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Summary

The predictions of regressive lag-mode damping levels are correlated with the database of an isolated,

soPt-inplane, three-blade rotor operated untrimmed. The database was generated at the Army

Aeroflightdynamics Directorate at Ames. The correlation covers a broad range of data, from near-zero

thrust conditions in hover to high-thrust and highly stalled conditions in forward flight with advance ratio

as high as 0.55 and shaft angle as high as 20 o . In the experimental rotor, the airfoil or blade portion has

essentially uniform mass and stiffness distributions, but the root flexure has highly nonuniform mass and

stiffness distributions. Accordingly, the structural approximations refer to four models of root-flexure-

blade assembly. They range from a rigid flap-lag model to three elastic flap-lag-torsion models, which

differ in modeling the root flexure. The three models of root-flexure are: 1) three root springs in which

the bending-torsion couplings are fully accounted for; 2) a finite-length beam element with some average

mass and stiffness distributions such_that the fundamental frequencies match those of the experimental

model; and 3) accurate modal representation in which the actual mass and stiffness distributions of the

experimental root-flexure-blade assembly are used in calculating the nonrotating mode shapes. The four

models of root-flexure-blade assembly are referred to as the rigid flap-lag model, spring model, modified

model and modal model. For each of these four models of the root-flexure-blade assembly, the

predictions are based on the following five aerodynamic theories: (i) finear theory, which accounts for

large angle-of-attack and reverse-flow effects on lift, and has constant drag and pitching moment; (ii)

quasisteady stall theory, which includes quasisteady stall lift, drag and pitching moment characteristics of

the airfoil section; (iii) dynamic stall theory, which uses the ONERA dynamic stall models of lift, drag

and pitching moment; (iv) dynamic wake theory, which is based on a finite-state three-dimensional wake

model and includes all wake effects including both shed and trailing vorticity; and (v) dynamic stall and

wake theory, which combines both dynamic stall theory and dynamic wake theory and is a relatively

complete aerodYnamic representati_n_The number of modes in the modal representation, the number of

radial shape functions and temporal harmonics in the wake representation and the number of blade

elements in the dynamic stall representation are gradually increased for converged results of damping.

The periodic forced response and the Floquet transition matrix about that response are obtained by



periodicshooting;the dampinglevelsaregeneratedfrom a full Floqueteigenanalysisthat includesall the

structural and aerodynamicstates.The correlationdemonstratesthe needto include dynamicstall and

three-dimensionalwakein lag-dampingpredictions.

Notation

Unless otherwise stated, the symbols below are dimensionless:
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linear lift curve slope, (rad -1)

damping factors in dynamic stall drag and pitching moment models

airfoil semi-chord, (l/R)

airfoil chord, (l/R)

airfoil sectional drag coefficient and constant profile drag coefficient

airfoil lift and pitching moment coefficients

airfoil pitching moment coefficient at zero angle of attack

thrust coefficient

phase shift parameter for dynamic stall lift

blade hinge offset for the spring model (Fig. 2a), (l/R)

length of the hub segment in modified model (Fig. 2b), (I/R)

phase shift parameters in dynamic stall drag and pitching moment models

7-

polynomial number

b/x

root spring rates in flap and lag, respectively (Fig. 2a), (Nm/rad)

root spring rate in torsion (Fig. 2a), (Nm/rad)

length of the blade from the hinge to tip (equal to 1-% for the spring model and 1-e I for

the modified model)

blade sectional lift of the i-th blade, (N/m)

local aerodynamic forces (Fig. 3), (1/pbf22R 3)

apparent mass lift normal to the chord line, (l/pbf22R 3)
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influence coefficient matrices

harmonic number

aerodynamic pitching moment, (1/9bf22R4c)

noncirculatory aerodynamic pitching moment per unit length, (1/pb_2R4c)

mass matrix

polynomial number

normalized Lengendre Polynomial (n,m) of the first kind

number of blades

harmonic number

frequency parameters in dynamic stall drag and pitching moment models

length of the root flexure (Fig. 2b), (I/R)

radial station of the i-th blade, (I/R)

rotor radius, (m)

flap-lag structural coupling ratio

time parameter

axial deflection, (I/R)

resultant air velocity at a blade station (Fig. 3), (1/C2R)

lag bending deflection, (l/R)

inflow parameter

total inflow parameter

diagonal matrix with elements V t, V, V, ..+, V

dynamic stall lift frequency and damping parameters

flap bending deflection, (l/R)

radial distance measured from the rotor center, (l/R)

blade airfoil section angle of attack, (rad)

wake states

shat_-tilt angle, (deg)
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circulation per unit length, UC 1

circulation-like drag per unit length, UC d

circulation-like pitching moment per unit length, UC m

pitch-rate coefficient, (rad- 1)

pitching-moment parameter

airfoil rotation rate with respect to airmass

pre-pitch of the root-flexure (Fig. 2a), (deg)

collective pitch angle, (deg)

time-delay parameter

total inflow

downwash on the i-th blade

thrust induced inflow

advance ratio

elastic twist, (rad)

radial shape functions

=!_r v= -
*_(fi) v j(v); #-ri2 )

elastic twist at the blade root in Fig. 2a, (rad)

negative of lead-lag mode damping exponent, (l/sec)

rotor solidity

azimuthal location of the i-th blade

air density (kg/m 3)

rotor angular speed, (rad/sec)

inflow forcing functions

unstalled and stalled components

x and y components

time derivative of x
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Introduction

The current capability to predict helicopter lag damping needs significant improvements. Four

considerations make the prediction difficult and motivate the present investigation based on Floquet

theory. First, drag, induced drag and Coriolis forces are delicately balanced in the inplane direction.

Therefore, from hovering to high-speed flights, a wake representation that goes well beyond dynamic-

inflow and lift-deficiency-type approximations is required (Ref 1). Second, with increasing demand on

the stability margins of high-speed and highly maneuverable helicopters, high-thrust conditions in forward

flight become increasingly important. Thus, the complex phenomenon of dynamic stall becomes an issue

(Refs. 2-4) and needs to be accounted for as well. Third, lag-damping prediction is sensitive to modeling

the rotor system and its flow field. It is also sensitive to the accuracy of computing the periodic forced

response, the Floquet transition matrix about that response and the eigenvalues of this matrix. Thus, it is

important that a consistent sophistication is maintained from modeling to response analysis to

eigenanalysis. Often this requires that all the structural and aerodynamic states are included not only in

response analysis but also in eigenanalysis (Ref 5). This is a demanding and expensive exercise; with lag

bending, flap bending and torsional degrees of freedom, even simplified research models of multiblade

rotors with wake and stall dynamics routinely lead to nearly 200 structural and aerodynamic states for

converged results. Fourth, given the complexity of the rotor system and its flow field, it becomes

necessary that the predictions are checked against a broad range of model test data. Currently the

database is severely limited. Although not typical of operational rotor systems, the database due to

McNulty is an exception (Ref 6). It is comprehensive to include near-zero thrust conditions in hover and

forward flight to high-thrust and highly stalled conditions in forward flight (0 _< j,t _< 0.55, 0 ° _< 0 o _< 6 °,

0 ° _ c% g 200); for details, see Refs. 2 and 7.

Given this background, we review the aeroelastic stability studies with dynamic stall and/or three-

dimensional wake modeling. The use of both stall and three-dimensional wake modeling is almost routine
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in loads and vibration studies. By comparison their use is far less common in stability studies. Perhaps the

first study to consider their use is due to Torok and Chopra (Ref. 4), who also provide a review of

aeroelastic stability modeling through 1991. However, in Ref 4, stall and free wake are included in trim

analysis, but they are frozen in dynamic perturbation. Thus, the important effects of wake and stall on

trim analysis are included, but their effects on eigenanalysis are not. Moreover, Ref. 4 uses only a lightly

loaded section of the database of Ref. 6 (shaft tilt _xs _< 10° and collective pitch 00 _< 3o). Thus, an

appreciable section of the database under high shaft-angle and collective-pitch conditions (c_s _< 20 o and

00 _< 6 °) is not included. Developments since 1991 include the works of Barwey et al. (Refs. 2 and 3),

who use dynamic stall modeling and provide correlation with virtually the complete database of Ref. 6.

While a rigid flap-lag model is used in Ref. 2, two elastic flap-lag-torsion models that differ in simulating

the root flexure are used in Ref. 3. Manjunath et al. (Ref 1) use a finite-state three-dimensional wake

model and rigid flap-lag modeling. Reference 1 also includes limited correlation with test data of Ref. 6

under low-thrust conditions. The work in Ref 1 is extended in Ref 8 to include elastic blade modeling

References 1 and 8 also incIude a review of aeroelastic stability predictions with the use of dynamic wake

modeling.

In this study, we investigate the sensitivity of lag-damping correlations to structural and

aerodynamic approximations of isolated, hingeless experimental rotors in forward flight. Virtually the

complete database ofRef. 6 is used. We use the ONERA dynamic stall models of lift, drag and pitching

moment. The unsteady wake is described by a finite-state three-dimensional wake model. The blade

dynamics is represented by a rigid blade model as well as by three elastic blade models, which differ in

modeling the root flexure (details to follow). In order to isolate different aerodynamic aspects of the

stability problem, predictions based on the linear (quasisteady) and quasisteady stall theories are included

as well. Highly stalled cases would merit further research; nevertheless, their inclusion provides

additional opportunities to examine how far we can use Floquet theory and the very concept of modal

damping (Ref. 9). Thus, in summary, the predictions are based on a broad range of structural and



aerodynamicrepresentations,andthey are correlatedwith a comprehensivedatabase(Ref. 6). Sucha

correlationshouldprovidea usefulreference.

Modeling

The correlation study requires an adequate model of the root-flexure-blade assembly of the three-

blade experimental rotor (see Fig. 1), which was designed to represent a simple model ofa hingeless rotor

with spring restrained flap-lag hinges. While the mass and stiffness distributions are essentially uniform

for the blade portion, they are highly nonuniform for the root flexure or root beam. According to Ref 3,

the sensitivity of lag-damping predictions to the structural refinements in modeling the root-flexure-blade

assembly increases with increasing blade pitch and advance ratio. Therefore, to bracket the extent of this

sensitivity to modeling details, we use four models of the root-flexure-blade assembly. They range from a

rigid flap-lag blade model to three elastic flap-lag-torsion models, which have identical blade

representation but differ in root-flexure representations. All the models have the capacity to simulate full

and zero structural flap-lag couplings (R = 1 and R = 0) of the experimental model. The lag-damping

predictions are based on five aerodynamic theories, which range from linear (quasisteady) theory to a

relatively comprehensive dynamic stall and wake theory. To simplify the subsequent presentation of

results and clarify terminology, we briefly describe these four models of root-flexure-blade assembly and

the five aerodynamic theories.

Root-Flexure-Blade Assem bly

Rigid Flap-Lag: It is an offset-hinged rigid blade with flap and lag (inplane) degrees of freedom; the flap

and lag hinges are spring restrained and coincident (Ref 2).

Spring Model: The root-flexure is simulated by a set of three linear springs located at an effective hinge

offset as shown in Fig. 2a; the spring stiffnesses are based on measured values. The airfoil or the blade

portion has uniform mass and stiffness distributions. The bending-torsion couplings of the root spring

system are fully accounted for (Ref. 3).



Modified Model: The root flexure is simulatedby a short beam,over which the mass and stiffness

properties are kept uniform; see Fig. 2b. Their magnitudes are chosen so as to reasonably match the

fundamental, nonrotating bending and torsion frequencies of the experimental model, and thus to those of

the spring model. With judicious choice of hinge offset and the length of root beam it is possible to match

the nonrotating and rotating frequencies of the first two flap-bending, lag-bending and torsional modes of

the spring model (Ref. 3).

Modal Model: The actual mass and stiffness distributions of the root-flexure-blade assembly of the test

model are used in calculating the nonrotating mode shapes numerically. For illustration, the flap and lag

stiffness distributions are sketched in Fig. 2c for the three-blade experimental rotor (Ref 6); the torsional

stiffness, omitted for clarity of graphical representation, is equally nonuniform with steep gradients.

Aerodynamics

The aerodynamic representation called the dynamic stall and wake theory is fairly comprehensive.

It includes the effects of dynamic stall lift, drag and pitching moment from a thin airfoil theory (Refs. 10

and 11) and the downwash effects from a finite-state three-dimensional wake theory (Ref 12). Moreover,

the airfoil theory includes the effects of reversed flow and large angles of attack, and the wake theory

accounts for the finite number of blades. We begin with a brief account of dynamic stall theory. This is

followed by a discussion of how quasisteady stall and linear theories are derived as special cases. After

introducing dynamic Wake theory, we conclude this section with a mention of dynamic stall and wake

theory.

Dynamic Stall Theory: It is based on the ONERA models of unified lif_, drag and pitching moment.

Basically we introduce lift circulation F, circulation-like drag Vd and circulation-like pitching moment V m

as follows:

F=F1 +F2, Fd =FoI +Fd2, Fm =Fml +I'm2 (I)

where subscripts 1 and 2 indicate the linear and stalled or nonlinear components, respectively. These six

components, two each in lift, drag and pitching moment, are governed by Eqs. (2) - (4).

Dynamic Stall Lift:
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k161+ _,F1= ka(Uy + b_)cos_x+ 8b_ (2a)

+ ek(Oy cosot - 0 x sin ct)--

k2F2 +2dwkl_2 +w 2 (1 +d 2)F 2 =- w 2 (1 + d 2)[UAC z +ek(U x cosc_ + Uy

0AC z
]

Dynamic Stall Drag:

Fdi= UCdo

k2i_d2 +adk['d2 +rc_Fd 2 =-[r2UACd+EdkOy]

Dynamic Stall Pitching Moment:

Fmt = UCmo +Srnb/:

kaFm2 +amkl_m2 +r2mFm2 =-[r2aUACm+Emk0y]

sinot)AC z

(2b)

(3a)

(3b)

(4a)

(4b)

Thus, it is seen that the linear components in Eqs (2a), (3 a) and (4a) follow the classical thin-airfoil

theory. By comparison, the stalled components have an involved algebraic structure and merit additional

comments. For example, in Eqs. (2b), (3b) and (4b), AC z, AC d and ACm act like driving forces and

represent the differences between the linear and quasisteady values of the airfoil section characteristics.

For example, AC z at an instantaneous angle of attack o_ is the difference between the extrapolated linear

lift coefficient and the quasisteady stall lift coefficient of the airfoil; for details, see Ref 13. Similarly, _,,

6, d and w in the lift equation, ad, rd and E d in the drag equation and 8 m, am, rm and E m in the pitching-

moment equation are determined on the basis of wind-tunnel experiments. Another important parameter

in the linear part of the lift equation is _:, which represents the airfoil rotation rate relative to airmass and

includes complete geometric rotations of the airfoil.

It is expedient to represent the above airfoil lift V, drag F d and pitching moment r,,, in the local

airfoil coordinates in terms of L x, L v and M as shown in Fig. 3. This is done in Eqs. (5a)-(5c)

Lv =Ux[Fl +r2] + Uy[rdi +rcl2] + Lo (5a)

Lx =-Uy[rl +r2] + ux[ra, +rd2] (5b)

M = 2b[U(Fln I +Fro2)] + MO (5c)

11



where L 0 and M 0 are apparent mass lift normal to the chord and noncirculatory pitching moment at the

three-quarter chord point.

Quasisteady Stall Theory: It includes the airfoil-section quasisteady stall characteristics. From Eqs. (2)-

(4), by suppressing dynamic stall characteristics we get

F 1 = a(Uy + b_)cos_; F 2 =- UAC z (6a)

Fd_ =UCdo; Fci 2 =-UAC d (6b)

Fml = UCmo +Smb_;; Fm: = -UAC m (6c)

Linear Theory: Similarly, by suppressing the quasisteady stall characteristics, the equations of lift, drag

and pitching moment, including effects of reversed flow and large angles of attack, are:

1-1 =a(Uy + b_;)cosc_; I-2 =0

Fdl = UCd0 , 1-d2 = 0

1-ml = UCmo +6mbe:; Fm2 = 0

(7a)

(7b)

(7c)

Dynamic Wake Theory: It is linear theory with downwash dynamics, which is modeled by a finite-state

three-dimensional wake theory due to Peters, Boyd and He (Ref. 12). At a blade station with radial

coordinate ?i and spatial azimuth _Fi, the instantaneous wake or downwash k(?i,_lJi,t ) is given by a

r (ri) and spatial harmonics cos(nFi ) and sin(rxFi )complete set of radial shape functions qbj

O0 O0

3"(ri,vi,t) : Z Z

r=O j=r+l,r+3

qb_(ri)[cx _(t) cos(r,I, i )+ 13_(t)sin (r,l, i )] (8)

F

r (t) and the sine component 13.i(t) are the dynamic states of the downwash andThe cosine component c_j

are governed by

+eviCtsJ-' }: nmSqcJ (9)
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_( 2) and all other elementswhere [v] is the diagonal matrix with Vii = V t = bt2 + _'t

\
are given by

V=(t.t 2 +(_,t + X,m)Xt)/_J(t.t2 + _,t2). Closed-form expressions are available for the diagonal mass

mc and z ms are cosine and sinematrix [M] and influence coefficient matrices [Lc] and [Ls]. Similarly, x n n

components of the pressure coefficient, which, for a rotor with Q blades, are given by

"_0nC= l_i___l! Liq_0n(?i)d?ip_2R3

_-]i m(ri)_:mc = 1 LidP n d? i cos(m,lzi)

n rt:i=10 P_''22R3

 mSn: !.__ dfi sin ( m,i, i ) (10)

Dynamic Stall and Wake Theory: This combines dynamic stall theory, Eqs. (2) - (4) and dynamic wake

theory, Eqs. (8) - (10).

A final comment concerns the computation of equilibrium state inflow. In linear, quasisteady stall, and

dynamic stall theories it is computed from the momentum theory, while in the dynamic wake, and

dynamic stall and wake theories it is computed, respectively, from the coupled blade-wake and blade-

wake-stall equations.

Analysis

For the rigid flap-lag model of the root-flexure-blade assembly, we follow Ref 2 for the

equations of motion including the hinge-offset effects. For the other three models, the equations of flap

bending, lag bending and torsion are based on Hamilton's principle with a second-order ordering scheme.

The spatial dependence is treated by a Galerkin scheme using the uncoupled nonrotating mode shapes.

Development of closed-form expressions of mode shapes is a routine exercise for tile spring model.

However, for the modified model, we use the closed-form expressions developed in Ref'. 3 using
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computeralgebra;themodeshapesrefer to a steppedbeamwith oneendfixedandthe other free. At the

junction of the bladeandthe root flexure,thereis discontinuityin the distributionsof massand flap-lag-

torsion stiffnesses.The closed-formexpressionsaccountfor this discontinuityand provide continuous

displacements,slopes,momentsand shearforces. For the modal model, the nonrotating modesare

calculatedby Myklestad-typeandfinite elementschemeswith identicalmassandstiffnessdistributionsof

the experimentalmodel. The modesfrom these two schemesagree. Throughout, the Galerkin-type

integralsarecalculatednumerically.

As in the experimentalrotor, the analyticalmodel hasthreebladesof the NACA 23012airfoil

section.To includedynamicstall lift, dragandpitchingmoment,the bladeis discretizedinto five equal-

length elements;eachelementhassevendynamicstall states(three in lift and two eachin drag and

pitchingmoment).Usingthe rigid flap-lagmodelandthe dynamicstall andwake theory,we investigated

the convergencecharacteristicsof the lag regressive-modedampingwith respectto the numberof radial

shapefunctionsandspatialharmonicsin thewakerepresentation.Thewake modelwith sevenharmonics

and three shapefunctionsfor eachharmonicgave resultswith a maximumerror not exceeding12%.

Therefore,the presentanalysisis basedon the dynamicwake representationthat hassevenharmonics

with threeradial shapefunctionsfor eachharmonic;this leadsto 45 wake states.Thus,with two modes

eachin flap bending,lag bendingand torsion, the three-bladerotor has 186 states.The airfoil-section

quasisteadystall anddynamicstallcharacteristicsof lift, dragandpitchingmomentfor a completesweep

of angleof attack(-180o _<a _<180°) areasin Ref.3.

The experimentalrotor is operateduntrimmedwith no cyclic pitch control; the collective pitch

angleand shatt angleareknown control parameters.The periodic responseand the Floquet transition

matrix for perturbationsaboutthat responsearegeneratedby periodicshooting.The dampinglevelsare

evaluatedfrom the eigenanalysisof the Floquet transition matrix. All the structural and aerodynamic

statesare includedin periodicshootingaswell asin eigenanalysis.

14



Correlation

Reference 6 provides a voluminous database of lag regressive-mode damping of a soft-inplane

rotor and includes well over 2000 data points; the test focuses on the forward-flight aspects of the

stability problem. To cover the gist of the database, it becomes necessary to include samples of typical

cases tested. Accordingly, we include the following cases: collective pitch angle (0 ° _< 0 o _ 6°), shaft

angle (0 ° _< a s _ 20 °) and advance ratio (0 _< l-t -< 0.55). The rotor speed f2 = 1000 rpm, corresponding

to a dimensionless lead-lag frequency of 0.61. The structural coupling parameter R = 0; this refers to the

database for which the collective pitch angle is set manually by changes to the angle of the blade relative

to the root flexure. Low-thrust conditions occur when both collective pitch angle and advance ratio are

low or when a combination of high collective pitch angle offsets a high shaft angle. Similarly, high

(negative) thrust conditions occur at low collective pitch angle when both advance ratio and shaft angle

are high. Thus, the correlation covers near-zero- to high-thrust conditions for various combinations of

shaft angle, collective pitch angle and advance ratio.

Rigid Flap-Lag Model

Correlations in Figs. 4-6 are based on the rigid flap-lag model for 00 = 0 °, 3 o and 6 °, respectively,

As seen from Fig. 4a for o% = 8°, the data are available from hover to advance ratio as high as 0.55. The

thrust level CT/_ s (based on the linear theory) is nearly zero in hover and increases with increasing

advance ratio; for example, at j.t = 0.55, CT/_ s = -0.07. As seen from the data, damping remains nearly

constant from hover to t-t _ 0.3 and then increases consistently for 0.3 <_ _t < 0.55; in fact, it increases

sharply for F-t> 0.4. For I-t -< 03, all the five aerodynamic theories identified in the figure predict nearly

the same damping and the correlation is satisfactory. Given the low-thrust conditions (CT/C_s <_ -0.03),

this is expected. For j.t > 0.3, the differences between these theories begin to manifest and for j.t > 04

become more marked. The dynamic wake theory, and tO some extent the linear theory, initially pick up

the trend of the data of increasing damping for 0.3 g I-t -< 0.4. However, this is followed by a trend of

leveling offfor j.t -_ 0.5 and then of decreasing sharply for _.t > 0.55. For 0.3 _ I.t -< 0.4, the remaining

three theories are marginally better. But the damping from the quasisteady stall theory decreases for I-t >

15



0.45 andthen increasesfor I-t>-0.55. The dynamicstall theory initially, sayat t-t_ 0.5, showsa slight

decreasein damping;thenit showsthatfor _.t> 0.5 thedampingsharplyincreaseswith increasingadvance

ratio. But the increaseis delayedin that it beginsto occur at a highervalueof t-tthan indicatedby the

data.The dynamicstall andwake theoryroughly follows the dynamicstall theorydespitea.humpat I.t

0.5 that brings the theory closer to the data and a trough that takes the theory farther from the data.

We continue the correlation in Fig. 4b for cts = 16 °. The data show the trend of constant damping

from hover to an advance ratio of 0.25 and of rapidly increasing damping thereafter (0.25 _< j.t _< 0.4).

From hover to an advance ratio of 0.1, owing to very low thrust conditions, all the five theories are

virtually identical. With increasing advance ratio or thrust level, the differences among the theories also

increase. In fact for I-t -> 0.3, some of these theories differ qualitatively. This is expected; for the present

combination of low collective pitch angle and high shaft angle (00 = 0 ° and a s = 16°), as the advance

ratio increases, (negative) thrust level increases and thereby dynamic stall dominates. According to the

linear theory, the damping slowly increases for 0.1 _< j.t _< 0.35, and thereafter it sharply deviates from the

data: leveling off around I.t _ 0.4 and sharply decreasing for I-t > 0.425. The dynamic wake theory is a

significant improvement over the linear theory and provides reasonable correlation for the entire data

range (0 _< l-t _ 0.4). It is qualitatively similar to the linear theory in that the increase in damping is

followed by a sharp decrease for t-t -> 0.45. Since the data are limited to t-t -< 0.4, it is not possible to

evaluate this sharp decrease for j.t >_ 0.45. The damping from the quasisteady stall theory sharply

decreases for 0.3 _< t-t -< 0.4 and increases for I-t >- 0.425; the increase is so delayed that it makes the

quasisteady stall theory unacceptable. Inclusion of dynamic stall dramatically improves the correlation.

The dynamic stall, and dynamic stall and wake theories predict the trend of the data, notwithstanding the

dips in damping, which occur around I.t = 0.35 for dynamic stall theory and around t.t = 0.4 for the

dynamic stall and wake theory. Overall, excluding the quasisteady stall theory, the predictions in Fig. 4b

fall into two groups. In the first group we have the linear and dynamic wake theories, which basically

show that damping increases and that this increase is followed by a sharp decrease. In the second group

we have the dynamic stall, and dynamic stall and wake theories, which show that damping essentially
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increaseswith increasingadvanceratio, althoughthis increaseis accompaniedby a smalldip in damping

and is thereby somewhat delayed,

Figure 5 shows the correlation for 00 = 3 °. In Fig. 5a, % = 80 and in Fig. 5b, ots = 16°, and the

data are available for 0 < bt g 0.25 and for 0 _< la -< 0.35, respectively. In Fig. 5a, the thrust level is

relatively low throughout (CT/O s < 0.04). It is about 0.03 in hover, increases to 0.04 at bt -- 0.1 and

thereafter continuously decreases with increasing advance ratio, down to nearly zero at bt _ 0.55. This is

well-reflected by satisfactory correlation, which shows that all five theories are more or less identical and

that the minor differences among them essentially decrease with increasing advance ratio.

As seen from the data in Fig. 5b, the damping decreases with increasing advance ratio. Because of

low collective pitch and high shaft angles, the thrust level, which is about 0.03 in hover, changes to -0.05

at I-t = 0.35. The linear and dynamic wake theories are qualitatively inaccurate because within the data

range (0 _< _.t _< 0.35) they predict that damping consistently increases with increasing advance ratio, a

trend opposite to that of the data. These two theories do predict the trend of decreasing damping with

increasing advance ratio for _.t > 05; however, this decrease occurs far beyond the data range to be

adequate. The other three theories come close to predicting the trend of the data, though the decrease in

damping is delayed (l.t _ 0.4). Compared to the linear and dynamic wake theories, the improved

performance by the other three theories, in particular by the quasisteady stall theory, is primarily due to

including the effects ofquasisteady stall drag. The negative thrust level is relatively low (CT/% <__-0.05 at

_.t= 0.35), and dynamic wake and stall play a relatively minor role. This is, respectively, well-reflected by

the closeness between the linear and dynamic wake theories and between the quasisteady stall and

dynamic stall theories within the data range. Although, comparatively, the dynamic stall and wake theory

gives the best correlation, Fig. 5b also shows that the corielation merits further improvement.

For 0 0 = 6 °, the data are available for 0 _< j.t _< 0.15. Figure 6 shows one typical case at a very

high shaft angle of 20 o, in which the damping very slowly decreases with increasing advance ratio. The

17



quasisteadystall, dynamicstall, anddynamicstall andwake theoriesprovide adequatecorrelations.By

comparisonthe linearand dynamicwake theoriesshow that dampingsharplyincreaseswith increasing

advanceratio and thus provide inadequatecorrelations.Concerningthesetwo contrastingtrends, the

predictionsin Fig. 6 are similar to those in Fig. 5b. The dramaticallyimproved performanceby the

quasisteadystall theory over the linear and dynamicwake theories is due to nonlinearsubstalldrag

effects.The differencebetweenthe quasisteadystall and dynamicstall theories is due to unsteadylift

effects,and the differencebetweenthe dynamicstall, and dynamicstall and wake theories is due to

downwasheffects.

Concerningthe predictionsin Figs.4b, 5b and6 at very highadvanceratios (approximately_.t>

0.5) a commentis in order.The linear theoryand dynamicwake theory show the trend of decreasing

dampingwith increasingadvanceratio. By comparison,thequasisteadystall, dynamicstall, anddynamic

stall andwake theoriesshowtheoppositetrendof increasingdamping.In theabsenceof thedatait is not

possibleto validatethesetrends.

Elastic Root-Flexure-Blade Models

For the same set of data presented thus far, we now take up the correlations based on the elastic

blade models of the root-flexure-blade assembly. Specifically, we use the spring model in Figs. 7 - 9,

modified model in Figs. 10 - 12 and modal model in Figs. 13 - 15. The focus of the presentation is on the

differences in predictions from the rigid and elastic blade models and thereby on the sensitivity of

predictions to modeling details. Therefore, some of the common features, such as virtually identical

predictions and good correlations at low-thrust conditions, are not explicitly discussed.

Figure 7a shows that the linear theory is qualitatively inaccurate because it predicts that the

damping sharply decreases with increasing advance ratio; a trend opposite to that of the data. The

dynamic wake theory provides a much better correlation by predicting that damping increases right down

to l-t = 0.5. However, it also predicts that damping decreases for I.t > 0.5, as does the linear theory for _.t>
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0.3. In otherwords, at very high advanceratiosboth linearanddynamicwaketheoriespredict the same

trendof decreasingdampingwith increasingadvanceratio. The quasisteadystall theory showsthat the

dampingbeginsto decreasearoundt-t= 0.5 andonceagainbeginsto increasefor I.t> 0.55,although this

increaseis beyondthe data range.That the dynamicstall theory beginsto deviatefrom the quasisteady

stalltheoryat l.t_ 0.45andthat this deviationincreaseswith increasingI-tor CT/Osdemonstratesdynamic

stall effects. Overall, dynamicstall theory providesadequatecorrelation, and the inclusion of wake

effects,asdonein thedynamicstallandwaketheory,bringsin further improvement.

Figure7b isbasically anamplifiedversionof Fig. 7a,particularlyconcerningthe quasisteadystall

anddynamicstall effects.It is clearlyseenthat the lineartheory is qualitativelyinaccurate.Although the

dynamicwaketheorypredictsthe trendof the datawithin the datarange (0 _<t-tg 0.4), it also shows

that dampingrapidly drops off for t-t> 0.4. The quasisteady stall theory predicts the trend of the data;

however, for j.t > 0.3, its quantitative deviation from the dynamic stall theory increases because of

increasing dynamic stall effects. The dynamic stall, and dynamic stall and wake theories provide good

correlation.

Figure 8a for 00 = 3 o and c_s = 80 shows that the linear and dynamic wake theories provide good

correlation throughout. Also the quasisteady stall and dynamic stall theories overpredict damping;

nevertheless, they predict the trend of the data of nearly constant damping for the entire data range (0 _<

I-t -< 0.25). The dynamic stall and wake theory falls between these two sets of theories by significantly

reducing the overprediction by the quasisteady and dynamic stall theories_ This overprediction is due to

nonlinear substall drag effects. We emphasize that owing to low-Reynolds-number condition of the

experiment (Refs. 2 and 7), substall drag is an important consideration in the correlation. As seen from

Fig. 8b for _30 = 3 o and c_s = 16°, none of the five theories within the data range (0 _< I-t <--0.35) predict

clearly that the damping decreases with increasing advance ratio.

19



Figure 9 showsthe correlationfor 00 = 60 andas = 20°. The linearand dynamicwake theories

showthat dampingincreaseswith increasingadvanceratio from hoverto l.t= 0.4. This is oppositeto the

trend of the data,which, thoughlimitedto very low advanceratios (0 _ j.t _<0.15), show that damping

slowly decreaseswith increasingadvanceratio. The quasisteadystall anddynamicstall theoriespredict

thetrendof thedatadespiteappreciableoverpredictions.The dynamic stall and wake theory significantly

reduces these overpredictions. As was the case in Fig. 6, in which the same set of data was correlated on

the basis of the rigid flap-lag model, the nonlinear substall drag accounts for much of the differences

between the linear theory and quasisteady stall theory; this is a consequence of low-Reynolds-number

effects of the test conditions (Refs. 2 and 7). Dynamic stall is not an issue here and unsteady lift effects

account for the differences between the dynamic stall and quasisteady stall theories. Similarly, the effects

of unsteady lift and downwash account for the differences between the linear theory and dynamic wake

theory. The predictions in Fig. 9 are qualitatively similar to those in Fig. 6. Overall, dynamic stall and

wake theory provides fairly adequate correlation.

Now we show the correlation for 00 = 0 ° from the modified model: ms = 80 in Fig. 10a and o_s --

160 in Fig. 10b. Basically, the linear and dynamic wake theories predict that damping increases initially at

about I-t > 0.2 as do the data. They also predict that this increase is followed by a sharp decrease. It is this

sharp decrease that is not well-supported by the data. For example, while this decrease begins to occur at

about I.t > 0.5 and within the data range (0 _< t-t _ 0.55) in Fig. 10a, it occurs at about I.t >--0.45 outside

the data range (0 _< la _ 0.4) in Fig. 10b. In contrast, we have the other three theories. In particular,

dynamic stall, and dynamic stall and wake theories predict that damping basically increases with

increasing advance ratio, although the predictions are accompanied by localized humps and troughs. The

quasisteady stall theory more or less follows the dynamic stall theory, but it shows considerable loss in

damping at about I-t = 0.55 in Fig. 10a and j.t = 04 in Fig 10b. Although it shows this loss is followed by

a rapid increase, the increase begins to occur in a delayed manner at a higher value of l-t than what is

indicated by the data. Overall the dynamic stall, and dynamic stall and wake theories give good

correlation.
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Usingthesamemodifiedmodelwe continuethecorrelationfor theremainingtwo setsof data:as

= 80and 160 bothwith O0 = 30in Fig. 11andc_s= 200with 00= 60in Fig. 12.Basically,thepredictions

agreewith andlie betweenthe correspondingpredictionsbasedon the rigid flap-lagmodelin Figs. 5 and

6, and on the springmodel in Figs. 8 and 9. While the linearand wake theoriesaresatisfactoryin Fig.

1l a, they are not satisfactoryin Fig. 12, aswas the caseearlierbasedon the rigid flap-lagand spring

models.MoreoverFigs. 1la and 12showthat the quasisteadystall anddynamicstall theoriespredictthe

trendof the data,althoughthe dampinglevelsareoverpredictedowing to nonlinearsubstalldrag effects.

Thedynamicstall andwaketheoryappreciablyreducesthisoverpredictionandprovidesgoodcorrelation

throughout. An exceptionis Fig. lib for O0 = 30 andms = 16°, in which the data clearly show that

dampingdecreaseswith increasingadvanceratio. The dynamicstall and wake theory is a significant

improvementover the other four theories;still it falls short of predictingthe trendof the datawithin the

datarange.Dynamicstallis not a majorfactor andtherequiredimprovementsmerit furtherstudy.

Figures 13, 14 and 15 are basedon the modal model and confirm the correspondingearlier

predictionsbasedon the other threemodelsof theroot-flexure-bladeassembly.We includethemherefor

completenessandfuturereference.

Comparison of Structural Models

The preceding correlations in Figs. 4-15 are based on four structural models of the root-flexure-

blade assembly, and for each model we used five aerodynamic theories. These fairly exhaustive

correlations show that the dynamic stall and wake theory is the best of the five theories. Given this

background, we present in Figs. 16-18 a comparative assessment of four structural models based on the

dynamic stall and wake theory. Figure 16a for 9 0 = 0° and c¢s = 8 0 shows that the predictions from three

elastic models are practically identical and provide good correlation throughout. The rigid flap-lag model

also provides fairly adequate correlation. The difference between the predictions from three elastic blade

models and those from the rigid blade model is due to blade torsion and bending effects (Ref 3). To set
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the stagefor Fig. 16b,we mentionthat with increasingadvanceratio andshaftangle,thenegativethrust

level increases,as do the effects of dynamic stall. This brings in increasedsystemnonlinearity,and

accordingly, damping predictions show increasingsensitivity to changes in blade modeling. This

sensitivity is more clearly seen in Fig. 16b, which is for O0 = 0 ° and % = 160. Figure 16b also shows that

all the four blade models adequately predict the trend of the data and that the modified model gives the

best of the correlations.

Figure 17a for 00 = 30 and o% = 80 shows that all four blade models give good correlations and

that the spring model slightly overpredicts damping. This overprediction, though not appreciable

quantitatively, is consistently observed throughout the data range. In Fig. 17b (00 = 30 and c% = 16 °)

none of the blade models provides good correlation for the entire data range, and the rigid blade model

gives at best fairly adequate correlation. Finally, we come to Fig. 18 for 00 = 60 and c% = 20 °, in which

the data are limited to low advance ratios (0 _< j.t _< 0.15). It is seen that the modified model and the

modal model provide good correlations. The predictions from the rigid flap-lag model are also adequate.

However, the rigid-blade-predictions show that the damping very slowly increases with increasing

advance ratio. On the other hand, the data show that damping slowly decreases with increasing advance

ratio. The trend of the data is predicted by the spring model, but it consistently overpredicts damping.

This overprediction is due to the overestimation of root-flexure coupling by the spring model, and it

increases with increasing blade pitch; tbr example, compare Fig. 17a and 17b with Fig. 18 at j.t = O.

Conclusions

The preceding correlation is based on a comprehensive database: 0 _< J.t _< 0.55, 0 ° _ 80 < 6°,

and 0 ° _< c_s _< 200. The predictions are based on the rigid flap-lag model of the root-flexure-blade

assembly as well as on three elastic blade models: springmodel, modified model and modal model. With

each model of the root-flexure-blade assembly, five aerodynamic theories are exercised: linear,

quasisteady stall, dynamic stall, dynamic wake, and dynamic stall and wake. The correlation shows the
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needto includedynamicstall andwake.Basedon thedynamicstall andwaketheory, thepredictionsand

relatedcorrelationsleadto thefollowing specificfindings:

1. For nearly the entire database,the rigid flap-lag, modified and modal models provide adequate

correlation.The predictionsfrom the modifiedand modalmodelsare nearly the sameand run fairly

closeto thepredictionsfrom therigid flap-lagmodel.However,with increasingnegativethrust levels,

asis thecasefor combinationsof highadvanceratioand high shaftangleat 00 = 0°, the modified and

modal models provide better correlations.

2. For a set of data points at 00 = 30 and high shall angles the trend of the data of decreasing damping

with increasing advance ratio is not well-predicted; this merits further study.

3. For 00 = 0 ° and high shaft angles, as the advance ratio increases, the effects of negatively stalled

conditions increase. Under such conditions the predictions show increasing sensitivity to changes in

modeling the root-flexure-blade assembly. Consequently the differences in the predictions from the

four models increase with increasing negative thrust conditions.

4. The spring model also provides fairly adequate correlation for the entire database. But it overestimates

the bending-torsion couplings of the root flexure. This overestimation brings in increasing quantitative

degradation to the correlation with increasing blade pitch angle 0 o.

5. The dynamic stall theory is keyed to the airfoil-section characteristics of lift, drag and pitching moment

under quasisteady-stall and dynamic-stalled conditions. Improved representation of these

characteristics under the low-Reynolds-number conditions of the experiment merits further research;

this offers considerable promise in further improving the correlation.

.

,
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Fig. 15 Effects of Aerodynamic Modeling on Lag Damping Correlation

from Modal Model with 0 o = 6 o.
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Fig. 16 Effects of Structural Modeling on Lag Damping Correlation

from Dynamic Stall and WakeTheory with 0 o = 0 °.
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Fig. 17 Effects of Structural Modeling on Lag Damping Correlation

from Dynamic Stall and Wake Theory with 0 o = 3 °.
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Fig. 18 Effects of Structural Modeling on Lag Damping Correlation

from Dynamic Stall and Wake Theory with 0 o = 6 °.
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