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Summary

The predictions of regressive lag-mode damping levels are correlated with the database of an isolated,
soft-inplane, three-blade rotor operated untrimmed. The database was generated at the Army
Aeroflightdynamics Directorate at Ames. The correlation covers a broad range of data, from near-zero
thrust conditions in hover to high-thrust and highly stalled conditions in forward flight with advance ratio
as high as 0.55 and shaft angle as high as 200. In the experimental rotor, the airfoil or blade portion has
essentially uniform mass and stiffness distributions, but the root flexure has highly nonuniform mass and
stiffness distributions. Accordingly, the structural approximations refer to four models of root-flexure-
blade assembly. They range from a rigid flap-lag model to three elastic flap-lag-torsion models, which
differ in modeling the root flexure. The three models of root-flexure are: 1) three root springs in which
the bending-torsion couplings are fully accounted for; 2) a finite-length beam element with some average
mass and stiffness distributions such that the fundamental frequencies match those of the experimental
model; and 3) accurate modal representation in which the actual mass and stiffness distributions of the
experimental root-flexure-blade assembly are used in calculating the nonrotating mode shapes. The four
models of root-flexure-blade assembly are referred to as the rigid flap-lag model, spring model, modified
model and modal model. For each of these four models of the root-flexure-blade assembly, thé
predictions are based on the following five aerodynamic theories: (i) /inear theory, which accounts for
large angle-of-attack and reverse-flow effects on lift, and has constant drag and pitching moment; (ii)
quasisteady stall theory, which includes quasisteady stall lift, drag and pitching moment characteristics of
the airfoil section; (iii) dynamic stall theory, which uses the ONERA dynamic stall models of lift, drag
and pitching moment; (iv) dynamic wake theory, which is based on a finite-state three-dimensional wake
model and includes all wake effects including both shed and trailing vorticity; and (v) dynamic stall and
wake theory, which combines both dynamic stall theory and dynamic wake theory and is a relatively

complete aerodynamic representation. The number of modes in the modal representation, the number of

radial shape functions and temporal harmonics in the wake representation and the number of blade
elements in the dynamic stall representation are gradually increased for converged results of damping.

The periodic forced response and the Floquet transition matrix about that response are obtained by



periodic shooting; the damping levels are generated from a full Floquet eigenanalysis that includes all the
structural and aerodynamic states. The correlation demonstrates the need to include dynamic stall and

three-dimensional wake in lag-damping predictions.

Notation

Unless otherwise stated, the symbols below are dimensionless:

a linear lift curve slope, (rad-1)

a4,a damping factors in dynamic stall drag and pitching moment models

b airfoil semi-chord, (1/R)

c airfoil chord, (1/R)

C4.Cyq, airfoil sectional drag coefficient and constant profile drag coefficient

C.Chp airfoil lift and pitching moment coefficients

Cm, airfoil pitching moment coefficient at zero anglve of attack

Cr thrust coefficient

e phase shift parameter for dynamic stall lift

ep blade hinge offset for the spring model (Fig. 2a), (1/R)

e length of the hub segment in modified model (Fig. 2b), (1/R)

Eq.En phase shift parameters in dynamic stall drag and pitching moment models

j polyno}nial number

k b/x

Kg, K¢ root spring rates in flap and lag, respectively (Fig. 2a), (Nm/rad)

Ky root spring rate in torsion (Fig. 2a), (Nm/rad)

/ length of the blade from the hinge to tip (equal to 1-ey, for the spring model and 1-¢; for
the modified model)

L; blade sectional lift of the i-th blade, (N/m)

L, Ly local aerodynamic forces (Fig. 3), (1/pbQ22R3)

Lo apparent mass lift normal to the chord line, (i/pr3R3)



[Lcl, [Lsl

influence coefficient matrices

harmonic number

aerodynamic pitching moment, (1/pbQ2R4c)

noncirculatory aerodynamic pitching moment per unit length, (1/pbQ=R4c)
mass matrix

polynomial number

normalized Lengendre Polynomial (n,m) of the first kind

number of blades

harmonic number

frequency parameters in dynamic stall drag and pitching moment models
length of the root flexure (Fig. 2b), (1/R)

radial station of the i-th blade, (1/R)

rotor radius, (m)

flap-lag structural coupling ratio

time parameter

axial deflection, (1/R)

resultant air velocity at a blade station (Fig. 3), (1/QR)
lag bending deflection, (1/R)

inﬂow‘parameter

total inflow parameter

diagonal matrix with elements V,, V, V -/ V

dynamic stall lift frequency and damping parameters
flap bending deflection, (1/R)

radial distance measured from the rotor center, (1/R)

blade airfoil section angle of attack, (rad)

wake states

shaft-tilt angle, (deg)



I circulation per unit length, UC;

Iy circulation-like drag per unit length, UCy

I'y circulation-like pitching moment per unit length, UC,
5 pitch-rate coefficient, (rad-1)

dm pitching-moment parameter

€ airfoil rotation rate with respect to airmass

B¢ pre-pitch of the root-flexure (Fig. 2a), (deg)

99 collective pitch angle, (deg)

A time-delay parameter

Ay total inflow

A(T,v;,t)  downwash on the i-th blade

Am thrust induced inflow
L advance ratio

¢ elastic twist, (rad)

o7 (T) radial shape functions

OF (7)=LBF (V) v=y(1-2)
i v i

do elastic twist at the blade root in Fig. 2a, (rad)
c negati\;e of lead-lag mode damping exponent, (1/sec)
Oy rotor solidity
Wi azimuthal location of the i-th blade
p air density (kg/m3)
Q rotor angular speed, (rad/sec)
S i inflow forcing functions
O () unstalled and stalled components
(O ( )y x and y components
(x) time derivative of x



approximately equal to

X

Introduction

The current capability to predict helicopter lag damping needs significant improvements. Four
considerations make the prediction difficult and motivate the present investigation based on Floquet
theory. First, drag, induced drag and Coriolis forces are delicately balanced in the inplane direction.
Therefore, from hovering to high-speed flights, a wake representation that goes well beyond dynamic-
inflow and lift-deficiency-type approximations is required (Ref. 1). Second, with increasing demand on
the stability margins of high-speed and highly maneuverable helicopters, 'high-thrust conditions in forward
flight become increasingly important. Thus, the complex phenomenon of dynamic stall becomes an issue
(Refs. 2-4) and needs to be accounted for as well. Third, lag-damping prediction is sensitive to modeling
the rotor system and its flow field. It is also sensitive to the accuracy of computing the periodic forced
response, the Floquet transition matrix about that response and the eigenvalues of this matrix. Thus, it is
important that a consistent sophistication is maintained from modeling to response analysis to
eigenanalysis. Often this requires that all the structural and aerodynamic states are included not only in
response analysis but also in eigenanalysis (Ref. 5). This is a demanding and expensive exercise; with lag
bending, flap bending and torsional degrees of freedom, even simplified research models of multiblade
rotors with wake and stall dynamics routinely lead to nearly 200 structural and aerodynamic states for
converged results. Fgurth, given the complexity of the rotor system and its flow field, it becomes
necessary that the predictions are checked against a broad range of model test data. Currently the
database is severely limited. Although not typical of operational rotor systems, the database due to
McNulty is an exception (Ref. 6). It is comprehensive to include near-zero thrust conditions in hover and
forward flight to high-thrust and highly stalled conditions in forward flight (0 < p < 0.55, 00 < 6, < 69,

00 < o < 209); for details, see Refs. 2 and 7.

Given this background, we review the aeroelastic stability studies with dynamic stall and/or three-

dimensional wake modeling. The use of both stall and three-dimensional wake modeling is almost routine



in loads and vibration studies. By comparison their use is far less common in stability studies. Perhaps the
first study to consider their use is due to Torok and Chopra (Ref. 4), who also provide a review of
aeroelastic stability modeling through 1991. However, in Ref. 4, stall and free wake are included in trim
analysis, but they are frozen in dynamic perturbation. Thus, the important effects of wake and stall on
trim analysis are included, but their effects on eigenanalysis are not. Moreover, Ref. 4 uses only a lightly
loaded section of the database of Ref. 6 (shaft tilt o, < 100 and collective pitch 8y < 39). Thus, an
appreciable section of the database under high shaft-angle and collective-pitch conditions (ag < 200 and
8y < 6Y) is not included. Developments since 1991 include the works of Barwey et al. (Refs. 2 and 3),
who use dynamic stall modeling and provide correlation with virtually the complete database of Ref. 6.
While a rigid flap-lag model is used in Ref 2, two elastic flap-lag-torsion models that differ in simulating
the root flexure are used in Ref. 3. Manjunath et al. (Ref 1) use a finite-state three-dimensional wake
model and rigid flap-lag modeling. Reference 1 also includesv limited correlation with test data of Ref. 6
under low-thrust conditions. The work in Ref 1 is extended in Ref. 8 to include elastic blade modeling.

References 1 and 8 also include a review of aeroelastic stability predictions with the use of dynamic wake

modeling.

In this study, we investigate the sensitivity of lag-damping correlations to structural and
aerodynamic approximations of isolated, hingeless experimental rotors in forward flight. Virtually the
complete database of--Ref, 6 is used. We use the ONERA dynamic stall models of lift, drag and pitching
moment. The unsteady wake is described by a finite-state three-dimensional wake model. The blade
dynamics is represented by a rigid blade model as well as by three elastic blade models, which differ in
modeling the root flexure (details to follow). In order to isolate different aerodynamic aspects of the
stability problem, predictions based on the linear (quasisteady) and quasisteady stall theories are included
as well. Highly stalled cases would merit further research; nevertheless, their inclusion provides
additional opportunities to examine how far we can use Floquet theory and the very concept of modal

damping (Ref. 9). Thus, in summary, the predictions are based on a broad range of structural and



aerodynamic representations, and they are correlated with a comprehensive database (Ref 6). Such a

correlation should provide a useful reference.

Modeling

The correlation study requires an adequate model of the root-flexure-blade assembly of the three-
blade experimental rotor (see Fig. 1), which was designed to represent a simple model of a hingeless rotor
with spring restrained flap-lag hinges. While the mass and stiffness distributions are essentially uniform
for the blade portion, they are highly nonuniform for the root flexure or root beam. According to Ref. 3,
the sensitivity of lag-damping predictions to the structural refinements in modeling the root-flexure-blade
assembly increases with increasing blade pitch and advance ratio. Therefore, to bracket the extent of this
sensitivity to modeling details, we use four models of the root-flexure-blade assembly. They range from a
rigid flap-lag blade model to three elastic flap-lag-torsion models, which have identical blade
representation but differ in root-flexure representations. All the models have the capacity to simulate full
and zero structural flap-lag couplings (R = 1 and ® = 0) of the experimental model. The lag-damping
predictions are based on five aerodynamic theories, which range from linear (quasisteady) theory to a
relatively comprehensive dynamic stall and wake theory. To simplify the subsequent presentation of
results and clarify terminology, we briefly describe these four models of root-flexure-blade assembly and

the five aerodynamic theories.

Root-Flexure-Blade Assembly

Rigid Flap-Lag: It is an offset-hinged rigid blade with flap and lag (inplane) degrees of freedom, the flap
and lag hinges are spring restrained and coincident (Ref. 2).

Spring Model: The root-flexure is simulated by a set of three linear springs located at an effective hinge
offset as shown in Fig. 2a; the spring stiffnesses are based on measured values. The airfoil or the blade
portion has uniform mass and stiffness distributions. The bending-torsion couplings of the root spring

system are fully accounted for (Ref. 3).



Modified Model: The root flexure is simulated by a short beam, over which the mass and stiffness
properties are kept uniform; see Fig. 2b. Their magnitudes are chosen so as to reasonably match the
fundamental, nonrotating bending and torsion frequencies of the experimental model, and thus to those of
the spring model. With judicious choice of hinge offset and the length of root beam it is possible to match
the nonrotating and rotating frequencies of the first two flap-bending, lag-bending and torsional modes of
the spring model (Ref. 3).

Modal Model: The actual mass and stiffness distributions of the root-flexure-blade assembly of the test
model are used in calculating the nonrotating mode shapes numerically. For illustration, the flap and lag
stiffness distributions are sketched in Fig. 2c¢ for the three-blade experimrental rotor (Ref 6); the torsional

stiffness, omitted for clarity of graphical representation, is equally nonuniform with steep gradients.

Aerodynamics

The aerodynamic representation called the dynamic stall and wake theory is fairly comprehensive.
It includes the effects of dynamic stall lift, drag and pitching moment from a thin airfoil theory (Refs. 10
and 11) and the downwash effects from a finite-state three-dimensional wake theory (Ref. 12). Moreover,
the airfoil theory includes the effects of reversed flow and large angles of attack, and the wake theory
accounts for the finite number of blades. We begin with a brief account of dynamic stall theory. This is
followed by a discussion of how quasisteady stall and linear theories are derived as special cases. After
introducing dynamic wake theory, we conclude this section with a mention of dynamic stall and wake
theory.
Dynamic Stall Theory: It is based on the ONERA models of unified lift, drag and pitching moment.
Basically we introduce lift circulation T, circulation-like drag I'4 and circulation-like pitching moment I',
as follows:
=T+, Ty=Tq;+Tqy, T =T + Ty (hH
where subscripts 1 and 2 indicate the linear and stalled or nonlinear components, respectively. These six
components, two each in [ift, drag and pitching moment, are governed by Eqs. (2) - (4).

Dynamic Stall Lift:

10



kI + AT} =Aa(Uy +bé)cosa +8be (2a)

k21, +2dwkIy +w? (1+d?)[; =— w? (1+d?)[UAC, +ek(Uy cosa + Uy sina) AC,
OAC, (2b)

]

+ ek(Uy cosa - Uy sina)

Dynamic Stall Drag:

Iy, = UCq, (3a)
KTy, +agkly, +13Tq, =—|rZUAC +EqkUy | (3b)
Dynamic Stall Pitching Moment:

T, = UCp, +8m,bé (4a)
K, +amklm, + 12T, :—[r;UACmeEmkUy] (4b)

Thus, it is seen that the linear components in Eqs. (2a), (3a) and (4a) follow the classical thin-airfoil
theory. By comparison, the stalled components have an involved algebraic structure and merit additional

comments. For example, in Eqs. (2b), (3b) and (4b), AC,, ACy4 and AC, act like driving forces and

represent the differences between the linear and quasisteady values of the airfoil section characteristics.

For example, AC, at an instantaneous angle of attack o is the difference between the extrapolated linear
lift coefficient and the quasisteady stall lift coefficient of the airfoil, for details, see Ref. 13. Similarly, A,
8, d and w in the lift equation, aq, rq and Eg in the drag equation and 8y, ap, rp, and E, in the pitching-
moment equation are determined on the basis of wind-tunnel experiments. Another important parameter
in the linear part of the lift equation is €, which represents the airfoil rotation rate relative to airmass and

includes complete geometric rotations of the airfoil.

It is expedient to represent the above airfoil lift T', drag Ty and pitching moment I';, in the local
airfoil coordinates in terms of L, L, and M as shown in Fig. 3. This is done in Eqs. (5a)-(5¢).
Ly =Uy[[+T5 ]+ Uy [Ty +Tay | + Lo (5a)
Lx:—U),[I“1+F2]+Ux[l"dlﬂ“dz] _ (5b)

M = 2b[U(Tn; +Tmy) ] + Mo (5¢)



where L, and M, are apparent mass lift normal to the chord and noncirculatory pitching moment at the

three-quarter chord point.

Quasisteady Stall Theory: It includes the airfoil-section quasisteady stall characteristics. From Eqs. (2)-

(4), by suppressing dynamic stall characteristics we get

I=a(Uy +be)cosa; T =—UAC, (6a)
T4, =UCq,; Tq, =-UACq4 (6b)
I, =UCh, +dmbe; Iy, =-UACy (6¢)

Linear Theory: Similarly, by suppressing the quasisteady stall characteristics, the equations of lift, drag

and pitching moment, including effects of reversed flow and large angles of attack, are:

I =a(Uy +be)cosa; Tp=0 (7a)
I“d] = UCdO ) I“d1 =0 (7b)
I, =UCh, +8ymbe; Iy, =0 (7¢)

Dynamic Wake Theory: It is linear theory with downwash dynamics, which is modeled by a finite-state
three-dimensional wake theory due to Peters, Boyd and He (Ref. 12). At a blade station with radial

coordinate T; and spatial azimuth v, the instantaneous wake or downwash A(T;,w;,t) is given by a

complete set of radial shape functions (bJr. (7;) and spatial harmonics cos(ry; ) and sin(ry;):

Maw)=Y X 85 [al(Dcostruy) +B5(Vsin(rwi)] ®)

r=0 j=r+l,r+3

The cosine component a?(t) and the sine component B:(t) are the dynamic states of the downwash and

are governed by
et v {at ) = o.s{eme)
(BT J v, er = os{em) ©)

12



where [V] is the diagonal matrix with V| = V, = (uz +klz) and all other elements are given by

V:(uz +(, +7\m)7\.t)/ (uz +k12). Closed-form expressions are available for the diagonal mass

mc

matrix [M] and influence coefficient matrices [L.] and [L]. Similarly, T ™ and r:}ns are cosine and sine

components of the pressure coefficient, which, for a rotor with Q blades, are given by

n 27tl=10 Q2R3 1
Q1l L.4™(f
e —le iy (r')dfi cos(my;)
T
0

1 HM( =
! :lo %:—?%i—r;)dfi sin(my; ) (10)
Dynamic Stall and Wake Theory: This combines dynamic stall theory, Eqs. (2) - (4) and dynamic wake
theory, Eqs. (8) - (10).
A final comment concerns the computation of equilibrium state inflow. In linear, quasisteady stall, and
dynamic stall theories it is computed from the momentum theory, while in the dynamic wake, and

dynamic stall and wake theories it is computed, respectively, from the coupled blade-wake and blade-

wake-stall equationsi

Analysis
For the rigid flap-lag model of the root-flexure-blade assembly, we follow Ref 2 for the
equations of motion including the hinge-offset effects. For the other three models, the equations of flap
bending, lag bending and torsion are based on Hamilton's principle with a second-order ordering scheme.
The spatial dependence is treated by a Galerkin scheme using the uncoupled nonrotating mode shapes.
Development of closed-form expressions of mode shapes is a routine exercise for the spring model.

However, for the modified model, we use the closed-form expressions developed in Ref 3 using



computer algebra; the mode shapes refer to a stepped beam with one end fixed and the other free. At the
junction of the blade and the root flexure, there is discontinuity in the distributions of mass and flap-lag-
torsion stiffnesses. The closed-form expressions account for this discontinuity and provide continuous
displacements, slopes, moments and shear forces. For the modal model, the nonrotating modes are
calculated by Myklestad-type and finite element schemes with identical mass and stiffness distributions of
the experimental model. The modes from these two schemes agree. Throughout, the Galerkin-type

integrals are calculated numerically.

As in the experimental rotor, the analytical model has three blades of the NACA 23012 airfoil
section. To include dynamic stall lift, drag and pitching moment, the blade is discretized into five equal-
length elements; each element has seven dynamic stall states (three in lift and two each in drag and
pitching moment). Using the rigid flap-lag model and the dyn_amic stall and wake theory, we investigated
the convergence characteristics of the lag regressive-mode damping with respect to the number of radial
shape functions and spatial harmonics in the wake representation. The wake model with seven harmonics
and three shape functions for each harmonic gave results with a maximum error not exceeding 12%.
Therefore, the present analysis is based on the dynamic wake representation that has seven harmonics
with three radial shape functions for each harmonic; this leads to 45 wake states. Thus, with two modes
each in flap bending, lag bending and torsion, the three-blade rotor has 186 states. The airfoil-section
quasisteady stall and &ynamic stall characteristics of lift, drag and pitching moment for a complete sweep

of angle of attack (-1800 < & < 1800) are as in Ref. 3.

The experimental rotor is operated untrimmed with no cyclic pitch control; the collective pitch
angle and shaft angle are known control parameters. The periodic response and the Floquet transition
matrix for perturbations about that response are generated by periodic shooting. The damping levels are
evaluated from the eigenanalysis of the Floquet transition matrix. All the structural and aerodynamic

states are included in periodic shooting as well as in eigenanalysis.

14



Correlation

Reference 6 provides a voluminous database of lag regressive-mode damping of a soft-inplane
rotor and includes well over 2000 data points; the test focuses on the forward-flight aspects of the
stability problem. To cover the gist of the database, it becomes necessary to include samples of typical
cases tested. Accordingly, we include the following cases: collective pitch angle (00 < 6, < 69), shaft
angle (09 < og < 209) and advance ratio (0 < p < 0.55). The rotor speed Q = 1000 rpm, corresponding
to a dimensionless lead-lag frequency of 0.61. The structural coupling parameter ® = O; this refers to the
database for which the collective pitch angle is set manually by changes to the angle of the blade relative
to the root flexure. Low-thrust conditions occur when both collective pitch angle and advance ratio are
low or when a combination of high collective pitch angle offsets a high shaft angle. Similarly, high
(negative) thrust conditions occur at low collective pitch angle when both advance ratio and shaft angle
are high. Thus, the correlation covers near-zero- to high-thrust conditions for various combinations of

shaft angle, collective pitch angle and advance ratio.

Rigid Flap-Lag Model

Correlations in Figs. 4-6 are based on the rigid flap-lag model for 8 = 00, 30 and 60, respectively.
As seen from Fig. 4a for o = 89, the data are available from hover to advance ratio as high as 0.55. The
thrust level Ct/cg (based on the linear theory) is nearly zero in hover and increases with increasing
advance ratio, for exémple, at i = 0.55, Ct/og = -0.07. As seen from the data, damping remains nearly
constant from hover to 1t = 0.3 and then increases consistently for 0.3 < p < 0.55; in fact, it increases
sharply for i1 > 0.4. For 11 < 0.3, all the five aerodynamic theories identified in the figure predict nearly
the same damping and the correlation is satisfactory. Given the low-thrust conditions (Ct/og < -0.03),
this is expected. For p1 > 0.3, the differences between these theories begin to manifest and for p > 0.4
become more marked. The dynamic wake theory, and to some extent the linear theory, initially pick up
the trend of the data of increasing damping for 0.3 < p < 0.4. However, this is followed by a trend of
leveling off for it = 0.5 and then of decreasing sharply for i > 0.55. For 0.3 < p < 0.4, the remaining

three theories are marginally better. But the damping from the quasisteady stall theory decreases for p >

15



0.45 and then increases for i > 0.55. The dynamic stall theory initially, say at p = 0.5, shows a slight
decrease in damping; then it shows that for jt > 0.5 the damping sharply increases with increasing advance
ratio. But the increase is delayed in that it begins to occur at a higher value of p than indicated by the
data. The dynamic stall and wake theory roughly follows the dynamic stall theory despite a hump at jt =

0.5 that brings the theory closer to the data and a trough that takes the theory farther from the data.

We continue the correlation in Fig. 4b for oy = 160, The data show the trend of constant damping
from hover to an advance ratio of 0.25 and of rapidly increasing damping thereafter (0.25 < p < 0.4).
From hover to an advance ratio of 0.1, owing to very low thrust coﬁditions, all the five theories are
virtually identical. With increasing advance ratio or thrust level, the differences among the theories also
increase. In fact for p1 > 0.3, some of these theories differ qualitatively. This is expected; for the present
combination of low collective pitch angle and high shaft angle (8; = 00 and o = 160), as the advance
ratio increases, (negative) thrust level increases and thereby dynamic stall dominates. According to the
linear theory, the damping slowly increases for 0.1 < p < 0.35, and thereafter it sharply deviates from the
data: leveling off around 1 = 0.4 and sharply decreasing for pt > 0.425. The dynamic wake theory is a
significant improvement over the linear theory and provides reasonable correlation for the entire data
range (0 < n < 0.4). It is qualitatively similar to the linear theory in that the increase in damping is
followed by a sharp decrease for 1 > 0.45. Since the data are limited to it < 0.4, it is not possible to
evaluate this sharp decrease for i 2 045 The damping from the quasisteady stall theory sharply
decreases for 0.3 < 1 < 0.4 and increases for |1 > 0.425; the increase is so delayed that it makes the
quasisteady stall theory unacceptable. Inclusion of dynamic stall dramatically improves the correlation.
The dynamic stall, and dynamic stall and wake theories predict the trend of the data, notwithstanding the
dips in damping, which occur around p = 0.35 for dynamic stall theory and around 1 = 0.4 for the
dynamic stall and wake theory. Overall, excluding the quasisteady stall theory, the predictions in Fig. 4b
fall into two groups. In the first group we have the linear and dynamic wake theories, which basically
show that damping increases and that this increase is followed by a sharp decrease. In the second group

we have the dynamic stall, and dynamic stall and wake theories, which show that damping essentially



increases with increasing advance ratio, although this increase is accompanied by a small dip in damping

and is thereby somewhat delayed.

Figure 5 shows the correlation for 8, = 30. In Fig. 5a, ag=8"and in Fig. 5b, ag = 16", and the
data are available for 0 < p < 0.25 and for 0 < p < 0.35, respectively. In Fig. Sa, the thrust level is
relatively low throughout (Cr/og < 0.04). It is about 0.03 in hover, increases to 0.04 at p = 0.1 and
thereafter continuously decreases with increasing advance ratio, down to nearly zero at p =~ 0.55. This is
well-reflected by satisfactory correlation, which shows that all five theories are more or less identical and

that the minor differences among them essentially decrease with increasing advance ratio.

As seen from the data in Fig. Sb, the damping decreases with increasing advance ratio. Because of
low collective pitch and high shaft angles, the thrust level, which is about 0.03 in hover, changes to -0.05
at L = 0.35. The linear and dynamic wake theories are qualitatively inaccurate because within the data
range (0 < p < 0.35) they predict that damping consistently increases with increasing advance ratio, a
trend opposite to that of the data. These two theories do predict the trend of decreasing damping with
increasing advance ratio for jt > 0.5, however, this decrease occurs far beyond the data range to be
adequate. The other three theories come close to predicting the trend of the data, though the decrease in
damping is delayed (u ~ 04). Compared to the linear and dynamic wake theories, the improved
performance by the other three theories, in particular by the quasisteady stall theory, is primarily due to
including the effects of quasisteady stall drag. The negative thrust level is relatively low (C/og < -0.05 at
it = 0.35), and dynamic wake and stall play a relatively minor role. This is, respectively, well-reflected by
the closeness between the linear and dynamic wake theories and between the quasisteady stall and
dynamic stall theories within the data range. Although, comparatively, the dynamic stall and wake theory

gives the best correlation, Fig. 5b also shows that the correlation merits further improvement.

For 6 = 69, the data are available for 0 < p < 0.15. Figure 6 shows one typical case at a very

high shaft angle of 209, in which the damping very slowly decreases with increasing advance ratio. The
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quasisteady stall, dynamic stall, and dynamic stall and wake theories provide adequate correlations. By
comparison the linear and dynamic wake theories show that damping sharply increases with increasing
advance ratio and thus provide inadequate correlations. Concerning these two contrasting trends, the
predictions in Fig. 6 are similar to those in Fig. Sb. The dramatically improved performance by the
quasisteady stall theory over the linear and dynamic wake theories is due to nonlinear substall drag
effects. The difference between the quasisteady stall and dynamic stall theories is due to unsteady lift
effects, and the difference between the dynamic stall, and dynamic stall and wake theories is due to

downwash effects.

Concerning the predictions in Figs. 4b, 5b and 6 at very high advance ratios (approximately p >
0.5) a comment is in order. The linear theory and dynamic wake theory show the trend of decreasing
damping with increasing advance ratio. By comparison, the quasisteady stall, dynamic stall, and dynamic
stall and wake theories show the opposite trend of increasing damping. In the absence of the data it is not

possible to validate these trends.

Elastic Root-Flexure-Blade Models

For the same set of data presented thus far, we now take up the correlations based on the elastic
blade models of the root-flexure-blade assembly. Specifically, we use the spring model in Figs. 7 - 9,
modified model in Figs. 10 - 12 and modal model in Figs. 13 - 15. The focus of the presentation is on the
differences in predictions from the rigid and elastic blade models and thereby on the sensitivity of
predictions to modeling details. Therefore, some of the common features, such as virtually identical

predictions and good correlations at low-thrust conditions, are not explicitly discussed.

Figure 7a shows that the linear theory is qualitatively inaccurate because it predicts that the
damping sharply decreases with increasing advance ratio; a trend opposite to that of the data. The
dynamic wake theory provides a much better correlation by predicting that damping increases right down

to ;1 =0.5. However, it also predicts that damping decreases for 1 > 0.5, as does the linear theory for i >
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0.3. In other words, at very high advance ratios both linear and dynamic wake theories predict the same
trend of decreasing damping with increasing advance ratio. The quasisteady stall theory shows that the
damping begins to decrease around 1t = 0.5 and once again begins to increase for p > 0.55, although this
increase is beyond the data range. That the dynamic stall theory begins to deviate from the quasisteady
stall theory at p ~ 0.45 and that this deviation increases with increasing p1 or Ct/cg demonstrates dynamic
stall effects. Overall, dynamic stall theory provides adequate correlation, and the inclusion of wake

effects, as done in the dynamic stall and wake theory, brings in further improvement.

Figure 7b is basically an amplified version of Fig. 7a, particularly concerning the quasisteady stall
and dynamic stall effects. It is clearly seen that the linear theory is qualitatively inaccurate. Although the
dynamic wake theory predicts the trend of the data within the data range (0 < p < 0.4), it also shows
that damping rapidly drops off for |1 > 0.4. The quasisteady stall theory predicts the trend of the data;
however, for u > 0.3, its quantitative deviation from the dynamic stall theory increases because of
increasing dynamic stall effects. The dynamic stall, and dynamic stall and wake theories provide good

correlation.

Figure 8a for 83 =3 and o = 80 shows that the linear and dynamic wake theories provide good
correlation throughout. Also the quasisteady stall and dynamic stall theories overpredict damping;
nevertheless, they predict the trend of the data of nearly constant damping for the entire data range (0 <
i < 0.25). The dynamic stall and wake theory falls between these two sets of theories by significantly
reducing the overprediction by the quasisteady and dynamic stall theories. This overprediction is due to
nonlinear substall drag effects. We emphasize that owing to low-Reynolds-number condition of the
experiment (Refs. 2 and 7), substall drag is an important consideration in the correlation. As seen from
Fig. 8b for 6 = 30 and o = 169, none of the five theories within the data range (0 < p < 0.35) predict

clearly that the damping decreases with increasing advance ratio.
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Figure 9 shows the correlation for 8, = 60 and o = 200 The linear and dynamic wake theories
show that damping increases with increasing advance ratio from hover to p = 0.4. This is opposite to the
trend of the data, which, though limited to very low advance ratios (0 < p < 0.15), show that damping
slowly decreases with increasing advance ratio. The quasisteady stall and dynamic stall theories predict
the trend of the data despite appreciable overpredictions. The dynamic stall and wake theory significantly
reduces these overpredictions. As was the case in Fig. 6, in which the same set of data was correlated on
the basis of the rigid flap-lag model, the nonlinear substall drag accounts for much of the differences
between the linear theory and quasisteady stall theory, this is a consequence of low-Reynolds-number
effects of the test conditions (Refs. 2 and 7). Dynamic stall is not an issue here and unsteady lift effects
account for the differences between the dynamic stall and quasisteady stall theories. Similarly, the effects
of unsteady lift and downwash account for the differences between the linear theory and dynamic wake
theory. The predictions in Fig. 9 are qualitatively similar to those in Fig. 6. Overall, dynamic stall and

wake theory provides fairly adequate correlation.

Now we show the correlation for 6, = 00 from the modified model: ag = 8% in Fig. 10a and o =
160 in Fig. 10b. Basically, the linear and dynamic wake theories predict that damping increases initially at
about p > 0.2 as do the data. They also predict that this increase is followed by a sharp decrease. It is this
sharp decrease that is not well-supported by the data. For example, while this decrease begins to occur at
about 1t > 0.5 and wi-t'hin the data range (0 < p < 0.55) in Fig. 10a, it occurs at about p 2 0.45 outside
the data range (0 < p < 0.4) in Fig. 10b. In contrast, we have the other three theories. In particular,
dynamic stall, and dynamic stall and wake theories predict that damping basically increases with
increasing advance ratio, although the predictions are accompanied by localized humps and troughs. The
quasisteady stall theory more or less follows the dynamic stall theory, but it shows considerable loss in
damping at about p = 0.55 in Fig. 10a and 1t = 0.4 in Fig. 10b. Although it shows this loss is followed by
a rapid increase, the increase begins to occur in a delayed manner at a higher value of |1 than what is
indicated by the data. Overall the dynamic stall, and dynamic stall and wake theories give good

correlation.



Using the same modified model we continue the correlation for the remaining two sets of data: a
=80 and 169 both with 8, = 30 in Fig. 11 and ag = 200 with 85 = 69 in Fig. 12. Basically, the predictions
agree with and lie between the corresponding predictions based on the rigid flap-lag model in Figs. S and
6, and on the spring model in Figs. 8 and 9. While the linear and wake theories are satisfactory in Fig.
11a, they are not satisfactory in Fig. 12, as was the case earlier based on the rigid flap-lag and spring
models. Moreover Figs. 11a and 12 show that the quasisteady stall and dynamic stall theories predict the
trend of the data, although the damping levels are overpredicted owing to nonlinear substall drag effects.
The dynamic stall and wake theory appreciably reduces this overpredictibn and provides good correlation
throughout. An exception is Fig. 11b for 8 = 3% and ag = 169, in which the data clearly show that
damping decreases with increasing advance ratio. The dynamic stall and wake theory is a significant
improvement over the other four theories; still it falls short of predicting the trend of the data within the

data range. Dynamic stall is not a major factor and the required improvements merit further study.

Figures 13, 14 and 15 are based on the modal model and confirm the corresponding earlier

predictions based on the other three models of the root-flexure-blade assembly. We include them here for

completeness and future reference.

Comparison of Structural Models

The preceding correlations in Figs. 4-15 are based on four structural models of the root-flexure-
blade assembly, and for each model we used five aerodynamic theories. These fairly exhaustive
correlations show that the dynamic stall and wake theory is the best of the five theories. Given this
background, we present in Figs. 16-18 a comparative assessment of four structural models based on the
dynamic stall and wake theory. Figure 16a for 8y = 00 and a = 89 shows that the predictions from three
elastic models are practically identical and provide good correlation throughout. The rigid flap-lag model
also provides fairly adequate correlation. The difference between the predictions from three elastic blade

models and those from the rigid blade model is due to blade torsion and bending effects (Ref. 3). To set
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the stage for Fig. 16b, we mention that with increasing advance ratio and shaft angle, the negative thrust
level increases, as do the effects of dynamic stall. This brings in increased system nonlinearity, and
accordingly, damping predictions show increasing sensitivity to changes in blade modeling. This
sensitivity is more clearly seen in Fig. 16b, which is for 6 = 09 and o = 160. Figure 16b also shows that
all the four blade models adequately predict the trend of the data and that the modified model gives the

best of the correlations.

Figure 17a for 6 = 30 and o, = 80 shows that all four blade models give good correlations and
that the spring model slightly overpredicts damping. This overprediction, though not appreciable
quantitatively, is consistently observed throughout the data range. In Fig. 17b (6 = 3° and ag = 160)
none of the blade models provides good correlation for the entire data range, and the rigid blade model
gives at best fairly adequate correlation. Finally, we come to Fig. 18 for 6, = 6" and o = 209, in which
the data are limited to low advance ratios (0 < p < 0.15). it is seen that the modified model and the
modal model provide good correlations. The predictions from the rigid flap-lag model are also adequate.
However, the rigid-blade-predictions show that the damping very slowly increases with increasing
advance ratio. On the other hand, the data show that damping slowly decreases with increasing advance
ratio. The trend of the data is predicted by the spring model, but it consistently overpredicts damping.
This overprediction is due to the overestimation of root-flexure coupling by the spring model, and it

increases with increasihg blade pitch; tor example, compare Fig. 17a and 17b with Fig. 18 at = 0.

Conclusions
The preceding correlation is based on a comprehensive database: 0 < p < 0.55, 00 < 6, < 69,
and 00 < og < 200. The predictions are based on the rigid flap-lag model of the root-flexure-blade
assembly as well as on three elastic blade models: spring model, modified model and modal model. With
each model of the root-flexure-blade assembly, five aerodynamic theories are exercised: linear,

quasisteady stall, dynamic stall, dynamic wake, and dynamic stall and wake. The correlation shows the
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need to include dynamic stall and wake. Based on the dynamic stall and wake theory, the predictions and

related correlations lead to the following specific findings:

1.

1.

For nearly the entire database, the rigid flap-lag, modified and modal models provide adequate
correlation. The predictions from the modified and modal models are nearly the same and run fairly
close to the predictions from the rigid flap-lag model. However, with increasing negative thrust levels,
as is the case for combinations of high advance ratio and high shaft angle at 8 = 09, the modified and
modal models provide better correlations.

For a set of data points at 8y = 30 and high shaft angles the trend of the data of decreasing damping

with increasing advance ratio is not well-predicted; this merits further study.

. For 8y = 00 and high shaft angles, as the advance ratio increases, the effects of negatively stalled

conditions increase. Under such conditions the predictions show increasing sensitivity to changes in
modeling the root-flexure-blade assembly. Consequently the differences in the predictions from the
four models increase with increasing negative thrust conditions.

The spring model also provides fairly adequate correlation for the entire database. But it overestimates
the bending-torsion couplings of the root flexure. This overestimation brings in increasing quantitative

degradation to the correlation with increasing blade pitch angle By

. The dynamic stall theory is keyed to the airfoil-section characteristics of lift, drag and pitching moment

under quasisteady-stall and dynamic-stalled conditions. Improved representation of these
characteristics under the low-Reynolds-number conditions of the experiment merits further research;

this offers considerable promise in further improving the correlation.
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Fig. 4 Effects of Aerodynamic Modeling on Lag Damping Correlation
from Rigid Flap-Lag Model with 6, = 0°.
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Fig. 5 Effects of Aerodynamic Modeling on Lag Damping Correlation
from Rigid Flap-Lag Model with 6, = 3°.
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