withdrawn from the center of the vortex to not only form the vortex but also to sustain it. This resull. was predirted by the theory through the magnitude of the sink required to achieved an equilibrium condition at the center of the vortex. Not immediately apparent is the fact that the sink How also respresents a drag that is attributable to the vortex trapping process. It was then reasoned that not only is the drag undesirable, but a large amomi of fuid moving along the vortex core can disrupt the vortex formation and, if large enough, cen actually orcupy the entire irapped vortex region at spanwise stations near the wingtip where the core flow spills into the free stream. Research was then started on finding ways by which the mass flow at the source/vortex location could be made to vanish.

A mechanism whercly the source flow can be made to vanish and still have an equilibrinm poinl for the vortex is illustrated here. The two-fence trapped-vortex configuration in the lower part of the figure is divided into three separate flat-plate boundaries. In the first, the horizontal llat plate serves as a reflection plane with an image vortex helow the surface which induces an "pstream velocity on the vortex that is exactly equal to the oncoming free-strean volority. This configuration yields an equilibrium point without a source but requires a fence of some sort to promote the formation of the vortex. A fence upstream of the vortex provides the shirur layer mentioned previously that builds the circulation in the vortex. The vertical hommary also induces an upward velocity through the influence of the image vortex needed to make the surface a streamline. The upward velocity due to the front fence needs to be offsel by a sink located beneath the horizontal plane if some other artifice is not used to bring aloot an equilibrium condition. Such an artifice is available as a fence clownstrean of the vorlex. As indicated in the figure, the image vortex for the rear fence induces a downward velocity on the vortex. Therefore, if the vortex to be trapped is midway hetween lwo vertical surfaces of alont the same size, an equilibrium condition is achieved for the vortex without the presence of a soure or sink.
'The two-fence concept does several things for the flow field. First, it makes it prossible to (rap a vortex at its equilibrium location without the use of a source or sink. The froul frmer serves as an "pstrean limit on the trapped-vortex flow lich and as a means for gemerating a shoar layer that supplies vorticity to the vortex. The second lence serves as a downstream limit on the size of the vortex bubble and as a reflection plane for the vortex so lhat trapming can be achieved without the need for a source or sink. Since a source or sink is not required for the cstablishment of an equilibrium point. the drag due to vortex trapping is negligible which means that efficient lift enhancement tas been achieved. Another big advantage is that the llow along the core of the vortex is also negligitle making it much easier to establish and maintain the vortex flow field. Mass removal from the core is then only necessary to cestallish the vortex and to remove low energy faid generated by viscous losses.

TWO-FENCE CONCEPT

Before proceeding to airfoil-type trapped-vortex configurations, consider the simple case whorrin a vortex is trapped over an infinite plane. As mentioned previously, a source is mot. needed in order to achieve an equilibrimm condition. In practice however, fences are needed to fix the upstream and downstream extents of the vortex bubble and to provide a separaled llow region with a shear layer to supply the vorticity that builds into the circulation for thre vorlex. Fences can be added to the flow field without disturbing the equilibrinm condition or the streamline pattern if the fences are placed upstream and downstrean of the vortex ont the surface of the vortex bubbe as shown in the lower part of the figure. If the fences are thin and fit, or conform to, the surface of the vortex bubble, the flow field characteristics are unchanged by addition of the fences. A number of the solutions to be presented will be noted to liave only one fence that is flat and that is needed to make $\dot{m}=0$. The other fence is assumed in be of the conforming type that fits the vortex bubble so closely that no appreciable cliange in the flow field is brought about.

2 Image and phyrical streamlines for trapped vortex flow fied.
b. Ferses fore and aft that conform to shape of vortex separation bubble.
'I'le procedure that was used to calculate die trapped-vortex flow field over an airfoil whemin a souree or sink is not needed is illustrated in the figure below. The first slep in line procednre is to calculate the fow field when only the front and rear stagnation points of the vorlex bubhle are specified. In such a case. the rortex buhble is assumed to have coulorming Fences that do not interfere with the equilibriun condition. Under those conditions, if a sink is required in order to achicre an equilibrium condition for a source/vortex combination as shown in the upper figure, the height of the rear fence (which is approximately flat.) is increased in sleps mitil the sink flow is negligibly small. The sink flow is highlighted in the uppr ligure by cross-halching the streamtubes entering the sink. When the proper height of the flat phice rear fence lias been found by such an iterative process, it is retained as the most efficienl. or $i_{i}=0$, solution for a vortex bubble of a specified size and location on an airfoil al a given angle of altack. Conversely, if the flow field solution for the conforming-fence geomelry liad reguired a source rather than a sink, the height of a flat. front fence wonld have been incronse unlil $\dot{m}=\mathbf{0}$. The foregoing proredure was used to obtain all of ihe $\dot{m}=\mathbf{0}$ irapped-vorlex solulions presented here.

(a) CONFORMING FENCES ONLY

(b) CONFORMINQ FRONT FENCE

2 No fences; $h_{1} / c=0, h_{2} / c=0_{i} z_{p}=-0.197, y_{p a}=+0.216, \Gamma / c J_{\infty}=-1.749$, $\Gamma_{0} / c \bar{D}_{\infty}=+0.869, m / c D_{\infty}=-0.054 ; C_{L}=1.761, C_{D}=0.108$.
b. Rear fence jurt large enough to reduce \dot{m} to zero. $h_{1} / c=0, h_{9} / c=0.114 ; z_{10}=$ $-0.165, y_{m=}=+0.332, \Gamma / c J_{\omega}=-1: 886, \Gamma_{0} / c \Pi_{m}=+0.998, \dot{m} / c \Gamma_{\omega}=0.0 ; C_{L}=1.777$, $C_{D}=0.0$.

Vorter trapped an Clart Y airfoil (NACA 4412); $\alpha=0.1$.

In order to obtain a data set of solutions that can be used to study the characteristics of airfoils will trapped vortices, a seguence of $i \boldsymbol{i n}=0$ cases were calculated for the fow over an NA (A 4412 (or (lark Y) airfoil at angles of allack from $n=-4^{\circ}$ (hrough $\alpha=+12^{\circ}$ in increments of 2^{0}. Since the streamlines for the various solutions do not change very murh, only ihe solutions for $a=+4^{0}$ are presented on this slide. The varions solutions differ from one another in that the size of the trapped-vortex bubble increnses gradually from zero to a size that nearly covers the entire upper surface of the airfoil. It could be imagined that the sequence of figures represents a streamwise cross-section of the flow fied as the wing is clianged from ils cruise configuration (i.e., no vortex) to the vortex-bubble size (and lifl.) needed for landing. Conversely, when the aircraft takes off, the fences are first deployed so as to develop the size of trapped-vortex needed for high lift. As the aircraft becomes airborne and iucreases its light velocity, the fences are changed so that the vortex bubble shrinks in size progressively until the cruise coufiguration is achieved.

STREAMLINE PLOTS FOR RANGE OF VORTEX VORTEX BUBBLE SIZES

The various characteristics of the trapped-vortex airfoils are now presented. The first parameter illustraind is the lieight of the flat fences insed to bring about the $i n=0$ comelition. The paramelers that are used to define the chordwise extent of the vortex bubbe are shown in the inset figire. The chordwise begiming or front of the bubble, x_{f}, is taken as the intersection of the bubble or fence surface with the upper surface of the airfoil. Similarly, the rear or downstream end of the vortex bubbe. x_{1}. is defined as the point where the bublowe surface intersects the surface of the airfoil. It is noted that a flat fence leng(l) of ahome 0.1r is required in order to oblain a vortex hubble that covers 26% of the airfoil. A fal fenre length of about 0.2 c produces a vortex bubble that covers about half of the airfoil surface. This ligure and the previous one clearly show that the size of the vortex bubble is largely controlled lyy the spacing between the front and rear fences. The height of the fences that are flat and do not conform to the shape of the vortex bubble govern the magnitude of the source or sink needed for equilibrium and are used to make $i_{1}=0$. Conforming fence portions of a rertain length will likely also be necessary in practice to produce the shear layer needed for the development of the vorlex and to control the physical limits of the vortex bubble. The present study does not include a study of the size of conforming fences that are needed.

LENGTH OF FENCES REQUIRED FOR ZERO SOURCE STRENGTH

The lift coefficient developed by the various trapped- vortex configurations is presented on this slide for the range of vortex buble sizes that were studied. It is noted that the lift incronses slowly at first as the size of the vortex bubble increases from zero. At the larger vorlex sizes, the lift changes rapidly with the size of the vortex bubble. Also to he noted is that not all of the curves end at the large vortex bubble sizes. The computations indicate that it in not possible to find an equilibrium point for $\boldsymbol{m}_{1}=\mathbf{0}$ in certain cases. Allonugh a plyssical reason for the solution failure was not found, it seems reasonahle that fenre heights above certain values should not be possible solutions because the fences begin to interfere with the vortical flow field and cause it to become too distended in the vertical direction. An explanation or criterion for the fence lengths above which solutions can no longer be founl was nol founcl.

Even a casual look at the curves of lift as a function of bubble size suggests that the curves are about of the same shape and that they might possibly collapse to a single curve if i.he lift increment due to the (rapped vortex is plotted as a function of the size of the vortex hubble. $\left(x_{r}-x_{f}\right) / c$. Those results are presented on the next slide.

LIFT COEFFICIENT AS A FUNCTION OF VORTEX BUBBLE SIZE

The data on the previous slide collapses to a single curve only for the smaller values of $\left(x_{r}-r_{f}\right) / c$. As the vortex buble size increases the diferences between the curves increases. even though the curves all have about the same shape. Manipulation of the various paraneters might provide a better correlation of the data but was not tried.

INCREMENT IN LIFT COEFFICIENT DUE TO TRAPPED VORTEX

In order to demonstrate that the lift responds in the conventional way to angle of allark,
 irapperivortex bubble. It is noted that the variation of lift with angle of aliack for bubible sizes than are 00% or less of the rhord are approximately linear with angle of alluck. 'The slope of the lift curves increases with increasing size of the vortex hubble but not dramalically. These iesults indicate that trapped-vortex airfoils have a conventional response to angle of attack. 'The figure also provides an estimate of the redurtion in angle of attack that can be achieved by adding a trapped vortex to the flow field over the airfoil. For example, muldition of a lrapped vortex that covers 26% of the airfoil, permits about a 4° reduction in angle of. allack for a given section lift coefficient.

LIFT COEFFICIENT AS A FUNCTION OF ANGLE OF ATTACK

'The pitching nioment about the quarter-chord location is expected to vary greally when the vortex bubble is large and moves aft. Even thongh an attempt was made to kerp the center of the vortex bubble at ahout the same chordwise station, the pitching moment is seen to become quite large. Latitude is available, however, for placing the vortex bubble fore or aft on the airfoil to influence the pitching moment-see next slide.

PITCHING MOMENT COEFFICIENT VS. ANGLE OF ATTACK

-

4-24 7

In this particular sequence of trapped-vortex cases, the size of the t.rapped-vortex bubible is held approximately constant as the rlordwise location of the bublbe is move aft in a sprins of steps from a very forward location. The cases presented illustrate some of the latitude that. is available for manipulating the characteristics of the airfoil.

STREAMLNE PLOTS FOR RANGE OF CHORDWISE LOCATIONS OF VORTEX BUBBLE

$\alpha=+4^{\prime}$

The characteristics of the trapped-vortex cases presented on the previous slide are summarized here. As expected, the pitrhing moment can be made as small as desired hy moving the vorlex bubble forward. The lift generated by the trapped vortex does decrease with the more forward location but not disastronsly. The minimmen height or length of the flat fencres also changes a bit with the location of the trapped vortex but not by a large amonnt.

AIRFOIL CHARACTERISTICS FOR RANGE OF CHORDWISE LOCATIONS OF VORTEX BUBBLE

'The foregoing slides provide an overview of the characteristics of one airfoil shape which lass its lift onhanced by a trapped vortex How field. Results for other airfuil sliapes will diffin in delail but will genenerally have much the same character. This information provides Lhe beginning steps in the fulfillment of the ohjective of the research which is to find the necessary and sufficient conditions for vortex trapping. Not only should the vortex trapping he rfficienl and cifective for two-dimensional (or airfoil) situations but also in the three-dimensional or wing siluations. Furtliemmore, the trapped-vortex configurations should be efficient, casy lo prodnce and maintain and not too onerous to implement on actual aircraft. With these guidelines for i.he research program, it is concluded from the investigation presented here thal vortex lrapping in two-dimensions is reaching a point of good understanding. More delailed sthelies not only with conformal mapping methods but also will other mellools mend to be carried out to fill out the characteristics of trapped-vortex airfoils. As noted in lise items listed below, the most pertinent contributious of the present study to date inclucle like introdurlion of a second fence to help control the characteristics of the trapped-vortex flow field. In parlirular, the use of fence curvature and height to bring about tile equilibrium or zero velocily condition at the center of the vortex with negligible mass removal from the vortex core makes the irapped-vortex high-lift concept an efficient one. In this way the two-fence conrepl. provides the nocessary tools in two-dimensions at least for producing efficient easily formabin ligh lift airloils. 'IThe other romelusions listed below are essentially self explamalory. It slomilat le remarkerl, however, that the steps from two- to three-dimensions will require semer gerel ideas if the trapped-vortex flow fields are to be realized on real wings wherein only life local flow lielids are used as the suction needed for evacuating the vortex core. 'The sperial suction orifices used in two dimensions will not then he needed. Encouragement is provided however, be the sumess achiered with the iwo-dimensional results and it is believed that comparable sureess cun be achicved with three-dinensional configurations.

CONCLUSIONS

2. AN UPSTREAM AND A DOWNSTREAM FENCE APPEAR TO BE NECESSARY PARTS OF THE TWO-DIMENSIONAL TRAPPING PROCESS.

3. FENCE HEIGHTS MUST BE ADJUSTED SO THAT SOURCE STRENGTH IS ZERO IN ORDER TO PROMOTE VORTEX FORMATION AND TO REDUCE DRAG.

4. ADDITIONAL DESIGN GUIDEUNES WILL NO DOUBT BE NEEDED FOR VORTEX TRAPPING ON WINGS IN THE FULL THREE-DIMENSIONAL ENVIRONMENT.

Session XIII. Supersonic Laminar Flow ControI

THIS PAGE INTENTIONALLY BLANK

