
N94- 33799

A Reference Model For Scientific Information Interchange

Lou Reich

Computer Sciences Corporation
Code 502

4600 Powder Mill Road

Beltsvllle, Maryland 20705
Phone: (301) 572-8445

FAX: (301) 595-1774

lreich@gsfcmall, nasa.gov

Don Sawyer

Goddard Space Flight Center
Code 633

Greenbelt, Maryland 20771
Phone: (301) 286-2748

FAX: (301) 286-1771

sawyer@nssdca.gsfc.nasa.gov

Randy Davis

Laboratory for Atmospheric and Space Physics
University of Colorado

Campus Box 590
Boulder, Colorado 80309

Phone: (303) 492-6867

FAX: (303) 492-6444,

davis@aquila.colorado.edu

I. Introduction

This paper presents an overview of an Information Interchange Reference Model (IIRM)
currently being developed by individuals participating in the Consultative Committee for
Space Data Systems (CCSDS) Panel 2, the Planetary Data Systems (PDS), and the Committee
on Earth Observing Satellites (CEOS). This is an ongoing research activity and is not an
official position by these bodies.

This reference model provides a framework for describing and assessing current and proposed
methodologies for information h_tel'change within and among the space agencies. It is hoped
that this model will improve interoperability between the various methodologies. As such,
this model attempts to address key information interchange issues as seen by the producers
and users of space-related data and to put them into a coherent framework.

Information is understood as the knowledge (e.g., the scientific content) represented by data.
Therefore, concern is not primarily on mechanisms for transferring data from user to user
[e.g., compact disk read-only memory (CD-ROM), wide-area networks, optical tape, and so
forth] but on how Information is encoded as data and how the Information content is

maintained with minimal loss or distortion during transmittal. The model assumes open
systems, which means that the protocols or methods used should be fully described and the

descriptions publicly available. Ideally these protocols are promoted by recognized standards
organizations using processes that permit involvement by those most likely to be affected,
thereby enhancing the protocol's stability and the likelihood of wide support.

II. Issues In Scientific Information Interchange

Figure 1 presents an overview of what is meant by information interchange. The left side
indicates the existence of several pieces of information in various local forms and knowledge
of the relationships among them. The objective for the data producer is to assemble these

pieces and the appropriate knowledge in a way that can be transferred across a spatial and
temporal gap to a consumer system where any or all of the pieces of information and the

relationships between them can be identified, extracted, and used in processing and display.

75

. / o .= / _ / o
m "E(_ u) m'.='

_ / _=_, I-°-1 _,'_

•"" / m_

/ o.-
:_l _>

-- 1 "_
I-I II I fi I _;_[_._",;_.;i_li!_t:,/;:_i_!_:tI _ E

= ::::;,_,_ ,,., .:.:.,::/&_: I _ o
_! II il ill i f__l Ii__t

_ -=

o

•-_ _ _._

o__

).,

9

_3

e--

o_

3

"_ E

=_.o

z

"6

.o .o

_. o
'E E

(/1 "_

c_ E
o

(:3 _ _

76

An essential element in this view is the physical (spatial) separation of the two systems.
Temporal separations can range from a fraction of a second to many decades.

The problem of moving strings of bytes reliably from senders to receivers has been successfully
addressed by several suites of standards. The Open Systems Interconnectlon {OSI) model and
the standards that adhere to it provide a solid framework for understanding and
implementing systems that move data across networks. The packet telemetry and
telecommand standards developed by the CCSDS supplement OSI-compllant protocols with
capabilities specifically designed for communications with satellites. The Sony-Phillps Red
and Green Books provide the basis for encoding information on CD-ROM media so that the
resulting disks can be read in any CD-ROM reader. These protocols can assure that a
transmitted byte string is received completely and in the correct order (or if it is not, that the
failure ls reported to the receiver).

The protocols cited above do not, however, address all the needed aspects of encoding and
interpreting the information within byte strings. They transport blocks, packets, and frames,
whereas end users in the space sciences deal with images, spectra, tables, and maps. How then
do we address the transport of the information objects, such as images and tables, to
scientists? The OSI model allows for applications-level protocols that provide the rules for
encoding and interpreting information within an applications domain. It is the applications-
level protocols (sometimes with assistance from presentation layer protocols) that allow
recipients to extract information from the bytes of data they receive. Few formally
standardized data transfer methods for scientific information exist, but the need for them is

growing. Most science disciplines within NASA are developing or seeking standard ways to
transfer complex scientific information. The IIRM provides a mechanism for characterizing
data transfer methods (with emphasis on those for scientific applications) so that users can
describe the similarities and differences between existing or proposed methods. This may
provide a basis for discussing the way individual science disciplines view their data and
perhaps result in greater uniformity between data transfer methods for scientists. The more
standardized the methods are the more automated the services can he for dealing with the
information in both producer and consumer environments.

Several characteristics of space science applications complicate the information interchange
process, including:

• Highly heterogeneous computing environments

• Voluminous data and metadata

• Wide variations In the level of user sophistication

• A large--and expanding--set of information relationships

The remainder of this paper discusses some of the key Issues of information transfer in space
science applications. This list is a first pass and is probably not comprehensive. Interested
readers are encouraged to submit any additional issues or comments on current issues.

A. Encoding Information Into a Data Stream

Whenever information is stored or processed, it is encoded as a series of primitive data
elements. Use of heterogeneous computer hardware and bit-efficient coding schemes for data
from sateLlites and science instruments results in a wide variety of bit sequences to represent
primitive data types (e.g., integer and floating point numbers). For efficiency, the data
processed by a computer should be encoded in the formats that the computer hardware
supports; however, these formats often differ for the computer systems used by the producer
and consumer of a data stream. There are several ways to address this problem:

77

• The producer's system may know the local representation of the consumer's system
and convert data to the consumer's local representation before sending

• The producer's system can inform the receiving system about the data representation
and require the consumer to convert the data it receives to its local representation

• The producer's system can convert data into an agreed-on format, and the consumer's
system can convert from the agreed format to its local representation

No single solution is best for all situations. Despite today's sophisticated and fast computer
hardware, converting large volumes of Information from one format to another for
Interchange or archivlng is often Impractical; data volumes appear to Increase as rapidly as
processing power. This means that a scientist's access to information may be limited simply

by the difficulties of data translation.

Encoding issues also arise in every layer of software through which Information must pass
when transferring data streams. For example, some operating systems impose private record
encoding schemes within files that can restrict or complicate the flow of data flies within an

open system.

Programming languages present an additional problem: a programming language's set of base
types Is usually richer than the primitive data types represented in hardware (for example,
arrays and enumerated types). However, different programming languages use different
conventions to encode the same base type, and encoding information as a sequence of base data

types that can be recognized and manipulated by all the languages that might be used to process
the information is often difficult. For example, exchanging arrays across different languages

is often difficult because arrays for some languages are Implicitly column major, and for
others they are row major. These kinds of problems have led to specialized data definition

languages (DDLs) that allow data to be fully described in a way that is independent of any
particular programming language. Even with DDLs, some modification of the information
may be required before the information is used with a specific programming language (the

array majority issue is such a problem).

B. Identifying and Accessing the Information in a Data Stream

The receiver of a data stream must be able to locate, identify, and access each major
information unit in the data. These units are called information objects; however, use of this

term does not imply that the systems producing and consuming them necessarily conform to

the principles of object-oriented programming.

For open systems, a very large number of different types of information objects may be
transmitted. The producer knows the identity and order of objects within any data stream it
transmits, but it is presumed that the consumer has no prior knowledge of the data contents. A
mechanism is therefore required to identify and describe each information object in the data.
The usual mechanism is to provide supporting information, or metadata, that identifies and
describes the information objects. Some of the metadata acts like a table of contents or index

in helping to locate and identify the information objects. Software is then provided to browse
through a large set of information objects to find the specific objects required for an
application or to create a useful subset of objects. Metadata are also used to describe the
attributes of information objects and to describe the relationships between information

objects.

Numerous issues are associated with metadata. First, the mechanism for encoding and

supplying the metadata must be determined. Second, the amount and completeness of
metadata needed to describe information objects and their relationships is Inversely

proportional to the inherent level of the consumers understanding of the information objects
received. Producers must determine the metadata needed to make the transmitted data
understandable and accessible to the intended audience. The requirements are particularly

78

stringent for archiveddata, wherea data stream may be preservedbeyond the life of any
hardwareor softwarethat createdit or that can access it. In such cases, sufficient descriptive
information must be available to allow deciphering of the entire data stream.

Metadata are data, and like other kinds of data, generally require their own metadata to allow
receivers to understand and interpret them. This meta-metadata must also be provided. A
current mechanism for storing and providing some of this meta-metadata is a database called
a Data Dictionary or Data Entity Dictionary (DED). The DED defines information in a
consistent format.

C. Interpreting Information in a Data Stream

Received information must often be placed into a context broader than the containing data
stream. A common problem is unambiguously identifying and naming an object so that it can
be distinguished from all other information objects that exist in a large system. A traditional
method of naming the information objects held in computer systems is by location, for
example, directory path names for files. This method causes problems, however, when the
location of an information object changes, then references to the object (e.g., a file reference
appearing within a text document) must also change.

Another issue is how received information objects relate to other information objects within a
large system. Software reusability depends in large measure on this issue, for ff a piece of
software has applicability to a wide variety of data objects, a mechanism is needed for
determining which objects the software can and cannot handle. The inheritance mechanism
used in object-oriented programming addresses this problem by providing a hierarchy or
network to determine how each type of object is related to all other types. Typically in an
object-oriented system, software that works for one type of object will work for all objects of
that type and for all types of objects derived from the original type.

III. Overview Of An Information Interchange Reference Model

The IIRM consists of three layers, as shown in Figure 2. The layers support information
partitioning and a degree of information hiding, which grows as one moves from the lowest
layer to the top layer. This structure allows the functionality assigned to each layer to be
addressed separately and allows users to assume that the functionality of the lower layers is
provided in support of a given upper layer. An implementation need not adhere to strict

information hiding to be consistent with this model; access to information at a lower layer
may be needed to meet special circumstances. For a given implementation, the three layers
work together. Note that not every implementation will interoperate with other
implementations at the adjacent (lower or upper) layers.

The top layer of the IIRM is based on the object-orlented paradigm. This schema includes the
definition of base types, a type hierarchy, and relationships that model the process of

information interchange. Use of an object-oriented data model, by identifying the specific
objects defined and supported (either implicitly or explicitly) by various information
interchange methodologies, makes it possible to identify similar objects across
implementations and to compare the capabilities and mechanisms of each implementation.
This technique allows analysis of non-object-oriented methodologies through the
identification of the implicit objects that a methodology supports. In addition, an object-
oriented view allows for explicit definition of complex relationships among scientific data
and metadata. Current object-oriented data models do not discuss underlying representation
of data. Because such representation is an important aspect of science data exchange, the IIRM
augments the object-oriented data model with the additional (lower) layers that deal with data
representation issues.

The functionality addressed in each of the layers is described in the sections that follow.

79

E
@

__--0

ill

; Z

E

--0) _-,_
i IE.I z

!

@ li_ mmmm 7

o_

0
Q.

I

al

ql

!

0

l.i _i

Ill

i#i

q_Ac__ _
llr4111

_' II II II iI

"hdl

l,f'il

Q.
i#i

l.i
l.i

i,.,

E

c_

E

E

C_

1,1

_m

E
in

_m

80

A. Stream Layer

As noted previously, the IIRM augments existing models of the data transfer process, like the
OSI model. Because the IIRM addresses issues found in the user-oriented top layers (the
applications and presentation layers) of the OSI model, the fIRM can assume the existence of
protocols for the lower five layers of the OSI stack (the physical through session layers) and
need not duplicate the functionality of those lower layers. However, the IIRM applies not Just
for information interchange over networks; it is for information transported on media llke
tape and CD-ROM as well. The stream layer--the lowest layer of the IIRM--provides the
interface between the fIRM and medium-dependent standards, protocols and mechanisms for
data transport. It hides the unique characteristics of the transport medium by stripping any
artifacts of the storage or transmission process (such as packet formats, block sizes, inter-
record gaps, and error-correction codes) and it provides the higher levels of the IIRM with a
consistent view of data that is independent of its medium. This common view is that data are
simply collections of named sequences of bits. The term name here means any unique key for
locating the data bytes of interest, including path names for files, a virtual channel ID for
CCSDS telemetry, and so on.

Examples of standards and protocols that provide the functionality needed in the stream layer
are ISO 9660 for CD-ROM, ISO standard labels on magnetic tapes, and file transfer protocol
(FTP) on networks. For example, the ISO-9660 standard provides the volume and directory
information needed to locate a file on a CD-ROM volume and sufficient information about the

file format that a user retrieve the file as a sequence of bits. It ignores issues such as record
structure (fixed length or variable length). The returned file is simply a sequence of bytes at
this point; access to the information encoded within this file (or any other data stream) is
addressed in the structure layer, described in the next section.

B. Structure Layer

As mentioned previously, information must be coded into primitive data types that can be

recognized and accessed by computer hardware and operating systems. In the structure layer,
information is viewed as a sequence of primitive data types. For any implementation, the

structure layer defines the primitive types that are recognized. This usually means at least
characters and integer and real numbers. Primitive types can also include the aggregation
types typically supported in computer languages, Including the array (where each element
consists of the same type of data) and a record or structure that can (potentially) hold more
than one type of data. An enumeration type is also often provided as a primitive type. As noted
earlier, because of the efficiency constraints often imposed on space science data, users
sometimes create their own representations for primitive data types (e.g., 6-blt integer
numbers). Issues relating to the representation of primitive data types are resolved in this
layer.

All types of information are built from these primitive types. Through the structure layer, the
information is mapped into primitive types and then into the corresponding bits and bytes of a
data stream. Note that a single structure may be distributed among several streams. The issues
of the structure layer are often thought of as data format issues and are handled automatically
by DDLs.

C. Object Layer

The highest layer in the IIRM is the object layer, wherein information is represented as objects
that are recognizable and meaningful to end users. For scientists, this includes objects such as
images, spectra, and histograms. The object layer adds semantic meaning to the data treated by
the lower layers of the model. Some specific functions of this layer include the following:

Recognizing data types based on information content rather than on the representation
of those data at the structure layer. For example, many different kinds of objects--

images, maps, and tables--can be implemented at the structure level using arrays.

81

Within theobjectlayer,images,maps,andtablesare recognizedand treatedasdistinct
types of information.

* Presentingapplicationswith a consistent interface to similar kinds of information
objects, regardless of their underlying representations.

• Providing a schema mechanism to identify the characteristics of objects that are
visible to users along with the relationships between objects.

To characterize information in the object layer, the IIRM uses concepts and terminology that

have been developed in the object-oriented community. Agreement is not unanimous about
what constitutes an object-oriented approach, but most models of object-orlented systems
currently in use or in development share the key features needed. One such model, the concrete
object model developed by the Object Data Management Group (ODMG), is being used to
facilitate the standardization of Object Database Management Systems (ODBMSs). This paper
uses the ODMG's approach to describe the entities at the object layer of the IIRM. This model

can be briefly summarized as follows:

The basic modeling primitive is the object. As with real-world objects, information
objects can be arbitrarily complex. For example, in the real world, both a bolt and an
automobile are objects, although the latter is significantly more elaborate than the
former. Similarly, a pixel of an image, an entire image, and the entire dataset

containing the image can all be treated as objects.

• Objects can be categorized into types.

Instances of objects are created using object types as templates. Each object instance
possesses all the characteristics of its type. The set of all instances of a specific object
type is called that type's extent.

A type has one interface and one ol more implementations. The interface def'mes the external
public behavior supported by all instances of a type. The components of the interface are as
follows:

• Attributes--Characteristics of the object for which an external user can get the values

for any instance of the object

• Relationships--Logical paths an external user can traverse to move from an object
instance to related object instances

• Operations--Actions an external user can invoke on an instance of an object

An implementation defines the internal or private data structures and procedures that support
the externally visible states and behaviors. A single interface may have several alternative

implementations.

Object types are related to one another using the supertype/subtype (or parent/child)
relationship. This relationship links all object types according to their shared characteristics
and is commonly represented as an acyclic graph. For example, a type called Faculty Member
may have subtypes called Instructor and Associate Professor, and Faculty Member may in turn
be a subtype of Person. All of the attributes, relationships, and operations defined for a
supertype are inherited by the subtype. The subtype may add attributes, relationships, and
operations to introduce behaviors or states unique to the instances of the subtype. A subtype
may also refine the attributes, relationships, and operations it inherits to specialize them to
the behavior and range of state values appropriate for instances of the subtype.

82

IV. Model Schema For Scientific Information Interchange

The three-layer model Just described is general and can describe many data interchange
problems. The goal of the IIRM, however, is to have a model specifically suited to describing
scientific data interchange. In this section the model adds a domain-specific object-layer
schema that allows characterization and comparison of systems for scientific data
interchange.

To show what the description of an object looks like, Figure 3 presents a formal description of
an image as represented in the object layer of a hypothetical data system. The descriptions of

each component are given in plain English, although for a real data system the descriptions of
attributes, operations, and languages will typically be in a formal, computer-readable
language.

A key point about scientific data in general can be found in the description of relationships in
the sample: Manipulation of a primary scientific data object such as an image frequently
requires substantial auxiliary data. For example, interpretation of image objects requires a
knowledge of the camera detector calibration as well as geometric information--orbit
position, spacecraft inertial attitude, and the mounting and pointing of the camera on the
spacecraft. These kinds of information may be of scientific interest in their own right (for
example, the trajectory of a spacecraft reveals something about the number, position, and
masses of objects in the solar system), but ffin a scientific application they are primarily used
to analyze of other information objects such as images and spectra, these kinds of information
are auxiliary data. Auxiliary data can be collected into a set of objects. The attributes,
operations, and relationships for each type of auxiliary data object are highly dependent on
the object's role in data analysis. With orbit/attitude/pointing information, for example, there
may be attributes that indicate the inertial frame of reference (e.g., ecliptic and equinox of
date) and there may be operations to return spacecraft position at a specific time.

Another key point arises from the requirement that the IIRM be applicable to an open system
environment. In such an environment, it should be possible to devise software that can receive

and manipulate new types of objects with little or no reprogramming To do so such software
must have access to the metadata that describes the interface to each new object. A database of
interface definitions for objects is sometimes called an Object Interface Repository (OIR) or an
Object

Dictionary (OD); these are specific cases of a DED. Such a DED can identify the interface
components--attributes, operations and relationships--for the known types of objects. The
DED can also provide a formal definition of each of these components. A DED and the

definitions within it can be considered objects called metadata objects. Transferring metadata
objects from one DED to another or from a DED to an end user may require that the metadata
objects be encapsulated for transport other kinds of objects, so that metadata objects may exist
outside of the framework of a DED.

Given the complexities of scientific data, typical data requests may require the transfer of

several types of primary objects (for example, some images and their associated image-
intensity histograms), along with associated auxiliary objects, such as calibration files and
orbit/attitude/pointing data, and metadata objects that describe each of these other kinds of
objects. Thus mechanisms must be available for collecting other kinds of objects and
encapsulating them during transport; such mechanisms are called container objects.
Container objects may contain their own kinds of metadata: for example, they may provide a
sort of table of contents that identifies and locates each object within a container.

Figure 4 provides a preliminary class hierarchy. Each downward arrow indicates a subtype
relationship. For example, both Container Object and Data Object are subtypes of Object and
they inherit all the methods of Object.

83

Whenapplying the IIRM in the analysisof a data systemor a data interchangemethodology,
seekto identifythe typesofobjectsthat are usedby the system.Examplesof this analysisare
givenin the next section.Somedata systemscanbebestdescribedby modelingfrom the top
(i.e.,object layer)down,whereasothersarebetter suited for modelingfrom the bottom (i.e.,
streamlayer)up. Either a top-downor bottom-up approachmay beused when applying the
IIRM model.

Object Type

Description

Supertype

Subtype

Attributes

Operations

Subsample

Average

Generate Histogram

Relationships

Calibration

Pointing

Image

An image represents a mapping of the intensity of electromagnetic
radiation in two or three spatial dimen,_ions. Digital images consist
of a set of picture elements, or pixels, with the value of each pixel
proportional to the intensity of light measured by the camera system
within the areal extent of the pixel.

Image is derived from type Array, which describes homogeneous
multi-dimension data structures. Type Array is in turn a subtype of

the most basic type called Object

Subtypes of this type can be created to characterize images taken by

spec_c camera systems.

The following are the attributes--the visible characteristics--of

images:
• Number of dimensions (2 or 3) in the image [positive integer

numbers]
* Number of pixels in each dimension [positive integer number]
• Number of bits per pixel [positive integer number]
• Content [character string]
• Time that picture was taken [date/time]

• Exposure thne [time]
• Wavelength or frequency range [real numbers]
. etc.

The following are the operations that can be performed on all

images. These augment the set of operations that are inherited from
the parent type Array.

Create a new image consisting of a contiguous set of the pixels from

an image.

Create a new image by averaging a specified number of contiguous

pixels from an image.

Create a Histogram object for which each element is the total number
of pixels within an image with a given intensity value.

The following are relationships involving image objects:

This relationship relates an image to a characterization of the
sensor that took the image.

This relationship relates an image to where the camera is pointing.

Figure 3. Sample Type Description of an Image

84

V. Applying The Reference Model

In this section, the IIRM is used to characterize current data exchange methodologies as
follows:

I. Identify the primary object types defined by the methodology at the object layer, along
with the auxiliary, metadata, and container objects used.

2. Identify the primitive data types defined in the structure layer and the way the object-
layer entities map to the primitive types in the structure layer

3. Identify the media and data exchange mechanisms supported at the stream layer.

The following data interchange methodologies are described here:

• Hierarchical Data Format (HDF)

• Planetary Data System (PDS)

• Standard Formatted Data Unit (SFDU)

Figure 5 summarizes the key characteristics of these methodologies.

A. Hierarchical Data Format

The HDF was created by the National Center for Supercomputing Applications (NCSA) to
provide access to common types of scientific data. An HDF is a self-describing file format that
contains a set of tagged objects. NCSA provides a comprehensive library of routines in C and
FORTRAN to create and to retrieve data from HDF files. In addition, there is a sizable body of
applications software, both public domain and commercial, for accessing data in HDF format.

HDF has been selected as the baseline standard data format for the Earth Observing System
Data and Information System (EOSDIS). Consequently, the HDF data model is undergoing
significant evolution to provide high-level data types commonly used by scientists to model
Earth-related phenomena. The following analysis is based on Version 3.3 of HDF, released in

Object I

I I

September 1993.

Container

Objects DataObjects

! I

MetadataObjects AuxiliaryData Objects

Figure 4. IIRM Object Layer Class Hierarchy (Preliminary)

85

PDS

Stream Layer

Structure Layer

Object Layer

Requires file
structure
Uses

FTP/DECNET or
disk structure

ODL labeled

objects
Machine

dependent
datatypes, IEEE
datatypes

• Limited class

hierarchy
* No methods

defined other than
attribute retrieval

• Data Objects
- Images
- Histograms
- Spectra
- Tables

• Container Objects
- Files
- Volumes

• Metadata Objects
- Catalog
- Data Entity

Dictionary
• Auxiliary Data

Objects
- SPICE Kernals
- Gazeteer

Objects

HDF SFDU

Allows any level of
service that

supports
conversion of bits

to bytes
Stream of Label-

Value Objects
Data Definition

Language allows
wlde specification
of primitive types
and "record

structures"
• No current class

hierarchy
• No methods

defined other than

object
insertion / retrieval
from containers

• Data Objects
- Application Data

Objects
- Supplementary

Data Objects
• Container Objects

Requires direct
access file
structure

Tagged record
structure
Machine

dependent
datatypes, IEEE
datatypes

No current class

hierarchy
Formal Application

Program Interface
(API) for each data

type
Data objects
- Raster Images
- Palette
- Multidimensional

Array (SDS)
- Tables (Vdata)
Container Objects

- Exchange Data
Units

- Application Data
Units

- Description Data
Units

- Vgroups
- Files

Metadata Objects
- Annotation
- Attributes with

SDS
Metadata

- Data Description
Packages

- Data Entity
Dictionary
Objects
Catalog Attribute
Objects

Auxiliary Data
Objects
- Supplementary

Data Objects

Figure 5. Preliminary Descriptions of HDF, PDS, and SFDU Using IIRM

86

Ob.teaAazU_

HDF provides a set of Application Program Interfaces (APIs) through which all application
data access must occur. The primary data objects within HDF are classified by the relevant
API. These APIs are equivalent to defining the external interface (i.e. operations and
relationships) of objects at the IIRM object layer in that they are independent of the internal
implementation of the objects within HDF files. The APIs currently defined are:

Raster Image API: Allows the user to store and access raster images and optional color
palettes. Three optional forms of image compression are supported: JPEG, run-length
encoding and IMCOMP compression.

• Palette API: Defines color tables for 8-bit raster image data.

Scientific Data Set (SDS) API: Allows the storage and access of multidimensional
arrays with specific attribute data. The interface provides the ability to slice an array
and work with the resulting subset of the data.

NetCDF API: Also a11ows storage and retrieval of multidimensional arrays. This API
supports the netCDF data model, developed by the Unldata program of the University
Corporation for Atmospheric Research, which is a richer data model than SDS.
Additional features include an "unlimited" dimension and global and local attributes.

Vdata API: A11ows storage and retrieval of collectlons of data that can be viewed as
record structures. This includes data meshes, polygonal data with connection
information, packed data records, and sparse matrices.

• Vgroup API: Allows general hierarchical grouping of HDF objects.

• Annotation API: Allows labels and unstructured text to be associated with any HDF
object or with an entire HDF file.

HDF does not support the concept of type hierarchies and formal inheritance. NCSA's
commitment to backward compatibility with previous versions of HDF has led to some
features that would probably be implemented differently if the system had been engineered to
be object-oriented from the outset. For example, the NetCDF API is a pure superset of the SDS
API, since these two APIs developed separately, the relationship between the SDS and NetCDF
is not a true subclass/superclass relationship.

_/maum._uet

The structure layer in HDF supports a standard set of primitive data types including real
numbers (IEEE floating point), integer numbers (unsigned and signed 2's compliment), and
character strings (big-endian byte ordering). In addition, HDF can store the machine-specific
representation of reals, integers, and character strings for supported platforms.

The basic building block of an HDF file is the data object, which contains both data and
information about the data. A data object has two parts: a 12-byte data descriptor (DD) and a

data element. Figure 6 below illustrates two data objects.

A DD has four fields: a 16-bit tag, a 16-bit reference number, a 32-bit data offset, and a 32-bit
data length. The tag of a DD tells what kind of data is contained in the corresponding data
element. A tag and its associated reference number uniquely identify a data element within an
HDF file.

87

Data Descriptors

[Rankanddlmensions I' J

L°°,, It

Data Elements

v 2; 90 by 100

] 63.2, 54.5, 12.3,...

16.2, 103.6, -7.4
• • ;

lkl. 83.6...

Figure 6. Two HDF Data Objects

DDs are stored in a linked list of blocks called data descriptor blocks, or DD blocks. The file
header, DD blocks, and data elements appear in an HDF File in the following order:

• File header

* First DD block

* Data elements

* Additional DD blocks and data elements

HDF depends on a stream layer that provides direct access capabilities. The tagged structure in
the structure layer requires efficient seeking to specific locations in a single HDF file. HDF
files may be stored or transmitted on sequential media, but they must be moved to direct access

media before they are accessed.

B. Planetary Data System

The PDS acquires, archives, and distributes much of the data that NASA collects on bodies in
this solar system other than Earth, including planets, comets, and asteroids. When the

prototype of the PDS began in 1983, it inherited substantial amounts of existing planetary
science data in many different formats. It was not practical to reformat all of those data into a
standard representation, therefore, the PDS developed a methodology for describing data in a

way that both human users and computers could identify and understand the content of a data
file or stream. This methodology describes data objects that are set forth in a language called

the Object Description Language (ODL). A label (typically called a PDS label) encoded in ODL is
attached to every data file or data stream that flows into or out of the PDS to identify the

objects in the file or stream. Gradually the PDS evolved a relatively comprehensive set of
standard objects and data providers are encouraged, even required, to submit data in a format
that is consistent with the standard objects definitions. The standard objects are defined

through the Planetary Science Data Dictionary (PSDD).

88

PDSobjectmodelIs still In developmentandthe descriptionbelowincludessomenewfacetsto
the modelthat arecurrently beIngadoptedandformalizedthroughthe PSDD.

Primary Objects

The two simplest types of objects, called Element and Bit Element, can hold a single instance of
a primitive data type. The two are similar, but the Bit Element type can handle primitive data
that are not aligned on byte boundaries. There are two general aggregation objects--Array and
Collection that hold element objects. An array is homogeneous---all elements must have the

same underlyIng primitive data type--while the collection can be heterogeneous, which makes
it analogous to the record or structure data type found In many data models.

The PDS also provides several primary data objects that are specialized for space science
applications. These include:

• Histogram

• Image

• Table

• Spectrum

PDS does not use the inheritance mechanIsm to def'me subtypes of these objects. Instead, each
of these object classes provides all the attributes needed to describe nearly all Instances of the
object. For example, all images are objects of type Image. Figure 7 describes the image object.

Three aspects of the PDS object model, as illustrated above for images, deserve elaboration.
First, there are only a few PDS objects that have formal subtypes. Specifically, there are
several important subtypes of the Table object, Including a Palette object to hold color table
information for image dIsplay and a Series object to hold time series (or similarly organized)
data.

Second, no currently no formal operations defined for images or any other type of PDS object

exist. There are several reasons for this omission, includIng the difficulty in agreeing on what
the standard operations should be and neither the PSDD nor the ODL used for PDS labels

currently have the syntax or semantics necessary to describe operations. A unique problem
with definIng standard operations arises when PDS object types like Image are designed to
cover a vast extent of object instances, with no use of subtyping to provide specialization. This
means that some PDS object types are so complex that there is no single piece of software that
can account for all the possible permutations of their optional attributes. For example, no
single piece of software can handle all Instances of PDS images.

Third, there are no formal relationships defined for PDS objects, except for the limited use of
supertype/subtype as noted above and a simple relationship called Contains indicates an
object holds other types of objects. The most notable example of the Contains relationship is
the Table object, which contains one or more Column type objects. In general, if two or more
instances of PDS objects are related--for example, an image and its associated histogram
together within a file--this relationship is only implicitly indicated by the objects that are
contained within the same File and described together by the same PDS label.

Auxiliary ObJects

The planetary community has developed a standard representation for orbit/attitude and

pointing auxiliary data. This standard is called SPICE, where the letters of the acronym stand
for the kinds of information that are handled: spacecraft, planets, Instruments, coordinates,

89

and events. The Navigationand Ancillary Information Facility (NAIF)at the Jet Propulsion
Laboratory tJPL) provides auxiliary data to projects in SPICE format. The NAIF also
maintains the SPICE standard and provides an extensive Fortran library of operations to

support SPICE-encoded data. SPICE files (called SPICE kermels) are considered to be PDS
objects and their attributes are defined through the PSDD.

obje_-t Typ_

Description:

Supertype:

Subtype:

Attributes:

Operations:

Relationships:

Image

An image represents a mapping of the intensity of electromagnetic radiation
in two or three spatial dimensions. Digital images consist of a set of picture
elements, or plxels, with the value of each pixel proportional to the intensity

of light measured by the camera system within the area extent of the plxel.

PDS has no formal inheritance mechanism, hence there is no formal

supertype for type Image.

There are no formal subtypes since there is no formal inheritance
mechanism. In practice there are numerous subtypes of images, since the

standard image format produced by each of the cameras abroad a planetary
spacecraft can be considered to be a subtype of type Image

The following attributes are mandatory and must appear in each description

of an image object instance:
• Lines--number of scan lines in image
• Line_Samples--number of scan lines in image
• SampleType--Type of primitive data that makes up a plxel of the image
• Sample Bits--The length ofa pixel. There are also a large number of

optional-attributes which may or may not appear in a description for an
image object instance, depending upon whether or not they are needed (if
omitted, they each have a default value). A representative set of the

optional attributes for Image are given below:

There are also a large number of optional attributes that may or may not
appear in a description for an image object instance, depending on whether
or not they are needed (if omitted, they each have a default value). A
representative set of the optional attributes for Image are given below:
• Bands--The number of spectral bands in an image
• Band_Storage_Type--Method used to interleave spectral bands in a

multi-spectral image
• Encoding__Type--The method used to compress an image, ffany
* Line_PrefixBytes---The number of bytes at the beginning of a scan line

that contain non-image data (for example, gain information or timing
data)

° Line_Suffkx Bytes--The number of bytes at the end of a scan line that
contain non-image data

The PDS does not formally define operations upon objects.

There are no formal relationships defined for Image objects.

Figure 7. Description of PDS Image Object Type

Another type of PDS auxiliary data is the Gazeteer object, which is a subtype of the Table object
that provides information about geographical features on planets and satellites. For example,

it provides the name of a feature or region, the body on which it is found, and its coordinates on
the body.

9O

Metadata Objects

The PDS defines a set of metadata object classes called Catalog Objects. They are used
primarily to provide a template for data providers who are supplying information to be placed
into the PDS catalog of data holdings. Some catalog objects are also used to augment the
standard attributes of data objects. A prime example is the Map Projection catalog object,
which provides a set of attributes that define a map projection. Frequently the raw images
from planetary spacecraft are processed by mapping their pixels onto a standard map
projection grid. When an object of this kind is created, a Map Projection catalog object is
placed within the Image object in a PDS label to describe the map characteristics of the data.
Users can correlate each plxel of the image with its location on the planet from information
from the Map Projection object.

Conta|ner Objects

The PDS has several objects that serve to collect other objects. The most important is the File
object, since most PDS data are transferred within files. Since much of the data that the PDS

distributes is on volume-oriented media like CD-ROM, there is also a Volume object to provide
information on the organization of a collection of fries.

PDS container objects often have their own metadata. There is a Header object, which defines
the headers that in turn describe the contents of data fries. Aside from the standard PDS labels,

this includes the VICAR labels found on many planetary images and the FITS headers found on
many planetary datasets derived from observations with earth-based telescopes.

Structure Layer

The PDS has a fairly ordinary set of primitive scalar types: character strings, integer, and real
numbers, enumeration types. It also uses the CCSDS format dates and times, allowing these to
be considered primitive types as well.

There is no single required representation for primitive types. It is the instantiatlon of a
primitive type as an Element type object, or as a component of some other kind of object (like a
plxel of an image), that determines its format. Thus primitive types like numeric values can be

represented in nearly any computer's native format. The PDS label that describes a data object
provides information on the encoding of the primitive data types within the object. For
example, a PDS label will identify whether or not the real number values that make up a
histogram object are encoded in VAX format, IEEE format, or another type of format.

There is no separate data definition language for PDS-labelled data, because the PDS labels

contain information needed to understand the structure layer, A PDS label does not as a rule
provide a complete structure layer mapping: it does not rigorously establish the position of
every data item in the object. Users have to rely upon numerous implicit rules to map from the
PDS label's description of objects to the underlying representation of those objects within the
structure layer.

Stream Layer

Small amounts of data are sometime provided to users over the NASA Science Internet.

Typically FTP or DECNET file copy is used to transfer fries over the network. Larger quantities
of data are typically provided to users on CD-ROM. There are many CD-ROM titles that adhere
to PDS standards. These disks adhere to the ISO-9660 standard. There are currently no specific

stream layer services provided by the PDS to access data files in a way that is transparent of
the medium of transport.

91

C. Standard Formatted Data Units

The CCSDS Panel 2 has been developing, adapting, and adopting standards to improve
information interchange within and among space agencies. CCSDS standard
recommendations have been developed in support of a methodology called SFDUs. Briefly, this

methodology involves the association of a small label with a collection of data values, forming
a labeled value object (LVO), and the incorporation within the label of a globally unique
identifier (i.e., Authority and Description Identifier, or ADID) of a description of the data
values. This description may be a CCSDS Panel 2 standard and thus be found in a formal
CCSDS recommendation document, or it may be defined by a user and be found at a Control

Authority Office (CAO) set up by a participating agency conforming to the CCSDS standard
titled "Control Authority Procedures." The primary function of a CAO is to register, archive,
and disseminate data descriptions in response to user requests. These descriptions may
themselves be composed of several labeled objects, including a formal (computer interpretable)
description of the format of the data values, a text description of the mission and
instrumentation involved in the creation of the data values, and software that may be used to

obtain particular services from the data values. As such, these description LVOs may also be

packaged with the data LVOs to form a self-describing data package.

Stream Layer

The SFDU standards assume the existence of stream layer services such as those provided by

the volume/directory fde system on a CD-ROM, the sequence of files on an ISO/ANSI standard
labeled magnetic tape, and FTP for network file transfer. The provision of a sequential byte (8-
bit) stream is the minimum requirement of the SFDU standards, while the use of named (e.g.,
directory/file names) byte streams permits the construction of sequences of labeled data
objects that cross multiple files on random access media. This functionality is described in the

Structure Layer.

Structure Layer

The standard titled "SFDU Structure and Construction Rules" is the primary CCSDS Panel 2
standard that interfaces with stream layer services. It defines an SFDU 20-byte label to

support three primary functions:

1. Provide mechanisms to determine the end of a sequence of data values (i.e., encapsulate

the data values) associated with the label

2. Provide a code which gives a general classification (e.g., data, data description package,

supplementary data) to the encapsulated data values

. Provide a globally unique identifier of a description (e.g., data description package) of
the encapsulated data values. It also defines a number of standard descriptions and

assigns globally unique 8-character standard identifiers (e.g., "CCSDO001") to them.

Application of this standard to the stream layer converts the byte stream view into a view of a
sequence of hierarchically organized labeled value objects. This sequence may span multiple
fries on both sequential and random access media. One or more such sequences may be defmed
on a physical volume, or within a single file. There is no explicit provision for crossing
multiple physical volumes with a single sequence, but it is possible if this is supported by the
stream layer. It should be noted that the standard can be applied in such a way that many files
are not required to contain labels. Thus the standard can also be applied to pre-existing data
streams and to fries conforming to other standards.

The labeled value objects at the lowest level of the hierarchy have a content that appears as a

sequence of bytes from the stream layer. The structure layer function of interpreting this
sequence of bytes into a sequence of primitive datatypes (e.g., integers, characters, and reals) is
accomplished by interpretation of the Data Description Record (DDR) found within the Data

92

DescriptionPackage(DDP)identifiedin the label.This linkageof information is illustrated in
Figure8.

TheDDRcanbeexpressedin a numberofstandardlanguagesthat have beendocumentedin
CCSDSstandards.Currently theseinclude "ASCIIEncodedEnglish (CCSD0002)","Parameter
ValueLanguage(CCSD0006)",andthedraftstandard "EnhancedAdaSubset(EAST)."Thelevel
of language-relatedautomatedsupport for accessto the labeledvalue objectdependson the
languageselectedand rangesfrom presentation(e.g.,ASCII/Engllsh)ofa textdescriptionofthe
recordstructure(s)within thevalueto full parsingof recordstructures (e.g.,EAST).Alternative
support maybeobtained from softwareassociatedwith the particular ADID. This software
maybeprovidedas anadditionalobjectwithin the DDP.

DDPsarearchivedin aCAOsothat any DDPsnot presentin the data streammay beobtained
from theCAO.DDPsareexpectedto providea completedescriptionof the valueswhoselabels
contain their ADID,and in addition to the DDRwhich supportsthe structure layer function,
they are likely to include a DED objectand other semanticswhich may beused to support
objectlayerservicesasdescribedin the nextsection.

The SFDUstandards providea very generalmechanismfor representingand transmitting
dataobjects.The SFDUstandardsdo not currently providea fully object-orientedapproach:
there is no classhierarchy; nor are methods defined,other than servicesfor insertion and
retrievalof data from containers.But SFDUscanbeusedto encapsulatedataobjectscomplete
with their attributes and methods. SFDUsalso provide container objects for combining
collectionsof primary objectswith the auxiliary data and metadataneededto interpret them.
Thusthe SFDUconceptisoneofaveryfewdata interchangemechanismsthat aredesignedto
encapsulateand transmit all of the kinds of informationcontained in a scientific data system,
whether object-oriented or not.

Prlmary Object_

Unlike the PDS and HDF methodologies described above, there are no specific primary data
objects in the SFDU concept. Instead the SFDU standards provide a general object class called
an Application Data Obj.'ect (ADO). (Each SFDU object class has a one-letter identifier and an
ADO is also called an I class object. As described in the Structure layer discussion, the ADID in
the label points to a DDP that fully describes the LVO. The Data Entity Dictionary (DED) with
the DDP gives all the attribute names for the LVO type. In the future the DED will also contain
relationship information about the LVO type. The DED is further described later in this
section. For example, a scientist can use the ADID of an ADO to determine whether the data in
the SFDU is an image, map, spectrum, or whatever, and to tell whether the object IS the FITS
format, PDS format, or some other format.

Auxiliary Objects

Since the SFDU standards have been developed with scientific applications in mind, there Is a
specific class of SFDU called the Supplementary Data Object (SDO) (or S class) that IS used to
contain auxiliary data. For example, if a spectrum is transferred in an ADO the calibration
information for the spectrum can be placed into a SDO and the S class supplemental SFDU can
then be transferred with the I class SFDU that holds the spectrum. As with ADOs a SDO may
contain virtually any kind of data in any format desired, and the ADID for the SDO provides
the key to determining the content and format of the object.

93

I

Label

Value

Label Value Object (L VO)

(Includes ADID and
Class Identifiers)

Data Object Consisting
of Sequence of Bytes, Record(s),

or File(s)

(ADID=Authority and Description
Identifier)

ADID Identifies

a Description

Describes Value

Typical Data Description Package
(DDP}

ADID Name

(Name of This
Description)

Data Description Record (DDR)
(Description of Format Used for All

Values Whose Labels Carry the ADID
Name of This Description)

Data Enity Dictionary (DED)

(Further Description of the Data
Elements and Their Collection as

Identified in the DDR)

Further Description Objects

Figure 8. SFDU Label Value Object and Its Description

94

Metadata Objects

An important aspect of the SFDU concept is the ability to encapsulate metadata as well as data.
There are three types ofmetadata objects defined by the SFDU standards:

DDO (or D classY-These objects are used to hold the data descriptions that map an
SFDU object for example, an ADO---into the structure layer. The definition is given in
a DDL. A DDO provides the mapping for a specific instance of an SFDU object. For
example, a DDO may provide the data definition for a specific data table. Other data
tables may have very different representations and hence would have their own DDO to
describe them.

DED Objects (or E class)--These objects are used to hold descriptions from a DED. The
descriptions define types of objects rather than specific object instances. They can also
define the terms used in object type definitions. For example, if an object has an
attribute called Length, a DED object can specify the minimum and maximum values
allowed for Length. The CCSDS is currently completing work on a standard
representation for the information within DED objects. This standard representation
uses the Parameter Value Language (PVL) to encode the DED information.

Catalog Attribute Object (CAO) (or K class)---Data systems often maintain a catalog---a
database that describes the data held within the system. The CAO can be used to

transfer information to and from a catalog or a similar database. When a data system
transfers applications data to a user it will often provide the pertinent catalog
information or other attributes for the transferred data objects. The CAO supports this
by holding the attributes of a set of ADO wrapped within a container SFDU. As with
other types of SFDUs, the form and content of a CAO are not constrained by the SFDU
standards. The information might be given in tabular format, where the columns are
the attributes of the objects that are being described and each row of the table contains
all the attributes for one data object. Alternatively, catalog attribute information can
be given using PVL or a similar keyword/value notation, where there is a
keyword/value pair for each attribute of each object.

Contalner Objects

The SFDU methodology provides three types of container objects:

Exchange Data Units (or Z class)--These objects are the most general encapsulation
mechanism for SFDUs. An Exchange Data Unit (EDU) can hold essentially any
combination of the SFDU objects described in this section, including other EDUs.

Applications Data Units (or U class)--These container objects can be used to aggregate a
set of related ADOs and SDOs. An Applications Data Unit (ADU) may include a CAO that
describes the other objects in the container. An ADU can also hold other ADUs.

• Description Data Units (or F class)---These container objects can be used to aggregate
DDO, DED Objects, and any other metadata objects.

VI. Relationships With Other Reference Models

This section provides a comparison of the IIRM and two other models: the IEEE mass storage
system reference model and the familiar OSI reference model for communications.

A. IEEE Mass Storage System Reference Model

Information on the Mass Storage System (MSS) Reference Model (RM) was obtained from the
paper "Mass Storage System Reference Model: Version 4", which was published in the

95

proceedingsofthe GoddardConferenceonMassStorageSystemsand Technologies,VolumeI,
1992.

The MSS RM establishes a client server environment to provide accessto a (potentially)
distributedsystemthat acceptsand returnsnamedBitfiles. This storagemodeladdressesdata
interchangeovertime(i.e.,storage),but not overspace(i.e.,an instanceof a MSSis not moved
to a newlocation).In contrast,the IIRMaddressesdata interchange over both time and space.
Since data moved over time and space may end up stored in a MSS, it is useful to perform a

mapping between the IIRM and the MSS RM.

The MSS RM named Bitfiles appear to be virtually identical to the named bit streams that the
IIRM Stream Layer provides to the Structure Layer. The one ex:eption is that the MSS RM
Bitfiles also have a set of attributes such as file creation date, file owner, etc. Such attributes

have not been called out explicitly in the IIRM, although they must exist and be accessible to
the Structure and Object Layers. In other words, the entire MSS RM addresses functionality
covered in the IIRM Stream Layer.

B. ISO Open Systems Interconnect Reference Model

The ISO OSI RM addresses the interchange of information over time and space using electronic
networks. In contrast, the IIRM applies to both networks and physical media as interchange

mechanisms.

The OSI model is a seven-layer model, which makes use of the information hiding principle of

layers. The functionality of layers one through five (Physical through Session Layers) is to
establish a connection between two communicating nodes and effect the transfer of data bits
between them. This is similar to tile functionality of the IIRM Stream Layer, although the

name capability associated with this bit stream as output from the Session Layer appears to

depend on the particular protocol standards defined for this layer.

The sixth layer of the OSI model, called the Presentation Layer, is intended to convert a bit
stream into recognizable data types. While it is hard to determine from the OSI model itself the
extent of thls functionality, a clearer picture emerges from an examination of the ASN. 1

protocol defined for this layer. For this layer, the functionality is similar to the fIRM
Structure Layer, which includes the identification of common data types, and their

aggregation into named structures.

The seventh, and top, layer of the OSI model, called the Application Layer, is intended to

provide user applications with a number of common services. The types of services to be
provided, as shown by some of the protocols defmed for this layer, include electronic marl, a
directory service, and a file transfer service. There is considerable parallel with the IIRM
Object Layer, as these layers are intended to provide user applications with a service view of the
underlying data structures. Differences Include the object orientation of this layer in the IIRM

(although an object view of the Application Layer should be possible) and the IIRM focus on
understanding scientific data by focusing on identifying objects of scientific interest. The fact
that the OSI model addresses network functionality leads to identifying Application Layer
services for what are highly common network service needs (e.g., electronic mail). The types of

objects (and their services) being addressed by the IIRM Object Layer could, in principle

through standardization, enter an expanded OSI Application Layer.

The OSI Application Layer file transfer service, differs from the IIRM file transfers that ale
handled within the Stream Layer. This is not a contradiction to the mapping between the

models just described. The functionality requested from a file system in the IIRM is to provide
named bit streams. The functionality provided by an FTAM file transfer in the OSI

Application Layer includes the recognition of common data types. The IIRM views the
recognition of data types, and the provision of services from them, are more usefully obtained
from an object view, not from a file view. Mechanisms that take this object view could use an
FTAM service, in principle, in either of two ways: I) by not using the capability of ASN. I to

96

describethedata types,and insteaddescribingthefile contentasa bit string, therebyreducing
FTAM to simply providing named bit streams, or 2) by using FTAM to include the
functionality of the IIRMStructure Layer,and then providing an objectview of the FTAMfile
content.Thesevariations in mappingreflectoptionson the levelof servicesrequested,and the
waystheymaybecombined.

VII, Summary And Future Plans

The IIRM provides a basis for comparing data systems and data interchange methodologies at
three levels: as represented by a stream of bits (the stream layer); as a stream of primitive
elements (the structure layer); and as a collection of objects. By applying this model
similarities and differences can be called out in the systems that are used for scientific data
interchange and data analysis. The object layer of the model is unique as it accounts for
primary scientific data like images and spectra that require auxiliary data for interpretation,
metadata for description, and containers for encapsulation. The fIRM allows the user to
describe how all these elements fit together for a specific data system or application.

In the future the IIRM will be refined and the model applied to data interchange systems other
than the three that were analyzed in this paper. This analysis should permit data system

designers and implementers to improve the compatibility and uniformity of information
interchange where practical. This may, for example, make it possible for a scientist to
compare spectra of the Earth's atmosphere with those from other planets, even though the
spectra may be retrieved from different data systems in quite different formats. Capabilities
like these will be especially important if we want to reduce the burden on scientists from

dealing with the form rather than the content of scientific data.

97

