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Abstract

An approach to analytic learning is described that
searches for accurateentailmentsof a Horn Clause domain
theory. A hill-clhnbing search, guided by an information
based evaluation function, is performedby applying a set
of operators that derive frontiers from domain theories.
The analytic learning system is one component of a
multi-strategy relational learning system. We compare
the accuracy of concepts learned with this analytic
strategyto concepts learned with an analytic strategythat
operationalizes the domain theory.

Introduction

There are two general approaches to learning classification
rules. Empirical learning programs operate by finding
regularities among a group of training examples. Analytic
learning systems use a domain theory t to explain the
classification of examples, and form a general description
of the class of examples with the same explanation. In
this paper, we discuss an approach to learning
classification rules that integrates empirical and analytic
learning methods. The goal of this integration is to create
concept descriptions that are more accurate classifiers than
both the original domain theory (which serves as input to
the analytic learning component) and the rules that would
arise if only the empirical learning component were used.
We describe a new analytic learning method that returns a
frontier (i.e., conjunctions and disjunctions of operational 2
and non-operational literals) instead of an
operationalization (i.e., a conjunction of operational
literals) and we demonstrate there is an accuracy advantage
in allowing an analytic learner to dynamically select the
level of generality of the learned concept, as a function of
the training data.

In previous work (Pazzani,et al., 1991;Pazzani & Kibler,
1992), we have described FOCL, a system that extends
Quinlan's (1990) FOILprogram in a number of ways, most
significantly by adding a compatible explanation-based
learning (EBL) component. In this paper we provide a brief
review of FOIL and FOCL, then discuss how

1. We use domain theory to refer to a set of Horn-Clause rules
given to a learner as an approximate definition of a concept
and learned conctTt to refer to the result of learning.
2. We use the term operational to refer to predicates that are
defined extensionally (i.e., defined by a collection of facts).
However, the results apply to any satirically determined
definition of operationality.

operationalizing a domain theory can adversely affect the
accuracy of a learned concept. We argue that instead of
operationalizing a domain theory, an analytic learner
should return the most general implication of the domain
theory, provided this implication is not less accurate than
any more specialized implication. We discuss the
computational complexity of an algorithm that enumerates
all such descriptions and then describe a greedy algorithm
that efficiently addresses the problem. Finally, we present
a variety of experiments that indicate replacing the
operationalization algorithm of FOCL with the new
analytic learning method results in more accurate learned
concept descriptions.

FOIL

FOIL learns classification rules by constructing a set of
Horn Clauses in terms of known operational predicates.
Each clause body consists of a conjunction of literals that
cover some positive and no negative examples. FOIL starts
to learn a clause body by finding the literal with the
maximum information gain, and continues to add literals
to the clause body until the clause does not cover any
negative examples. After learning each clause, FOIL
removes from further consideration the positive examples
covered by that clause. The learning process ends when all
positive examples have been covered by some clause.

FOCL

FOCL extends FOIL by incorporating a compatible EBL
component. This allows FOCL to take advantage of an
initial domain theory. When constructing a clause body,
there are two ways that FOCL can add literals. First, it can
create literals via the same empirical method used by FOIL.
Second, it can create literals by operationalizing a target
concept, i.e., a non-operational definition of the concept to
be learned (Mitchell, et al., 1986). FOCL uses FOIL's
information-based evaluation function to determine whether

to add a literal learned empirically or a conjunction of
literals le,'uned analytically. In general FOCL learns clauses
of the form l'('--OiAOdAOe where o i is an initial
conjunction of operational literals learned empirically, o d
is a conjunction of literals found by operationalizing the
domain theory, and of is a final conjunction of literals
learned empirically 3. Pazzani, el al. (1991) demonstrate

3. Note the target concept is operationalized at most once per
clause and that either 07', Ocl, orO:e may be empty.
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that FOCL can utilize incomplete and incorrect domain
theories. We attribute this capability to its uniform use of
an evaluation function to decide whether to include literals

learned empirically or analytically.
Operationalization in FOCL differs from that of most

EBL programs in that it uses a set of positive and negative

examples, rather than a single positive example. A non-
operational literal is operationalized by producing a
specialization of a domain theory that is a conjunction of
operational literals. When there are several ways of
operationalizing a literal (i.e., there are multiple,
disjunctive clauses), the information gain metric is used to
determine which clause should be used by computing the
number of examples covered by each clause. Figure 1
displays a typical domain theory with an operationalization
(fAyAIIAkA1A|:'Aq) represented as bold nodes.

The bold nodes represent oneFigure I.

operationalization(fA_^hAkA1^l_^q) of the domain
theory. In standardEBL, thispath would be chosen ifit

were a proofof a singlepositiveexample. In FOCL, this

path would be taken if the choice made at a disjunctive
node had greater information gain (with respect to a set of
positive and negative examples) than alternative choices.

Operationalization
The operationalization process yields a specialization of the
target concept. Indeed, several systems designed to deal
with overly general theories rely on the operationalization

process to specialize domain theories (Flann & Dietterich,
1990; Cohen, 1992). However, fully operationalizing a
domain theory can result in several problems:

1. Overspecialization of correct non-operational concepts.
For example, if the domain theory in Figure 1 is
completely correct, then a correct operational definition
will consist of eight clauses. However, if there are few

examples, or some combinations of operationalizations
are rare, then there may not be a positive example
corresponding to all combinations of all

operationalizations of non-operational predicates. As a
consequence, the learned concept may not include some
combinations of operational predicates (e.g.,
iAjAkA1ArA._^t), although there is no evidence that

these specializations ,are incorrect.
2. Replication of empirical learning. If there is a literal

omitted from a clause of a non-operational predicate,
then this literal will be omitted from each

operationalization involving this predicate. For

example, if the domain theory in Figure 1 erroneously
contained the rule be-f^h instead of be-fAg^h, then

each operationalization of the target concept using this
predicate (i.e., fAhAkA1AmAnAO, fAhAkA1ApAq, and

fAhAk^lArASAt) will contain the same omission.
FOCL can recover from this error if its empirical

component can find the omitted literal, g. However, to
obtain a correct learned concept description, FOCL
would have to find the same condition independently
three times on three different sets of examples. This

replication of empirical learning is analogous to the
replicated subtree problem in decisiontrees (Pagallo &
Haussler, 1990). This problem should be most
noticeable when there are few training examples. Under
this circumstance, it is unlikely that empirical learning
on several arbitrary partitions of a data set will be as
accurate as learning from the larger data set.

3. Proofs involving incorrect non-operational predicates

may be ignored. If the definition of a non-operational
predicate (e.g., c in Figure 1) is not true of any positive
example, then the analytic learner will not return any
operationalization using this predicate. This reduces the
usefulness of the domain theory for an analytic learner.

For example, if c is not true of any positive example,
then FOCL as previously described can find only two

operationalizations: uAV and wax. Again, we anticipate
that this problem will be most severe when there are
few training examples. With many examples, the

empirical learner can produce accurate clauses that

mitigate this problem.

Figure 2. The bold nodes represent one frontier of the
domain theory, b,, I (m,,n,,o)v (p,,q)) •

Frontiers of a Domain Theory

To address the problems raised in the previous section, we

propose an analytic learner that does not necessarily fully
operationalize target concepts. Instead, the learner returns a
frontier of the domain theory. A frontier differs from an

operationalization of a domain theory in three ways. The
frontier represented by those nodes immediately above the
line in Figure 2, b^((m^n^o) v (p^q)), illustrates these
differences:

1. Non-operational predicates (e.g., b) can appear in the
frontier.
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2. A disjunction of two or more clauses that define a non-
operational predicate (e.g., Im,,,n^o ) v Cp^q) ) can appear
in the frontier.

3. A frontier does not necessarily include all literals in a
conjunction (e.g., neither c, nor any specialization of c,
appears in the frontier).

Combined, the first two distinguishing features of a
frontier address the first two problems associated with
operationalization. Overspecialization of correct non-
operational concepts can be avoided if the analytic
component returns a more general concept description.
Similarly, replication of empirical learning can be avoided
if the analytic component returns a frontier more general
than an operationalization. For example, if the domain
theory in Figure 2 erroneously contained the rule b<--fAh

instead of b+--fmgAh and frontier fAhAkA1Ad was returned,
then an empirical learner would only need to be invoked
once to specialize this conjunction by adding g. Of course,
if one of the clauses defining d were incorrect, it would
make sense to speciMize d. However, operationalization is
not the only means of specialization. For example, if the
analytic learner returned fAhAk^l^ ( {mAnAO)V (l?,^q)) ,

then replication of induction problem could also be
avoided. This would be desirable if the clause cl_rAs^t
were incorrect.

The third problem with operationalization can be
addressed by removing some literals from a conjunction.
For example, if no positive examples use a+.-bAcAd
because ,: is not true of any positive example, then the
analytic learner might want to consider ignoring ¢ and
trying a+--bad. This would allow potentially useful parts
of the domain theory (e.g. t, and _3) to be used by the
analytic learner, even though they may be conjoined with
incorrect parts.

The notion of a frontier has been used before in analytic
learning. However, the previous work has assumed that
the domain theory is correct and has focused on increasing
the utility of learned concepts (Hirsh, 1988; Keller, 1988;
Segre, 1987) or learning from intractable domain theories
(Braverman & Russell, 1988). Here, we do not assume that
the domain theory is correct.

We argue that to increase the accuracy of learned
concepts, an analytic learner should have the ability to
select the generality of a frontier derived from a domain
theory. To validate our hypothesis, we will replace the
operationalization procedure in FOCL with an analytic
learner that returns a frontier. In order to avoid confusion
with FOCL, we use the name FOCL-FRONTIER to refer to

the system that combines this new analytic learner with an
empirical learning component based on FOIL. In general,
FOCL-FRONTIER learns clauses of the form ±-<--Ot^Fd^O t-
where O/ is an initial conjunction of operational liter^Is
learned empirically, Fc_ is a frontier of the domain theory,
and or- is a final conjunction of literals learned empirically.
We anticipate that due to its use of a frontier rather than an
operationalizati0n, FOCL-FRONTIER will be more accurate

than FOCL, particularly when there are few training
examples or the domain theory is very accurate.

Enumerating Frontiers of a Domain Theory
Formally, a frontier can be defined as follows. Let b

represent a conjunction of literals and p represent a single
literal.

1. The target concept is a frontier.

2. A new frontier can be formed from an existing frontier

by replacing a literal p with blV...vbiv...vb n provided
there are rules pC-.-b 1 ..... pc-.-b i ..... pc-.-b n .

3. A new frontier can be formed from an existing frontier

by replacing a disjunction ba v...vb i - 1vb i vb i .1 v'"Vbn

with bav...vbi_tvbi.av...Vbn for any i. This deletes b i.

4. A new frontier can be formed from an existing frontier
by replacing a conjunction Pln...APi_lAPiAPi.lA...APn
with plA...nloi_3APi+l^...^lO n for any i. This deletes Pi.

One approach to analytic learning would be to
enumerate all possible frontiers. The information gain of
each frontier could be computed, and if the frontier with the
maximum information gain has greater information gain
than any literal found empirically, then this frontier would
be added to the clause under construction. Such an

approach would be impractical for all but the most trivial,
non-recursive domain theories. Since each frontier
specifies a unique combination of leaf nodes of an and-or

tree (i.e., selecting all leaves of a subtree is equivalent to
selecting the root of the subtree and selecting no leaves of
a subtree is equivalent to deleting the root of a subtree),
there are 2k frontiers of a domain theory that has k nodes
in the and/or tree. For example, if every non-operational
predicate has n clauses, each clause is a conjunction of m

liter^Is, and inference chains hav_e___lepth of d and-nodes,
then the number of frontiers is 2m'n .

Deriving Frontiers from the Target Concept

Due to the intractability of enumerating all possible
frontiers, we propose a heuristic approach based upon hill-
climbing search. The frontier is initialized to the target
concept. A set of transformation operators is applied to
the current frontier to create a set of possible frontiers. If
none of the possible frontiers has information gain greater
than that of the current frontier 't, then the current frontier is
returned. Otherwise, the potential frontier with the
maximum information gain becomes the current frontier

and the process of applying transformation operators is
repeated. The following transformation operators are used5:

• Clause specialization:

If there is a frontier containing a literal p, and there are

exactly n rules of the form r_r_ ..... p<---bi ..... pC-.-bn,

then n frontiers formed by replacing p with bi are
evaluated.

4 The information gain of a frontier is calculated in the same
manner than Quinlan (1990) calculates the information gain of
a literal: by counting the number of positive and negative
examples that meet the conditions represented by the frontier.

5. The numeric restrictions placed upon the applicability of
each operator are for efficiency reasons (i.e., to ensure that
each unique frontier is evaluated only once).
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• Specialization by removing disjunctions:

a. If there is a frontier containing a literal r_, and there
are n rules of the form l._bl ..... p*--k,i ..... p_b n, then
n frontiers formed by replacing p with

I:,1v...vb i -l vbi +1v...Vk,n are evaluated (provided n>2).
b. If there is a frontier containing a disjunction

}:' 1 V ... V b i - 1 v b i v 13 i ÷ 1 v ... v b m, then m frontiers
replacing this disjunction with
l:,av...vb i - l vl:_,_÷lv-..vl:_ are evaluated (provided m>2).

• Generalization by adding disjunctions:

If there is a frontier containing a (possibly trivial)

disjunction of conjunction of literals
I:,av...vbi - 1v_:,_+av...vt_m and there are rules of the form
t:_(.._1:,1 ..... f->(.---]._i _1, pl---b i , t:_(---bi + 1 ..... p(----b n and m<n-1,
then n-m frontiers replacing the disjunction

1:,iv...v}:,i - i vl:, i +1v...vlL,,nwith l_h v...v1:,i - lVb i vb i +i v...vb_
are evaluated. This is implemented efficiently by
keeping a derivation of each frontier, rather than by
searching for frontiers malchi81g this patlern.

• Generalization by literal deletion:

If there is a frontier containing a conjunction of literals

_;,a,',-.-^r'i _1Ap i ^r'i, 1^"'^l:'n" then n frontiers replacing
this conjunction with l:,1A...Ap i - 1Ap i +1A...Ar'n are
ev,'duated.

There is a close correspondence between the recursive
definition of a frontier and these transformation operators.
However, there is not a one-to-one correspondence because
we have found empirically that in some situations it is
advantageous to build a disjunction by adding disjuncts and
in other cases it is advantageous to build a disjunction by
removing disjuncls. The former tends to occur when few
clauses of a predicate are correct while the latter tends to
occur when few clauses are incorrect.

Note that the first three frontier operators derive logical
enlaihnenls from the domain theory while the last does

not. Deleting literais from a conjunction is a means of

finding an abductive hypothesis. For example, in EITHER
(Ourslon & Mooney, t990), a literal can be assumed to be
true during the proof process of a single example. One
difference between FOCL-FRONTIER and the abduction

process of EITHER is that EITHER considers all likely
assumptions for each unexplained positive example, and
FOCL-FRONTIER uses a greedy approach to deletion based
on an evaluation of the effect on a set of examples.

Evaluation

In this section, we report on a series of experiments in
which we compare FOCL using empirical learning alone

(EMPIRICAL), FOCL using a combination of empirical
learning and opcrationalization, and FOCL-FRONTIER. We
evaluate the performance of each algorithm in several
domains. The goal of these experiments is to substantiate
the claim that analytic le,'uning via frontier transformations
results in more accurate learned concept descriptions than

analytic learning via operationalization. Throughout this

paper, we use an analysis of variance to determine if the
difference in accuracy between algorithms is significant.
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Figure 3. A comparison of FOCL's empirical
component (EMPIRICAL), FOCL using both empirical
learning and operationalization, and FOCL-FRONTIER in the
chess end gain domain, upper: The accuracy of
EMPIRICAL (given training sets of size 50 and 200) and the

average accuracy of the initial theory as a function of the
number of changes to the domain theory, lower: The
accuracy of FOCL and FOCL-FRONTIER on the same data.

Chess End Games

The first problem we investigate is learning rules that
determine if a chess board containing a white king, white
rook, and black king is in an illegal configuration. This

problem has been studied using empirical learning systems
by Muggleton, et al. (1989) and Quinlan (1990). Here, we
compare the accuracy of FOCL-FRONTIER and FOCL using
a methodology identical to that used by Pazzani and Kibler
(1992) to compare FOCL and FOIL.

In these experiments the initial theory given to FOCL
and FOCL-FRONTIER was created by introducing either 0,
1, 2, 4, 6, 8, 10, 12, 14, 16, 20, 24, 30 or 36 random
modifications to a correct domain theory that encodes the
relevant rules of chess. Four types of modifications were

made: deleting a literal from a clause, deleting a clause,
adding a literal to a clause, and adding a clause. Added
clauses are constructed with random literals. Each clause
contains at least one literal, there is a 0.5 probability that a
clause will have at least two literals, a 0.25 probability of

containing at least three, and so on.
We ran experiments using 25, 50, 75, 150, and 200

training examples. On each trial the training and test
examples were drawn randomly from the set of 86 possible
board configurations. We ran 32 trials of each algorithm
and measured the accuracy of the learned concept

description on 1000 examples. For each algorithm the
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curvesfor 50and200trainingexamplesarepresented.
Figure3(upper)graphstheaccuracyof theinitialtheory
andtheconceptdescriptionlearnedbyFOCL'sempirical
componentasfunctionsof thenumberofmodificationsto
thecorrectdomaintheory.Figure3 (lower)graphsthe
accuracyofFOCLandFOCL-FRONTIER.

Thefollowingconclusionsmaybedrawnfromthese
experiment.First,FOCL-FRONTIERismoreaccuratethan
FOCLwhenthere,arefewtrainingexamples.Ananalysis
of varianceindicatesthattheanalyticlearningalgorithm
hasasignificanteffectontheaccuracy(p<.0001)when
thereare25,50and75 trainingexamples.However,
wherethere,are150or200trainingexamples,thereisno
significantdifferencein accuracybetweentheanalytic
learningalgorithmsbecauseboth analyticlearning
algorithms(aswellastheempiricalalgorithm)arevery
accurateonthisproblemwithlargernumbersof training
examples.Second,thedifferencein accuracybetween
FOCLandFOCL-FRONTIERisgreatestwhenthedomain
theoryhasfewerrors.With25and50examples,thereisa
significant interaction betweenthe number of
modificationsto thedomaintheoryandthealgorithm
(p<.0001,andp<.005,respectively).

Duringtheseexperiments,wealsorecordedtheamount
ofworkEMPIRICAL,FOCLandFOCL-FRONTIERperformed
whilelearningaconceptdescription.PazzaniandKibler
(1990)arguethatthenumberof timesinformationgainis
computedisagoodmetricfordescribingthesizeof the
searchspaceexploredbyFOCL.Figure4graphsthesedata
asafunctionofthenumberofmodificationstothedomain
theory for learning with 50 training examples.
FOCL-FRONTIERtestsonlyasmallpercentageof the225
frontiersof thisdomaintheorywith25 leafnodes.The
frontierapproachrequireslessworkthanoperationalization
until the domain theory is fairly inaccurate. This occurs,
in spite of the larger branching factor because the frontier
approach generates more general concepts with fewer
clauses than those created by operation,'dization (see Table
1). When the domain theory is very inaccurate, FOCL and
FOCL-FRONTIER perform slightly more work than
EMPIRICAL because there is a small overhead in

determining that the domain theory has no information
gain.
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Figure 4: The number of times the information gain
metric is computed for each algorithm.

FOCL (92.6% accurate)
ii legal (WKr,WKf, WRr,WR f , BKr, BI< f) _--equal { BK f ,WR f) .

i i l ega l (WKr ,WKf , WRr ,WRf , BKr, BKf ) (--equal (BKr. WRr) .

i 1 Iegal (Wkr ,WK f, WRr ,WR f, BKr, BK f )(--near (WKr, BKr) ^

near {WK f ,BK f ) .

illegal(WKr,WKf,WRr,WRf,BKr,BMf)(--egual{SKr,WKf) ^

equal (WKr, BMr) ^

near (WKf , BKf ) .

illegal(WKr,WKf,WRr,WRf,BKr,BKf)(--equal(WKr,WRr) ^

equal (WKf,WRf) .

FOCL-FRONTIER (98.3% accurate)
i I legal (WKr ,WK f ,WR r .WR f ,BKr, BK f )e-k_at tack (WKr,WK f ,BKr, BMI ) v

r_attack (Wl_r, WR f, BKr, BKf ) .

il legal IWKr,WKf, WRr,WR f ,BKr, BKf )(--equal (BKf ,WRf) .

i I legal (WKr,WK f ,WRr ,WR f ,BKr, BKf )(--same_po s (WKr, WKf ,WBr, WR f ) .

Table 1. Typical definitions of illegal. The variables
refer to the rank and file of the white king, white rook, and
the black king. The domain theory was 91.0% accurate
and 50 training examples were used.

Educational Loans

The second problem studied involves determining if a
student is required to pay back a loan based on enrollment
and employment information. This theory was constructed
by an honors student who had experience processing loans.
This problem, available from the UC lrvine repository,
was previously used by an extension to FOCL that revises
domain theories (Pazzani & Brunk, 1991). The domain
theory is 76.8% accurate on a set of 1000 examples.

We ran 16 trials of FOCL and FOCL-FRONTIER with
this domain theory on randomly selected training sets
ranging from 10 to 100 examples and measured the

accuracy of the learned concept by testing on 200 distinct
test examples. The results indicate that the learning
algorithm has a significant effect on the accuracy of the
learned concept (p<.0001). Figure 5 plots the mean
accuracy of the three algorithms as a function of the
number of training examples.

1.00 -.. _ ,

0.95>. 0.90

0.85 _,mJ.,_ ----o.--- FOCLr,,,,

m _'/J_¢ ----e--- FOCL-FRONTIERo 0.80
/_')( Initial Theory

"< 0.750.70 "

0.65" • , • , • , • , • , • , • , • , • , • ,

0 10 20 30 40 50 60 70 80 90 10C

Number of examples

Figure 5. The accuracy of FOCUs empirical component
alone, FOCL with operationalizalion and FOCL-FRONTIER
on the student loan data.

Nynex Max

Nynex Max (Rabinowitz, et al., 1991) is an expert system
that is used by NYNEX (the parent company of New York
Telephone and New England Telephone) at several sites to
determine the location of a malfunction for customer-

reported telephone troubles. It can be viewed as solving a
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classificationproblemwheretheinputisdatasuchasthe
typeof switchingequipment,variousvoltagesand
resistancesandtheoutputis the locationto whicha
repairmanshouldbedispatched(e.g.,theproblemisin the
customer'sequipment,thecustomer'swiring,thecable
facilities,or thecentraloffice).NynexMaxrequiressome
customizationateachsiteinwhichit isinstalled.

1.00

o95 : : =

_' 0.90
0.85

,,_ 0.80 / --..O-- FOCL

0.75 -." _t' _ FOCL-FRONTIER
" Initial Theory

0.70 i , , , • ,
0 100 200 300 400 500

Number of Examples

Figure 6. The accuracy of the learning algorithms at
customizing the Max knowledge-base.

In this experiment, we compare the effectiveness of
FOCL-FRONTIER and FOCL at customizing the Nynex Max
knowledge-base. The initial domain theory is taken from
one site, and the training data is the desired output of
Nynex Max at a different site. Figure 6 shows the
_ccuracy of the learning algorithms (as measured on 200
independent test examples), averaged over 10 runs as a
function of the number of training examples.
FOCL-FRONTIER is more accurate than FOCL (p<.0001).
This occurs because the initial domain theory is fairly l,'uge
(about 75 rules), very disjunctive, and fairly accurate (about
95.4%). Under these circumstances, FOCL requires many
examples to form many operational rules, while
FOCL-FRONTIER learns fewer, more general rules.
FOCL-FRONTIER is the only algorithm to achieve an
accuracy significantly higher than the initial domain
theory.

Related Work

Cohen (t990; 1991a) describes the ELGIN systems that
makes use of background knowledge in a way similar to
FOCL-FRONTIER. In particular, one variant of ELGIN
called ANA-EBL, finds concepts in which all but k nodes of
a proof tree are operational. The algorithm, which is
exponential in k, learns more accurate rules from overly
general domain theories than an algorithm that uses only
operational predicates. A different variant of ELGIN, called
K-TIPS, selects k nodes of a proof tree and returns the most
general nodes in the proof tree that are not ancestors of the
selected nodes. This enables the system to learn a set of
clauses containing at most k literals from the proof tree.
Some of the literals may be non-operational and some
subtrees may be deleted from the proof tree. In some
ways, ELGIN is like the optimal algorithm we described
above that enumerates all possible frontiers. A major
difference is that ELGIN does not allow disjunction in

proofs, and for efficiency reasons is restricted to using

small values of k. FOCL-FRONTIER is not restricted in

such a fashion, since it relies on hill-climbing search to
avoid enumerating all possible hypotheses. In addition,
the empirical learning component of FOCL-FRONTIER
allows it to learn from overly specific domain theories in
addition to overly general domain theories.

In the GRENDEL system, Cohen (1991b) uses a
grammar rather than a domain theory to generate
hypotheses. Cohen shows that this grammar provides an
elegant way to describe the hypothesis space searched by
FOCL. It is possible to encode the domain theory in such a
grammar. In addition, it is possible to encode the
hypothesis space searched by FOIL in the grammar.
GRENDEL uses a hill-climbing search method similar to
the operationalization process in FOCL to determine which
hypothesis to derive from the grammar. Cohen (1991b)
shows that augmenting GRENDEL with advice to prefer
grammar rules corresponding to the domain theory results
in concepts that are as accurate as those of FOCL (with
operationalization) on the chess end game problem. The
primary difference between GRENDEL and FOCL-FRONTIER
is that FOCL-FRONTIER contains operators for deleting
literals from and-nodes and for incorporating several
disjunctions from or-nodes. However, due to the generality
of GRENDEL's grammatical approach, it should be possible
to extend GRENDEL by writing a preprocessor that converts
a domain theory into a grammar that simulate these
operators. Here, we have shown that these operators result
in increased accuracy, so it is likely that a grammar based
on the operators proposed here would increase GRENDEL's
accuracy.

FOCL-FRONTIER is in some ways similar to theory
revision systems, like EITHER (Ourston & Mooney, 1990).
However, theory revision systems have an additional goal
of making minimal revisions to a theory, while
FOCL-FRONTIER uses a set of frontiers from the domain

theory (and/or empirical learning) to discriminate positive
from negative examples. EITHER deals with propositional
theories and would not be able to revise any of the

relational theories used in the experiments here. A more
recent theory revision system, FORTE (Richards & Mooney,
1991), is capable of revising relational theories. It has
been tested on one problem on which we have run FOCL,
the illegal chess problem from Pazzani & Kibler (1992).
Richards (1992) reports that with 100 training examples
FOCL is significantly more accurate than FORTE (97.9%
and 95.6% respectively). For this problem,
FOCL-FRONTIER is 98.5% accurate (averaged over 20
trials). FORTE has a problem with this domain, since it
contains two overly-general clauses for the same relation
and its revision operators assume that at most one clause is
overly general. Although it is not possible to draw a
general conclusion form this single example, it does
indicate that there are techniques for taking advantage of

information contained in a theory that FOCL utilizes that
are not incorporated into FORTE.
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Future Work

Here, we have described one set of general purpose
operators that derive frontiers. We are currently
experimenting with more special purpose operators
designed to handle commonly occurring problems in
knowledge-based systems. For example, one might wish
to consider operators that negate a literal in a frontier (since
we occasionally omit a not from rules) or that change the
order of arguments to a predicate. Initial experiments
(Pazzani, 1992) with one such operator in FOCL (replacing
one predicate with a related predicate) yielded promising

results.

Conclusion

In this paper, we have presented an approach to integrating

empirical and analytic learning that differs from previous

approaches in that it uses an information theoretic metric

on a set of training examples to determine the generality of

the concepts derived from the domain theory. Although it

is possible that the hill-climbing search algorithm will

find a local maximum, experimentally we have

demonstrated that in situations where there are few training

examples, the domain theory is very accurate, or the

domain theory is highly disjunctive this approach learns

more accurate concept descriptions than either empirical

learning alone or a similar approach that integrates

empirical learning and operationalization. From this we

conclude that there is an advantage in allowing the an,'dytic

le,'u'ner to select the generality of a frontier derived from a

domain theory both in terms of accuracy and in terms of

the amount of work required to learn a concept description.
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